CriticalAntiDepBreaker.cpp revision 3eca15bdb5823d0f9ff5059a179a1759fee1a185
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  AllocatableSet(TRI->getAllocatableSet(MF)),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0) {}
39
40CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
41}
42
43void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
44  const unsigned BBSize = BB->size();
45  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
46    // Clear out the register class data.
47    Classes[i] = static_cast<const TargetRegisterClass *>(0);
48
49    // Initialize the indices to indicate that no registers are live.
50    KillIndices[i] = ~0u;
51    DefIndices[i] = BBSize;
52  }
53
54  // Clear "do not change" set.
55  KeepRegs.clear();
56
57  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
58
59  // Determine the live-out physregs for this block.
60  if (IsReturnBlock) {
61    // In a return block, examine the function live-out regs.
62    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
63         E = MRI.liveout_end(); I != E; ++I) {
64      unsigned Reg = *I;
65      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
66      KillIndices[Reg] = BB->size();
67      DefIndices[Reg] = ~0u;
68
69      // Repeat, for all aliases.
70      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
71        unsigned AliasReg = *Alias;
72        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
73        KillIndices[AliasReg] = BB->size();
74        DefIndices[AliasReg] = ~0u;
75      }
76    }
77  }
78
79  // In a non-return block, examine the live-in regs of all successors.
80  // Note a return block can have successors if the return instruction is
81  // predicated.
82  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
83         SE = BB->succ_end(); SI != SE; ++SI)
84    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
85           E = (*SI)->livein_end(); I != E; ++I) {
86      unsigned Reg = *I;
87      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
88      KillIndices[Reg] = BB->size();
89      DefIndices[Reg] = ~0u;
90
91      // Repeat, for all aliases.
92      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
93        unsigned AliasReg = *Alias;
94        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
95        KillIndices[AliasReg] = BB->size();
96        DefIndices[AliasReg] = ~0u;
97      }
98    }
99
100  // Mark live-out callee-saved registers. In a return block this is
101  // all callee-saved registers. In non-return this is any
102  // callee-saved register that is not saved in the prolog.
103  const MachineFrameInfo *MFI = MF.getFrameInfo();
104  BitVector Pristine = MFI->getPristineRegs(BB);
105  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
106    unsigned Reg = *I;
107    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
108    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109    KillIndices[Reg] = BB->size();
110    DefIndices[Reg] = ~0u;
111
112    // Repeat, for all aliases.
113    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
114      unsigned AliasReg = *Alias;
115      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
116      KillIndices[AliasReg] = BB->size();
117      DefIndices[AliasReg] = ~0u;
118    }
119  }
120}
121
122void CriticalAntiDepBreaker::FinishBlock() {
123  RegRefs.clear();
124  KeepRegs.clear();
125}
126
127void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
128                                     unsigned InsertPosIndex) {
129  if (MI->isDebugValue())
130    return;
131  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
132
133  // Any register which was defined within the previous scheduling region
134  // may have been rescheduled and its lifetime may overlap with registers
135  // in ways not reflected in our current liveness state. For each such
136  // register, adjust the liveness state to be conservatively correct.
137  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
138    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
139      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
140
141      // Mark this register to be non-renamable.
142      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
143
144      // Move the def index to the end of the previous region, to reflect
145      // that the def could theoretically have been scheduled at the end.
146      DefIndices[Reg] = InsertPosIndex;
147    }
148
149  PrescanInstruction(MI);
150  ScanInstruction(MI, Count);
151}
152
153/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
154/// critical path.
155static const SDep *CriticalPathStep(const SUnit *SU) {
156  const SDep *Next = 0;
157  unsigned NextDepth = 0;
158  // Find the predecessor edge with the greatest depth.
159  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
160       P != PE; ++P) {
161    const SUnit *PredSU = P->getSUnit();
162    unsigned PredLatency = P->getLatency();
163    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
164    // In the case of a latency tie, prefer an anti-dependency edge over
165    // other types of edges.
166    if (NextDepth < PredTotalLatency ||
167        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
168      NextDepth = PredTotalLatency;
169      Next = &*P;
170    }
171  }
172  return Next;
173}
174
175void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
176  // It's not safe to change register allocation for source operands of
177  // that have special allocation requirements. Also assume all registers
178  // used in a call must not be changed (ABI).
179  // FIXME: The issue with predicated instruction is more complex. We are being
180  // conservatively here because the kill markers cannot be trusted after
181  // if-conversion:
182  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
183  // ...
184  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
185  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
186  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
187  //
188  // The first R6 kill is not really a kill since it's killed by a predicated
189  // instruction which may not be executed. The second R6 def may or may not
190  // re-define R6 so it's not safe to change it since the last R6 use cannot be
191  // changed.
192  bool Special = MI->getDesc().isCall() ||
193    MI->getDesc().hasExtraSrcRegAllocReq() ||
194    TII->isPredicated(MI);
195
196  // Scan the register operands for this instruction and update
197  // Classes and RegRefs.
198  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199    MachineOperand &MO = MI->getOperand(i);
200    if (!MO.isReg()) continue;
201    unsigned Reg = MO.getReg();
202    if (Reg == 0) continue;
203    const TargetRegisterClass *NewRC = 0;
204
205    if (i < MI->getDesc().getNumOperands())
206      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
207
208    // For now, only allow the register to be changed if its register
209    // class is consistent across all uses.
210    if (!Classes[Reg] && NewRC)
211      Classes[Reg] = NewRC;
212    else if (!NewRC || Classes[Reg] != NewRC)
213      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
214
215    // Now check for aliases.
216    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
217      // If an alias of the reg is used during the live range, give up.
218      // Note that this allows us to skip checking if AntiDepReg
219      // overlaps with any of the aliases, among other things.
220      unsigned AliasReg = *Alias;
221      if (Classes[AliasReg]) {
222        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
223        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
224      }
225    }
226
227    // If we're still willing to consider this register, note the reference.
228    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
229      RegRefs.insert(std::make_pair(Reg, &MO));
230
231    if (MO.isUse() && Special) {
232      if (KeepRegs.insert(Reg)) {
233        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
234             *Subreg; ++Subreg)
235          KeepRegs.insert(*Subreg);
236      }
237    }
238  }
239}
240
241void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
242                                             unsigned Count) {
243  // Update liveness.
244  // Proceding upwards, registers that are defed but not used in this
245  // instruction are now dead.
246
247  if (!TII->isPredicated(MI)) {
248    // Predicated defs are modeled as read + write, i.e. similar to two
249    // address updates.
250    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
251      MachineOperand &MO = MI->getOperand(i);
252      if (!MO.isReg()) continue;
253      unsigned Reg = MO.getReg();
254      if (Reg == 0) continue;
255      if (!MO.isDef()) continue;
256      // Ignore two-addr defs.
257      if (MI->isRegTiedToUseOperand(i)) continue;
258
259      DefIndices[Reg] = Count;
260      KillIndices[Reg] = ~0u;
261      assert(((KillIndices[Reg] == ~0u) !=
262              (DefIndices[Reg] == ~0u)) &&
263             "Kill and Def maps aren't consistent for Reg!");
264      KeepRegs.erase(Reg);
265      Classes[Reg] = 0;
266      RegRefs.erase(Reg);
267      // Repeat, for all subregs.
268      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
269           *Subreg; ++Subreg) {
270        unsigned SubregReg = *Subreg;
271        DefIndices[SubregReg] = Count;
272        KillIndices[SubregReg] = ~0u;
273        KeepRegs.erase(SubregReg);
274        Classes[SubregReg] = 0;
275        RegRefs.erase(SubregReg);
276      }
277      // Conservatively mark super-registers as unusable.
278      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
279           *Super; ++Super) {
280        unsigned SuperReg = *Super;
281        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
282      }
283    }
284  }
285  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
286    MachineOperand &MO = MI->getOperand(i);
287    if (!MO.isReg()) continue;
288    unsigned Reg = MO.getReg();
289    if (Reg == 0) continue;
290    if (!MO.isUse()) continue;
291
292    const TargetRegisterClass *NewRC = 0;
293    if (i < MI->getDesc().getNumOperands())
294      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
295
296    // For now, only allow the register to be changed if its register
297    // class is consistent across all uses.
298    if (!Classes[Reg] && NewRC)
299      Classes[Reg] = NewRC;
300    else if (!NewRC || Classes[Reg] != NewRC)
301      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
302
303    RegRefs.insert(std::make_pair(Reg, &MO));
304
305    // It wasn't previously live but now it is, this is a kill.
306    if (KillIndices[Reg] == ~0u) {
307      KillIndices[Reg] = Count;
308      DefIndices[Reg] = ~0u;
309          assert(((KillIndices[Reg] == ~0u) !=
310                  (DefIndices[Reg] == ~0u)) &&
311               "Kill and Def maps aren't consistent for Reg!");
312    }
313    // Repeat, for all aliases.
314    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
315      unsigned AliasReg = *Alias;
316      if (KillIndices[AliasReg] == ~0u) {
317        KillIndices[AliasReg] = Count;
318        DefIndices[AliasReg] = ~0u;
319      }
320    }
321  }
322}
323
324unsigned
325CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
326                                                 unsigned AntiDepReg,
327                                                 unsigned LastNewReg,
328                                                 const TargetRegisterClass *RC)
329{
330  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
331       RE = RC->allocation_order_end(MF); R != RE; ++R) {
332    unsigned NewReg = *R;
333    // Don't replace a register with itself.
334    if (NewReg == AntiDepReg) continue;
335    // Don't replace a register with one that was recently used to repair
336    // an anti-dependence with this AntiDepReg, because that would
337    // re-introduce that anti-dependence.
338    if (NewReg == LastNewReg) continue;
339    // If the instruction already has a def of the NewReg, it's not suitable.
340    // For example, Instruction with multiple definitions can result in this
341    // condition.
342    if (MI->modifiesRegister(NewReg, TRI)) continue;
343    // If NewReg is dead and NewReg's most recent def is not before
344    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
345    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
346           && "Kill and Def maps aren't consistent for AntiDepReg!");
347    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
348           && "Kill and Def maps aren't consistent for NewReg!");
349    if (KillIndices[NewReg] != ~0u ||
350        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
351        KillIndices[AntiDepReg] > DefIndices[NewReg])
352      continue;
353    return NewReg;
354  }
355
356  // No registers are free and available!
357  return 0;
358}
359
360unsigned CriticalAntiDepBreaker::
361BreakAntiDependencies(const std::vector<SUnit>& SUnits,
362                      MachineBasicBlock::iterator Begin,
363                      MachineBasicBlock::iterator End,
364                      unsigned InsertPosIndex) {
365  // The code below assumes that there is at least one instruction,
366  // so just duck out immediately if the block is empty.
367  if (SUnits.empty()) return 0;
368
369  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
370  // This is used for updating debug information.
371  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
372
373  // Find the node at the bottom of the critical path.
374  const SUnit *Max = 0;
375  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
376    const SUnit *SU = &SUnits[i];
377    MISUnitMap[SU->getInstr()] = SU;
378    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
379      Max = SU;
380  }
381
382#ifndef NDEBUG
383  {
384    DEBUG(dbgs() << "Critical path has total latency "
385          << (Max->getDepth() + Max->Latency) << "\n");
386    DEBUG(dbgs() << "Available regs:");
387    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
388      if (KillIndices[Reg] == ~0u)
389        DEBUG(dbgs() << " " << TRI->getName(Reg));
390    }
391    DEBUG(dbgs() << '\n');
392  }
393#endif
394
395  // Track progress along the critical path through the SUnit graph as we walk
396  // the instructions.
397  const SUnit *CriticalPathSU = Max;
398  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
399
400  // Consider this pattern:
401  //   A = ...
402  //   ... = A
403  //   A = ...
404  //   ... = A
405  //   A = ...
406  //   ... = A
407  //   A = ...
408  //   ... = A
409  // There are three anti-dependencies here, and without special care,
410  // we'd break all of them using the same register:
411  //   A = ...
412  //   ... = A
413  //   B = ...
414  //   ... = B
415  //   B = ...
416  //   ... = B
417  //   B = ...
418  //   ... = B
419  // because at each anti-dependence, B is the first register that
420  // isn't A which is free.  This re-introduces anti-dependencies
421  // at all but one of the original anti-dependencies that we were
422  // trying to break.  To avoid this, keep track of the most recent
423  // register that each register was replaced with, avoid
424  // using it to repair an anti-dependence on the same register.
425  // This lets us produce this:
426  //   A = ...
427  //   ... = A
428  //   B = ...
429  //   ... = B
430  //   C = ...
431  //   ... = C
432  //   B = ...
433  //   ... = B
434  // This still has an anti-dependence on B, but at least it isn't on the
435  // original critical path.
436  //
437  // TODO: If we tracked more than one register here, we could potentially
438  // fix that remaining critical edge too. This is a little more involved,
439  // because unlike the most recent register, less recent registers should
440  // still be considered, though only if no other registers are available.
441  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
442
443  // Attempt to break anti-dependence edges on the critical path. Walk the
444  // instructions from the bottom up, tracking information about liveness
445  // as we go to help determine which registers are available.
446  unsigned Broken = 0;
447  unsigned Count = InsertPosIndex - 1;
448  for (MachineBasicBlock::iterator I = End, E = Begin;
449       I != E; --Count) {
450    MachineInstr *MI = --I;
451    if (MI->isDebugValue())
452      continue;
453
454    // Check if this instruction has a dependence on the critical path that
455    // is an anti-dependence that we may be able to break. If it is, set
456    // AntiDepReg to the non-zero register associated with the anti-dependence.
457    //
458    // We limit our attention to the critical path as a heuristic to avoid
459    // breaking anti-dependence edges that aren't going to significantly
460    // impact the overall schedule. There are a limited number of registers
461    // and we want to save them for the important edges.
462    //
463    // TODO: Instructions with multiple defs could have multiple
464    // anti-dependencies. The current code here only knows how to break one
465    // edge per instruction. Note that we'd have to be able to break all of
466    // the anti-dependencies in an instruction in order to be effective.
467    unsigned AntiDepReg = 0;
468    if (MI == CriticalPathMI) {
469      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
470        const SUnit *NextSU = Edge->getSUnit();
471
472        // Only consider anti-dependence edges.
473        if (Edge->getKind() == SDep::Anti) {
474          AntiDepReg = Edge->getReg();
475          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
476          if (!AllocatableSet.test(AntiDepReg))
477            // Don't break anti-dependencies on non-allocatable registers.
478            AntiDepReg = 0;
479          else if (KeepRegs.count(AntiDepReg))
480            // Don't break anti-dependencies if an use down below requires
481            // this exact register.
482            AntiDepReg = 0;
483          else {
484            // If the SUnit has other dependencies on the SUnit that it
485            // anti-depends on, don't bother breaking the anti-dependency
486            // since those edges would prevent such units from being
487            // scheduled past each other regardless.
488            //
489            // Also, if there are dependencies on other SUnits with the
490            // same register as the anti-dependency, don't attempt to
491            // break it.
492            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
493                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
494              if (P->getSUnit() == NextSU ?
495                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
496                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
497                AntiDepReg = 0;
498                break;
499              }
500          }
501        }
502        CriticalPathSU = NextSU;
503        CriticalPathMI = CriticalPathSU->getInstr();
504      } else {
505        // We've reached the end of the critical path.
506        CriticalPathSU = 0;
507        CriticalPathMI = 0;
508      }
509    }
510
511    PrescanInstruction(MI);
512
513    // If MI's defs have a special allocation requirement, don't allow
514    // any def registers to be changed. Also assume all registers
515    // defined in a call must not be changed (ABI).
516    if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
517        TII->isPredicated(MI))
518      // If this instruction's defs have special allocation requirement, don't
519      // break this anti-dependency.
520      AntiDepReg = 0;
521    else if (AntiDepReg) {
522      // If this instruction has a use of AntiDepReg, breaking it
523      // is invalid.
524      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
525        MachineOperand &MO = MI->getOperand(i);
526        if (!MO.isReg()) continue;
527        unsigned Reg = MO.getReg();
528        if (Reg == 0) continue;
529        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
530          AntiDepReg = 0;
531          break;
532        }
533      }
534    }
535
536    // Determine AntiDepReg's register class, if it is live and is
537    // consistently used within a single class.
538    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
539    assert((AntiDepReg == 0 || RC != NULL) &&
540           "Register should be live if it's causing an anti-dependence!");
541    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
542      AntiDepReg = 0;
543
544    // Look for a suitable register to use to break the anti-depenence.
545    //
546    // TODO: Instead of picking the first free register, consider which might
547    // be the best.
548    if (AntiDepReg != 0) {
549      if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
550                                                     LastNewReg[AntiDepReg],
551                                                     RC)) {
552        DEBUG(dbgs() << "Breaking anti-dependence edge on "
553              << TRI->getName(AntiDepReg)
554              << " with " << RegRefs.count(AntiDepReg) << " references"
555              << " using " << TRI->getName(NewReg) << "!\n");
556
557        // Update the references to the old register to refer to the new
558        // register.
559        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
560                  std::multimap<unsigned, MachineOperand *>::iterator>
561           Range = RegRefs.equal_range(AntiDepReg);
562        for (std::multimap<unsigned, MachineOperand *>::iterator
563             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
564          Q->second->setReg(NewReg);
565          // If the SU for the instruction being updated has debug information
566          // related to the anti-dependency register, make sure to update that
567          // as well.
568          const SUnit *SU = MISUnitMap[Q->second->getParent()];
569          if (!SU) continue;
570          for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i) {
571            MachineInstr *DI = SU->DbgInstrList[i];
572            assert (DI->getNumOperands()==3 && DI->getOperand(0).isReg() &&
573                    DI->getOperand(0).getReg()
574                    && "Non register dbg_value attached to SUnit!");
575            if (DI->getOperand(0).getReg() == AntiDepReg)
576              DI->getOperand(0).setReg(NewReg);
577          }
578        }
579
580        // We just went back in time and modified history; the
581        // liveness information for the anti-depenence reg is now
582        // inconsistent. Set the state as if it were dead.
583        Classes[NewReg] = Classes[AntiDepReg];
584        DefIndices[NewReg] = DefIndices[AntiDepReg];
585        KillIndices[NewReg] = KillIndices[AntiDepReg];
586        assert(((KillIndices[NewReg] == ~0u) !=
587                (DefIndices[NewReg] == ~0u)) &&
588             "Kill and Def maps aren't consistent for NewReg!");
589
590        Classes[AntiDepReg] = 0;
591        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
592        KillIndices[AntiDepReg] = ~0u;
593        assert(((KillIndices[AntiDepReg] == ~0u) !=
594                (DefIndices[AntiDepReg] == ~0u)) &&
595             "Kill and Def maps aren't consistent for AntiDepReg!");
596
597        RegRefs.erase(AntiDepReg);
598        LastNewReg[AntiDepReg] = NewReg;
599        ++Broken;
600      }
601    }
602
603    ScanInstruction(MI, Count);
604  }
605
606  return Broken;
607}
608