FastISel.cpp revision bd1253809bc1b2455793a64d2801db3d6317b08e
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/Operator.h"
47#include "llvm/CodeGen/FastISel.h"
48#include "llvm/CodeGen/FunctionLoweringInfo.h"
49#include "llvm/CodeGen/MachineInstrBuilder.h"
50#include "llvm/CodeGen/MachineModuleInfo.h"
51#include "llvm/CodeGen/MachineRegisterInfo.h"
52#include "llvm/Analysis/DebugInfo.h"
53#include "llvm/Analysis/Loads.h"
54#include "llvm/Target/TargetData.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetLowering.h"
57#include "llvm/Target/TargetMachine.h"
58#include "llvm/Support/ErrorHandling.h"
59#include "llvm/Support/Debug.h"
60using namespace llvm;
61
62/// startNewBlock - Set the current block to which generated machine
63/// instructions will be appended, and clear the local CSE map.
64///
65void FastISel::startNewBlock() {
66  LocalValueMap.clear();
67
68  // Start out as null, meaining no local-value instructions have
69  // been emitted.
70  LastLocalValue = 0;
71
72  // Advance the last local value past any EH_LABEL instructions.
73  MachineBasicBlock::iterator
74    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
75  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
76    LastLocalValue = I;
77    ++I;
78  }
79}
80
81bool FastISel::hasTrivialKill(const Value *V) const {
82  // Don't consider constants or arguments to have trivial kills.
83  const Instruction *I = dyn_cast<Instruction>(V);
84  if (!I)
85    return false;
86
87  // No-op casts are trivially coalesced by fast-isel.
88  if (const CastInst *Cast = dyn_cast<CastInst>(I))
89    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
90        !hasTrivialKill(Cast->getOperand(0)))
91      return false;
92
93  // Only instructions with a single use in the same basic block are considered
94  // to have trivial kills.
95  return I->hasOneUse() &&
96         !(I->getOpcode() == Instruction::BitCast ||
97           I->getOpcode() == Instruction::PtrToInt ||
98           I->getOpcode() == Instruction::IntToPtr) &&
99         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
100}
101
102unsigned FastISel::getRegForValue(const Value *V) {
103  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
104  // Don't handle non-simple values in FastISel.
105  if (!RealVT.isSimple())
106    return 0;
107
108  // Ignore illegal types. We must do this before looking up the value
109  // in ValueMap because Arguments are given virtual registers regardless
110  // of whether FastISel can handle them.
111  MVT VT = RealVT.getSimpleVT();
112  if (!TLI.isTypeLegal(VT)) {
113    // Promote MVT::i1 to a legal type though, because it's common and easy.
114    if (VT == MVT::i1)
115      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
116    else
117      return 0;
118  }
119
120  // Look up the value to see if we already have a register for it. We
121  // cache values defined by Instructions across blocks, and other values
122  // only locally. This is because Instructions already have the SSA
123  // def-dominates-use requirement enforced.
124  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
125  if (I != FuncInfo.ValueMap.end())
126    return I->second;
127
128  unsigned Reg = LocalValueMap[V];
129  if (Reg != 0)
130    return Reg;
131
132  // In bottom-up mode, just create the virtual register which will be used
133  // to hold the value. It will be materialized later.
134  if (isa<Instruction>(V) &&
135      (!isa<AllocaInst>(V) ||
136       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
137    return FuncInfo.InitializeRegForValue(V);
138
139  SavePoint SaveInsertPt = enterLocalValueArea();
140
141  // Materialize the value in a register. Emit any instructions in the
142  // local value area.
143  Reg = materializeRegForValue(V, VT);
144
145  leaveLocalValueArea(SaveInsertPt);
146
147  return Reg;
148}
149
150/// materializeRegForValue - Helper for getRegForValue. This function is
151/// called when the value isn't already available in a register and must
152/// be materialized with new instructions.
153unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
154  unsigned Reg = 0;
155
156  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
157    if (CI->getValue().getActiveBits() <= 64)
158      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
159  } else if (isa<AllocaInst>(V)) {
160    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
161  } else if (isa<ConstantPointerNull>(V)) {
162    // Translate this as an integer zero so that it can be
163    // local-CSE'd with actual integer zeros.
164    Reg =
165      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
166  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
167    if (CF->isNullValue()) {
168      Reg = TargetMaterializeFloatZero(CF);
169    } else {
170      // Try to emit the constant directly.
171      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
172    }
173
174    if (!Reg) {
175      // Try to emit the constant by using an integer constant with a cast.
176      const APFloat &Flt = CF->getValueAPF();
177      EVT IntVT = TLI.getPointerTy();
178
179      uint64_t x[2];
180      uint32_t IntBitWidth = IntVT.getSizeInBits();
181      bool isExact;
182      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
183                                APFloat::rmTowardZero, &isExact);
184      if (isExact) {
185        APInt IntVal(IntBitWidth, 2, x);
186
187        unsigned IntegerReg =
188          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
189        if (IntegerReg != 0)
190          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
191                           IntegerReg, /*Kill=*/false);
192      }
193    }
194  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
195    if (!SelectOperator(Op, Op->getOpcode()))
196      if (!isa<Instruction>(Op) ||
197          !TargetSelectInstruction(cast<Instruction>(Op)))
198        return 0;
199    Reg = lookUpRegForValue(Op);
200  } else if (isa<UndefValue>(V)) {
201    Reg = createResultReg(TLI.getRegClassFor(VT));
202    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
203            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
204  }
205
206  // If target-independent code couldn't handle the value, give target-specific
207  // code a try.
208  if (!Reg && isa<Constant>(V))
209    Reg = TargetMaterializeConstant(cast<Constant>(V));
210
211  // Don't cache constant materializations in the general ValueMap.
212  // To do so would require tracking what uses they dominate.
213  if (Reg != 0) {
214    LocalValueMap[V] = Reg;
215    LastLocalValue = MRI.getVRegDef(Reg);
216  }
217  return Reg;
218}
219
220unsigned FastISel::lookUpRegForValue(const Value *V) {
221  // Look up the value to see if we already have a register for it. We
222  // cache values defined by Instructions across blocks, and other values
223  // only locally. This is because Instructions already have the SSA
224  // def-dominates-use requirement enforced.
225  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
226  if (I != FuncInfo.ValueMap.end())
227    return I->second;
228  return LocalValueMap[V];
229}
230
231/// UpdateValueMap - Update the value map to include the new mapping for this
232/// instruction, or insert an extra copy to get the result in a previous
233/// determined register.
234/// NOTE: This is only necessary because we might select a block that uses
235/// a value before we select the block that defines the value.  It might be
236/// possible to fix this by selecting blocks in reverse postorder.
237unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
238  if (!isa<Instruction>(I)) {
239    LocalValueMap[I] = Reg;
240    return Reg;
241  }
242
243  unsigned &AssignedReg = FuncInfo.ValueMap[I];
244  if (AssignedReg == 0)
245    // Use the new register.
246    AssignedReg = Reg;
247  else if (Reg != AssignedReg) {
248    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
249    FuncInfo.RegFixups[AssignedReg] = Reg;
250
251    AssignedReg = Reg;
252  }
253
254  return AssignedReg;
255}
256
257std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
258  unsigned IdxN = getRegForValue(Idx);
259  if (IdxN == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return std::pair<unsigned, bool>(0, false);
262
263  bool IdxNIsKill = hasTrivialKill(Idx);
264
265  // If the index is smaller or larger than intptr_t, truncate or extend it.
266  MVT PtrVT = TLI.getPointerTy();
267  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
268  if (IdxVT.bitsLT(PtrVT)) {
269    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
270                      IdxN, IdxNIsKill);
271    IdxNIsKill = true;
272  }
273  else if (IdxVT.bitsGT(PtrVT)) {
274    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
275                      IdxN, IdxNIsKill);
276    IdxNIsKill = true;
277  }
278  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
279}
280
281void FastISel::recomputeInsertPt() {
282  if (getLastLocalValue()) {
283    FuncInfo.InsertPt = getLastLocalValue();
284    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
285    ++FuncInfo.InsertPt;
286  } else
287    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
288
289  // Now skip past any EH_LABELs, which must remain at the beginning.
290  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
291         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
292    ++FuncInfo.InsertPt;
293}
294
295FastISel::SavePoint FastISel::enterLocalValueArea() {
296  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
297  DebugLoc OldDL = DL;
298  recomputeInsertPt();
299  DL = DebugLoc();
300  SavePoint SP = { OldInsertPt, OldDL };
301  return SP;
302}
303
304void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
305  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
306    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
307
308  // Restore the previous insert position.
309  FuncInfo.InsertPt = OldInsertPt.InsertPt;
310  DL = OldInsertPt.DL;
311}
312
313/// SelectBinaryOp - Select and emit code for a binary operator instruction,
314/// which has an opcode which directly corresponds to the given ISD opcode.
315///
316bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
317  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
318  if (VT == MVT::Other || !VT.isSimple())
319    // Unhandled type. Halt "fast" selection and bail.
320    return false;
321
322  // We only handle legal types. For example, on x86-32 the instruction
323  // selector contains all of the 64-bit instructions from x86-64,
324  // under the assumption that i64 won't be used if the target doesn't
325  // support it.
326  if (!TLI.isTypeLegal(VT)) {
327    // MVT::i1 is special. Allow AND, OR, or XOR because they
328    // don't require additional zeroing, which makes them easy.
329    if (VT == MVT::i1 &&
330        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
331         ISDOpcode == ISD::XOR))
332      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
333    else
334      return false;
335  }
336
337  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
338  // we don't have anything that canonicalizes operand order.
339  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
340    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
341      unsigned Op1 = getRegForValue(I->getOperand(1));
342      if (Op1 == 0) return false;
343
344      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
345
346      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
347                                        Op1IsKill, CI->getZExtValue(),
348                                        VT.getSimpleVT());
349      if (ResultReg == 0) return false;
350
351      // We successfully emitted code for the given LLVM Instruction.
352      UpdateValueMap(I, ResultReg);
353      return true;
354    }
355
356
357  unsigned Op0 = getRegForValue(I->getOperand(0));
358  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
359    return false;
360
361  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
362
363  // Check if the second operand is a constant and handle it appropriately.
364  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
365    uint64_t Imm = CI->getZExtValue();
366
367    // Transform "sdiv exact X, 8" -> "sra X, 3".
368    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
369        cast<BinaryOperator>(I)->isExact() &&
370        isPowerOf2_64(Imm)) {
371      Imm = Log2_64(Imm);
372      ISDOpcode = ISD::SRA;
373    }
374
375    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
376                                      Op0IsKill, Imm, VT.getSimpleVT());
377    if (ResultReg == 0) return false;
378
379    // We successfully emitted code for the given LLVM Instruction.
380    UpdateValueMap(I, ResultReg);
381    return true;
382  }
383
384  // Check if the second operand is a constant float.
385  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
386    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
387                                     ISDOpcode, Op0, Op0IsKill, CF);
388    if (ResultReg != 0) {
389      // We successfully emitted code for the given LLVM Instruction.
390      UpdateValueMap(I, ResultReg);
391      return true;
392    }
393  }
394
395  unsigned Op1 = getRegForValue(I->getOperand(1));
396  if (Op1 == 0)
397    // Unhandled operand. Halt "fast" selection and bail.
398    return false;
399
400  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
401
402  // Now we have both operands in registers. Emit the instruction.
403  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
404                                   ISDOpcode,
405                                   Op0, Op0IsKill,
406                                   Op1, Op1IsKill);
407  if (ResultReg == 0)
408    // Target-specific code wasn't able to find a machine opcode for
409    // the given ISD opcode and type. Halt "fast" selection and bail.
410    return false;
411
412  // We successfully emitted code for the given LLVM Instruction.
413  UpdateValueMap(I, ResultReg);
414  return true;
415}
416
417bool FastISel::SelectGetElementPtr(const User *I) {
418  unsigned N = getRegForValue(I->getOperand(0));
419  if (N == 0)
420    // Unhandled operand. Halt "fast" selection and bail.
421    return false;
422
423  bool NIsKill = hasTrivialKill(I->getOperand(0));
424
425  const Type *Ty = I->getOperand(0)->getType();
426  MVT VT = TLI.getPointerTy();
427  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
428       E = I->op_end(); OI != E; ++OI) {
429    const Value *Idx = *OI;
430    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
431      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
432      if (Field) {
433        // N = N + Offset
434        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
435        // FIXME: This can be optimized by combining the add with a
436        // subsequent one.
437        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
438        if (N == 0)
439          // Unhandled operand. Halt "fast" selection and bail.
440          return false;
441        NIsKill = true;
442      }
443      Ty = StTy->getElementType(Field);
444    } else {
445      Ty = cast<SequentialType>(Ty)->getElementType();
446
447      // If this is a constant subscript, handle it quickly.
448      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
449        if (CI->isZero()) continue;
450        uint64_t Offs =
451          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
452        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
453        if (N == 0)
454          // Unhandled operand. Halt "fast" selection and bail.
455          return false;
456        NIsKill = true;
457        continue;
458      }
459
460      // N = N + Idx * ElementSize;
461      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
462      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
463      unsigned IdxN = Pair.first;
464      bool IdxNIsKill = Pair.second;
465      if (IdxN == 0)
466        // Unhandled operand. Halt "fast" selection and bail.
467        return false;
468
469      if (ElementSize != 1) {
470        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
471        if (IdxN == 0)
472          // Unhandled operand. Halt "fast" selection and bail.
473          return false;
474        IdxNIsKill = true;
475      }
476      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
477      if (N == 0)
478        // Unhandled operand. Halt "fast" selection and bail.
479        return false;
480    }
481  }
482
483  // We successfully emitted code for the given LLVM Instruction.
484  UpdateValueMap(I, N);
485  return true;
486}
487
488bool FastISel::SelectCall(const User *I) {
489  const CallInst *Call = cast<CallInst>(I);
490
491  // Handle simple inline asms.
492  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getArgOperand(0))) {
493    // Don't attempt to handle constraints.
494    if (!IA->getConstraintString().empty())
495      return false;
496
497    unsigned ExtraInfo = 0;
498    if (IA->hasSideEffects())
499      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
500    if (IA->isAlignStack())
501      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
502
503    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
504            TII.get(TargetOpcode::INLINEASM))
505      .addExternalSymbol(IA->getAsmString().c_str())
506      .addImm(ExtraInfo);
507    return true;
508  }
509
510  const Function *F = Call->getCalledFunction();
511  if (!F) return false;
512
513  // Handle selected intrinsic function calls.
514  switch (F->getIntrinsicID()) {
515  default: break;
516  case Intrinsic::dbg_declare: {
517    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
518    if (!DIVariable(DI->getVariable()).Verify() ||
519        !FuncInfo.MF->getMMI().hasDebugInfo())
520      return true;
521
522    const Value *Address = DI->getAddress();
523    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
524      return true;
525
526    unsigned Reg = 0;
527    unsigned Offset = 0;
528    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
529      if (Arg->hasByValAttr()) {
530        // Byval arguments' frame index is recorded during argument lowering.
531        // Use this info directly.
532        Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
533        if (Offset)
534          Reg = TRI.getFrameRegister(*FuncInfo.MF);
535      }
536    }
537    if (!Reg)
538      Reg = getRegForValue(Address);
539
540    if (Reg)
541      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
542              TII.get(TargetOpcode::DBG_VALUE))
543        .addReg(Reg, RegState::Debug).addImm(Offset)
544        .addMetadata(DI->getVariable());
545    return true;
546  }
547  case Intrinsic::dbg_value: {
548    // This form of DBG_VALUE is target-independent.
549    const DbgValueInst *DI = cast<DbgValueInst>(Call);
550    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
551    const Value *V = DI->getValue();
552    if (!V) {
553      // Currently the optimizer can produce this; insert an undef to
554      // help debugging.  Probably the optimizer should not do this.
555      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
556        .addReg(0U).addImm(DI->getOffset())
557        .addMetadata(DI->getVariable());
558    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
559      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
560        .addImm(CI->getZExtValue()).addImm(DI->getOffset())
561        .addMetadata(DI->getVariable());
562    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
563      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
564        .addFPImm(CF).addImm(DI->getOffset())
565        .addMetadata(DI->getVariable());
566    } else if (unsigned Reg = lookUpRegForValue(V)) {
567      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
568        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
569        .addMetadata(DI->getVariable());
570    } else {
571      // We can't yet handle anything else here because it would require
572      // generating code, thus altering codegen because of debug info.
573      DEBUG(dbgs() << "Dropping debug info for " << DI);
574    }
575    return true;
576  }
577  case Intrinsic::eh_exception: {
578    EVT VT = TLI.getValueType(Call->getType());
579    if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
580      break;
581
582    assert(FuncInfo.MBB->isLandingPad() &&
583           "Call to eh.exception not in landing pad!");
584    unsigned Reg = TLI.getExceptionAddressRegister();
585    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
586    unsigned ResultReg = createResultReg(RC);
587    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
588            ResultReg).addReg(Reg);
589    UpdateValueMap(Call, ResultReg);
590    return true;
591  }
592  case Intrinsic::eh_selector: {
593    EVT VT = TLI.getValueType(Call->getType());
594    if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
595      break;
596    if (FuncInfo.MBB->isLandingPad())
597      AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
598    else {
599#ifndef NDEBUG
600      FuncInfo.CatchInfoLost.insert(Call);
601#endif
602      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
603      unsigned Reg = TLI.getExceptionSelectorRegister();
604      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
605    }
606
607    unsigned Reg = TLI.getExceptionSelectorRegister();
608    EVT SrcVT = TLI.getPointerTy();
609    const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
610    unsigned ResultReg = createResultReg(RC);
611    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
612            ResultReg).addReg(Reg);
613
614    bool ResultRegIsKill = hasTrivialKill(Call);
615
616    // Cast the register to the type of the selector.
617    if (SrcVT.bitsGT(MVT::i32))
618      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
619                             ResultReg, ResultRegIsKill);
620    else if (SrcVT.bitsLT(MVT::i32))
621      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
622                             ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
623    if (ResultReg == 0)
624      // Unhandled operand. Halt "fast" selection and bail.
625      return false;
626
627    UpdateValueMap(Call, ResultReg);
628
629    return true;
630  }
631  }
632
633  // An arbitrary call. Bail.
634  return false;
635}
636
637bool FastISel::SelectCast(const User *I, unsigned Opcode) {
638  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
639  EVT DstVT = TLI.getValueType(I->getType());
640
641  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
642      DstVT == MVT::Other || !DstVT.isSimple())
643    // Unhandled type. Halt "fast" selection and bail.
644    return false;
645
646  // Check if the destination type is legal. Or as a special case,
647  // it may be i1 if we're doing a truncate because that's
648  // easy and somewhat common.
649  if (!TLI.isTypeLegal(DstVT))
650    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
651      // Unhandled type. Halt "fast" selection and bail.
652      return false;
653
654  // Check if the source operand is legal. Or as a special case,
655  // it may be i1 if we're doing zero-extension because that's
656  // easy and somewhat common.
657  if (!TLI.isTypeLegal(SrcVT))
658    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
659      // Unhandled type. Halt "fast" selection and bail.
660      return false;
661
662  unsigned InputReg = getRegForValue(I->getOperand(0));
663  if (!InputReg)
664    // Unhandled operand.  Halt "fast" selection and bail.
665    return false;
666
667  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
668
669  // If the operand is i1, arrange for the high bits in the register to be zero.
670  if (SrcVT == MVT::i1) {
671   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
672   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
673   if (!InputReg)
674     return false;
675   InputRegIsKill = true;
676  }
677  // If the result is i1, truncate to the target's type for i1 first.
678  if (DstVT == MVT::i1)
679    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
680
681  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
682                                  DstVT.getSimpleVT(),
683                                  Opcode,
684                                  InputReg, InputRegIsKill);
685  if (!ResultReg)
686    return false;
687
688  UpdateValueMap(I, ResultReg);
689  return true;
690}
691
692bool FastISel::SelectBitCast(const User *I) {
693  // If the bitcast doesn't change the type, just use the operand value.
694  if (I->getType() == I->getOperand(0)->getType()) {
695    unsigned Reg = getRegForValue(I->getOperand(0));
696    if (Reg == 0)
697      return false;
698    UpdateValueMap(I, Reg);
699    return true;
700  }
701
702  // Bitcasts of other values become reg-reg copies or BITCAST operators.
703  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
704  EVT DstVT = TLI.getValueType(I->getType());
705
706  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
707      DstVT == MVT::Other || !DstVT.isSimple() ||
708      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
709    // Unhandled type. Halt "fast" selection and bail.
710    return false;
711
712  unsigned Op0 = getRegForValue(I->getOperand(0));
713  if (Op0 == 0)
714    // Unhandled operand. Halt "fast" selection and bail.
715    return false;
716
717  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
718
719  // First, try to perform the bitcast by inserting a reg-reg copy.
720  unsigned ResultReg = 0;
721  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
722    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
723    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
724    // Don't attempt a cross-class copy. It will likely fail.
725    if (SrcClass == DstClass) {
726      ResultReg = createResultReg(DstClass);
727      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
728              ResultReg).addReg(Op0);
729    }
730  }
731
732  // If the reg-reg copy failed, select a BITCAST opcode.
733  if (!ResultReg)
734    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
735                           ISD::BITCAST, Op0, Op0IsKill);
736
737  if (!ResultReg)
738    return false;
739
740  UpdateValueMap(I, ResultReg);
741  return true;
742}
743
744bool
745FastISel::SelectInstruction(const Instruction *I) {
746  // Just before the terminator instruction, insert instructions to
747  // feed PHI nodes in successor blocks.
748  if (isa<TerminatorInst>(I))
749    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
750      return false;
751
752  DL = I->getDebugLoc();
753
754  // First, try doing target-independent selection.
755  if (SelectOperator(I, I->getOpcode())) {
756    DL = DebugLoc();
757    return true;
758  }
759
760  // Next, try calling the target to attempt to handle the instruction.
761  if (TargetSelectInstruction(I)) {
762    DL = DebugLoc();
763    return true;
764  }
765
766  DL = DebugLoc();
767  return false;
768}
769
770/// FastEmitBranch - Emit an unconditional branch to the given block,
771/// unless it is the immediate (fall-through) successor, and update
772/// the CFG.
773void
774FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
775  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
776    // The unconditional fall-through case, which needs no instructions.
777  } else {
778    // The unconditional branch case.
779    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
780                     SmallVector<MachineOperand, 0>(), DL);
781  }
782  FuncInfo.MBB->addSuccessor(MSucc);
783}
784
785/// SelectFNeg - Emit an FNeg operation.
786///
787bool
788FastISel::SelectFNeg(const User *I) {
789  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
790  if (OpReg == 0) return false;
791
792  bool OpRegIsKill = hasTrivialKill(I);
793
794  // If the target has ISD::FNEG, use it.
795  EVT VT = TLI.getValueType(I->getType());
796  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
797                                  ISD::FNEG, OpReg, OpRegIsKill);
798  if (ResultReg != 0) {
799    UpdateValueMap(I, ResultReg);
800    return true;
801  }
802
803  // Bitcast the value to integer, twiddle the sign bit with xor,
804  // and then bitcast it back to floating-point.
805  if (VT.getSizeInBits() > 64) return false;
806  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
807  if (!TLI.isTypeLegal(IntVT))
808    return false;
809
810  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
811                               ISD::BITCAST, OpReg, OpRegIsKill);
812  if (IntReg == 0)
813    return false;
814
815  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
816                                       IntReg, /*Kill=*/true,
817                                       UINT64_C(1) << (VT.getSizeInBits()-1),
818                                       IntVT.getSimpleVT());
819  if (IntResultReg == 0)
820    return false;
821
822  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
823                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
824  if (ResultReg == 0)
825    return false;
826
827  UpdateValueMap(I, ResultReg);
828  return true;
829}
830
831bool
832FastISel::SelectOperator(const User *I, unsigned Opcode) {
833  switch (Opcode) {
834  case Instruction::Add:
835    return SelectBinaryOp(I, ISD::ADD);
836  case Instruction::FAdd:
837    return SelectBinaryOp(I, ISD::FADD);
838  case Instruction::Sub:
839    return SelectBinaryOp(I, ISD::SUB);
840  case Instruction::FSub:
841    // FNeg is currently represented in LLVM IR as a special case of FSub.
842    if (BinaryOperator::isFNeg(I))
843      return SelectFNeg(I);
844    return SelectBinaryOp(I, ISD::FSUB);
845  case Instruction::Mul:
846    return SelectBinaryOp(I, ISD::MUL);
847  case Instruction::FMul:
848    return SelectBinaryOp(I, ISD::FMUL);
849  case Instruction::SDiv:
850    return SelectBinaryOp(I, ISD::SDIV);
851  case Instruction::UDiv:
852    return SelectBinaryOp(I, ISD::UDIV);
853  case Instruction::FDiv:
854    return SelectBinaryOp(I, ISD::FDIV);
855  case Instruction::SRem:
856    return SelectBinaryOp(I, ISD::SREM);
857  case Instruction::URem:
858    return SelectBinaryOp(I, ISD::UREM);
859  case Instruction::FRem:
860    return SelectBinaryOp(I, ISD::FREM);
861  case Instruction::Shl:
862    return SelectBinaryOp(I, ISD::SHL);
863  case Instruction::LShr:
864    return SelectBinaryOp(I, ISD::SRL);
865  case Instruction::AShr:
866    return SelectBinaryOp(I, ISD::SRA);
867  case Instruction::And:
868    return SelectBinaryOp(I, ISD::AND);
869  case Instruction::Or:
870    return SelectBinaryOp(I, ISD::OR);
871  case Instruction::Xor:
872    return SelectBinaryOp(I, ISD::XOR);
873
874  case Instruction::GetElementPtr:
875    return SelectGetElementPtr(I);
876
877  case Instruction::Br: {
878    const BranchInst *BI = cast<BranchInst>(I);
879
880    if (BI->isUnconditional()) {
881      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
882      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
883      FastEmitBranch(MSucc, BI->getDebugLoc());
884      return true;
885    }
886
887    // Conditional branches are not handed yet.
888    // Halt "fast" selection and bail.
889    return false;
890  }
891
892  case Instruction::Unreachable:
893    // Nothing to emit.
894    return true;
895
896  case Instruction::Alloca:
897    // FunctionLowering has the static-sized case covered.
898    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
899      return true;
900
901    // Dynamic-sized alloca is not handled yet.
902    return false;
903
904  case Instruction::Call:
905    return SelectCall(I);
906
907  case Instruction::BitCast:
908    return SelectBitCast(I);
909
910  case Instruction::FPToSI:
911    return SelectCast(I, ISD::FP_TO_SINT);
912  case Instruction::ZExt:
913    return SelectCast(I, ISD::ZERO_EXTEND);
914  case Instruction::SExt:
915    return SelectCast(I, ISD::SIGN_EXTEND);
916  case Instruction::Trunc:
917    return SelectCast(I, ISD::TRUNCATE);
918  case Instruction::SIToFP:
919    return SelectCast(I, ISD::SINT_TO_FP);
920
921  case Instruction::IntToPtr: // Deliberate fall-through.
922  case Instruction::PtrToInt: {
923    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
924    EVT DstVT = TLI.getValueType(I->getType());
925    if (DstVT.bitsGT(SrcVT))
926      return SelectCast(I, ISD::ZERO_EXTEND);
927    if (DstVT.bitsLT(SrcVT))
928      return SelectCast(I, ISD::TRUNCATE);
929    unsigned Reg = getRegForValue(I->getOperand(0));
930    if (Reg == 0) return false;
931    UpdateValueMap(I, Reg);
932    return true;
933  }
934
935  case Instruction::PHI:
936    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
937
938  default:
939    // Unhandled instruction. Halt "fast" selection and bail.
940    return false;
941  }
942}
943
944FastISel::FastISel(FunctionLoweringInfo &funcInfo)
945  : FuncInfo(funcInfo),
946    MRI(FuncInfo.MF->getRegInfo()),
947    MFI(*FuncInfo.MF->getFrameInfo()),
948    MCP(*FuncInfo.MF->getConstantPool()),
949    TM(FuncInfo.MF->getTarget()),
950    TD(*TM.getTargetData()),
951    TII(*TM.getInstrInfo()),
952    TLI(*TM.getTargetLowering()),
953    TRI(*TM.getRegisterInfo()) {
954}
955
956FastISel::~FastISel() {}
957
958unsigned FastISel::FastEmit_(MVT, MVT,
959                             unsigned) {
960  return 0;
961}
962
963unsigned FastISel::FastEmit_r(MVT, MVT,
964                              unsigned,
965                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
966  return 0;
967}
968
969unsigned FastISel::FastEmit_rr(MVT, MVT,
970                               unsigned,
971                               unsigned /*Op0*/, bool /*Op0IsKill*/,
972                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
973  return 0;
974}
975
976unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
977  return 0;
978}
979
980unsigned FastISel::FastEmit_f(MVT, MVT,
981                              unsigned, const ConstantFP * /*FPImm*/) {
982  return 0;
983}
984
985unsigned FastISel::FastEmit_ri(MVT, MVT,
986                               unsigned,
987                               unsigned /*Op0*/, bool /*Op0IsKill*/,
988                               uint64_t /*Imm*/) {
989  return 0;
990}
991
992unsigned FastISel::FastEmit_rf(MVT, MVT,
993                               unsigned,
994                               unsigned /*Op0*/, bool /*Op0IsKill*/,
995                               const ConstantFP * /*FPImm*/) {
996  return 0;
997}
998
999unsigned FastISel::FastEmit_rri(MVT, MVT,
1000                                unsigned,
1001                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1002                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1003                                uint64_t /*Imm*/) {
1004  return 0;
1005}
1006
1007/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1008/// to emit an instruction with an immediate operand using FastEmit_ri.
1009/// If that fails, it materializes the immediate into a register and try
1010/// FastEmit_rr instead.
1011unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1012                                unsigned Op0, bool Op0IsKill,
1013                                uint64_t Imm, MVT ImmType) {
1014  // If this is a multiply by a power of two, emit this as a shift left.
1015  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1016    Opcode = ISD::SHL;
1017    Imm = Log2_64(Imm);
1018  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1019    // div x, 8 -> srl x, 3
1020    Opcode = ISD::SRL;
1021    Imm = Log2_64(Imm);
1022  }
1023
1024  // Horrible hack (to be removed), check to make sure shift amounts are
1025  // in-range.
1026  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1027      Imm >= VT.getSizeInBits())
1028    return 0;
1029
1030  // First check if immediate type is legal. If not, we can't use the ri form.
1031  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1032  if (ResultReg != 0)
1033    return ResultReg;
1034  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1035  if (MaterialReg == 0)
1036    return 0;
1037  return FastEmit_rr(VT, VT, Opcode,
1038                     Op0, Op0IsKill,
1039                     MaterialReg, /*Kill=*/true);
1040}
1041
1042unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1043  return MRI.createVirtualRegister(RC);
1044}
1045
1046unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1047                                 const TargetRegisterClass* RC) {
1048  unsigned ResultReg = createResultReg(RC);
1049  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1050
1051  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1052  return ResultReg;
1053}
1054
1055unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1056                                  const TargetRegisterClass *RC,
1057                                  unsigned Op0, bool Op0IsKill) {
1058  unsigned ResultReg = createResultReg(RC);
1059  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1060
1061  if (II.getNumDefs() >= 1)
1062    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1063      .addReg(Op0, Op0IsKill * RegState::Kill);
1064  else {
1065    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1066      .addReg(Op0, Op0IsKill * RegState::Kill);
1067    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1068            ResultReg).addReg(II.ImplicitDefs[0]);
1069  }
1070
1071  return ResultReg;
1072}
1073
1074unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1075                                   const TargetRegisterClass *RC,
1076                                   unsigned Op0, bool Op0IsKill,
1077                                   unsigned Op1, bool Op1IsKill) {
1078  unsigned ResultReg = createResultReg(RC);
1079  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1080
1081  if (II.getNumDefs() >= 1)
1082    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1083      .addReg(Op0, Op0IsKill * RegState::Kill)
1084      .addReg(Op1, Op1IsKill * RegState::Kill);
1085  else {
1086    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1087      .addReg(Op0, Op0IsKill * RegState::Kill)
1088      .addReg(Op1, Op1IsKill * RegState::Kill);
1089    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1090            ResultReg).addReg(II.ImplicitDefs[0]);
1091  }
1092  return ResultReg;
1093}
1094
1095unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1096                                   const TargetRegisterClass *RC,
1097                                   unsigned Op0, bool Op0IsKill,
1098                                   uint64_t Imm) {
1099  unsigned ResultReg = createResultReg(RC);
1100  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1101
1102  if (II.getNumDefs() >= 1)
1103    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1104      .addReg(Op0, Op0IsKill * RegState::Kill)
1105      .addImm(Imm);
1106  else {
1107    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1108      .addReg(Op0, Op0IsKill * RegState::Kill)
1109      .addImm(Imm);
1110    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1111            ResultReg).addReg(II.ImplicitDefs[0]);
1112  }
1113  return ResultReg;
1114}
1115
1116unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1117                                   const TargetRegisterClass *RC,
1118                                   unsigned Op0, bool Op0IsKill,
1119                                   uint64_t Imm1, uint64_t Imm2) {
1120  unsigned ResultReg = createResultReg(RC);
1121  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1122
1123  if (II.getNumDefs() >= 1)
1124    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1125      .addReg(Op0, Op0IsKill * RegState::Kill)
1126      .addImm(Imm1)
1127      .addImm(Imm2);
1128  else {
1129    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1130      .addReg(Op0, Op0IsKill * RegState::Kill)
1131      .addImm(Imm1)
1132      .addImm(Imm2);
1133    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1134            ResultReg).addReg(II.ImplicitDefs[0]);
1135  }
1136  return ResultReg;
1137}
1138
1139unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1140                                   const TargetRegisterClass *RC,
1141                                   unsigned Op0, bool Op0IsKill,
1142                                   const ConstantFP *FPImm) {
1143  unsigned ResultReg = createResultReg(RC);
1144  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1145
1146  if (II.getNumDefs() >= 1)
1147    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1148      .addReg(Op0, Op0IsKill * RegState::Kill)
1149      .addFPImm(FPImm);
1150  else {
1151    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1152      .addReg(Op0, Op0IsKill * RegState::Kill)
1153      .addFPImm(FPImm);
1154    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1155            ResultReg).addReg(II.ImplicitDefs[0]);
1156  }
1157  return ResultReg;
1158}
1159
1160unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1161                                    const TargetRegisterClass *RC,
1162                                    unsigned Op0, bool Op0IsKill,
1163                                    unsigned Op1, bool Op1IsKill,
1164                                    uint64_t Imm) {
1165  unsigned ResultReg = createResultReg(RC);
1166  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1167
1168  if (II.getNumDefs() >= 1)
1169    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1170      .addReg(Op0, Op0IsKill * RegState::Kill)
1171      .addReg(Op1, Op1IsKill * RegState::Kill)
1172      .addImm(Imm);
1173  else {
1174    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1175      .addReg(Op0, Op0IsKill * RegState::Kill)
1176      .addReg(Op1, Op1IsKill * RegState::Kill)
1177      .addImm(Imm);
1178    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1179            ResultReg).addReg(II.ImplicitDefs[0]);
1180  }
1181  return ResultReg;
1182}
1183
1184unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1185                                  const TargetRegisterClass *RC,
1186                                  uint64_t Imm) {
1187  unsigned ResultReg = createResultReg(RC);
1188  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1189
1190  if (II.getNumDefs() >= 1)
1191    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1192  else {
1193    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1194    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1195            ResultReg).addReg(II.ImplicitDefs[0]);
1196  }
1197  return ResultReg;
1198}
1199
1200unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1201                                  const TargetRegisterClass *RC,
1202                                  uint64_t Imm1, uint64_t Imm2) {
1203  unsigned ResultReg = createResultReg(RC);
1204  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1205
1206  if (II.getNumDefs() >= 1)
1207    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1208      .addImm(Imm1).addImm(Imm2);
1209  else {
1210    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1211    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1212            ResultReg).addReg(II.ImplicitDefs[0]);
1213  }
1214  return ResultReg;
1215}
1216
1217unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1218                                              unsigned Op0, bool Op0IsKill,
1219                                              uint32_t Idx) {
1220  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1221  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1222         "Cannot yet extract from physregs");
1223  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1224          DL, TII.get(TargetOpcode::COPY), ResultReg)
1225    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1226  return ResultReg;
1227}
1228
1229/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1230/// with all but the least significant bit set to zero.
1231unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1232  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1233}
1234
1235/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1236/// Emit code to ensure constants are copied into registers when needed.
1237/// Remember the virtual registers that need to be added to the Machine PHI
1238/// nodes as input.  We cannot just directly add them, because expansion
1239/// might result in multiple MBB's for one BB.  As such, the start of the
1240/// BB might correspond to a different MBB than the end.
1241bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1242  const TerminatorInst *TI = LLVMBB->getTerminator();
1243
1244  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1245  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1246
1247  // Check successor nodes' PHI nodes that expect a constant to be available
1248  // from this block.
1249  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1250    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1251    if (!isa<PHINode>(SuccBB->begin())) continue;
1252    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1253
1254    // If this terminator has multiple identical successors (common for
1255    // switches), only handle each succ once.
1256    if (!SuccsHandled.insert(SuccMBB)) continue;
1257
1258    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1259
1260    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1261    // nodes and Machine PHI nodes, but the incoming operands have not been
1262    // emitted yet.
1263    for (BasicBlock::const_iterator I = SuccBB->begin();
1264         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1265
1266      // Ignore dead phi's.
1267      if (PN->use_empty()) continue;
1268
1269      // Only handle legal types. Two interesting things to note here. First,
1270      // by bailing out early, we may leave behind some dead instructions,
1271      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1272      // own moves. Second, this check is necessary because FastISel doesn't
1273      // use CreateRegs to create registers, so it always creates
1274      // exactly one register for each non-void instruction.
1275      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1276      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1277        // Promote MVT::i1.
1278        if (VT == MVT::i1)
1279          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1280        else {
1281          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1282          return false;
1283        }
1284      }
1285
1286      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1287
1288      // Set the DebugLoc for the copy. Prefer the location of the operand
1289      // if there is one; use the location of the PHI otherwise.
1290      DL = PN->getDebugLoc();
1291      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1292        DL = Inst->getDebugLoc();
1293
1294      unsigned Reg = getRegForValue(PHIOp);
1295      if (Reg == 0) {
1296        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1297        return false;
1298      }
1299      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1300      DL = DebugLoc();
1301    }
1302  }
1303
1304  return true;
1305}
1306