SplitKit.cpp revision 01cb34b0111a1e8792f327b56c51bc3bbaf83aca
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(mf),
45    LIS(lis),
46    Loops(mli),
47    TII(*mf.getTarget().getInstrInfo()),
48    CurLI(0) {}
49
50void SplitAnalysis::clear() {
51  UseSlots.clear();
52  UsingInstrs.clear();
53  UsingBlocks.clear();
54  UsingLoops.clear();
55  CurLI = 0;
56}
57
58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59  MachineBasicBlock *T, *F;
60  SmallVector<MachineOperand, 4> Cond;
61  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62}
63
64/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
65void SplitAnalysis::analyzeUses() {
66  const MachineRegisterInfo &MRI = MF.getRegInfo();
67  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg);
68       MachineInstr *MI = I.skipInstruction();) {
69    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
70      continue;
71    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
72    MachineBasicBlock *MBB = MI->getParent();
73    if (UsingBlocks[MBB]++)
74      continue;
75    for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop;
76         Loop = Loop->getParentLoop())
77      UsingLoops[Loop]++;
78  }
79  array_pod_sort(UseSlots.begin(), UseSlots.end());
80  DEBUG(dbgs() << "  counted "
81               << UsingInstrs.size() << " instrs, "
82               << UsingBlocks.size() << " blocks, "
83               << UsingLoops.size()  << " loops.\n");
84}
85
86void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
87  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
88    unsigned count = UsingBlocks.lookup(*I);
89    OS << " BB#" << (*I)->getNumber();
90    if (count)
91      OS << '(' << count << ')';
92  }
93}
94
95// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
96// predecessor blocks, and exit blocks.
97void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
98  Blocks.clear();
99
100  // Blocks in the loop.
101  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
102
103  // Predecessor blocks.
104  const MachineBasicBlock *Header = Loop->getHeader();
105  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
106       E = Header->pred_end(); I != E; ++I)
107    if (!Blocks.Loop.count(*I))
108      Blocks.Preds.insert(*I);
109
110  // Exit blocks.
111  for (MachineLoop::block_iterator I = Loop->block_begin(),
112       E = Loop->block_end(); I != E; ++I) {
113    const MachineBasicBlock *MBB = *I;
114    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
115       SE = MBB->succ_end(); SI != SE; ++SI)
116      if (!Blocks.Loop.count(*SI))
117        Blocks.Exits.insert(*SI);
118  }
119}
120
121void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
122  OS << "Loop:";
123  print(B.Loop, OS);
124  OS << ", preds:";
125  print(B.Preds, OS);
126  OS << ", exits:";
127  print(B.Exits, OS);
128}
129
130/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
131/// and around the Loop.
132SplitAnalysis::LoopPeripheralUse SplitAnalysis::
133analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
134  LoopPeripheralUse use = ContainedInLoop;
135  for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
136       I != E; ++I) {
137    const MachineBasicBlock *MBB = I->first;
138    // Is this a peripheral block?
139    if (use < MultiPeripheral &&
140        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
141      if (I->second > 1) use = MultiPeripheral;
142      else               use = SinglePeripheral;
143      continue;
144    }
145    // Is it a loop block?
146    if (Blocks.Loop.count(MBB))
147      continue;
148    // It must be an unrelated block.
149    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
150    return OutsideLoop;
151  }
152  return use;
153}
154
155/// getCriticalExits - It may be necessary to partially break critical edges
156/// leaving the loop if an exit block has predecessors from outside the loop
157/// periphery.
158void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
159                                     BlockPtrSet &CriticalExits) {
160  CriticalExits.clear();
161
162  // A critical exit block has CurLI live-in, and has a predecessor that is not
163  // in the loop nor a loop predecessor. For such an exit block, the edges
164  // carrying the new variable must be moved to a new pre-exit block.
165  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
166       I != E; ++I) {
167    const MachineBasicBlock *Exit = *I;
168    // A single-predecessor exit block is definitely not a critical edge.
169    if (Exit->pred_size() == 1)
170      continue;
171    // This exit may not have CurLI live in at all. No need to split.
172    if (!LIS.isLiveInToMBB(*CurLI, Exit))
173      continue;
174    // Does this exit block have a predecessor that is not a loop block or loop
175    // predecessor?
176    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
177         PE = Exit->pred_end(); PI != PE; ++PI) {
178      const MachineBasicBlock *Pred = *PI;
179      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
180        continue;
181      // This is a critical exit block, and we need to split the exit edge.
182      CriticalExits.insert(Exit);
183      break;
184    }
185  }
186}
187
188void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
189                                     BlockPtrSet &CriticalPreds) {
190  CriticalPreds.clear();
191
192  // A critical predecessor block has CurLI live-out, and has a successor that
193  // has CurLI live-in and is not in the loop nor a loop exit block. For such a
194  // predecessor block, we must carry the value in both the 'inside' and
195  // 'outside' registers.
196  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
197       I != E; ++I) {
198    const MachineBasicBlock *Pred = *I;
199    // Definitely not a critical edge.
200    if (Pred->succ_size() == 1)
201      continue;
202    // This block may not have CurLI live out at all if there is a PHI.
203    if (!LIS.isLiveOutOfMBB(*CurLI, Pred))
204      continue;
205    // Does this block have a successor outside the loop?
206    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
207         SE = Pred->succ_end(); SI != SE; ++SI) {
208      const MachineBasicBlock *Succ = *SI;
209      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
210        continue;
211      if (!LIS.isLiveInToMBB(*CurLI, Succ))
212        continue;
213      // This is a critical predecessor block.
214      CriticalPreds.insert(Pred);
215      break;
216    }
217  }
218}
219
220/// canSplitCriticalExits - Return true if it is possible to insert new exit
221/// blocks before the blocks in CriticalExits.
222bool
223SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
224                                     BlockPtrSet &CriticalExits) {
225  // If we don't allow critical edge splitting, require no critical exits.
226  if (!AllowSplit)
227    return CriticalExits.empty();
228
229  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
230       I != E; ++I) {
231    const MachineBasicBlock *Succ = *I;
232    // We want to insert a new pre-exit MBB before Succ, and change all the
233    // in-loop blocks to branch to the pre-exit instead of Succ.
234    // Check that all the in-loop predecessors can be changed.
235    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
236         PE = Succ->pred_end(); PI != PE; ++PI) {
237      const MachineBasicBlock *Pred = *PI;
238      // The external predecessors won't be altered.
239      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
240        continue;
241      if (!canAnalyzeBranch(Pred))
242        return false;
243    }
244
245    // If Succ's layout predecessor falls through, that too must be analyzable.
246    // We need to insert the pre-exit block in the gap.
247    MachineFunction::const_iterator MFI = Succ;
248    if (MFI == MF.begin())
249      continue;
250    if (!canAnalyzeBranch(--MFI))
251      return false;
252  }
253  // No problems found.
254  return true;
255}
256
257void SplitAnalysis::analyze(const LiveInterval *li) {
258  clear();
259  CurLI = li;
260  analyzeUses();
261}
262
263void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
264  assert(CurLI && "Call analyze() before getSplitLoops");
265  if (UsingLoops.empty())
266    return;
267
268  LoopBlocks Blocks;
269  BlockPtrSet CriticalExits;
270
271  // We split around loops where CurLI is used outside the periphery.
272  for (LoopCountMap::const_iterator I = UsingLoops.begin(),
273       E = UsingLoops.end(); I != E; ++I) {
274    const MachineLoop *Loop = I->first;
275    getLoopBlocks(Loop, Blocks);
276    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
277
278    switch(analyzeLoopPeripheralUse(Blocks)) {
279    case OutsideLoop:
280      break;
281    case MultiPeripheral:
282      // FIXME: We could split a live range with multiple uses in a peripheral
283      // block and still make progress. However, it is possible that splitting
284      // another live range will insert copies into a peripheral block, and
285      // there is a small chance we can enter an infinite loop, inserting copies
286      // forever.
287      // For safety, stick to splitting live ranges with uses outside the
288      // periphery.
289      DEBUG(dbgs() << ": multiple peripheral uses");
290      break;
291    case ContainedInLoop:
292      DEBUG(dbgs() << ": fully contained\n");
293      continue;
294    case SinglePeripheral:
295      DEBUG(dbgs() << ": single peripheral use\n");
296      continue;
297    }
298    // Will it be possible to split around this loop?
299    getCriticalExits(Blocks, CriticalExits);
300    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
301    if (!canSplitCriticalExits(Blocks, CriticalExits))
302      continue;
303    // This is a possible split.
304    Loops.insert(Loop);
305  }
306
307  DEBUG(dbgs() << "  getSplitLoops found " << Loops.size()
308               << " candidate loops.\n");
309}
310
311const MachineLoop *SplitAnalysis::getBestSplitLoop() {
312  LoopPtrSet Loops;
313  getSplitLoops(Loops);
314  if (Loops.empty())
315    return 0;
316
317  // Pick the earliest loop.
318  // FIXME: Are there other heuristics to consider?
319  const MachineLoop *Best = 0;
320  SlotIndex BestIdx;
321  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
322       ++I) {
323    SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader());
324    if (!Best || Idx < BestIdx)
325      Best = *I, BestIdx = Idx;
326  }
327  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
328  return Best;
329}
330
331/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
332/// inside the loop. Bypass loops are candidates for splitting because it can
333/// prevent interference inside the loop.
334bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
335  // If CurLI is live into the loop header and there are no uses in the loop, it
336  // must be live in the entire loop and live on at least one exiting edge.
337  return !UsingLoops.count(Loop) &&
338         LIS.isLiveInToMBB(*CurLI, Loop->getHeader());
339}
340
341/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
342/// loops whose parent is not a bypass loop.
343void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
344  SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end());
345  while (!Todo.empty()) {
346    MachineLoop *Loop = Todo.pop_back_val();
347    if (!UsingLoops.count(Loop)) {
348      // This is either a bypass loop or completely irrelevant.
349      if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader()))
350        BypassLoops.insert(Loop);
351      // Either way, skip the child loops.
352      continue;
353    }
354
355    // The child loops may be bypass loops.
356    Todo.append(Loop->begin(), Loop->end());
357  }
358}
359
360
361//===----------------------------------------------------------------------===//
362//                               LiveIntervalMap
363//===----------------------------------------------------------------------===//
364
365// Work around the fact that the std::pair constructors are broken for pointer
366// pairs in some implementations. makeVV(x, 0) works.
367static inline std::pair<const VNInfo*, VNInfo*>
368makeVV(const VNInfo *a, VNInfo *b) {
369  return std::make_pair(a, b);
370}
371
372void LiveIntervalMap::reset(LiveInterval *li) {
373  LI = li;
374  Values.clear();
375  LiveOutCache.clear();
376}
377
378bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
379  ValueMap::const_iterator i = Values.find(ParentVNI);
380  return i != Values.end() && i->second == 0;
381}
382
383// defValue - Introduce a LI def for ParentVNI that could be later than
384// ParentVNI->def.
385VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
386  assert(LI && "call reset first");
387  assert(ParentVNI && "Mapping  NULL value");
388  assert(Idx.isValid() && "Invalid SlotIndex");
389  assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
390
391  // Create a new value.
392  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
393
394  // Preserve the PHIDef bit.
395  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
396    VNI->setIsPHIDef(true);
397
398  // Use insert for lookup, so we can add missing values with a second lookup.
399  std::pair<ValueMap::iterator,bool> InsP =
400    Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
401
402  // This is now a complex def. Mark with a NULL in valueMap.
403  if (!InsP.second)
404    InsP.first->second = 0;
405
406  return VNI;
407}
408
409
410// mapValue - Find the mapped value for ParentVNI at Idx.
411// Potentially create phi-def values.
412VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
413                                  bool *simple) {
414  assert(LI && "call reset first");
415  assert(ParentVNI && "Mapping  NULL value");
416  assert(Idx.isValid() && "Invalid SlotIndex");
417  assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
418
419  // Use insert for lookup, so we can add missing values with a second lookup.
420  std::pair<ValueMap::iterator,bool> InsP =
421    Values.insert(makeVV(ParentVNI, 0));
422
423  // This was an unknown value. Create a simple mapping.
424  if (InsP.second) {
425    if (simple) *simple = true;
426    return InsP.first->second = LI->createValueCopy(ParentVNI,
427                                                     LIS.getVNInfoAllocator());
428  }
429
430  // This was a simple mapped value.
431  if (InsP.first->second) {
432    if (simple) *simple = true;
433    return InsP.first->second;
434  }
435
436  // This is a complex mapped value. There may be multiple defs, and we may need
437  // to create phi-defs.
438  if (simple) *simple = false;
439  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
440  assert(IdxMBB && "No MBB at Idx");
441
442  // Is there a def in the same MBB we can extend?
443  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
444    return VNI;
445
446  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
447  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
448  // Perform a search for all predecessor blocks where we know the dominating
449  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
450  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
451               << " at " << Idx << " in " << *LI << '\n');
452
453  // Blocks where LI should be live-in.
454  SmallVector<MachineDomTreeNode*, 16> LiveIn;
455  LiveIn.push_back(MDT[IdxMBB]);
456
457  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
458  for (unsigned i = 0; i != LiveIn.size(); ++i) {
459    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
460    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
461           PE = MBB->pred_end(); PI != PE; ++PI) {
462       MachineBasicBlock *Pred = *PI;
463       // Is this a known live-out block?
464       std::pair<LiveOutMap::iterator,bool> LOIP =
465         LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
466       // Yes, we have been here before.
467       if (!LOIP.second) {
468         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
469                 dbgs() << "    known valno #" << VNI->id
470                        << " at BB#" << Pred->getNumber() << '\n');
471         continue;
472       }
473
474       // Does Pred provide a live-out value?
475       SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
476       if (VNInfo *VNI = extendTo(Pred, Last)) {
477         MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
478         DEBUG(dbgs() << "    found valno #" << VNI->id
479                      << " from BB#" << DefMBB->getNumber()
480                      << " at BB#" << Pred->getNumber() << '\n');
481         LiveOutPair &LOP = LOIP.first->second;
482         LOP.first = VNI;
483         LOP.second = MDT[DefMBB];
484         continue;
485       }
486       // No, we need a live-in value for Pred as well
487       if (Pred != IdxMBB)
488         LiveIn.push_back(MDT[Pred]);
489    }
490  }
491
492  // We may need to add phi-def values to preserve the SSA form.
493  // This is essentially the same iterative algorithm that SSAUpdater uses,
494  // except we already have a dominator tree, so we don't have to recompute it.
495  VNInfo *IdxVNI = 0;
496  unsigned Changes;
497  do {
498    Changes = 0;
499    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
500    // Propagate live-out values down the dominator tree, inserting phi-defs when
501    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
502    // likely for us to visit immediate dominators before their children.
503    for (unsigned i = LiveIn.size(); i; --i) {
504      MachineDomTreeNode *Node = LiveIn[i-1];
505      MachineBasicBlock *MBB = Node->getBlock();
506      MachineDomTreeNode *IDom = Node->getIDom();
507      LiveOutPair IDomValue;
508      // We need a live-in value to a block with no immediate dominator?
509      // This is probably an unreachable block that has survived somehow.
510      bool needPHI = !IDom;
511
512      // Get the IDom live-out value.
513      if (!needPHI) {
514        LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
515        if (I != LiveOutCache.end())
516          IDomValue = I->second;
517        else
518          // If IDom is outside our set of live-out blocks, there must be new
519          // defs, and we need a phi-def here.
520          needPHI = true;
521      }
522
523      // IDom dominates all of our predecessors, but it may not be the immediate
524      // dominator. Check if any of them have live-out values that are properly
525      // dominated by IDom. If so, we need a phi-def here.
526      if (!needPHI) {
527        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
528               PE = MBB->pred_end(); PI != PE; ++PI) {
529          LiveOutPair Value = LiveOutCache[*PI];
530          if (!Value.first || Value.first == IDomValue.first)
531            continue;
532          // This predecessor is carrying something other than IDomValue.
533          // It could be because IDomValue hasn't propagated yet, or it could be
534          // because MBB is in the dominance frontier of that value.
535          if (MDT.dominates(IDom, Value.second)) {
536            needPHI = true;
537            break;
538          }
539        }
540      }
541
542      // Create a phi-def if required.
543      if (needPHI) {
544        ++Changes;
545        SlotIndex Start = LIS.getMBBStartIdx(MBB);
546        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
547        VNI->setIsPHIDef(true);
548        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
549                     << " phi-def #" << VNI->id << " at " << Start << '\n');
550        // We no longer need LI to be live-in.
551        LiveIn.erase(LiveIn.begin()+(i-1));
552        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
553        if (MBB == IdxMBB)
554          IdxVNI = VNI;
555        // Check if we need to update live-out info.
556        LiveOutMap::iterator I = LiveOutCache.find(MBB);
557        if (I == LiveOutCache.end() || I->second.second == Node) {
558          // We already have a live-out defined in MBB, so this must be IdxMBB.
559          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
560          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
561        } else {
562          // This phi-def is also live-out, so color the whole block.
563          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
564          I->second = LiveOutPair(VNI, Node);
565        }
566      } else if (IDomValue.first) {
567        // No phi-def here. Remember incoming value for IdxMBB.
568        if (MBB == IdxMBB)
569          IdxVNI = IDomValue.first;
570        // Propagate IDomValue if needed:
571        // MBB is live-out and doesn't define its own value.
572        LiveOutMap::iterator I = LiveOutCache.find(MBB);
573        if (I != LiveOutCache.end() && I->second.second != Node &&
574            I->second.first != IDomValue.first) {
575          ++Changes;
576          I->second = IDomValue;
577          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
578                       << " idom valno #" << IDomValue.first->id
579                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
580        }
581      }
582    }
583    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
584  } while (Changes);
585
586  assert(IdxVNI && "Didn't find value for Idx");
587
588#ifndef NDEBUG
589  // Check the LiveOutCache invariants.
590  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
591         I != E; ++I) {
592    assert(I->first && "Null MBB entry in cache");
593    assert(I->second.first && "Null VNInfo in cache");
594    assert(I->second.second && "Null DomTreeNode in cache");
595    if (I->second.second->getBlock() == I->first)
596      continue;
597    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
598           PE = I->first->pred_end(); PI != PE; ++PI)
599      assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
600  }
601#endif
602
603  // Since we went through the trouble of a full BFS visiting all reaching defs,
604  // the values in LiveIn are now accurate. No more phi-defs are needed
605  // for these blocks, so we can color the live ranges.
606  // This makes the next mapValue call much faster.
607  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
608    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
609    SlotIndex Start = LIS.getMBBStartIdx(MBB);
610    VNInfo *VNI = LiveOutCache.lookup(MBB).first;
611
612    // Anything in LiveIn other than IdxMBB is live-through.
613    // In IdxMBB, we should stop at Idx unless the same value is live-out.
614    if (MBB == IdxMBB && IdxVNI != VNI)
615      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
616    else
617      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
618  }
619
620  return IdxVNI;
621}
622
623#ifndef NDEBUG
624void LiveIntervalMap::dumpCache() {
625  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
626         I != E; ++I) {
627    assert(I->first && "Null MBB entry in cache");
628    assert(I->second.first && "Null VNInfo in cache");
629    assert(I->second.second && "Null DomTreeNode in cache");
630    dbgs() << "    cache: BB#" << I->first->getNumber()
631           << " has valno #" << I->second.first->id << " from BB#"
632           << I->second.second->getBlock()->getNumber() << ", preds";
633    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
634           PE = I->first->pred_end(); PI != PE; ++PI)
635      dbgs() << " BB#" << (*PI)->getNumber();
636    dbgs() << '\n';
637  }
638  dbgs() << "    cache: " << LiveOutCache.size() << " entries.\n";
639}
640#endif
641
642// extendTo - Find the last LI value defined in MBB at or before Idx. The
643// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
644// Return the found VNInfo, or NULL.
645VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
646  assert(LI && "call reset first");
647  LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
648  if (I == LI->begin())
649    return 0;
650  --I;
651  if (I->end <= LIS.getMBBStartIdx(MBB))
652    return 0;
653  if (I->end <= Idx)
654    I->end = Idx.getNextSlot();
655  return I->valno;
656}
657
658// addSimpleRange - Add a simple range from ParentLI to LI.
659// ParentVNI must be live in the [Start;End) interval.
660void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
661                                     const VNInfo *ParentVNI) {
662  assert(LI && "call reset first");
663  bool simple;
664  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
665  // A simple mapping is easy.
666  if (simple) {
667    LI->addRange(LiveRange(Start, End, VNI));
668    return;
669  }
670
671  // ParentVNI is a complex value. We must map per MBB.
672  MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
673  MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
674
675  if (MBB == MBBE) {
676    LI->addRange(LiveRange(Start, End, VNI));
677    return;
678  }
679
680  // First block.
681  LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
682
683  // Run sequence of full blocks.
684  for (++MBB; MBB != MBBE; ++MBB) {
685    Start = LIS.getMBBStartIdx(MBB);
686    LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
687                            mapValue(ParentVNI, Start)));
688  }
689
690  // Final block.
691  Start = LIS.getMBBStartIdx(MBB);
692  if (Start != End)
693    LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
694}
695
696/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
697/// All needed values whose def is not inside [Start;End) must be defined
698/// beforehand so mapValue will work.
699void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
700  assert(LI && "call reset first");
701  LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
702  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
703
704  // Check if --I begins before Start and overlaps.
705  if (I != B) {
706    --I;
707    if (I->end > Start)
708      addSimpleRange(Start, std::min(End, I->end), I->valno);
709    ++I;
710  }
711
712  // The remaining ranges begin after Start.
713  for (;I != E && I->start < End; ++I)
714    addSimpleRange(I->start, std::min(End, I->end), I->valno);
715}
716
717
718//===----------------------------------------------------------------------===//
719//                               Split Editor
720//===----------------------------------------------------------------------===//
721
722/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
723SplitEditor::SplitEditor(SplitAnalysis &sa,
724                         LiveIntervals &lis,
725                         VirtRegMap &vrm,
726                         MachineDominatorTree &mdt,
727                         LiveRangeEdit &edit)
728  : sa_(sa), LIS(lis), VRM(vrm),
729    MRI(vrm.getMachineFunction().getRegInfo()),
730    MDT(mdt),
731    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
732    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
733    Edit(edit),
734    OpenIdx(0),
735    RegAssign(Allocator)
736{
737  // We don't need an AliasAnalysis since we will only be performing
738  // cheap-as-a-copy remats anyway.
739  Edit.anyRematerializable(LIS, TII, 0);
740}
741
742void SplitEditor::dump() const {
743  if (RegAssign.empty()) {
744    dbgs() << " empty\n";
745    return;
746  }
747
748  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
749    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
750  dbgs() << '\n';
751}
752
753VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
754                                   VNInfo *ParentVNI,
755                                   SlotIndex UseIdx,
756                                   MachineBasicBlock &MBB,
757                                   MachineBasicBlock::iterator I) {
758  MachineInstr *CopyMI = 0;
759  SlotIndex Def;
760  LiveInterval *LI = Edit.get(RegIdx);
761
762  // Attempt cheap-as-a-copy rematerialization.
763  LiveRangeEdit::Remat RM(ParentVNI);
764  if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
765    Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
766  } else {
767    // Can't remat, just insert a copy from parent.
768    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
769               .addReg(Edit.getReg());
770    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
771  }
772
773  // Define the value in Reg.
774  VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
775  VNI->setCopy(CopyMI);
776
777  // Add minimal liveness for the new value.
778  Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
779  return VNI;
780}
781
782/// Create a new virtual register and live interval.
783void SplitEditor::openIntv() {
784  assert(!OpenIdx && "Previous LI not closed before openIntv");
785
786  // Create the complement as index 0.
787  if (Edit.empty()) {
788    Edit.create(MRI, LIS, VRM);
789    LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
790    LIMappers.back().reset(Edit.get(0));
791  }
792
793  // Create the open interval.
794  OpenIdx = Edit.size();
795  Edit.create(MRI, LIS, VRM);
796  LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
797  LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
798}
799
800SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
801  assert(OpenIdx && "openIntv not called before enterIntvBefore");
802  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
803  Idx = Idx.getBaseIndex();
804  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
805  if (!ParentVNI) {
806    DEBUG(dbgs() << ": not live\n");
807    return Idx;
808  }
809  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
810  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
811  assert(MI && "enterIntvBefore called with invalid index");
812
813  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
814  return VNI->def;
815}
816
817SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
818  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
819  SlotIndex End = LIS.getMBBEndIdx(&MBB);
820  SlotIndex Last = End.getPrevSlot();
821  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
822  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
823  if (!ParentVNI) {
824    DEBUG(dbgs() << ": not live\n");
825    return End;
826  }
827  DEBUG(dbgs() << ": valno " << ParentVNI->id);
828  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
829                              LIS.getLastSplitPoint(Edit.getParent(), &MBB));
830  RegAssign.insert(VNI->def, End, OpenIdx);
831  DEBUG(dump());
832  return VNI->def;
833}
834
835/// useIntv - indicate that all instructions in MBB should use OpenLI.
836void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
837  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
838}
839
840void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
841  assert(OpenIdx && "openIntv not called before useIntv");
842  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
843  RegAssign.insert(Start, End, OpenIdx);
844  DEBUG(dump());
845}
846
847SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
848  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
849  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
850
851  // The interval must be live beyond the instruction at Idx.
852  Idx = Idx.getBoundaryIndex();
853  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
854  if (!ParentVNI) {
855    DEBUG(dbgs() << ": not live\n");
856    return Idx.getNextSlot();
857  }
858  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
859
860  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
861  assert(MI && "No instruction at index");
862  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
863                              llvm::next(MachineBasicBlock::iterator(MI)));
864  return VNI->def;
865}
866
867SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
868  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
869  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
870  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
871
872  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
873  if (!ParentVNI) {
874    DEBUG(dbgs() << ": not live\n");
875    return Start;
876  }
877
878  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
879                              MBB.SkipPHIsAndLabels(MBB.begin()));
880  RegAssign.insert(Start, VNI->def, OpenIdx);
881  DEBUG(dump());
882  return VNI->def;
883}
884
885/// closeIntv - Indicate that we are done editing the currently open
886/// LiveInterval, and ranges can be trimmed.
887void SplitEditor::closeIntv() {
888  assert(OpenIdx && "openIntv not called before closeIntv");
889  OpenIdx = 0;
890}
891
892/// rewriteAssigned - Rewrite all uses of Edit.getReg().
893void SplitEditor::rewriteAssigned() {
894  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
895       RE = MRI.reg_end(); RI != RE;) {
896    MachineOperand &MO = RI.getOperand();
897    MachineInstr *MI = MO.getParent();
898    ++RI;
899    // LiveDebugVariables should have handled all DBG_VALUE instructions.
900    if (MI->isDebugValue()) {
901      DEBUG(dbgs() << "Zapping " << *MI);
902      MO.setReg(0);
903      continue;
904    }
905    SlotIndex Idx = LIS.getInstructionIndex(MI);
906    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
907
908    // Rewrite to the mapped register at Idx.
909    unsigned RegIdx = RegAssign.lookup(Idx);
910    MO.setReg(Edit.get(RegIdx)->reg);
911    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
912                 << Idx << ':' << RegIdx << '\t' << *MI);
913
914    // Extend liveness to Idx.
915    const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
916    LIMappers[RegIdx].mapValue(ParentVNI, Idx);
917  }
918}
919
920/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
921void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
922                                    const ConnectedVNInfoEqClasses &ConEq) {
923  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
924       RE = MRI.reg_end(); RI != RE;) {
925    MachineOperand &MO = RI.getOperand();
926    MachineInstr *MI = MO.getParent();
927    ++RI;
928    if (MO.isUse() && MO.isUndef())
929      continue;
930    // DBG_VALUE instructions should have been eliminated earlier.
931    SlotIndex Idx = LIS.getInstructionIndex(MI);
932    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
933    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
934                 << Idx << ':');
935    const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
936    assert(VNI && "Interval not live at use.");
937    MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
938    DEBUG(dbgs() << VNI->id << '\t' << *MI);
939  }
940}
941
942void SplitEditor::finish() {
943  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
944
945  // At this point, the live intervals in Edit contain VNInfos corresponding to
946  // the inserted copies.
947
948  // Add the original defs from the parent interval.
949  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
950         E = Edit.getParent().vni_end(); I != E; ++I) {
951    const VNInfo *ParentVNI = *I;
952    if (ParentVNI->isUnused())
953      continue;
954    LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
955    VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
956    LIM.getLI()->addRange(LiveRange(ParentVNI->def,
957                                    ParentVNI->def.getNextSlot(), VNI));
958    // Mark all values as complex to force liveness computation.
959    // This should really only be necessary for remat victims, but we are lazy.
960    LIM.markComplexMapped(ParentVNI);
961  }
962
963#ifndef NDEBUG
964  // Every new interval must have a def by now, otherwise the split is bogus.
965  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
966    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
967#endif
968
969  // FIXME: Don't recompute the liveness of all values, infer it from the
970  // overlaps between the parent live interval and RegAssign.
971  // The mapValue algorithm is only necessary when:
972  // - The parent value maps to multiple defs, and new phis are needed, or
973  // - The value has been rematerialized before some uses, and we want to
974  //   minimize the live range so it only reaches the remaining uses.
975  // All other values have simple liveness that can be computed from RegAssign
976  // and the parent live interval.
977
978  // Extend live ranges to be live-out for successor PHI values.
979  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
980       E = Edit.getParent().vni_end(); I != E; ++I) {
981    const VNInfo *PHIVNI = *I;
982    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
983      continue;
984    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
985    LiveIntervalMap &LIM = LIMappers[RegIdx];
986    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
987    DEBUG(dbgs() << "  map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
988                 << " -> " << RegIdx << '\n');
989    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
990         PE = MBB->pred_end(); PI != PE; ++PI) {
991      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
992      DEBUG(dbgs() << "    pred BB#" << (*PI)->getNumber() << '@' << End);
993      // The predecessor may not have a live-out value. That is OK, like an
994      // undef PHI operand.
995      if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
996        DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
997        assert(RegAssign.lookup(End) == RegIdx &&
998               "Different register assignment in phi predecessor");
999        LIM.mapValue(VNI, End);
1000      }
1001      else
1002        DEBUG(dbgs() << " is not live-out\n");
1003    }
1004    DEBUG(dbgs() << "    " << *LIM.getLI() << '\n');
1005  }
1006
1007  // Rewrite instructions.
1008  rewriteAssigned();
1009
1010  // FIXME: Delete defs that were rematted everywhere.
1011
1012  // Get rid of unused values and set phi-kill flags.
1013  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
1014    (*I)->RenumberValues(LIS);
1015
1016  // Now check if any registers were separated into multiple components.
1017  ConnectedVNInfoEqClasses ConEQ(LIS);
1018  for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
1019    // Don't use iterators, they are invalidated by create() below.
1020    LiveInterval *li = Edit.get(i);
1021    unsigned NumComp = ConEQ.Classify(li);
1022    if (NumComp <= 1)
1023      continue;
1024    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1025    SmallVector<LiveInterval*, 8> dups;
1026    dups.push_back(li);
1027    for (unsigned i = 1; i != NumComp; ++i)
1028      dups.push_back(&Edit.create(MRI, LIS, VRM));
1029    rewriteComponents(dups, ConEQ);
1030    ConEQ.Distribute(&dups[0]);
1031  }
1032
1033  // Calculate spill weight and allocation hints for new intervals.
1034  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops);
1035  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
1036    LiveInterval &li = **I;
1037    vrai.CalculateRegClass(li.reg);
1038    vrai.CalculateWeightAndHint(li);
1039    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
1040                 << ":" << li << '\n');
1041  }
1042}
1043
1044
1045//===----------------------------------------------------------------------===//
1046//                               Loop Splitting
1047//===----------------------------------------------------------------------===//
1048
1049void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
1050  SplitAnalysis::LoopBlocks Blocks;
1051  sa_.getLoopBlocks(Loop, Blocks);
1052
1053  DEBUG({
1054    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
1055  });
1056
1057  // Break critical edges as needed.
1058  SplitAnalysis::BlockPtrSet CriticalExits;
1059  sa_.getCriticalExits(Blocks, CriticalExits);
1060  assert(CriticalExits.empty() && "Cannot break critical exits yet");
1061
1062  // Create new live interval for the loop.
1063  openIntv();
1064
1065  // Insert copies in the predecessors if live-in to the header.
1066  if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) {
1067    for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
1068           E = Blocks.Preds.end(); I != E; ++I) {
1069      MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1070      enterIntvAtEnd(MBB);
1071    }
1072  }
1073
1074  // Switch all loop blocks.
1075  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
1076       E = Blocks.Loop.end(); I != E; ++I)
1077     useIntv(**I);
1078
1079  // Insert back copies in the exit blocks.
1080  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
1081       E = Blocks.Exits.end(); I != E; ++I) {
1082    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1083    leaveIntvAtTop(MBB);
1084  }
1085
1086  // Done.
1087  closeIntv();
1088  finish();
1089}
1090
1091
1092//===----------------------------------------------------------------------===//
1093//                            Single Block Splitting
1094//===----------------------------------------------------------------------===//
1095
1096/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1097/// may be an advantage to split CurLI for the duration of the block.
1098bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1099  // If CurLI is local to one block, there is no point to splitting it.
1100  if (UsingBlocks.size() <= 1)
1101    return false;
1102  // Add blocks with multiple uses.
1103  for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
1104       I != E; ++I)
1105    switch (I->second) {
1106    case 0:
1107    case 1:
1108      continue;
1109    case 2: {
1110      // When there are only two uses and CurLI is both live in and live out,
1111      // we don't really win anything by isolating the block since we would be
1112      // inserting two copies.
1113      // The remaing register would still have two uses in the block. (Unless it
1114      // separates into disconnected components).
1115      if (LIS.isLiveInToMBB(*CurLI, I->first) &&
1116          LIS.isLiveOutOfMBB(*CurLI, I->first))
1117        continue;
1118    } // Fall through.
1119    default:
1120      Blocks.insert(I->first);
1121    }
1122  return !Blocks.empty();
1123}
1124
1125/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1126/// basic block in Blocks.
1127void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1128  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1129  // Determine the first and last instruction using CurLI in each block.
1130  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
1131  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
1132  IndexPairMap MBBRange;
1133  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
1134       E = sa_.UsingInstrs.end(); I != E; ++I) {
1135    const MachineBasicBlock *MBB = (*I)->getParent();
1136    if (!Blocks.count(MBB))
1137      continue;
1138    SlotIndex Idx = LIS.getInstructionIndex(*I);
1139    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
1140    IndexPair &IP = MBBRange[MBB];
1141    if (!IP.first.isValid() || Idx < IP.first)
1142      IP.first = Idx;
1143    if (!IP.second.isValid() || Idx > IP.second)
1144      IP.second = Idx;
1145  }
1146
1147  // Create a new interval for each block.
1148  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
1149       E = Blocks.end(); I != E; ++I) {
1150    IndexPair &IP = MBBRange[*I];
1151    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
1152                 << IP.first << ';' << IP.second << ")\n");
1153    assert(IP.first.isValid() && IP.second.isValid());
1154
1155    openIntv();
1156    useIntv(enterIntvBefore(IP.first), leaveIntvAfter(IP.second));
1157    closeIntv();
1158  }
1159  finish();
1160}
1161
1162
1163//===----------------------------------------------------------------------===//
1164//                            Sub Block Splitting
1165//===----------------------------------------------------------------------===//
1166
1167/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
1168/// and it wou pay to subdivide the interval inside that block, return it.
1169/// Otherwise return NULL. The returned block can be passed to
1170/// SplitEditor::splitInsideBlock.
1171const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1172  // The interval must be exclusive to one block.
1173  if (UsingBlocks.size() != 1)
1174    return 0;
1175  // Don't to this for less than 4 instructions. We want to be sure that
1176  // splitting actually reduces the instruction count per interval.
1177  if (UsingInstrs.size() < 4)
1178    return 0;
1179  return UsingBlocks.begin()->first;
1180}
1181
1182/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
1183void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1184  SmallVector<SlotIndex, 32> Uses;
1185  Uses.reserve(sa_.UsingInstrs.size());
1186  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
1187       E = sa_.UsingInstrs.end(); I != E; ++I)
1188    if ((*I)->getParent() == MBB)
1189      Uses.push_back(LIS.getInstructionIndex(*I));
1190  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1191               << Uses.size() << " instructions.\n");
1192  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1193  array_pod_sort(Uses.begin(), Uses.end());
1194
1195  // Simple algorithm: Find the largest gap between uses as determined by slot
1196  // indices. Create new intervals for instructions before the gap and after the
1197  // gap.
1198  unsigned bestPos = 0;
1199  int bestGap = 0;
1200  DEBUG(dbgs() << "    dist (" << Uses[0]);
1201  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1202    int g = Uses[i-1].distance(Uses[i]);
1203    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1204    if (g > bestGap)
1205      bestPos = i, bestGap = g;
1206  }
1207  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1208
1209  // bestPos points to the first use after the best gap.
1210  assert(bestPos > 0 && "Invalid gap");
1211
1212  // FIXME: Don't create intervals for low densities.
1213
1214  // First interval before the gap. Don't create single-instr intervals.
1215  if (bestPos > 1) {
1216    openIntv();
1217    useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1]));
1218    closeIntv();
1219  }
1220
1221  // Second interval after the gap.
1222  if (bestPos < Uses.size()-1) {
1223    openIntv();
1224    useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back()));
1225    closeIntv();
1226  }
1227
1228  finish();
1229}
1230