SplitKit.cpp revision 078628465b73348b5608ec6aa2d7181679543903
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(mf),
45    LIS(lis),
46    Loops(mli),
47    TII(*mf.getTarget().getInstrInfo()),
48    CurLI(0) {}
49
50void SplitAnalysis::clear() {
51  UseSlots.clear();
52  UsingInstrs.clear();
53  UsingBlocks.clear();
54  UsingLoops.clear();
55  CurLI = 0;
56}
57
58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59  MachineBasicBlock *T, *F;
60  SmallVector<MachineOperand, 4> Cond;
61  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62}
63
64/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
65void SplitAnalysis::analyzeUses() {
66  const MachineRegisterInfo &MRI = MF.getRegInfo();
67  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg);
68       MachineInstr *MI = I.skipInstruction();) {
69    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
70      continue;
71    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
72    MachineBasicBlock *MBB = MI->getParent();
73    if (UsingBlocks[MBB]++)
74      continue;
75    for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop;
76         Loop = Loop->getParentLoop())
77      UsingLoops[Loop]++;
78  }
79  array_pod_sort(UseSlots.begin(), UseSlots.end());
80  DEBUG(dbgs() << "  counted "
81               << UsingInstrs.size() << " instrs, "
82               << UsingBlocks.size() << " blocks, "
83               << UsingLoops.size()  << " loops.\n");
84}
85
86void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
87  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
88    unsigned count = UsingBlocks.lookup(*I);
89    OS << " BB#" << (*I)->getNumber();
90    if (count)
91      OS << '(' << count << ')';
92  }
93}
94
95// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
96// predecessor blocks, and exit blocks.
97void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
98  Blocks.clear();
99
100  // Blocks in the loop.
101  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
102
103  // Predecessor blocks.
104  const MachineBasicBlock *Header = Loop->getHeader();
105  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
106       E = Header->pred_end(); I != E; ++I)
107    if (!Blocks.Loop.count(*I))
108      Blocks.Preds.insert(*I);
109
110  // Exit blocks.
111  for (MachineLoop::block_iterator I = Loop->block_begin(),
112       E = Loop->block_end(); I != E; ++I) {
113    const MachineBasicBlock *MBB = *I;
114    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
115       SE = MBB->succ_end(); SI != SE; ++SI)
116      if (!Blocks.Loop.count(*SI))
117        Blocks.Exits.insert(*SI);
118  }
119}
120
121void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
122  OS << "Loop:";
123  print(B.Loop, OS);
124  OS << ", preds:";
125  print(B.Preds, OS);
126  OS << ", exits:";
127  print(B.Exits, OS);
128}
129
130/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
131/// and around the Loop.
132SplitAnalysis::LoopPeripheralUse SplitAnalysis::
133analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
134  LoopPeripheralUse use = ContainedInLoop;
135  for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
136       I != E; ++I) {
137    const MachineBasicBlock *MBB = I->first;
138    // Is this a peripheral block?
139    if (use < MultiPeripheral &&
140        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
141      if (I->second > 1) use = MultiPeripheral;
142      else               use = SinglePeripheral;
143      continue;
144    }
145    // Is it a loop block?
146    if (Blocks.Loop.count(MBB))
147      continue;
148    // It must be an unrelated block.
149    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
150    return OutsideLoop;
151  }
152  return use;
153}
154
155/// getCriticalExits - It may be necessary to partially break critical edges
156/// leaving the loop if an exit block has predecessors from outside the loop
157/// periphery.
158void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
159                                     BlockPtrSet &CriticalExits) {
160  CriticalExits.clear();
161
162  // A critical exit block has CurLI live-in, and has a predecessor that is not
163  // in the loop nor a loop predecessor. For such an exit block, the edges
164  // carrying the new variable must be moved to a new pre-exit block.
165  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
166       I != E; ++I) {
167    const MachineBasicBlock *Exit = *I;
168    // A single-predecessor exit block is definitely not a critical edge.
169    if (Exit->pred_size() == 1)
170      continue;
171    // This exit may not have CurLI live in at all. No need to split.
172    if (!LIS.isLiveInToMBB(*CurLI, Exit))
173      continue;
174    // Does this exit block have a predecessor that is not a loop block or loop
175    // predecessor?
176    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
177         PE = Exit->pred_end(); PI != PE; ++PI) {
178      const MachineBasicBlock *Pred = *PI;
179      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
180        continue;
181      // This is a critical exit block, and we need to split the exit edge.
182      CriticalExits.insert(Exit);
183      break;
184    }
185  }
186}
187
188void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
189                                     BlockPtrSet &CriticalPreds) {
190  CriticalPreds.clear();
191
192  // A critical predecessor block has CurLI live-out, and has a successor that
193  // has CurLI live-in and is not in the loop nor a loop exit block. For such a
194  // predecessor block, we must carry the value in both the 'inside' and
195  // 'outside' registers.
196  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
197       I != E; ++I) {
198    const MachineBasicBlock *Pred = *I;
199    // Definitely not a critical edge.
200    if (Pred->succ_size() == 1)
201      continue;
202    // This block may not have CurLI live out at all if there is a PHI.
203    if (!LIS.isLiveOutOfMBB(*CurLI, Pred))
204      continue;
205    // Does this block have a successor outside the loop?
206    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
207         SE = Pred->succ_end(); SI != SE; ++SI) {
208      const MachineBasicBlock *Succ = *SI;
209      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
210        continue;
211      if (!LIS.isLiveInToMBB(*CurLI, Succ))
212        continue;
213      // This is a critical predecessor block.
214      CriticalPreds.insert(Pred);
215      break;
216    }
217  }
218}
219
220/// canSplitCriticalExits - Return true if it is possible to insert new exit
221/// blocks before the blocks in CriticalExits.
222bool
223SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
224                                     BlockPtrSet &CriticalExits) {
225  // If we don't allow critical edge splitting, require no critical exits.
226  if (!AllowSplit)
227    return CriticalExits.empty();
228
229  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
230       I != E; ++I) {
231    const MachineBasicBlock *Succ = *I;
232    // We want to insert a new pre-exit MBB before Succ, and change all the
233    // in-loop blocks to branch to the pre-exit instead of Succ.
234    // Check that all the in-loop predecessors can be changed.
235    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
236         PE = Succ->pred_end(); PI != PE; ++PI) {
237      const MachineBasicBlock *Pred = *PI;
238      // The external predecessors won't be altered.
239      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
240        continue;
241      if (!canAnalyzeBranch(Pred))
242        return false;
243    }
244
245    // If Succ's layout predecessor falls through, that too must be analyzable.
246    // We need to insert the pre-exit block in the gap.
247    MachineFunction::const_iterator MFI = Succ;
248    if (MFI == MF.begin())
249      continue;
250    if (!canAnalyzeBranch(--MFI))
251      return false;
252  }
253  // No problems found.
254  return true;
255}
256
257void SplitAnalysis::analyze(const LiveInterval *li) {
258  clear();
259  CurLI = li;
260  analyzeUses();
261}
262
263void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
264  assert(CurLI && "Call analyze() before getSplitLoops");
265  if (UsingLoops.empty())
266    return;
267
268  LoopBlocks Blocks;
269  BlockPtrSet CriticalExits;
270
271  // We split around loops where CurLI is used outside the periphery.
272  for (LoopCountMap::const_iterator I = UsingLoops.begin(),
273       E = UsingLoops.end(); I != E; ++I) {
274    const MachineLoop *Loop = I->first;
275    getLoopBlocks(Loop, Blocks);
276    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
277
278    switch(analyzeLoopPeripheralUse(Blocks)) {
279    case OutsideLoop:
280      break;
281    case MultiPeripheral:
282      // FIXME: We could split a live range with multiple uses in a peripheral
283      // block and still make progress. However, it is possible that splitting
284      // another live range will insert copies into a peripheral block, and
285      // there is a small chance we can enter an infinite loop, inserting copies
286      // forever.
287      // For safety, stick to splitting live ranges with uses outside the
288      // periphery.
289      DEBUG(dbgs() << ": multiple peripheral uses");
290      break;
291    case ContainedInLoop:
292      DEBUG(dbgs() << ": fully contained\n");
293      continue;
294    case SinglePeripheral:
295      DEBUG(dbgs() << ": single peripheral use\n");
296      continue;
297    }
298    // Will it be possible to split around this loop?
299    getCriticalExits(Blocks, CriticalExits);
300    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
301    if (!canSplitCriticalExits(Blocks, CriticalExits))
302      continue;
303    // This is a possible split.
304    Loops.insert(Loop);
305  }
306
307  DEBUG(dbgs() << "  getSplitLoops found " << Loops.size()
308               << " candidate loops.\n");
309}
310
311const MachineLoop *SplitAnalysis::getBestSplitLoop() {
312  LoopPtrSet Loops;
313  getSplitLoops(Loops);
314  if (Loops.empty())
315    return 0;
316
317  // Pick the earliest loop.
318  // FIXME: Are there other heuristics to consider?
319  const MachineLoop *Best = 0;
320  SlotIndex BestIdx;
321  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
322       ++I) {
323    SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader());
324    if (!Best || Idx < BestIdx)
325      Best = *I, BestIdx = Idx;
326  }
327  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
328  return Best;
329}
330
331/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
332/// inside the loop. Bypass loops are candidates for splitting because it can
333/// prevent interference inside the loop.
334bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
335  // If CurLI is live into the loop header and there are no uses in the loop, it
336  // must be live in the entire loop and live on at least one exiting edge.
337  return !UsingLoops.count(Loop) &&
338         LIS.isLiveInToMBB(*CurLI, Loop->getHeader());
339}
340
341/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
342/// loops whose parent is not a bypass loop.
343void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
344  SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end());
345  while (!Todo.empty()) {
346    MachineLoop *Loop = Todo.pop_back_val();
347    if (!UsingLoops.count(Loop)) {
348      // This is either a bypass loop or completely irrelevant.
349      if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader()))
350        BypassLoops.insert(Loop);
351      // Either way, skip the child loops.
352      continue;
353    }
354
355    // The child loops may be bypass loops.
356    Todo.append(Loop->begin(), Loop->end());
357  }
358}
359
360
361//===----------------------------------------------------------------------===//
362//                               LiveIntervalMap
363//===----------------------------------------------------------------------===//
364
365// Work around the fact that the std::pair constructors are broken for pointer
366// pairs in some implementations. makeVV(x, 0) works.
367static inline std::pair<const VNInfo*, VNInfo*>
368makeVV(const VNInfo *a, VNInfo *b) {
369  return std::make_pair(a, b);
370}
371
372void LiveIntervalMap::reset(LiveInterval *li) {
373  LI = li;
374  Values.clear();
375  LiveOutCache.clear();
376}
377
378bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
379  ValueMap::const_iterator i = Values.find(ParentVNI);
380  return i != Values.end() && i->second == 0;
381}
382
383// defValue - Introduce a LI def for ParentVNI that could be later than
384// ParentVNI->def.
385VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
386  assert(LI && "call reset first");
387  assert(ParentVNI && "Mapping  NULL value");
388  assert(Idx.isValid() && "Invalid SlotIndex");
389  assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
390
391  // Create a new value.
392  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
393
394  // Preserve the PHIDef bit.
395  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
396    VNI->setIsPHIDef(true);
397
398  // Use insert for lookup, so we can add missing values with a second lookup.
399  std::pair<ValueMap::iterator,bool> InsP =
400    Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
401
402  // This is now a complex def. Mark with a NULL in valueMap.
403  if (!InsP.second)
404    InsP.first->second = 0;
405
406  return VNI;
407}
408
409
410// mapValue - Find the mapped value for ParentVNI at Idx.
411// Potentially create phi-def values.
412VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
413                                  bool *simple) {
414  assert(LI && "call reset first");
415  assert(ParentVNI && "Mapping  NULL value");
416  assert(Idx.isValid() && "Invalid SlotIndex");
417  assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
418
419  // Use insert for lookup, so we can add missing values with a second lookup.
420  std::pair<ValueMap::iterator,bool> InsP =
421    Values.insert(makeVV(ParentVNI, 0));
422
423  // This was an unknown value. Create a simple mapping.
424  if (InsP.second) {
425    if (simple) *simple = true;
426    return InsP.first->second = LI->createValueCopy(ParentVNI,
427                                                     LIS.getVNInfoAllocator());
428  }
429
430  // This was a simple mapped value.
431  if (InsP.first->second) {
432    if (simple) *simple = true;
433    return InsP.first->second;
434  }
435
436  // This is a complex mapped value. There may be multiple defs, and we may need
437  // to create phi-defs.
438  if (simple) *simple = false;
439  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
440  assert(IdxMBB && "No MBB at Idx");
441
442  // Is there a def in the same MBB we can extend?
443  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
444    return VNI;
445
446  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
447  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
448  // Perform a search for all predecessor blocks where we know the dominating
449  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
450  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
451               << " at " << Idx << " in " << *LI << '\n');
452  DEBUG(dumpCache());
453
454  // Blocks where LI should be live-in.
455  SmallVector<MachineDomTreeNode*, 16> LiveIn;
456  LiveIn.push_back(MDT[IdxMBB]);
457
458  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
459  for (unsigned i = 0; i != LiveIn.size(); ++i) {
460    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
461    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
462           PE = MBB->pred_end(); PI != PE; ++PI) {
463       MachineBasicBlock *Pred = *PI;
464       // Is this a known live-out block?
465       std::pair<LiveOutMap::iterator,bool> LOIP =
466         LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
467       // Yes, we have been here before.
468       if (!LOIP.second) {
469         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
470                 dbgs() << "    known valno #" << VNI->id
471                        << " at BB#" << Pred->getNumber() << '\n');
472         continue;
473       }
474
475       // Does Pred provide a live-out value?
476       SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
477       if (VNInfo *VNI = extendTo(Pred, Last)) {
478         MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
479         DEBUG(dbgs() << "    found valno #" << VNI->id
480                      << " from BB#" << DefMBB->getNumber()
481                      << " at BB#" << Pred->getNumber() << '\n');
482         LiveOutPair &LOP = LOIP.first->second;
483         LOP.first = VNI;
484         LOP.second = MDT[DefMBB];
485         continue;
486       }
487       // No, we need a live-in value for Pred as well
488       if (Pred != IdxMBB)
489         LiveIn.push_back(MDT[Pred]);
490    }
491  }
492
493  // We may need to add phi-def values to preserve the SSA form.
494  // This is essentially the same iterative algorithm that SSAUpdater uses,
495  // except we already have a dominator tree, so we don't have to recompute it.
496  VNInfo *IdxVNI = 0;
497  unsigned Changes;
498  do {
499    Changes = 0;
500    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
501    // Propagate live-out values down the dominator tree, inserting phi-defs when
502    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
503    // likely for us to visit immediate dominators before their children.
504    for (unsigned i = LiveIn.size(); i; --i) {
505      MachineDomTreeNode *Node = LiveIn[i-1];
506      MachineBasicBlock *MBB = Node->getBlock();
507      MachineDomTreeNode *IDom = Node->getIDom();
508      LiveOutPair IDomValue;
509      // We need a live-in value to a block with no immediate dominator?
510      // This is probably an unreachable block that has survived somehow.
511      bool needPHI = !IDom;
512
513      // Get the IDom live-out value.
514      if (!needPHI) {
515        LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
516        if (I != LiveOutCache.end())
517          IDomValue = I->second;
518        else
519          // If IDom is outside our set of live-out blocks, there must be new
520          // defs, and we need a phi-def here.
521          needPHI = true;
522      }
523
524      // IDom dominates all of our predecessors, but it may not be the immediate
525      // dominator. Check if any of them have live-out values that are properly
526      // dominated by IDom. If so, we need a phi-def here.
527      if (!needPHI) {
528        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
529               PE = MBB->pred_end(); PI != PE; ++PI) {
530          LiveOutPair Value = LiveOutCache[*PI];
531          if (!Value.first || Value.first == IDomValue.first)
532            continue;
533          // This predecessor is carrying something other than IDomValue.
534          // It could be because IDomValue hasn't propagated yet, or it could be
535          // because MBB is in the dominance frontier of that value.
536          if (MDT.dominates(IDom, Value.second)) {
537            needPHI = true;
538            break;
539          }
540        }
541      }
542
543      // Create a phi-def if required.
544      if (needPHI) {
545        ++Changes;
546        SlotIndex Start = LIS.getMBBStartIdx(MBB);
547        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
548        VNI->setIsPHIDef(true);
549        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
550                     << " phi-def #" << VNI->id << " at " << Start << '\n');
551        // We no longer need LI to be live-in.
552        LiveIn.erase(LiveIn.begin()+(i-1));
553        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
554        if (MBB == IdxMBB)
555          IdxVNI = VNI;
556        // Check if we need to update live-out info.
557        LiveOutMap::iterator I = LiveOutCache.find(MBB);
558        if (I == LiveOutCache.end() || I->second.second == Node) {
559          // We already have a live-out defined in MBB, so this must be IdxMBB.
560          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
561          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
562        } else {
563          // This phi-def is also live-out, so color the whole block.
564          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
565          I->second = LiveOutPair(VNI, Node);
566        }
567      } else if (IDomValue.first) {
568        // No phi-def here. Remember incoming value for IdxMBB.
569        if (MBB == IdxMBB)
570          IdxVNI = IDomValue.first;
571        // Propagate IDomValue if needed:
572        // MBB is live-out and doesn't define its own value.
573        LiveOutMap::iterator I = LiveOutCache.find(MBB);
574        if (I != LiveOutCache.end() && I->second.second != Node &&
575            I->second.first != IDomValue.first) {
576          ++Changes;
577          I->second = IDomValue;
578          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
579                       << " idom valno #" << IDomValue.first->id
580                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
581        }
582      }
583    }
584    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
585  } while (Changes);
586
587  assert(IdxVNI && "Didn't find value for Idx");
588
589#ifndef NDEBUG
590  DEBUG(dumpCache());
591  // Check the LiveOutCache invariants.
592  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
593         I != E; ++I) {
594    assert(I->first && "Null MBB entry in cache");
595    assert(I->second.first && "Null VNInfo in cache");
596    assert(I->second.second && "Null DomTreeNode in cache");
597    if (I->second.second->getBlock() == I->first)
598      continue;
599    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
600           PE = I->first->pred_end(); PI != PE; ++PI)
601      assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
602  }
603#endif
604
605  // Since we went through the trouble of a full BFS visiting all reaching defs,
606  // the values in LiveIn are now accurate. No more phi-defs are needed
607  // for these blocks, so we can color the live ranges.
608  // This makes the next mapValue call much faster.
609  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
610    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
611    SlotIndex Start = LIS.getMBBStartIdx(MBB);
612    if (MBB == IdxMBB) {
613      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
614      continue;
615    }
616    // Anything in LiveIn other than IdxMBB is live-through.
617    VNInfo *VNI = LiveOutCache.lookup(MBB).first;
618    assert(VNI && "Missing block value");
619    LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
620  }
621
622  return IdxVNI;
623}
624
625#ifndef NDEBUG
626void LiveIntervalMap::dumpCache() {
627  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
628         I != E; ++I) {
629    assert(I->first && "Null MBB entry in cache");
630    assert(I->second.first && "Null VNInfo in cache");
631    assert(I->second.second && "Null DomTreeNode in cache");
632    dbgs() << "    cache: BB#" << I->first->getNumber()
633           << " has valno #" << I->second.first->id << " from BB#"
634           << I->second.second->getBlock()->getNumber() << ", preds";
635    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
636           PE = I->first->pred_end(); PI != PE; ++PI)
637      dbgs() << " BB#" << (*PI)->getNumber();
638    dbgs() << '\n';
639  }
640  dbgs() << "    cache: " << LiveOutCache.size() << " entries.\n";
641}
642#endif
643
644// extendTo - Find the last LI value defined in MBB at or before Idx. The
645// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
646// Return the found VNInfo, or NULL.
647VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
648  assert(LI && "call reset first");
649  LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
650  if (I == LI->begin())
651    return 0;
652  --I;
653  if (I->end <= LIS.getMBBStartIdx(MBB))
654    return 0;
655  if (I->end <= Idx)
656    I->end = Idx.getNextSlot();
657  return I->valno;
658}
659
660// addSimpleRange - Add a simple range from ParentLI to LI.
661// ParentVNI must be live in the [Start;End) interval.
662void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
663                                     const VNInfo *ParentVNI) {
664  assert(LI && "call reset first");
665  bool simple;
666  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
667  // A simple mapping is easy.
668  if (simple) {
669    LI->addRange(LiveRange(Start, End, VNI));
670    return;
671  }
672
673  // ParentVNI is a complex value. We must map per MBB.
674  MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
675  MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
676
677  if (MBB == MBBE) {
678    LI->addRange(LiveRange(Start, End, VNI));
679    return;
680  }
681
682  // First block.
683  LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
684
685  // Run sequence of full blocks.
686  for (++MBB; MBB != MBBE; ++MBB) {
687    Start = LIS.getMBBStartIdx(MBB);
688    LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
689                            mapValue(ParentVNI, Start)));
690  }
691
692  // Final block.
693  Start = LIS.getMBBStartIdx(MBB);
694  if (Start != End)
695    LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
696}
697
698/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
699/// All needed values whose def is not inside [Start;End) must be defined
700/// beforehand so mapValue will work.
701void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
702  assert(LI && "call reset first");
703  LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
704  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
705
706  // Check if --I begins before Start and overlaps.
707  if (I != B) {
708    --I;
709    if (I->end > Start)
710      addSimpleRange(Start, std::min(End, I->end), I->valno);
711    ++I;
712  }
713
714  // The remaining ranges begin after Start.
715  for (;I != E && I->start < End; ++I)
716    addSimpleRange(I->start, std::min(End, I->end), I->valno);
717}
718
719
720//===----------------------------------------------------------------------===//
721//                               Split Editor
722//===----------------------------------------------------------------------===//
723
724/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
725SplitEditor::SplitEditor(SplitAnalysis &sa,
726                         LiveIntervals &lis,
727                         VirtRegMap &vrm,
728                         MachineDominatorTree &mdt,
729                         LiveRangeEdit &edit)
730  : sa_(sa), LIS(lis), VRM(vrm),
731    MRI(vrm.getMachineFunction().getRegInfo()),
732    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
733    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
734    Edit(edit),
735    DupLI(LIS, mdt, edit.getParent()),
736    OpenLI(LIS, mdt, edit.getParent())
737{
738  // We don't need an AliasAnalysis since we will only be performing
739  // cheap-as-a-copy remats anyway.
740  Edit.anyRematerializable(LIS, TII, 0);
741}
742
743bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
744  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
745    if (*I != DupLI.getLI() && (*I)->liveAt(Idx))
746      return true;
747  return false;
748}
749
750VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
751                                   VNInfo *ParentVNI,
752                                   SlotIndex UseIdx,
753                                   MachineBasicBlock &MBB,
754                                   MachineBasicBlock::iterator I) {
755  VNInfo *VNI = 0;
756  MachineInstr *CopyMI = 0;
757  SlotIndex Def;
758
759  // Attempt cheap-as-a-copy rematerialization.
760  LiveRangeEdit::Remat RM(ParentVNI);
761  if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
762    Def = Edit.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
763                                          LIS, TII, TRI);
764  } else {
765    // Can't remat, just insert a copy from parent.
766    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY),
767                     Reg.getLI()->reg).addReg(Edit.getReg());
768    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
769  }
770
771  // Define the value in Reg.
772  VNI = Reg.defValue(ParentVNI, Def);
773  VNI->setCopy(CopyMI);
774
775  // Add minimal liveness for the new value.
776  if (UseIdx < Def)
777    UseIdx = Def;
778  Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI));
779  return VNI;
780}
781
782/// Create a new virtual register and live interval.
783void SplitEditor::openIntv() {
784  assert(!OpenLI.getLI() && "Previous LI not closed before openIntv");
785  if (!DupLI.getLI())
786    DupLI.reset(&Edit.create(MRI, LIS, VRM));
787
788  OpenLI.reset(&Edit.create(MRI, LIS, VRM));
789}
790
791/// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
792/// not live before Idx, a COPY is not inserted.
793void SplitEditor::enterIntvBefore(SlotIndex Idx) {
794  assert(OpenLI.getLI() && "openIntv not called before enterIntvBefore");
795  Idx = Idx.getUseIndex();
796  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
797  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
798  if (!ParentVNI) {
799    DEBUG(dbgs() << ": not live\n");
800    return;
801  }
802  DEBUG(dbgs() << ": valno " << ParentVNI->id);
803  truncatedValues.insert(ParentVNI);
804  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
805  assert(MI && "enterIntvBefore called with invalid index");
806
807  defFromParent(OpenLI, ParentVNI, Idx, *MI->getParent(), MI);
808
809  DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
810}
811
812/// enterIntvAtEnd - Enter OpenLI at the end of MBB.
813void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
814  assert(OpenLI.getLI() && "openIntv not called before enterIntvAtEnd");
815  SlotIndex End = LIS.getMBBEndIdx(&MBB).getPrevSlot();
816  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
817  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(End);
818  if (!ParentVNI) {
819    DEBUG(dbgs() << ": not live\n");
820    return;
821  }
822  DEBUG(dbgs() << ": valno " << ParentVNI->id);
823  truncatedValues.insert(ParentVNI);
824  defFromParent(OpenLI, ParentVNI, End, MBB, MBB.getFirstTerminator());
825  DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
826}
827
828/// useIntv - indicate that all instructions in MBB should use OpenLI.
829void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
830  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
831}
832
833void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
834  assert(OpenLI.getLI() && "openIntv not called before useIntv");
835  OpenLI.addRange(Start, End);
836  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
837               << *OpenLI.getLI() << '\n');
838}
839
840/// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
841void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
842  assert(OpenLI.getLI() && "openIntv not called before leaveIntvAfter");
843  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
844
845  // The interval must be live beyond the instruction at Idx.
846  Idx = Idx.getBoundaryIndex();
847  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
848  if (!ParentVNI) {
849    DEBUG(dbgs() << ": not live\n");
850    return;
851  }
852  DEBUG(dbgs() << ": valno " << ParentVNI->id);
853
854  MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx);
855  VNInfo *VNI = defFromParent(DupLI, ParentVNI, Idx,
856                              *MII->getParent(), llvm::next(MII));
857
858  // Make sure that OpenLI is properly extended from Idx to the new copy.
859  // FIXME: This shouldn't be necessary for remats.
860  OpenLI.addSimpleRange(Idx, VNI->def, ParentVNI);
861
862  DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
863}
864
865/// leaveIntvAtTop - Leave the interval at the top of MBB.
866/// Currently, only one value can leave the interval.
867void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
868  assert(OpenLI.getLI() && "openIntv not called before leaveIntvAtTop");
869  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
870  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
871
872  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
873  if (!ParentVNI) {
874    DEBUG(dbgs() << ": not live\n");
875    return;
876  }
877
878  VNInfo *VNI = defFromParent(DupLI, ParentVNI, Start, MBB,
879                              MBB.SkipPHIsAndLabels(MBB.begin()));
880
881  // Finally we must make sure that OpenLI is properly extended from Start to
882  // the new copy.
883  OpenLI.addSimpleRange(Start, VNI->def, ParentVNI);
884  DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
885}
886
887/// closeIntv - Indicate that we are done editing the currently open
888/// LiveInterval, and ranges can be trimmed.
889void SplitEditor::closeIntv() {
890  assert(OpenLI.getLI() && "openIntv not called before closeIntv");
891  DEBUG(dbgs() << "    closeIntv " << *OpenLI.getLI() << '\n');
892  OpenLI.reset(0);
893}
894
895/// rewrite - Rewrite all uses of reg to use the new registers.
896void SplitEditor::rewrite(unsigned reg) {
897  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(reg),
898       RE = MRI.reg_end(); RI != RE;) {
899    MachineOperand &MO = RI.getOperand();
900    unsigned OpNum = RI.getOperandNo();
901    MachineInstr *MI = MO.getParent();
902    ++RI;
903    if (MI->isDebugValue()) {
904      DEBUG(dbgs() << "Zapping " << *MI);
905      // FIXME: We can do much better with debug values.
906      MO.setReg(0);
907      continue;
908    }
909    SlotIndex Idx = LIS.getInstructionIndex(MI);
910    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
911    LiveInterval *LI = 0;
912    for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E;
913         ++I) {
914      LiveInterval *testli = *I;
915      if (testli->liveAt(Idx)) {
916        LI = testli;
917        break;
918      }
919    }
920    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
921    assert(LI && "No register was live at use");
922    MO.setReg(LI->reg);
923    if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
924      MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
925    DEBUG(dbgs() << '\t' << *MI);
926  }
927}
928
929void
930SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
931  // Build vector of iterator pairs from the intervals.
932  typedef std::pair<LiveInterval::const_iterator,
933                    LiveInterval::const_iterator> IIPair;
934  SmallVector<IIPair, 8> Iters;
935  for (LiveRangeEdit::iterator LI = Edit.begin(), LE = Edit.end(); LI != LE;
936       ++LI) {
937    if (*LI == DupLI.getLI())
938      continue;
939    LiveInterval::const_iterator I = (*LI)->find(Start);
940    LiveInterval::const_iterator E = (*LI)->end();
941    if (I != E)
942      Iters.push_back(std::make_pair(I, E));
943  }
944
945  SlotIndex sidx = Start;
946  // Break [Start;End) into segments that don't overlap any intervals.
947  for (;;) {
948    SlotIndex next = sidx, eidx = End;
949    // Find overlapping intervals.
950    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
951      LiveInterval::const_iterator I = Iters[i].first;
952      // Interval I is overlapping [sidx;eidx). Trim sidx.
953      if (I->start <= sidx) {
954        sidx = I->end;
955        // Move to the next run, remove iters when all are consumed.
956        I = ++Iters[i].first;
957        if (I == Iters[i].second) {
958          Iters.erase(Iters.begin() + i);
959          --i;
960          continue;
961        }
962      }
963      // Trim eidx too if needed.
964      if (I->start >= eidx)
965        continue;
966      eidx = I->start;
967      next = I->end;
968    }
969    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
970    if (sidx < eidx)
971      DupLI.addSimpleRange(sidx, eidx, VNI);
972    // If the interval end was truncated, we can try again from next.
973    if (next <= sidx)
974      break;
975    sidx = next;
976  }
977}
978
979void SplitEditor::computeRemainder() {
980  // First we need to fill in the live ranges in dupli.
981  // If values were redefined, we need a full recoloring with SSA update.
982  // If values were truncated, we only need to truncate the ranges.
983  // If values were partially rematted, we should shrink to uses.
984  // If values were fully rematted, they should be omitted.
985  // FIXME: If a single value is redefined, just move the def and truncate.
986  LiveInterval &parent = Edit.getParent();
987
988  DEBUG(dbgs() << "computeRemainder from " << parent << '\n');
989
990  // Values that are fully contained in the split intervals.
991  SmallPtrSet<const VNInfo*, 8> deadValues;
992  // Map all CurLI values that should have live defs in dupli.
993  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
994       E = parent.vni_end(); I != E; ++I) {
995    const VNInfo *VNI = *I;
996    // Don't transfer unused values to the new intervals.
997    if (VNI->isUnused())
998      continue;
999    // Original def is contained in the split intervals.
1000    if (intervalsLiveAt(VNI->def)) {
1001      // Did this value escape?
1002      if (DupLI.isMapped(VNI))
1003        truncatedValues.insert(VNI);
1004      else
1005        deadValues.insert(VNI);
1006      continue;
1007    }
1008    // Add minimal live range at the definition.
1009    VNInfo *DVNI = DupLI.defValue(VNI, VNI->def);
1010    DupLI.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
1011  }
1012
1013  // Add all ranges to dupli.
1014  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
1015       I != E; ++I) {
1016    const LiveRange &LR = *I;
1017    if (truncatedValues.count(LR.valno)) {
1018      // recolor after removing intervals_.
1019      addTruncSimpleRange(LR.start, LR.end, LR.valno);
1020    } else if (!deadValues.count(LR.valno)) {
1021      // recolor without truncation.
1022      DupLI.addSimpleRange(LR.start, LR.end, LR.valno);
1023    }
1024  }
1025
1026  // Extend DupLI to be live out of any critical loop predecessors.
1027  // This means we have multiple registers live out of those blocks.
1028  // The alternative would be to split the critical edges.
1029  if (criticalPreds_.empty())
1030    return;
1031  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
1032       E = criticalPreds_.end(); I != E; ++I)
1033     DupLI.extendTo(*I, LIS.getMBBEndIdx(*I).getPrevSlot());
1034   criticalPreds_.clear();
1035}
1036
1037void SplitEditor::finish() {
1038  assert(!OpenLI.getLI() && "Previous LI not closed before rewrite");
1039  assert(DupLI.getLI() && "No dupli for rewrite. Noop spilt?");
1040
1041  // Complete dupli liveness.
1042  computeRemainder();
1043
1044  // Get rid of unused values and set phi-kill flags.
1045  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
1046    (*I)->RenumberValues(LIS);
1047
1048  // Rewrite instructions.
1049  rewrite(Edit.getReg());
1050
1051  // Now check if any registers were separated into multiple components.
1052  ConnectedVNInfoEqClasses ConEQ(LIS);
1053  for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
1054    // Don't use iterators, they are invalidated by create() below.
1055    LiveInterval *li = Edit.get(i);
1056    unsigned NumComp = ConEQ.Classify(li);
1057    if (NumComp <= 1)
1058      continue;
1059    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1060    SmallVector<LiveInterval*, 8> dups;
1061    dups.push_back(li);
1062    for (unsigned i = 1; i != NumComp; ++i)
1063      dups.push_back(&Edit.create(MRI, LIS, VRM));
1064    ConEQ.Distribute(&dups[0]);
1065    // Rewrite uses to the new regs.
1066    rewrite(li->reg);
1067  }
1068
1069  // Calculate spill weight and allocation hints for new intervals.
1070  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops);
1071  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
1072    LiveInterval &li = **I;
1073    vrai.CalculateRegClass(li.reg);
1074    vrai.CalculateWeightAndHint(li);
1075    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
1076                 << ":" << li << '\n');
1077  }
1078}
1079
1080
1081//===----------------------------------------------------------------------===//
1082//                               Loop Splitting
1083//===----------------------------------------------------------------------===//
1084
1085void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
1086  SplitAnalysis::LoopBlocks Blocks;
1087  sa_.getLoopBlocks(Loop, Blocks);
1088
1089  DEBUG({
1090    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
1091  });
1092
1093  // Break critical edges as needed.
1094  SplitAnalysis::BlockPtrSet CriticalExits;
1095  sa_.getCriticalExits(Blocks, CriticalExits);
1096  assert(CriticalExits.empty() && "Cannot break critical exits yet");
1097
1098  // Get critical predecessors so computeRemainder can deal with them.
1099  sa_.getCriticalPreds(Blocks, criticalPreds_);
1100
1101  // Create new live interval for the loop.
1102  openIntv();
1103
1104  // Insert copies in the predecessors if live-in to the header.
1105  if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) {
1106    for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
1107           E = Blocks.Preds.end(); I != E; ++I) {
1108      MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1109      enterIntvAtEnd(MBB);
1110    }
1111  }
1112
1113  // Switch all loop blocks.
1114  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
1115       E = Blocks.Loop.end(); I != E; ++I)
1116     useIntv(**I);
1117
1118  // Insert back copies in the exit blocks.
1119  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
1120       E = Blocks.Exits.end(); I != E; ++I) {
1121    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1122    leaveIntvAtTop(MBB);
1123  }
1124
1125  // Done.
1126  closeIntv();
1127  finish();
1128}
1129
1130
1131//===----------------------------------------------------------------------===//
1132//                            Single Block Splitting
1133//===----------------------------------------------------------------------===//
1134
1135/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1136/// may be an advantage to split CurLI for the duration of the block.
1137bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1138  // If CurLI is local to one block, there is no point to splitting it.
1139  if (UsingBlocks.size() <= 1)
1140    return false;
1141  // Add blocks with multiple uses.
1142  for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
1143       I != E; ++I)
1144    switch (I->second) {
1145    case 0:
1146    case 1:
1147      continue;
1148    case 2: {
1149      // When there are only two uses and CurLI is both live in and live out,
1150      // we don't really win anything by isolating the block since we would be
1151      // inserting two copies.
1152      // The remaing register would still have two uses in the block. (Unless it
1153      // separates into disconnected components).
1154      if (LIS.isLiveInToMBB(*CurLI, I->first) &&
1155          LIS.isLiveOutOfMBB(*CurLI, I->first))
1156        continue;
1157    } // Fall through.
1158    default:
1159      Blocks.insert(I->first);
1160    }
1161  return !Blocks.empty();
1162}
1163
1164/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1165/// basic block in Blocks.
1166void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1167  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1168  // Determine the first and last instruction using CurLI in each block.
1169  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
1170  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
1171  IndexPairMap MBBRange;
1172  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
1173       E = sa_.UsingInstrs.end(); I != E; ++I) {
1174    const MachineBasicBlock *MBB = (*I)->getParent();
1175    if (!Blocks.count(MBB))
1176      continue;
1177    SlotIndex Idx = LIS.getInstructionIndex(*I);
1178    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
1179    IndexPair &IP = MBBRange[MBB];
1180    if (!IP.first.isValid() || Idx < IP.first)
1181      IP.first = Idx;
1182    if (!IP.second.isValid() || Idx > IP.second)
1183      IP.second = Idx;
1184  }
1185
1186  // Create a new interval for each block.
1187  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
1188       E = Blocks.end(); I != E; ++I) {
1189    IndexPair &IP = MBBRange[*I];
1190    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
1191                 << IP.first << ';' << IP.second << ")\n");
1192    assert(IP.first.isValid() && IP.second.isValid());
1193
1194    openIntv();
1195    enterIntvBefore(IP.first);
1196    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
1197    leaveIntvAfter(IP.second);
1198    closeIntv();
1199  }
1200  finish();
1201}
1202
1203
1204//===----------------------------------------------------------------------===//
1205//                            Sub Block Splitting
1206//===----------------------------------------------------------------------===//
1207
1208/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
1209/// and it wou pay to subdivide the interval inside that block, return it.
1210/// Otherwise return NULL. The returned block can be passed to
1211/// SplitEditor::splitInsideBlock.
1212const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1213  // The interval must be exclusive to one block.
1214  if (UsingBlocks.size() != 1)
1215    return 0;
1216  // Don't to this for less than 4 instructions. We want to be sure that
1217  // splitting actually reduces the instruction count per interval.
1218  if (UsingInstrs.size() < 4)
1219    return 0;
1220  return UsingBlocks.begin()->first;
1221}
1222
1223/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
1224void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1225  SmallVector<SlotIndex, 32> Uses;
1226  Uses.reserve(sa_.UsingInstrs.size());
1227  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
1228       E = sa_.UsingInstrs.end(); I != E; ++I)
1229    if ((*I)->getParent() == MBB)
1230      Uses.push_back(LIS.getInstructionIndex(*I));
1231  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1232               << Uses.size() << " instructions.\n");
1233  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1234  array_pod_sort(Uses.begin(), Uses.end());
1235
1236  // Simple algorithm: Find the largest gap between uses as determined by slot
1237  // indices. Create new intervals for instructions before the gap and after the
1238  // gap.
1239  unsigned bestPos = 0;
1240  int bestGap = 0;
1241  DEBUG(dbgs() << "    dist (" << Uses[0]);
1242  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1243    int g = Uses[i-1].distance(Uses[i]);
1244    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1245    if (g > bestGap)
1246      bestPos = i, bestGap = g;
1247  }
1248  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1249
1250  // bestPos points to the first use after the best gap.
1251  assert(bestPos > 0 && "Invalid gap");
1252
1253  // FIXME: Don't create intervals for low densities.
1254
1255  // First interval before the gap. Don't create single-instr intervals.
1256  if (bestPos > 1) {
1257    openIntv();
1258    enterIntvBefore(Uses.front());
1259    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1260    leaveIntvAfter(Uses[bestPos-1]);
1261    closeIntv();
1262  }
1263
1264  // Second interval after the gap.
1265  if (bestPos < Uses.size()-1) {
1266    openIntv();
1267    enterIntvBefore(Uses[bestPos]);
1268    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1269    leaveIntvAfter(Uses.back());
1270    closeIntv();
1271  }
1272
1273  finish();
1274}
1275