SplitKit.cpp revision 2b0f9e73d8623b21fc14335ef6208deab2629cdf
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "regalloc" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/CodeGen/CalcSpillWeights.h" 21#include "llvm/CodeGen/LiveIntervalAnalysis.h" 22#include "llvm/CodeGen/MachineDominators.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineRegisterInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/Support/raw_ostream.h" 28#include "llvm/Target/TargetInstrInfo.h" 29#include "llvm/Target/TargetMachine.h" 30 31using namespace llvm; 32 33static cl::opt<bool> 34AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37STATISTIC(NumFinished, "Number of splits finished"); 38STATISTIC(NumSimple, "Number of splits that were simple"); 39 40//===----------------------------------------------------------------------===// 41// Split Analysis 42//===----------------------------------------------------------------------===// 43 44SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 45 const LiveIntervals &lis, 46 const MachineLoopInfo &mli) 47 : MF(vrm.getMachineFunction()), 48 VRM(vrm), 49 LIS(lis), 50 Loops(mli), 51 TII(*MF.getTarget().getInstrInfo()), 52 CurLI(0) {} 53 54void SplitAnalysis::clear() { 55 UseSlots.clear(); 56 UsingInstrs.clear(); 57 UsingBlocks.clear(); 58 LiveBlocks.clear(); 59 CurLI = 0; 60} 61 62bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 63 MachineBasicBlock *T, *F; 64 SmallVector<MachineOperand, 4> Cond; 65 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 66} 67 68/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 69void SplitAnalysis::analyzeUses() { 70 const MachineRegisterInfo &MRI = MF.getRegInfo(); 71 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 72 E = MRI.reg_end(); I != E; ++I) { 73 MachineOperand &MO = I.getOperand(); 74 if (MO.isUse() && MO.isUndef()) 75 continue; 76 MachineInstr *MI = MO.getParent(); 77 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 78 continue; 79 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 80 MachineBasicBlock *MBB = MI->getParent(); 81 UsingBlocks[MBB]++; 82 } 83 array_pod_sort(UseSlots.begin(), UseSlots.end()); 84 85 // Compute per-live block info. 86 if (!calcLiveBlockInfo()) { 87 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 88 // I am looking at you, SimpleRegisterCoalescing! 89 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 90 const_cast<LiveIntervals&>(LIS) 91 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 92 LiveBlocks.clear(); 93 bool fixed = calcLiveBlockInfo(); 94 (void)fixed; 95 assert(fixed && "Couldn't fix broken live interval"); 96 } 97 98 DEBUG(dbgs() << " counted " 99 << UsingInstrs.size() << " instrs, " 100 << UsingBlocks.size() << " blocks.\n"); 101} 102 103/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 104/// where CurLI is live. 105bool SplitAnalysis::calcLiveBlockInfo() { 106 if (CurLI->empty()) 107 return true; 108 109 LiveInterval::const_iterator LVI = CurLI->begin(); 110 LiveInterval::const_iterator LVE = CurLI->end(); 111 112 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 113 UseI = UseSlots.begin(); 114 UseE = UseSlots.end(); 115 116 // Loop over basic blocks where CurLI is live. 117 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 118 for (;;) { 119 BlockInfo BI; 120 BI.MBB = MFI; 121 tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 122 123 // The last split point is the latest possible insertion point that dominates 124 // all successor blocks. If interference reaches LastSplitPoint, it is not 125 // possible to insert a split or reload that makes CurLI live in the 126 // outgoing bundle. 127 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 128 if (LSP == BI.MBB->end()) 129 BI.LastSplitPoint = BI.Stop; 130 else 131 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 132 133 // LVI is the first live segment overlapping MBB. 134 BI.LiveIn = LVI->start <= BI.Start; 135 if (!BI.LiveIn) 136 BI.Def = LVI->start; 137 138 // Find the first and last uses in the block. 139 BI.Uses = hasUses(MFI); 140 if (BI.Uses && UseI != UseE) { 141 BI.FirstUse = *UseI; 142 assert(BI.FirstUse >= BI.Start); 143 do ++UseI; 144 while (UseI != UseE && *UseI < BI.Stop); 145 BI.LastUse = UseI[-1]; 146 assert(BI.LastUse < BI.Stop); 147 } 148 149 // Look for gaps in the live range. 150 bool hasGap = false; 151 BI.LiveOut = true; 152 while (LVI->end < BI.Stop) { 153 SlotIndex LastStop = LVI->end; 154 if (++LVI == LVE || LVI->start >= BI.Stop) { 155 BI.Kill = LastStop; 156 BI.LiveOut = false; 157 break; 158 } 159 if (LastStop < LVI->start) { 160 hasGap = true; 161 BI.Kill = LastStop; 162 BI.Def = LVI->start; 163 } 164 } 165 166 // Don't set LiveThrough when the block has a gap. 167 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 168 LiveBlocks.push_back(BI); 169 170 // FIXME: This should never happen. The live range stops or starts without a 171 // corresponding use. An earlier pass did something wrong. 172 if (!BI.LiveThrough && !BI.Uses) 173 return false; 174 175 // LVI is now at LVE or LVI->end >= Stop. 176 if (LVI == LVE) 177 break; 178 179 // Live segment ends exactly at Stop. Move to the next segment. 180 if (LVI->end == BI.Stop && ++LVI == LVE) 181 break; 182 183 // Pick the next basic block. 184 if (LVI->start < BI.Stop) 185 ++MFI; 186 else 187 MFI = LIS.getMBBFromIndex(LVI->start); 188 } 189 return true; 190} 191 192bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 193 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 194 const LiveInterval &Orig = LIS.getInterval(OrigReg); 195 assert(!Orig.empty() && "Splitting empty interval?"); 196 LiveInterval::const_iterator I = Orig.find(Idx); 197 198 // Range containing Idx should begin at Idx. 199 if (I != Orig.end() && I->start <= Idx) 200 return I->start == Idx; 201 202 // Range does not contain Idx, previous must end at Idx. 203 return I != Orig.begin() && (--I)->end == Idx; 204} 205 206void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 207 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 208 unsigned count = UsingBlocks.lookup(*I); 209 OS << " BB#" << (*I)->getNumber(); 210 if (count) 211 OS << '(' << count << ')'; 212 } 213} 214 215void SplitAnalysis::analyze(const LiveInterval *li) { 216 clear(); 217 CurLI = li; 218 analyzeUses(); 219} 220 221 222//===----------------------------------------------------------------------===// 223// Split Editor 224//===----------------------------------------------------------------------===// 225 226/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 227SplitEditor::SplitEditor(SplitAnalysis &sa, 228 LiveIntervals &lis, 229 VirtRegMap &vrm, 230 MachineDominatorTree &mdt) 231 : SA(sa), LIS(lis), VRM(vrm), 232 MRI(vrm.getMachineFunction().getRegInfo()), 233 MDT(mdt), 234 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 235 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 236 Edit(0), 237 OpenIdx(0), 238 RegAssign(Allocator) 239{} 240 241void SplitEditor::reset(LiveRangeEdit &lre) { 242 Edit = &lre; 243 OpenIdx = 0; 244 RegAssign.clear(); 245 Values.clear(); 246 247 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 248 LiveOutSeen.clear(); 249 250 // We don't need an AliasAnalysis since we will only be performing 251 // cheap-as-a-copy remats anyway. 252 Edit->anyRematerializable(LIS, TII, 0); 253} 254 255void SplitEditor::dump() const { 256 if (RegAssign.empty()) { 257 dbgs() << " empty\n"; 258 return; 259 } 260 261 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 262 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 263 dbgs() << '\n'; 264} 265 266VNInfo *SplitEditor::defValue(unsigned RegIdx, 267 const VNInfo *ParentVNI, 268 SlotIndex Idx) { 269 assert(ParentVNI && "Mapping NULL value"); 270 assert(Idx.isValid() && "Invalid SlotIndex"); 271 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 272 LiveInterval *LI = Edit->get(RegIdx); 273 274 // Create a new value. 275 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 276 277 // Preserve the PHIDef bit. 278 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 279 VNI->setIsPHIDef(true); 280 281 // Use insert for lookup, so we can add missing values with a second lookup. 282 std::pair<ValueMap::iterator, bool> InsP = 283 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 284 285 // This was the first time (RegIdx, ParentVNI) was mapped. 286 // Keep it as a simple def without any liveness. 287 if (InsP.second) 288 return VNI; 289 290 // If the previous value was a simple mapping, add liveness for it now. 291 if (VNInfo *OldVNI = InsP.first->second) { 292 SlotIndex Def = OldVNI->def; 293 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 294 // No longer a simple mapping. 295 InsP.first->second = 0; 296 } 297 298 // This is a complex mapping, add liveness for VNI 299 SlotIndex Def = VNI->def; 300 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 301 302 return VNI; 303} 304 305void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 306 assert(ParentVNI && "Mapping NULL value"); 307 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 308 309 // ParentVNI was either unmapped or already complex mapped. Either way. 310 if (!VNI) 311 return; 312 313 // This was previously a single mapping. Make sure the old def is represented 314 // by a trivial live range. 315 SlotIndex Def = VNI->def; 316 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 317 VNI = 0; 318} 319 320// extendRange - Extend the live range to reach Idx. 321// Potentially create phi-def values. 322void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 323 assert(Idx.isValid() && "Invalid SlotIndex"); 324 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 325 assert(IdxMBB && "No MBB at Idx"); 326 LiveInterval *LI = Edit->get(RegIdx); 327 328 // Is there a def in the same MBB we can extend? 329 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 330 return; 331 332 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 333 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 334 // Perform a search for all predecessor blocks where we know the dominating 335 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 336 337 // Initialize the live-out cache the first time it is needed. 338 if (LiveOutSeen.empty()) { 339 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 340 LiveOutSeen.resize(N); 341 LiveOutCache.resize(N); 342 } 343 344 // Blocks where LI should be live-in. 345 SmallVector<MachineDomTreeNode*, 16> LiveIn; 346 LiveIn.push_back(MDT[IdxMBB]); 347 348 // Remember if we have seen more than one value. 349 bool UniqueVNI = true; 350 VNInfo *IdxVNI = 0; 351 352 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 353 for (unsigned i = 0; i != LiveIn.size(); ++i) { 354 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 355 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 356 PE = MBB->pred_end(); PI != PE; ++PI) { 357 MachineBasicBlock *Pred = *PI; 358 LiveOutPair &LOP = LiveOutCache[Pred]; 359 360 // Is this a known live-out block? 361 if (LiveOutSeen.test(Pred->getNumber())) { 362 if (VNInfo *VNI = LOP.first) { 363 if (IdxVNI && IdxVNI != VNI) 364 UniqueVNI = false; 365 IdxVNI = VNI; 366 } 367 continue; 368 } 369 370 // First time. LOP is garbage and must be cleared below. 371 LiveOutSeen.set(Pred->getNumber()); 372 373 // Does Pred provide a live-out value? 374 SlotIndex Start, Last; 375 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 376 Last = Last.getPrevSlot(); 377 VNInfo *VNI = LI->extendInBlock(Start, Last); 378 LOP.first = VNI; 379 if (VNI) { 380 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 381 if (IdxVNI && IdxVNI != VNI) 382 UniqueVNI = false; 383 IdxVNI = VNI; 384 continue; 385 } 386 LOP.second = 0; 387 388 // No, we need a live-in value for Pred as well 389 if (Pred != IdxMBB) 390 LiveIn.push_back(MDT[Pred]); 391 else 392 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 393 } 394 } 395 396 // We may need to add phi-def values to preserve the SSA form. 397 if (UniqueVNI) { 398 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 399 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 400 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 401 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 402 } else 403 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 404 405 // Since we went through the trouble of a full BFS visiting all reaching defs, 406 // the values in LiveIn are now accurate. No more phi-defs are needed 407 // for these blocks, so we can color the live ranges. 408 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 409 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 410 SlotIndex Start = LIS.getMBBStartIdx(MBB); 411 VNInfo *VNI = LiveOutCache[MBB].first; 412 413 // Anything in LiveIn other than IdxMBB is live-through. 414 // In IdxMBB, we should stop at Idx unless the same value is live-out. 415 if (MBB == IdxMBB && IdxVNI != VNI) 416 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 417 else 418 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 419 } 420} 421 422VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 423 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 424 SlotIndex Idx, 425 const MachineBasicBlock *IdxMBB) { 426 // This is essentially the same iterative algorithm that SSAUpdater uses, 427 // except we already have a dominator tree, so we don't have to recompute it. 428 LiveInterval *LI = Edit->get(RegIdx); 429 VNInfo *IdxVNI = 0; 430 unsigned Changes; 431 do { 432 Changes = 0; 433 // Propagate live-out values down the dominator tree, inserting phi-defs 434 // when necessary. Since LiveIn was created by a BFS, going backwards makes 435 // it more likely for us to visit immediate dominators before their 436 // children. 437 for (unsigned i = LiveIn.size(); i; --i) { 438 MachineDomTreeNode *Node = LiveIn[i-1]; 439 MachineBasicBlock *MBB = Node->getBlock(); 440 MachineDomTreeNode *IDom = Node->getIDom(); 441 LiveOutPair IDomValue; 442 443 // We need a live-in value to a block with no immediate dominator? 444 // This is probably an unreachable block that has survived somehow. 445 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 446 447 // IDom dominates all of our predecessors, but it may not be the immediate 448 // dominator. Check if any of them have live-out values that are properly 449 // dominated by IDom. If so, we need a phi-def here. 450 if (!needPHI) { 451 IDomValue = LiveOutCache[IDom->getBlock()]; 452 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 453 PE = MBB->pred_end(); PI != PE; ++PI) { 454 LiveOutPair Value = LiveOutCache[*PI]; 455 if (!Value.first || Value.first == IDomValue.first) 456 continue; 457 // This predecessor is carrying something other than IDomValue. 458 // It could be because IDomValue hasn't propagated yet, or it could be 459 // because MBB is in the dominance frontier of that value. 460 if (MDT.dominates(IDom, Value.second)) { 461 needPHI = true; 462 break; 463 } 464 } 465 } 466 467 // Create a phi-def if required. 468 if (needPHI) { 469 ++Changes; 470 SlotIndex Start = LIS.getMBBStartIdx(MBB); 471 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 472 VNI->setIsPHIDef(true); 473 // We no longer need LI to be live-in. 474 LiveIn.erase(LiveIn.begin()+(i-1)); 475 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 476 if (MBB == IdxMBB) 477 IdxVNI = VNI; 478 // Check if we need to update live-out info. 479 LiveOutPair &LOP = LiveOutCache[MBB]; 480 if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { 481 // We already have a live-out defined in MBB, so this must be IdxMBB. 482 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 483 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 484 } else { 485 // This phi-def is also live-out, so color the whole block. 486 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 487 LOP = LiveOutPair(VNI, Node); 488 } 489 } else if (IDomValue.first) { 490 // No phi-def here. Remember incoming value for IdxMBB. 491 if (MBB == IdxMBB) { 492 IdxVNI = IDomValue.first; 493 // IdxMBB need not be live-out. 494 if (!LiveOutSeen.test(MBB->getNumber())) 495 continue; 496 } 497 assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); 498 // Propagate IDomValue if needed: 499 // MBB is live-out and doesn't define its own value. 500 LiveOutPair &LOP = LiveOutCache[MBB]; 501 if (LOP.second != Node && LOP.first != IDomValue.first) { 502 ++Changes; 503 LOP = IDomValue; 504 } 505 } 506 } 507 } while (Changes); 508 509 assert(IdxVNI && "Didn't find value for Idx"); 510 return IdxVNI; 511} 512 513VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 514 VNInfo *ParentVNI, 515 SlotIndex UseIdx, 516 MachineBasicBlock &MBB, 517 MachineBasicBlock::iterator I) { 518 MachineInstr *CopyMI = 0; 519 SlotIndex Def; 520 LiveInterval *LI = Edit->get(RegIdx); 521 522 // Attempt cheap-as-a-copy rematerialization. 523 LiveRangeEdit::Remat RM(ParentVNI); 524 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 525 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 526 } else { 527 // Can't remat, just insert a copy from parent. 528 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 529 .addReg(Edit->getReg()); 530 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 531 } 532 533 // Define the value in Reg. 534 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 535 VNI->setCopy(CopyMI); 536 return VNI; 537} 538 539/// Create a new virtual register and live interval. 540void SplitEditor::openIntv() { 541 assert(!OpenIdx && "Previous LI not closed before openIntv"); 542 543 // Create the complement as index 0. 544 if (Edit->empty()) 545 Edit->create(MRI, LIS, VRM); 546 547 // Create the open interval. 548 OpenIdx = Edit->size(); 549 Edit->create(MRI, LIS, VRM); 550} 551 552SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 553 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 554 DEBUG(dbgs() << " enterIntvBefore " << Idx); 555 Idx = Idx.getBaseIndex(); 556 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 557 if (!ParentVNI) { 558 DEBUG(dbgs() << ": not live\n"); 559 return Idx; 560 } 561 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 562 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 563 assert(MI && "enterIntvBefore called with invalid index"); 564 565 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 566 return VNI->def; 567} 568 569SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 570 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 571 SlotIndex End = LIS.getMBBEndIdx(&MBB); 572 SlotIndex Last = End.getPrevSlot(); 573 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 574 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 575 if (!ParentVNI) { 576 DEBUG(dbgs() << ": not live\n"); 577 return End; 578 } 579 DEBUG(dbgs() << ": valno " << ParentVNI->id); 580 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 581 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 582 RegAssign.insert(VNI->def, End, OpenIdx); 583 DEBUG(dump()); 584 return VNI->def; 585} 586 587/// useIntv - indicate that all instructions in MBB should use OpenLI. 588void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 589 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 590} 591 592void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 593 assert(OpenIdx && "openIntv not called before useIntv"); 594 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 595 RegAssign.insert(Start, End, OpenIdx); 596 DEBUG(dump()); 597} 598 599SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 600 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 601 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 602 603 // The interval must be live beyond the instruction at Idx. 604 Idx = Idx.getBoundaryIndex(); 605 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 606 if (!ParentVNI) { 607 DEBUG(dbgs() << ": not live\n"); 608 return Idx.getNextSlot(); 609 } 610 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 611 612 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 613 assert(MI && "No instruction at index"); 614 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 615 llvm::next(MachineBasicBlock::iterator(MI))); 616 return VNI->def; 617} 618 619SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 620 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 621 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 622 623 // The interval must be live into the instruction at Idx. 624 Idx = Idx.getBoundaryIndex(); 625 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 626 if (!ParentVNI) { 627 DEBUG(dbgs() << ": not live\n"); 628 return Idx.getNextSlot(); 629 } 630 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 631 632 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 633 assert(MI && "No instruction at index"); 634 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 635 return VNI->def; 636} 637 638SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 639 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 640 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 641 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 642 643 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 644 if (!ParentVNI) { 645 DEBUG(dbgs() << ": not live\n"); 646 return Start; 647 } 648 649 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 650 MBB.SkipPHIsAndLabels(MBB.begin())); 651 RegAssign.insert(Start, VNI->def, OpenIdx); 652 DEBUG(dump()); 653 return VNI->def; 654} 655 656void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 657 assert(OpenIdx && "openIntv not called before overlapIntv"); 658 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 659 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 660 "Parent changes value in extended range"); 661 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 662 "Range cannot span basic blocks"); 663 664 // The complement interval will be extended as needed by extendRange(). 665 markComplexMapped(0, ParentVNI); 666 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 667 RegAssign.insert(Start, End, OpenIdx); 668 DEBUG(dump()); 669} 670 671/// closeIntv - Indicate that we are done editing the currently open 672/// LiveInterval, and ranges can be trimmed. 673void SplitEditor::closeIntv() { 674 assert(OpenIdx && "openIntv not called before closeIntv"); 675 OpenIdx = 0; 676} 677 678/// transferSimpleValues - Transfer all simply defined values to the new live 679/// ranges. 680/// Values that were rematerialized or that have multiple defs are left alone. 681bool SplitEditor::transferSimpleValues() { 682 bool Skipped = false; 683 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 684 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 685 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 686 DEBUG(dbgs() << " blit " << *ParentI << ':'); 687 VNInfo *ParentVNI = ParentI->valno; 688 // RegAssign has holes where RegIdx 0 should be used. 689 SlotIndex Start = ParentI->start; 690 AssignI.advanceTo(Start); 691 do { 692 unsigned RegIdx; 693 SlotIndex End = ParentI->end; 694 if (!AssignI.valid()) { 695 RegIdx = 0; 696 } else if (AssignI.start() <= Start) { 697 RegIdx = AssignI.value(); 698 if (AssignI.stop() < End) { 699 End = AssignI.stop(); 700 ++AssignI; 701 } 702 } else { 703 RegIdx = 0; 704 End = std::min(End, AssignI.start()); 705 } 706 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 707 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 708 DEBUG(dbgs() << ':' << VNI->id); 709 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 710 } else 711 Skipped = true; 712 Start = End; 713 } while (Start != ParentI->end); 714 DEBUG(dbgs() << '\n'); 715 } 716 return Skipped; 717} 718 719void SplitEditor::extendPHIKillRanges() { 720 // Extend live ranges to be live-out for successor PHI values. 721 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 722 E = Edit->getParent().vni_end(); I != E; ++I) { 723 const VNInfo *PHIVNI = *I; 724 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 725 continue; 726 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 727 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 728 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 729 PE = MBB->pred_end(); PI != PE; ++PI) { 730 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 731 // The predecessor may not have a live-out value. That is OK, like an 732 // undef PHI operand. 733 if (Edit->getParent().liveAt(End)) { 734 assert(RegAssign.lookup(End) == RegIdx && 735 "Different register assignment in phi predecessor"); 736 extendRange(RegIdx, End); 737 } 738 } 739 } 740} 741 742/// rewriteAssigned - Rewrite all uses of Edit->getReg(). 743void SplitEditor::rewriteAssigned(bool ExtendRanges) { 744 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 745 RE = MRI.reg_end(); RI != RE;) { 746 MachineOperand &MO = RI.getOperand(); 747 MachineInstr *MI = MO.getParent(); 748 ++RI; 749 // LiveDebugVariables should have handled all DBG_VALUE instructions. 750 if (MI->isDebugValue()) { 751 DEBUG(dbgs() << "Zapping " << *MI); 752 MO.setReg(0); 753 continue; 754 } 755 756 // <undef> operands don't really read the register, so just assign them to 757 // the complement. 758 if (MO.isUse() && MO.isUndef()) { 759 MO.setReg(Edit->get(0)->reg); 760 continue; 761 } 762 763 SlotIndex Idx = LIS.getInstructionIndex(MI); 764 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 765 766 // Rewrite to the mapped register at Idx. 767 unsigned RegIdx = RegAssign.lookup(Idx); 768 MO.setReg(Edit->get(RegIdx)->reg); 769 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 770 << Idx << ':' << RegIdx << '\t' << *MI); 771 772 // Extend liveness to Idx. 773 if (ExtendRanges) 774 extendRange(RegIdx, Idx); 775 } 776} 777 778/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 779void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 780 const ConnectedVNInfoEqClasses &ConEq) { 781 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 782 RE = MRI.reg_end(); RI != RE;) { 783 MachineOperand &MO = RI.getOperand(); 784 MachineInstr *MI = MO.getParent(); 785 ++RI; 786 if (MO.isUse() && MO.isUndef()) 787 continue; 788 // DBG_VALUE instructions should have been eliminated earlier. 789 SlotIndex Idx = LIS.getInstructionIndex(MI); 790 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 791 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 792 << Idx << ':'); 793 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 794 assert(VNI && "Interval not live at use."); 795 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 796 DEBUG(dbgs() << VNI->id << '\t' << *MI); 797 } 798} 799 800void SplitEditor::finish() { 801 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 802 ++NumFinished; 803 804 // At this point, the live intervals in Edit contain VNInfos corresponding to 805 // the inserted copies. 806 807 // Add the original defs from the parent interval. 808 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 809 E = Edit->getParent().vni_end(); I != E; ++I) { 810 const VNInfo *ParentVNI = *I; 811 if (ParentVNI->isUnused()) 812 continue; 813 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 814 defValue(RegIdx, ParentVNI, ParentVNI->def); 815 // Mark rematted values as complex everywhere to force liveness computation. 816 // The new live ranges may be truncated. 817 if (Edit->didRematerialize(ParentVNI)) 818 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 819 markComplexMapped(i, ParentVNI); 820 } 821 822#ifndef NDEBUG 823 // Every new interval must have a def by now, otherwise the split is bogus. 824 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 825 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 826#endif 827 828 // Transfer the simply mapped values, check if any are complex. 829 bool Complex = transferSimpleValues(); 830 if (Complex) 831 extendPHIKillRanges(); 832 else 833 ++NumSimple; 834 835 // Rewrite virtual registers, possibly extending ranges. 836 rewriteAssigned(Complex); 837 838 // FIXME: Delete defs that were rematted everywhere. 839 840 // Get rid of unused values and set phi-kill flags. 841 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 842 (*I)->RenumberValues(LIS); 843 844 // Now check if any registers were separated into multiple components. 845 ConnectedVNInfoEqClasses ConEQ(LIS); 846 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 847 // Don't use iterators, they are invalidated by create() below. 848 LiveInterval *li = Edit->get(i); 849 unsigned NumComp = ConEQ.Classify(li); 850 if (NumComp <= 1) 851 continue; 852 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 853 SmallVector<LiveInterval*, 8> dups; 854 dups.push_back(li); 855 for (unsigned i = 1; i != NumComp; ++i) 856 dups.push_back(&Edit->create(MRI, LIS, VRM)); 857 rewriteComponents(dups, ConEQ); 858 ConEQ.Distribute(&dups[0]); 859 } 860 861 // Calculate spill weight and allocation hints for new intervals. 862 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 863 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 864 LiveInterval &li = **I; 865 vrai.CalculateRegClass(li.reg); 866 vrai.CalculateWeightAndHint(li); 867 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 868 << ":" << li << '\n'); 869 } 870} 871 872 873//===----------------------------------------------------------------------===// 874// Single Block Splitting 875//===----------------------------------------------------------------------===// 876 877/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 878/// may be an advantage to split CurLI for the duration of the block. 879bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 880 // If CurLI is local to one block, there is no point to splitting it. 881 if (LiveBlocks.size() <= 1) 882 return false; 883 // Add blocks with multiple uses. 884 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 885 const BlockInfo &BI = LiveBlocks[i]; 886 if (!BI.Uses) 887 continue; 888 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 889 if (Instrs <= 1) 890 continue; 891 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 892 continue; 893 Blocks.insert(BI.MBB); 894 } 895 return !Blocks.empty(); 896} 897 898/// splitSingleBlocks - Split CurLI into a separate live interval inside each 899/// basic block in Blocks. 900void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 901 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 902 903 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 904 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 905 if (!BI.Uses || !Blocks.count(BI.MBB)) 906 continue; 907 908 openIntv(); 909 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 910 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 911 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 912 } else { 913 // The last use is after the last valid split point. 914 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 915 useIntv(SegStart, SegStop); 916 overlapIntv(SegStop, BI.LastUse); 917 } 918 closeIntv(); 919 } 920 finish(); 921} 922