SplitKit.cpp revision 2bfb32468404eb68dcc1b69a34336794b20e3f33
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "splitter"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : mf_(mf),
44    lis_(lis),
45    loops_(mli),
46    tii_(*mf.getTarget().getInstrInfo()),
47    curli_(0) {}
48
49void SplitAnalysis::clear() {
50  usingInstrs_.clear();
51  usingBlocks_.clear();
52  usingLoops_.clear();
53  curli_ = 0;
54}
55
56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57  MachineBasicBlock *T, *F;
58  SmallVector<MachineOperand, 4> Cond;
59  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60}
61
62/// analyzeUses - Count instructions, basic blocks, and loops using curli.
63void SplitAnalysis::analyzeUses() {
64  const MachineRegisterInfo &MRI = mf_.getRegInfo();
65  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66       MachineInstr *MI = I.skipInstruction();) {
67    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68      continue;
69    MachineBasicBlock *MBB = MI->getParent();
70    if (usingBlocks_[MBB]++)
71      continue;
72    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
73         Loop = Loop->getParentLoop())
74      usingLoops_[Loop]++;
75  }
76  DEBUG(dbgs() << "  counted "
77               << usingInstrs_.size() << " instrs, "
78               << usingBlocks_.size() << " blocks, "
79               << usingLoops_.size()  << " loops.\n");
80}
81
82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
83  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
84    unsigned count = usingBlocks_.lookup(*I);
85    OS << " BB#" << (*I)->getNumber();
86    if (count)
87      OS << '(' << count << ')';
88  }
89}
90
91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
92// predecessor blocks, and exit blocks.
93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
94  Blocks.clear();
95
96  // Blocks in the loop.
97  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
98
99  // Predecessor blocks.
100  const MachineBasicBlock *Header = Loop->getHeader();
101  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
102       E = Header->pred_end(); I != E; ++I)
103    if (!Blocks.Loop.count(*I))
104      Blocks.Preds.insert(*I);
105
106  // Exit blocks.
107  for (MachineLoop::block_iterator I = Loop->block_begin(),
108       E = Loop->block_end(); I != E; ++I) {
109    const MachineBasicBlock *MBB = *I;
110    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
111       SE = MBB->succ_end(); SI != SE; ++SI)
112      if (!Blocks.Loop.count(*SI))
113        Blocks.Exits.insert(*SI);
114  }
115}
116
117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
118  OS << "Loop:";
119  print(B.Loop, OS);
120  OS << ", preds:";
121  print(B.Preds, OS);
122  OS << ", exits:";
123  print(B.Exits, OS);
124}
125
126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
127/// and around the Loop.
128SplitAnalysis::LoopPeripheralUse SplitAnalysis::
129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
130  LoopPeripheralUse use = ContainedInLoop;
131  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
132       I != E; ++I) {
133    const MachineBasicBlock *MBB = I->first;
134    // Is this a peripheral block?
135    if (use < MultiPeripheral &&
136        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
137      if (I->second > 1) use = MultiPeripheral;
138      else               use = SinglePeripheral;
139      continue;
140    }
141    // Is it a loop block?
142    if (Blocks.Loop.count(MBB))
143      continue;
144    // It must be an unrelated block.
145    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
146    return OutsideLoop;
147  }
148  return use;
149}
150
151/// getCriticalExits - It may be necessary to partially break critical edges
152/// leaving the loop if an exit block has predecessors from outside the loop
153/// periphery.
154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
155                                     BlockPtrSet &CriticalExits) {
156  CriticalExits.clear();
157
158  // A critical exit block has curli line-in, and has a predecessor that is not
159  // in the loop nor a loop predecessor. For such an exit block, the edges
160  // carrying the new variable must be moved to a new pre-exit block.
161  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
162       I != E; ++I) {
163    const MachineBasicBlock *Exit = *I;
164    // A single-predecessor exit block is definitely not a critical edge.
165    if (Exit->pred_size() == 1)
166      continue;
167    // This exit may not have curli live in at all. No need to split.
168    if (!lis_.isLiveInToMBB(*curli_, Exit))
169      continue;
170    // Does this exit block have a predecessor that is not a loop block or loop
171    // predecessor?
172    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
173         PE = Exit->pred_end(); PI != PE; ++PI) {
174      const MachineBasicBlock *Pred = *PI;
175      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
176        continue;
177      // This is a critical exit block, and we need to split the exit edge.
178      CriticalExits.insert(Exit);
179      break;
180    }
181  }
182}
183
184/// canSplitCriticalExits - Return true if it is possible to insert new exit
185/// blocks before the blocks in CriticalExits.
186bool
187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
188                                     BlockPtrSet &CriticalExits) {
189  // If we don't allow critical edge splitting, require no critical exits.
190  if (!AllowSplit)
191    return CriticalExits.empty();
192
193  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
194       I != E; ++I) {
195    const MachineBasicBlock *Succ = *I;
196    // We want to insert a new pre-exit MBB before Succ, and change all the
197    // in-loop blocks to branch to the pre-exit instead of Succ.
198    // Check that all the in-loop predecessors can be changed.
199    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
200         PE = Succ->pred_end(); PI != PE; ++PI) {
201      const MachineBasicBlock *Pred = *PI;
202      // The external predecessors won't be altered.
203      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
204        continue;
205      if (!canAnalyzeBranch(Pred))
206        return false;
207    }
208
209    // If Succ's layout predecessor falls through, that too must be analyzable.
210    // We need to insert the pre-exit block in the gap.
211    MachineFunction::const_iterator MFI = Succ;
212    if (MFI == mf_.begin())
213      continue;
214    if (!canAnalyzeBranch(--MFI))
215      return false;
216  }
217  // No problems found.
218  return true;
219}
220
221void SplitAnalysis::analyze(const LiveInterval *li) {
222  clear();
223  curli_ = li;
224  analyzeUses();
225}
226
227const MachineLoop *SplitAnalysis::getBestSplitLoop() {
228  assert(curli_ && "Call analyze() before getBestSplitLoop");
229  if (usingLoops_.empty())
230    return 0;
231
232  LoopPtrSet Loops;
233  LoopBlocks Blocks;
234  BlockPtrSet CriticalExits;
235
236  // We split around loops where curli is used outside the periphery.
237  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
238       E = usingLoops_.end(); I != E; ++I) {
239    const MachineLoop *Loop = I->first;
240    getLoopBlocks(Loop, Blocks);
241    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
242
243    switch(analyzeLoopPeripheralUse(Blocks)) {
244    case OutsideLoop:
245      break;
246    case MultiPeripheral:
247      // FIXME: We could split a live range with multiple uses in a peripheral
248      // block and still make progress. However, it is possible that splitting
249      // another live range will insert copies into a peripheral block, and
250      // there is a small chance we can enter an infinity loop, inserting copies
251      // forever.
252      // For safety, stick to splitting live ranges with uses outside the
253      // periphery.
254      DEBUG(dbgs() << ": multiple peripheral uses\n");
255      break;
256    case ContainedInLoop:
257      DEBUG(dbgs() << ": fully contained\n");
258      continue;
259    case SinglePeripheral:
260      DEBUG(dbgs() << ": single peripheral use\n");
261      continue;
262    }
263    // Will it be possible to split around this loop?
264    getCriticalExits(Blocks, CriticalExits);
265    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
266    if (!canSplitCriticalExits(Blocks, CriticalExits))
267      continue;
268    // This is a possible split.
269    Loops.insert(Loop);
270  }
271
272  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
273               << " candidate loops.\n");
274
275  if (Loops.empty())
276    return 0;
277
278  // Pick the earliest loop.
279  // FIXME: Are there other heuristics to consider?
280  const MachineLoop *Best = 0;
281  SlotIndex BestIdx;
282  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
283       ++I) {
284    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
285    if (!Best || Idx < BestIdx)
286      Best = *I, BestIdx = Idx;
287  }
288  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
289  return Best;
290}
291
292//===----------------------------------------------------------------------===//
293//                               LiveIntervalMap
294//===----------------------------------------------------------------------===//
295
296// Work around the fact that the std::pair constructors are broken for pointer
297// pairs in some implementations. makeVV(x, 0) works.
298static inline std::pair<const VNInfo*, VNInfo*>
299makeVV(const VNInfo *a, VNInfo *b) {
300  return std::make_pair(a, b);
301}
302
303void LiveIntervalMap::reset(LiveInterval *li) {
304  li_ = li;
305  valueMap_.clear();
306}
307
308bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
309  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
310  return i != valueMap_.end() && i->second == 0;
311}
312
313// defValue - Introduce a li_ def for ParentVNI that could be later than
314// ParentVNI->def.
315VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
316  assert(li_ && "call reset first");
317  assert(ParentVNI && "Mapping  NULL value");
318  assert(Idx.isValid() && "Invalid SlotIndex");
319  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
320
321  // Create a new value.
322  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
323
324  // Use insert for lookup, so we can add missing values with a second lookup.
325  std::pair<ValueMap::iterator,bool> InsP =
326    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
327
328  // This is now a complex def. Mark with a NULL in valueMap.
329  if (!InsP.second)
330    InsP.first->second = 0;
331
332  return VNI;
333}
334
335
336// mapValue - Find the mapped value for ParentVNI at Idx.
337// Potentially create phi-def values.
338VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
339                                  bool *simple) {
340  assert(li_ && "call reset first");
341  assert(ParentVNI && "Mapping  NULL value");
342  assert(Idx.isValid() && "Invalid SlotIndex");
343  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
344
345  // Use insert for lookup, so we can add missing values with a second lookup.
346  std::pair<ValueMap::iterator,bool> InsP =
347    valueMap_.insert(makeVV(ParentVNI, 0));
348
349  // This was an unknown value. Create a simple mapping.
350  if (InsP.second) {
351    if (simple) *simple = true;
352    return InsP.first->second = li_->createValueCopy(ParentVNI,
353                                                     lis_.getVNInfoAllocator());
354  }
355
356  // This was a simple mapped value.
357  if (InsP.first->second) {
358    if (simple) *simple = true;
359    return InsP.first->second;
360  }
361
362  // This is a complex mapped value. There may be multiple defs, and we may need
363  // to create phi-defs.
364  if (simple) *simple = false;
365  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
366  assert(IdxMBB && "No MBB at Idx");
367
368  // Is there a def in the same MBB we can extend?
369  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
370    return VNI;
371
372  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
373  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
374  // Perform a depth-first search for predecessor blocks where we know the
375  // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
376
377  // Track MBBs where we have created or learned the dominating value.
378  // This may change during the DFS as we create new phi-defs.
379  typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
380  MBBValueMap DomValue;
381  typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
382  BlockPtrSet Visited;
383
384  // Iterate over IdxMBB predecessors in a depth-first order.
385  // Skip begin() since that is always IdxMBB.
386  for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
387         IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
388         IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
389    MachineBasicBlock *MBB = *IDFI;
390    SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
391
392    // We are operating on the restricted CFG where ParentVNI is live.
393    if (parentli_.getVNInfoAt(End) != ParentVNI) {
394      IDFI.skipChildren();
395      continue;
396    }
397
398    // Do we have a dominating value in this block?
399    VNInfo *VNI = extendTo(MBB, End);
400    if (!VNI) {
401      ++IDFI;
402      continue;
403    }
404
405    // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
406    Visited.erase(MBB);
407
408    // Track the path back to IdxMBB, creating phi-defs
409    // as needed along the way.
410    for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
411      // Start from MBB's immediate successor. End at IdxMBB.
412      MachineBasicBlock *Succ = IDFI.getPath(PI-1);
413      std::pair<MBBValueMap::iterator, bool> InsP =
414        DomValue.insert(MBBValueMap::value_type(Succ, VNI));
415
416      // This is the first time we backtrack to Succ.
417      if (InsP.second)
418        continue;
419
420      // We reached Succ again with the same VNI. Nothing is going to change.
421      VNInfo *OVNI = InsP.first->second;
422      if (OVNI == VNI)
423        break;
424
425      // Succ already has a phi-def. No need to continue.
426      SlotIndex Start = lis_.getMBBStartIdx(Succ);
427      if (OVNI->def == Start)
428        break;
429
430      // We have a collision between the old and new VNI at Succ. That means
431      // neither dominates and we need a new phi-def.
432      VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
433      VNI->setIsPHIDef(true);
434      InsP.first->second = VNI;
435
436      // Replace OVNI with VNI in the remaining path.
437      for (; PI > 1 ; --PI) {
438        MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
439        if (I == DomValue.end() || I->second != OVNI)
440          break;
441        I->second = VNI;
442      }
443    }
444
445    // No need to search the children, we found a dominating value.
446    IDFI.skipChildren();
447  }
448
449  // The search should at least find a dominating value for IdxMBB.
450  assert(!DomValue.empty() && "Couldn't find a reaching definition");
451
452  // Since we went through the trouble of a full DFS visiting all reaching defs,
453  // the values in DomValue are now accurate. No more phi-defs are needed for
454  // these blocks, so we can color the live ranges.
455  // This makes the next mapValue call much faster.
456  VNInfo *IdxVNI = 0;
457  for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
458       ++I) {
459     MachineBasicBlock *MBB = I->first;
460     VNInfo *VNI = I->second;
461     SlotIndex Start = lis_.getMBBStartIdx(MBB);
462     if (MBB == IdxMBB) {
463       // Don't add full liveness to IdxMBB, stop at Idx.
464       if (Start != Idx)
465         li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
466       // The caller had better add some liveness to IdxVNI, or it leaks.
467       IdxVNI = VNI;
468     } else
469      li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
470  }
471
472  assert(IdxVNI && "Didn't find value for Idx");
473  return IdxVNI;
474}
475
476// extendTo - Find the last li_ value defined in MBB at or before Idx. The
477// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
478// Return the found VNInfo, or NULL.
479VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
480  assert(li_ && "call reset first");
481  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
482  if (I == li_->begin())
483    return 0;
484  --I;
485  if (I->end <= lis_.getMBBStartIdx(MBB))
486    return 0;
487  if (I->end <= Idx)
488    I->end = Idx.getNextSlot();
489  return I->valno;
490}
491
492// addSimpleRange - Add a simple range from parentli_ to li_.
493// ParentVNI must be live in the [Start;End) interval.
494void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
495                                     const VNInfo *ParentVNI) {
496  assert(li_ && "call reset first");
497  bool simple;
498  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
499  // A simple mapping is easy.
500  if (simple) {
501    li_->addRange(LiveRange(Start, End, VNI));
502    return;
503  }
504
505  // ParentVNI is a complex value. We must map per MBB.
506  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
507  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
508
509  if (MBB == MBBE) {
510    li_->addRange(LiveRange(Start, End, VNI));
511    return;
512  }
513
514  // First block.
515  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
516
517  // Run sequence of full blocks.
518  for (++MBB; MBB != MBBE; ++MBB) {
519    Start = lis_.getMBBStartIdx(MBB);
520    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
521                            mapValue(ParentVNI, Start)));
522  }
523
524  // Final block.
525  Start = lis_.getMBBStartIdx(MBB);
526  if (Start != End)
527    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
528}
529
530/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
531/// All needed values whose def is not inside [Start;End) must be defined
532/// beforehand so mapValue will work.
533void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
534  assert(li_ && "call reset first");
535  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
536  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
537
538  // Check if --I begins before Start and overlaps.
539  if (I != B) {
540    --I;
541    if (I->end > Start)
542      addSimpleRange(Start, std::min(End, I->end), I->valno);
543    ++I;
544  }
545
546  // The remaining ranges begin after Start.
547  for (;I != E && I->start < End; ++I)
548    addSimpleRange(I->start, std::min(End, I->end), I->valno);
549}
550
551VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
552                                       const VNInfo *ParentVNI,
553                                       MachineBasicBlock &MBB,
554                                       MachineBasicBlock::iterator I) {
555  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
556    get(TargetOpcode::COPY);
557  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
558  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
559  VNInfo *VNI = defValue(ParentVNI, DefIdx);
560  VNI->setCopy(MI);
561  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
562  return VNI;
563}
564
565//===----------------------------------------------------------------------===//
566//                               Split Editor
567//===----------------------------------------------------------------------===//
568
569/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
570SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
571                         LiveRangeEdit &edit)
572  : sa_(sa), lis_(lis), vrm_(vrm),
573    mri_(vrm.getMachineFunction().getRegInfo()),
574    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
575    edit_(edit),
576    dupli_(lis_, edit.getParent()),
577    openli_(lis_, edit.getParent())
578{
579}
580
581bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
582  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
583    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
584      return true;
585  return false;
586}
587
588/// Create a new virtual register and live interval.
589void SplitEditor::openIntv() {
590  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
591
592  if (!dupli_.getLI())
593    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
594
595  openli_.reset(&edit_.create(mri_, lis_, vrm_));
596}
597
598/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
599/// not live before Idx, a COPY is not inserted.
600void SplitEditor::enterIntvBefore(SlotIndex Idx) {
601  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
602  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
603  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
604  if (!ParentVNI) {
605    DEBUG(dbgs() << ": not live\n");
606    return;
607  }
608  DEBUG(dbgs() << ": valno " << ParentVNI->id);
609  truncatedValues.insert(ParentVNI);
610  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
611  assert(MI && "enterIntvBefore called with invalid index");
612  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
613                                      *MI->getParent(), MI);
614  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
615  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
616}
617
618/// enterIntvAtEnd - Enter openli at the end of MBB.
619void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
620  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
621  SlotIndex End = lis_.getMBBEndIdx(&MBB);
622  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
623  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
624  if (!ParentVNI) {
625    DEBUG(dbgs() << ": not live\n");
626    return;
627  }
628  DEBUG(dbgs() << ": valno " << ParentVNI->id);
629  truncatedValues.insert(ParentVNI);
630  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
631                                      MBB, MBB.getFirstTerminator());
632  // Make sure openli is live out of MBB.
633  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
634  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
635}
636
637/// useIntv - indicate that all instructions in MBB should use openli.
638void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
639  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
640}
641
642void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
643  assert(openli_.getLI() && "openIntv not called before useIntv");
644  openli_.addRange(Start, End);
645  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
646               << *openli_.getLI() << '\n');
647}
648
649/// leaveIntvAfter - Leave openli after the instruction at Idx.
650void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
651  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
652  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
653
654  // The interval must be live beyond the instruction at Idx.
655  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
656  if (!ParentVNI) {
657    DEBUG(dbgs() << ": not live\n");
658    return;
659  }
660  DEBUG(dbgs() << ": valno " << ParentVNI->id);
661
662  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
663  MachineBasicBlock *MBB = MII->getParent();
664  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
665                                     llvm::next(MII));
666
667  // Finally we must make sure that openli is properly extended from Idx to the
668  // new copy.
669  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
670  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
671}
672
673/// leaveIntvAtTop - Leave the interval at the top of MBB.
674/// Currently, only one value can leave the interval.
675void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
676  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
677  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
678  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
679
680  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
681  if (!ParentVNI) {
682    DEBUG(dbgs() << ": not live\n");
683    return;
684  }
685
686  // We are going to insert a back copy, so we must have a dupli_.
687  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
688                                     MBB, MBB.begin());
689
690  // Finally we must make sure that openli is properly extended from Start to
691  // the new copy.
692  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
693  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
694}
695
696/// closeIntv - Indicate that we are done editing the currently open
697/// LiveInterval, and ranges can be trimmed.
698void SplitEditor::closeIntv() {
699  assert(openli_.getLI() && "openIntv not called before closeIntv");
700
701  DEBUG(dbgs() << "    closeIntv cleaning up\n");
702  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
703  openli_.reset(0);
704}
705
706/// rewrite - Rewrite all uses of reg to use the new registers.
707void SplitEditor::rewrite(unsigned reg) {
708  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
709       RE = mri_.reg_end(); RI != RE;) {
710    MachineOperand &MO = RI.getOperand();
711    MachineInstr *MI = MO.getParent();
712    ++RI;
713    if (MI->isDebugValue()) {
714      DEBUG(dbgs() << "Zapping " << *MI);
715      // FIXME: We can do much better with debug values.
716      MO.setReg(0);
717      continue;
718    }
719    SlotIndex Idx = lis_.getInstructionIndex(MI);
720    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
721    LiveInterval *LI = 0;
722    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
723         ++I) {
724      LiveInterval *testli = *I;
725      if (testli->liveAt(Idx)) {
726        LI = testli;
727        break;
728      }
729    }
730    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
731    assert(LI && "No register was live at use");
732    MO.setReg(LI->reg);
733    DEBUG(dbgs() << '\t' << *MI);
734  }
735}
736
737void
738SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
739  // Build vector of iterator pairs from the intervals.
740  typedef std::pair<LiveInterval::const_iterator,
741                    LiveInterval::const_iterator> IIPair;
742  SmallVector<IIPair, 8> Iters;
743  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
744       ++LI) {
745    if (*LI == dupli_.getLI())
746      continue;
747    LiveInterval::const_iterator I = (*LI)->find(Start);
748    LiveInterval::const_iterator E = (*LI)->end();
749    if (I != E)
750      Iters.push_back(std::make_pair(I, E));
751  }
752
753  SlotIndex sidx = Start;
754  // Break [Start;End) into segments that don't overlap any intervals.
755  for (;;) {
756    SlotIndex next = sidx, eidx = End;
757    // Find overlapping intervals.
758    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
759      LiveInterval::const_iterator I = Iters[i].first;
760      // Interval I is overlapping [sidx;eidx). Trim sidx.
761      if (I->start <= sidx) {
762        sidx = I->end;
763        // Move to the next run, remove iters when all are consumed.
764        I = ++Iters[i].first;
765        if (I == Iters[i].second) {
766          Iters.erase(Iters.begin() + i);
767          --i;
768          continue;
769        }
770      }
771      // Trim eidx too if needed.
772      if (I->start >= eidx)
773        continue;
774      eidx = I->start;
775      next = I->end;
776    }
777    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
778    if (sidx < eidx)
779      dupli_.addSimpleRange(sidx, eidx, VNI);
780    // If the interval end was truncated, we can try again from next.
781    if (next <= sidx)
782      break;
783    sidx = next;
784  }
785}
786
787void SplitEditor::computeRemainder() {
788  // First we need to fill in the live ranges in dupli.
789  // If values were redefined, we need a full recoloring with SSA update.
790  // If values were truncated, we only need to truncate the ranges.
791  // If values were partially rematted, we should shrink to uses.
792  // If values were fully rematted, they should be omitted.
793  // FIXME: If a single value is redefined, just move the def and truncate.
794  LiveInterval &parent = edit_.getParent();
795
796  // Values that are fully contained in the split intervals.
797  SmallPtrSet<const VNInfo*, 8> deadValues;
798  // Map all curli values that should have live defs in dupli.
799  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
800       E = parent.vni_end(); I != E; ++I) {
801    const VNInfo *VNI = *I;
802    // Original def is contained in the split intervals.
803    if (intervalsLiveAt(VNI->def)) {
804      // Did this value escape?
805      if (dupli_.isMapped(VNI))
806        truncatedValues.insert(VNI);
807      else
808        deadValues.insert(VNI);
809      continue;
810    }
811    // Add minimal live range at the definition.
812    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
813    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
814  }
815
816  // Add all ranges to dupli.
817  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
818       I != E; ++I) {
819    const LiveRange &LR = *I;
820    if (truncatedValues.count(LR.valno)) {
821      // recolor after removing intervals_.
822      addTruncSimpleRange(LR.start, LR.end, LR.valno);
823    } else if (!deadValues.count(LR.valno)) {
824      // recolor without truncation.
825      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
826    }
827  }
828}
829
830void SplitEditor::finish() {
831  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
832  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
833
834  // Complete dupli liveness.
835  computeRemainder();
836
837  // Get rid of unused values and set phi-kill flags.
838  dupli_.getLI()->RenumberValues(lis_);
839
840  // Now check if dupli was separated into multiple connected components.
841  ConnectedVNInfoEqClasses ConEQ(lis_);
842  if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) {
843    DEBUG(dbgs() << "  Remainder has " << NumComp << " connected components: "
844                 << *dupli_.getLI() << '\n');
845    // Did the remainder break up? Create intervals for all the components.
846    if (NumComp > 1) {
847      SmallVector<LiveInterval*, 8> dups;
848      dups.push_back(dupli_.getLI());
849      for (unsigned i = 1; i != NumComp; ++i)
850        dups.push_back(&edit_.create(mri_, lis_, vrm_));
851      ConEQ.Distribute(&dups[0]);
852      // Rewrite uses to the new regs.
853      rewrite(dupli_.getLI()->reg);
854    }
855  }
856
857  // Rewrite instructions.
858  rewrite(edit_.getReg());
859
860  // Calculate spill weight and allocation hints for new intervals.
861  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
862  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
863    LiveInterval &li = **I;
864    vrai.CalculateRegClass(li.reg);
865    vrai.CalculateWeightAndHint(li);
866    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
867                 << ":" << li << '\n');
868  }
869}
870
871
872//===----------------------------------------------------------------------===//
873//                               Loop Splitting
874//===----------------------------------------------------------------------===//
875
876void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
877  SplitAnalysis::LoopBlocks Blocks;
878  sa_.getLoopBlocks(Loop, Blocks);
879
880  DEBUG({
881    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
882  });
883
884  // Break critical edges as needed.
885  SplitAnalysis::BlockPtrSet CriticalExits;
886  sa_.getCriticalExits(Blocks, CriticalExits);
887  assert(CriticalExits.empty() && "Cannot break critical exits yet");
888
889  // Create new live interval for the loop.
890  openIntv();
891
892  // Insert copies in the predecessors.
893  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
894       E = Blocks.Preds.end(); I != E; ++I) {
895    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
896    enterIntvAtEnd(MBB);
897  }
898
899  // Switch all loop blocks.
900  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
901       E = Blocks.Loop.end(); I != E; ++I)
902     useIntv(**I);
903
904  // Insert back copies in the exit blocks.
905  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
906       E = Blocks.Exits.end(); I != E; ++I) {
907    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
908    leaveIntvAtTop(MBB);
909  }
910
911  // Done.
912  closeIntv();
913  finish();
914}
915
916
917//===----------------------------------------------------------------------===//
918//                            Single Block Splitting
919//===----------------------------------------------------------------------===//
920
921/// getMultiUseBlocks - if curli has more than one use in a basic block, it
922/// may be an advantage to split curli for the duration of the block.
923bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
924  // If curli is local to one block, there is no point to splitting it.
925  if (usingBlocks_.size() <= 1)
926    return false;
927  // Add blocks with multiple uses.
928  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
929       I != E; ++I)
930    switch (I->second) {
931    case 0:
932    case 1:
933      continue;
934    case 2: {
935      // When there are only two uses and curli is both live in and live out,
936      // we don't really win anything by isolating the block since we would be
937      // inserting two copies.
938      // The remaing register would still have two uses in the block. (Unless it
939      // separates into disconnected components).
940      if (lis_.isLiveInToMBB(*curli_, I->first) &&
941          lis_.isLiveOutOfMBB(*curli_, I->first))
942        continue;
943    } // Fall through.
944    default:
945      Blocks.insert(I->first);
946    }
947  return !Blocks.empty();
948}
949
950/// splitSingleBlocks - Split curli into a separate live interval inside each
951/// basic block in Blocks.
952void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
953  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
954  // Determine the first and last instruction using curli in each block.
955  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
956  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
957  IndexPairMap MBBRange;
958  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
959       E = sa_.usingInstrs_.end(); I != E; ++I) {
960    const MachineBasicBlock *MBB = (*I)->getParent();
961    if (!Blocks.count(MBB))
962      continue;
963    SlotIndex Idx = lis_.getInstructionIndex(*I);
964    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
965    IndexPair &IP = MBBRange[MBB];
966    if (!IP.first.isValid() || Idx < IP.first)
967      IP.first = Idx;
968    if (!IP.second.isValid() || Idx > IP.second)
969      IP.second = Idx;
970  }
971
972  // Create a new interval for each block.
973  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
974       E = Blocks.end(); I != E; ++I) {
975    IndexPair &IP = MBBRange[*I];
976    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
977                 << IP.first << ';' << IP.second << ")\n");
978    assert(IP.first.isValid() && IP.second.isValid());
979
980    openIntv();
981    enterIntvBefore(IP.first);
982    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
983    leaveIntvAfter(IP.second);
984    closeIntv();
985  }
986  finish();
987}
988
989
990//===----------------------------------------------------------------------===//
991//                            Sub Block Splitting
992//===----------------------------------------------------------------------===//
993
994/// getBlockForInsideSplit - If curli is contained inside a single basic block,
995/// and it wou pay to subdivide the interval inside that block, return it.
996/// Otherwise return NULL. The returned block can be passed to
997/// SplitEditor::splitInsideBlock.
998const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
999  // The interval must be exclusive to one block.
1000  if (usingBlocks_.size() != 1)
1001    return 0;
1002  // Don't to this for less than 4 instructions. We want to be sure that
1003  // splitting actually reduces the instruction count per interval.
1004  if (usingInstrs_.size() < 4)
1005    return 0;
1006  return usingBlocks_.begin()->first;
1007}
1008
1009/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1010void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1011  SmallVector<SlotIndex, 32> Uses;
1012  Uses.reserve(sa_.usingInstrs_.size());
1013  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1014       E = sa_.usingInstrs_.end(); I != E; ++I)
1015    if ((*I)->getParent() == MBB)
1016      Uses.push_back(lis_.getInstructionIndex(*I));
1017  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1018               << Uses.size() << " instructions.\n");
1019  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1020  array_pod_sort(Uses.begin(), Uses.end());
1021
1022  // Simple algorithm: Find the largest gap between uses as determined by slot
1023  // indices. Create new intervals for instructions before the gap and after the
1024  // gap.
1025  unsigned bestPos = 0;
1026  int bestGap = 0;
1027  DEBUG(dbgs() << "    dist (" << Uses[0]);
1028  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1029    int g = Uses[i-1].distance(Uses[i]);
1030    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1031    if (g > bestGap)
1032      bestPos = i, bestGap = g;
1033  }
1034  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1035
1036  // bestPos points to the first use after the best gap.
1037  assert(bestPos > 0 && "Invalid gap");
1038
1039  // FIXME: Don't create intervals for low densities.
1040
1041  // First interval before the gap. Don't create single-instr intervals.
1042  if (bestPos > 1) {
1043    openIntv();
1044    enterIntvBefore(Uses.front());
1045    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1046    leaveIntvAfter(Uses[bestPos-1]);
1047    closeIntv();
1048  }
1049
1050  // Second interval after the gap.
1051  if (bestPos < Uses.size()-1) {
1052    openIntv();
1053    enterIntvBefore(Uses[bestPos]);
1054    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1055    leaveIntvAfter(Uses.back());
1056    closeIntv();
1057  }
1058
1059  finish();
1060}
1061