SplitKit.cpp revision 2bfb32468404eb68dcc1b69a34336794b20e3f33
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "splitter" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/CodeGen/CalcSpillWeights.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineInstrBuilder.h" 22#include "llvm/CodeGen/MachineLoopInfo.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/Support/CommandLine.h" 25#include "llvm/Support/Debug.h" 26#include "llvm/Support/raw_ostream.h" 27#include "llvm/Target/TargetInstrInfo.h" 28#include "llvm/Target/TargetMachine.h" 29 30using namespace llvm; 31 32static cl::opt<bool> 33AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36//===----------------------------------------------------------------------===// 37// Split Analysis 38//===----------------------------------------------------------------------===// 39 40SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : mf_(mf), 44 lis_(lis), 45 loops_(mli), 46 tii_(*mf.getTarget().getInstrInfo()), 47 curli_(0) {} 48 49void SplitAnalysis::clear() { 50 usingInstrs_.clear(); 51 usingBlocks_.clear(); 52 usingLoops_.clear(); 53 curli_ = 0; 54} 55 56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 57 MachineBasicBlock *T, *F; 58 SmallVector<MachineOperand, 4> Cond; 59 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 60} 61 62/// analyzeUses - Count instructions, basic blocks, and loops using curli. 63void SplitAnalysis::analyzeUses() { 64 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 65 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 66 MachineInstr *MI = I.skipInstruction();) { 67 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 68 continue; 69 MachineBasicBlock *MBB = MI->getParent(); 70 if (usingBlocks_[MBB]++) 71 continue; 72 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 73 Loop = Loop->getParentLoop()) 74 usingLoops_[Loop]++; 75 } 76 DEBUG(dbgs() << " counted " 77 << usingInstrs_.size() << " instrs, " 78 << usingBlocks_.size() << " blocks, " 79 << usingLoops_.size() << " loops.\n"); 80} 81 82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 83 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 84 unsigned count = usingBlocks_.lookup(*I); 85 OS << " BB#" << (*I)->getNumber(); 86 if (count) 87 OS << '(' << count << ')'; 88 } 89} 90 91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 92// predecessor blocks, and exit blocks. 93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 94 Blocks.clear(); 95 96 // Blocks in the loop. 97 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 98 99 // Predecessor blocks. 100 const MachineBasicBlock *Header = Loop->getHeader(); 101 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 102 E = Header->pred_end(); I != E; ++I) 103 if (!Blocks.Loop.count(*I)) 104 Blocks.Preds.insert(*I); 105 106 // Exit blocks. 107 for (MachineLoop::block_iterator I = Loop->block_begin(), 108 E = Loop->block_end(); I != E; ++I) { 109 const MachineBasicBlock *MBB = *I; 110 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 111 SE = MBB->succ_end(); SI != SE; ++SI) 112 if (!Blocks.Loop.count(*SI)) 113 Blocks.Exits.insert(*SI); 114 } 115} 116 117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 118 OS << "Loop:"; 119 print(B.Loop, OS); 120 OS << ", preds:"; 121 print(B.Preds, OS); 122 OS << ", exits:"; 123 print(B.Exits, OS); 124} 125 126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 127/// and around the Loop. 128SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 130 LoopPeripheralUse use = ContainedInLoop; 131 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 132 I != E; ++I) { 133 const MachineBasicBlock *MBB = I->first; 134 // Is this a peripheral block? 135 if (use < MultiPeripheral && 136 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 137 if (I->second > 1) use = MultiPeripheral; 138 else use = SinglePeripheral; 139 continue; 140 } 141 // Is it a loop block? 142 if (Blocks.Loop.count(MBB)) 143 continue; 144 // It must be an unrelated block. 145 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 146 return OutsideLoop; 147 } 148 return use; 149} 150 151/// getCriticalExits - It may be necessary to partially break critical edges 152/// leaving the loop if an exit block has predecessors from outside the loop 153/// periphery. 154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 155 BlockPtrSet &CriticalExits) { 156 CriticalExits.clear(); 157 158 // A critical exit block has curli line-in, and has a predecessor that is not 159 // in the loop nor a loop predecessor. For such an exit block, the edges 160 // carrying the new variable must be moved to a new pre-exit block. 161 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 162 I != E; ++I) { 163 const MachineBasicBlock *Exit = *I; 164 // A single-predecessor exit block is definitely not a critical edge. 165 if (Exit->pred_size() == 1) 166 continue; 167 // This exit may not have curli live in at all. No need to split. 168 if (!lis_.isLiveInToMBB(*curli_, Exit)) 169 continue; 170 // Does this exit block have a predecessor that is not a loop block or loop 171 // predecessor? 172 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 173 PE = Exit->pred_end(); PI != PE; ++PI) { 174 const MachineBasicBlock *Pred = *PI; 175 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 176 continue; 177 // This is a critical exit block, and we need to split the exit edge. 178 CriticalExits.insert(Exit); 179 break; 180 } 181 } 182} 183 184/// canSplitCriticalExits - Return true if it is possible to insert new exit 185/// blocks before the blocks in CriticalExits. 186bool 187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 188 BlockPtrSet &CriticalExits) { 189 // If we don't allow critical edge splitting, require no critical exits. 190 if (!AllowSplit) 191 return CriticalExits.empty(); 192 193 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Succ = *I; 196 // We want to insert a new pre-exit MBB before Succ, and change all the 197 // in-loop blocks to branch to the pre-exit instead of Succ. 198 // Check that all the in-loop predecessors can be changed. 199 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 200 PE = Succ->pred_end(); PI != PE; ++PI) { 201 const MachineBasicBlock *Pred = *PI; 202 // The external predecessors won't be altered. 203 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 204 continue; 205 if (!canAnalyzeBranch(Pred)) 206 return false; 207 } 208 209 // If Succ's layout predecessor falls through, that too must be analyzable. 210 // We need to insert the pre-exit block in the gap. 211 MachineFunction::const_iterator MFI = Succ; 212 if (MFI == mf_.begin()) 213 continue; 214 if (!canAnalyzeBranch(--MFI)) 215 return false; 216 } 217 // No problems found. 218 return true; 219} 220 221void SplitAnalysis::analyze(const LiveInterval *li) { 222 clear(); 223 curli_ = li; 224 analyzeUses(); 225} 226 227const MachineLoop *SplitAnalysis::getBestSplitLoop() { 228 assert(curli_ && "Call analyze() before getBestSplitLoop"); 229 if (usingLoops_.empty()) 230 return 0; 231 232 LoopPtrSet Loops; 233 LoopBlocks Blocks; 234 BlockPtrSet CriticalExits; 235 236 // We split around loops where curli is used outside the periphery. 237 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 238 E = usingLoops_.end(); I != E; ++I) { 239 const MachineLoop *Loop = I->first; 240 getLoopBlocks(Loop, Blocks); 241 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 242 243 switch(analyzeLoopPeripheralUse(Blocks)) { 244 case OutsideLoop: 245 break; 246 case MultiPeripheral: 247 // FIXME: We could split a live range with multiple uses in a peripheral 248 // block and still make progress. However, it is possible that splitting 249 // another live range will insert copies into a peripheral block, and 250 // there is a small chance we can enter an infinity loop, inserting copies 251 // forever. 252 // For safety, stick to splitting live ranges with uses outside the 253 // periphery. 254 DEBUG(dbgs() << ": multiple peripheral uses\n"); 255 break; 256 case ContainedInLoop: 257 DEBUG(dbgs() << ": fully contained\n"); 258 continue; 259 case SinglePeripheral: 260 DEBUG(dbgs() << ": single peripheral use\n"); 261 continue; 262 } 263 // Will it be possible to split around this loop? 264 getCriticalExits(Blocks, CriticalExits); 265 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 266 if (!canSplitCriticalExits(Blocks, CriticalExits)) 267 continue; 268 // This is a possible split. 269 Loops.insert(Loop); 270 } 271 272 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 273 << " candidate loops.\n"); 274 275 if (Loops.empty()) 276 return 0; 277 278 // Pick the earliest loop. 279 // FIXME: Are there other heuristics to consider? 280 const MachineLoop *Best = 0; 281 SlotIndex BestIdx; 282 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 283 ++I) { 284 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 285 if (!Best || Idx < BestIdx) 286 Best = *I, BestIdx = Idx; 287 } 288 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 289 return Best; 290} 291 292//===----------------------------------------------------------------------===// 293// LiveIntervalMap 294//===----------------------------------------------------------------------===// 295 296// Work around the fact that the std::pair constructors are broken for pointer 297// pairs in some implementations. makeVV(x, 0) works. 298static inline std::pair<const VNInfo*, VNInfo*> 299makeVV(const VNInfo *a, VNInfo *b) { 300 return std::make_pair(a, b); 301} 302 303void LiveIntervalMap::reset(LiveInterval *li) { 304 li_ = li; 305 valueMap_.clear(); 306} 307 308bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 309 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 310 return i != valueMap_.end() && i->second == 0; 311} 312 313// defValue - Introduce a li_ def for ParentVNI that could be later than 314// ParentVNI->def. 315VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 316 assert(li_ && "call reset first"); 317 assert(ParentVNI && "Mapping NULL value"); 318 assert(Idx.isValid() && "Invalid SlotIndex"); 319 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 320 321 // Create a new value. 322 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 323 324 // Use insert for lookup, so we can add missing values with a second lookup. 325 std::pair<ValueMap::iterator,bool> InsP = 326 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 327 328 // This is now a complex def. Mark with a NULL in valueMap. 329 if (!InsP.second) 330 InsP.first->second = 0; 331 332 return VNI; 333} 334 335 336// mapValue - Find the mapped value for ParentVNI at Idx. 337// Potentially create phi-def values. 338VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 339 bool *simple) { 340 assert(li_ && "call reset first"); 341 assert(ParentVNI && "Mapping NULL value"); 342 assert(Idx.isValid() && "Invalid SlotIndex"); 343 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 344 345 // Use insert for lookup, so we can add missing values with a second lookup. 346 std::pair<ValueMap::iterator,bool> InsP = 347 valueMap_.insert(makeVV(ParentVNI, 0)); 348 349 // This was an unknown value. Create a simple mapping. 350 if (InsP.second) { 351 if (simple) *simple = true; 352 return InsP.first->second = li_->createValueCopy(ParentVNI, 353 lis_.getVNInfoAllocator()); 354 } 355 356 // This was a simple mapped value. 357 if (InsP.first->second) { 358 if (simple) *simple = true; 359 return InsP.first->second; 360 } 361 362 // This is a complex mapped value. There may be multiple defs, and we may need 363 // to create phi-defs. 364 if (simple) *simple = false; 365 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 366 assert(IdxMBB && "No MBB at Idx"); 367 368 // Is there a def in the same MBB we can extend? 369 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 370 return VNI; 371 372 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 373 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 374 // Perform a depth-first search for predecessor blocks where we know the 375 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 376 377 // Track MBBs where we have created or learned the dominating value. 378 // This may change during the DFS as we create new phi-defs. 379 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 380 MBBValueMap DomValue; 381 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 382 BlockPtrSet Visited; 383 384 // Iterate over IdxMBB predecessors in a depth-first order. 385 // Skip begin() since that is always IdxMBB. 386 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 387 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 388 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 389 MachineBasicBlock *MBB = *IDFI; 390 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 391 392 // We are operating on the restricted CFG where ParentVNI is live. 393 if (parentli_.getVNInfoAt(End) != ParentVNI) { 394 IDFI.skipChildren(); 395 continue; 396 } 397 398 // Do we have a dominating value in this block? 399 VNInfo *VNI = extendTo(MBB, End); 400 if (!VNI) { 401 ++IDFI; 402 continue; 403 } 404 405 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 406 Visited.erase(MBB); 407 408 // Track the path back to IdxMBB, creating phi-defs 409 // as needed along the way. 410 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 411 // Start from MBB's immediate successor. End at IdxMBB. 412 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 413 std::pair<MBBValueMap::iterator, bool> InsP = 414 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 415 416 // This is the first time we backtrack to Succ. 417 if (InsP.second) 418 continue; 419 420 // We reached Succ again with the same VNI. Nothing is going to change. 421 VNInfo *OVNI = InsP.first->second; 422 if (OVNI == VNI) 423 break; 424 425 // Succ already has a phi-def. No need to continue. 426 SlotIndex Start = lis_.getMBBStartIdx(Succ); 427 if (OVNI->def == Start) 428 break; 429 430 // We have a collision between the old and new VNI at Succ. That means 431 // neither dominates and we need a new phi-def. 432 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 433 VNI->setIsPHIDef(true); 434 InsP.first->second = VNI; 435 436 // Replace OVNI with VNI in the remaining path. 437 for (; PI > 1 ; --PI) { 438 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 439 if (I == DomValue.end() || I->second != OVNI) 440 break; 441 I->second = VNI; 442 } 443 } 444 445 // No need to search the children, we found a dominating value. 446 IDFI.skipChildren(); 447 } 448 449 // The search should at least find a dominating value for IdxMBB. 450 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 451 452 // Since we went through the trouble of a full DFS visiting all reaching defs, 453 // the values in DomValue are now accurate. No more phi-defs are needed for 454 // these blocks, so we can color the live ranges. 455 // This makes the next mapValue call much faster. 456 VNInfo *IdxVNI = 0; 457 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 458 ++I) { 459 MachineBasicBlock *MBB = I->first; 460 VNInfo *VNI = I->second; 461 SlotIndex Start = lis_.getMBBStartIdx(MBB); 462 if (MBB == IdxMBB) { 463 // Don't add full liveness to IdxMBB, stop at Idx. 464 if (Start != Idx) 465 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 466 // The caller had better add some liveness to IdxVNI, or it leaks. 467 IdxVNI = VNI; 468 } else 469 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 470 } 471 472 assert(IdxVNI && "Didn't find value for Idx"); 473 return IdxVNI; 474} 475 476// extendTo - Find the last li_ value defined in MBB at or before Idx. The 477// parentli_ is assumed to be live at Idx. Extend the live range to Idx. 478// Return the found VNInfo, or NULL. 479VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 480 assert(li_ && "call reset first"); 481 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 482 if (I == li_->begin()) 483 return 0; 484 --I; 485 if (I->end <= lis_.getMBBStartIdx(MBB)) 486 return 0; 487 if (I->end <= Idx) 488 I->end = Idx.getNextSlot(); 489 return I->valno; 490} 491 492// addSimpleRange - Add a simple range from parentli_ to li_. 493// ParentVNI must be live in the [Start;End) interval. 494void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 495 const VNInfo *ParentVNI) { 496 assert(li_ && "call reset first"); 497 bool simple; 498 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 499 // A simple mapping is easy. 500 if (simple) { 501 li_->addRange(LiveRange(Start, End, VNI)); 502 return; 503 } 504 505 // ParentVNI is a complex value. We must map per MBB. 506 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 507 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 508 509 if (MBB == MBBE) { 510 li_->addRange(LiveRange(Start, End, VNI)); 511 return; 512 } 513 514 // First block. 515 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 516 517 // Run sequence of full blocks. 518 for (++MBB; MBB != MBBE; ++MBB) { 519 Start = lis_.getMBBStartIdx(MBB); 520 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 521 mapValue(ParentVNI, Start))); 522 } 523 524 // Final block. 525 Start = lis_.getMBBStartIdx(MBB); 526 if (Start != End) 527 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 528} 529 530/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 531/// All needed values whose def is not inside [Start;End) must be defined 532/// beforehand so mapValue will work. 533void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 534 assert(li_ && "call reset first"); 535 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 536 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 537 538 // Check if --I begins before Start and overlaps. 539 if (I != B) { 540 --I; 541 if (I->end > Start) 542 addSimpleRange(Start, std::min(End, I->end), I->valno); 543 ++I; 544 } 545 546 // The remaining ranges begin after Start. 547 for (;I != E && I->start < End; ++I) 548 addSimpleRange(I->start, std::min(End, I->end), I->valno); 549} 550 551VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 552 const VNInfo *ParentVNI, 553 MachineBasicBlock &MBB, 554 MachineBasicBlock::iterator I) { 555 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 556 get(TargetOpcode::COPY); 557 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 558 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 559 VNInfo *VNI = defValue(ParentVNI, DefIdx); 560 VNI->setCopy(MI); 561 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 562 return VNI; 563} 564 565//===----------------------------------------------------------------------===// 566// Split Editor 567//===----------------------------------------------------------------------===// 568 569/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 570SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 571 LiveRangeEdit &edit) 572 : sa_(sa), lis_(lis), vrm_(vrm), 573 mri_(vrm.getMachineFunction().getRegInfo()), 574 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 575 edit_(edit), 576 dupli_(lis_, edit.getParent()), 577 openli_(lis_, edit.getParent()) 578{ 579} 580 581bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 582 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 583 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 584 return true; 585 return false; 586} 587 588/// Create a new virtual register and live interval. 589void SplitEditor::openIntv() { 590 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 591 592 if (!dupli_.getLI()) 593 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 594 595 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 596} 597 598/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 599/// not live before Idx, a COPY is not inserted. 600void SplitEditor::enterIntvBefore(SlotIndex Idx) { 601 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 602 DEBUG(dbgs() << " enterIntvBefore " << Idx); 603 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 604 if (!ParentVNI) { 605 DEBUG(dbgs() << ": not live\n"); 606 return; 607 } 608 DEBUG(dbgs() << ": valno " << ParentVNI->id); 609 truncatedValues.insert(ParentVNI); 610 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 611 assert(MI && "enterIntvBefore called with invalid index"); 612 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 613 *MI->getParent(), MI); 614 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 615 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 616} 617 618/// enterIntvAtEnd - Enter openli at the end of MBB. 619void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 620 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 621 SlotIndex End = lis_.getMBBEndIdx(&MBB); 622 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 623 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 624 if (!ParentVNI) { 625 DEBUG(dbgs() << ": not live\n"); 626 return; 627 } 628 DEBUG(dbgs() << ": valno " << ParentVNI->id); 629 truncatedValues.insert(ParentVNI); 630 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 631 MBB, MBB.getFirstTerminator()); 632 // Make sure openli is live out of MBB. 633 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 634 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 635} 636 637/// useIntv - indicate that all instructions in MBB should use openli. 638void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 639 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 640} 641 642void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 643 assert(openli_.getLI() && "openIntv not called before useIntv"); 644 openli_.addRange(Start, End); 645 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 646 << *openli_.getLI() << '\n'); 647} 648 649/// leaveIntvAfter - Leave openli after the instruction at Idx. 650void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 651 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 652 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 653 654 // The interval must be live beyond the instruction at Idx. 655 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 656 if (!ParentVNI) { 657 DEBUG(dbgs() << ": not live\n"); 658 return; 659 } 660 DEBUG(dbgs() << ": valno " << ParentVNI->id); 661 662 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 663 MachineBasicBlock *MBB = MII->getParent(); 664 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 665 llvm::next(MII)); 666 667 // Finally we must make sure that openli is properly extended from Idx to the 668 // new copy. 669 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 670 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 671} 672 673/// leaveIntvAtTop - Leave the interval at the top of MBB. 674/// Currently, only one value can leave the interval. 675void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 676 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 677 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 678 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 679 680 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 681 if (!ParentVNI) { 682 DEBUG(dbgs() << ": not live\n"); 683 return; 684 } 685 686 // We are going to insert a back copy, so we must have a dupli_. 687 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 688 MBB, MBB.begin()); 689 690 // Finally we must make sure that openli is properly extended from Start to 691 // the new copy. 692 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 693 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 694} 695 696/// closeIntv - Indicate that we are done editing the currently open 697/// LiveInterval, and ranges can be trimmed. 698void SplitEditor::closeIntv() { 699 assert(openli_.getLI() && "openIntv not called before closeIntv"); 700 701 DEBUG(dbgs() << " closeIntv cleaning up\n"); 702 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 703 openli_.reset(0); 704} 705 706/// rewrite - Rewrite all uses of reg to use the new registers. 707void SplitEditor::rewrite(unsigned reg) { 708 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 709 RE = mri_.reg_end(); RI != RE;) { 710 MachineOperand &MO = RI.getOperand(); 711 MachineInstr *MI = MO.getParent(); 712 ++RI; 713 if (MI->isDebugValue()) { 714 DEBUG(dbgs() << "Zapping " << *MI); 715 // FIXME: We can do much better with debug values. 716 MO.setReg(0); 717 continue; 718 } 719 SlotIndex Idx = lis_.getInstructionIndex(MI); 720 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 721 LiveInterval *LI = 0; 722 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 723 ++I) { 724 LiveInterval *testli = *I; 725 if (testli->liveAt(Idx)) { 726 LI = testli; 727 break; 728 } 729 } 730 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 731 assert(LI && "No register was live at use"); 732 MO.setReg(LI->reg); 733 DEBUG(dbgs() << '\t' << *MI); 734 } 735} 736 737void 738SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 739 // Build vector of iterator pairs from the intervals. 740 typedef std::pair<LiveInterval::const_iterator, 741 LiveInterval::const_iterator> IIPair; 742 SmallVector<IIPair, 8> Iters; 743 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 744 ++LI) { 745 if (*LI == dupli_.getLI()) 746 continue; 747 LiveInterval::const_iterator I = (*LI)->find(Start); 748 LiveInterval::const_iterator E = (*LI)->end(); 749 if (I != E) 750 Iters.push_back(std::make_pair(I, E)); 751 } 752 753 SlotIndex sidx = Start; 754 // Break [Start;End) into segments that don't overlap any intervals. 755 for (;;) { 756 SlotIndex next = sidx, eidx = End; 757 // Find overlapping intervals. 758 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 759 LiveInterval::const_iterator I = Iters[i].first; 760 // Interval I is overlapping [sidx;eidx). Trim sidx. 761 if (I->start <= sidx) { 762 sidx = I->end; 763 // Move to the next run, remove iters when all are consumed. 764 I = ++Iters[i].first; 765 if (I == Iters[i].second) { 766 Iters.erase(Iters.begin() + i); 767 --i; 768 continue; 769 } 770 } 771 // Trim eidx too if needed. 772 if (I->start >= eidx) 773 continue; 774 eidx = I->start; 775 next = I->end; 776 } 777 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 778 if (sidx < eidx) 779 dupli_.addSimpleRange(sidx, eidx, VNI); 780 // If the interval end was truncated, we can try again from next. 781 if (next <= sidx) 782 break; 783 sidx = next; 784 } 785} 786 787void SplitEditor::computeRemainder() { 788 // First we need to fill in the live ranges in dupli. 789 // If values were redefined, we need a full recoloring with SSA update. 790 // If values were truncated, we only need to truncate the ranges. 791 // If values were partially rematted, we should shrink to uses. 792 // If values were fully rematted, they should be omitted. 793 // FIXME: If a single value is redefined, just move the def and truncate. 794 LiveInterval &parent = edit_.getParent(); 795 796 // Values that are fully contained in the split intervals. 797 SmallPtrSet<const VNInfo*, 8> deadValues; 798 // Map all curli values that should have live defs in dupli. 799 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 800 E = parent.vni_end(); I != E; ++I) { 801 const VNInfo *VNI = *I; 802 // Original def is contained in the split intervals. 803 if (intervalsLiveAt(VNI->def)) { 804 // Did this value escape? 805 if (dupli_.isMapped(VNI)) 806 truncatedValues.insert(VNI); 807 else 808 deadValues.insert(VNI); 809 continue; 810 } 811 // Add minimal live range at the definition. 812 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 813 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 814 } 815 816 // Add all ranges to dupli. 817 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 818 I != E; ++I) { 819 const LiveRange &LR = *I; 820 if (truncatedValues.count(LR.valno)) { 821 // recolor after removing intervals_. 822 addTruncSimpleRange(LR.start, LR.end, LR.valno); 823 } else if (!deadValues.count(LR.valno)) { 824 // recolor without truncation. 825 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 826 } 827 } 828} 829 830void SplitEditor::finish() { 831 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 832 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 833 834 // Complete dupli liveness. 835 computeRemainder(); 836 837 // Get rid of unused values and set phi-kill flags. 838 dupli_.getLI()->RenumberValues(lis_); 839 840 // Now check if dupli was separated into multiple connected components. 841 ConnectedVNInfoEqClasses ConEQ(lis_); 842 if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) { 843 DEBUG(dbgs() << " Remainder has " << NumComp << " connected components: " 844 << *dupli_.getLI() << '\n'); 845 // Did the remainder break up? Create intervals for all the components. 846 if (NumComp > 1) { 847 SmallVector<LiveInterval*, 8> dups; 848 dups.push_back(dupli_.getLI()); 849 for (unsigned i = 1; i != NumComp; ++i) 850 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 851 ConEQ.Distribute(&dups[0]); 852 // Rewrite uses to the new regs. 853 rewrite(dupli_.getLI()->reg); 854 } 855 } 856 857 // Rewrite instructions. 858 rewrite(edit_.getReg()); 859 860 // Calculate spill weight and allocation hints for new intervals. 861 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 862 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 863 LiveInterval &li = **I; 864 vrai.CalculateRegClass(li.reg); 865 vrai.CalculateWeightAndHint(li); 866 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 867 << ":" << li << '\n'); 868 } 869} 870 871 872//===----------------------------------------------------------------------===// 873// Loop Splitting 874//===----------------------------------------------------------------------===// 875 876void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 877 SplitAnalysis::LoopBlocks Blocks; 878 sa_.getLoopBlocks(Loop, Blocks); 879 880 DEBUG({ 881 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 882 }); 883 884 // Break critical edges as needed. 885 SplitAnalysis::BlockPtrSet CriticalExits; 886 sa_.getCriticalExits(Blocks, CriticalExits); 887 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 888 889 // Create new live interval for the loop. 890 openIntv(); 891 892 // Insert copies in the predecessors. 893 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 894 E = Blocks.Preds.end(); I != E; ++I) { 895 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 896 enterIntvAtEnd(MBB); 897 } 898 899 // Switch all loop blocks. 900 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 901 E = Blocks.Loop.end(); I != E; ++I) 902 useIntv(**I); 903 904 // Insert back copies in the exit blocks. 905 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 906 E = Blocks.Exits.end(); I != E; ++I) { 907 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 908 leaveIntvAtTop(MBB); 909 } 910 911 // Done. 912 closeIntv(); 913 finish(); 914} 915 916 917//===----------------------------------------------------------------------===// 918// Single Block Splitting 919//===----------------------------------------------------------------------===// 920 921/// getMultiUseBlocks - if curli has more than one use in a basic block, it 922/// may be an advantage to split curli for the duration of the block. 923bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 924 // If curli is local to one block, there is no point to splitting it. 925 if (usingBlocks_.size() <= 1) 926 return false; 927 // Add blocks with multiple uses. 928 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 929 I != E; ++I) 930 switch (I->second) { 931 case 0: 932 case 1: 933 continue; 934 case 2: { 935 // When there are only two uses and curli is both live in and live out, 936 // we don't really win anything by isolating the block since we would be 937 // inserting two copies. 938 // The remaing register would still have two uses in the block. (Unless it 939 // separates into disconnected components). 940 if (lis_.isLiveInToMBB(*curli_, I->first) && 941 lis_.isLiveOutOfMBB(*curli_, I->first)) 942 continue; 943 } // Fall through. 944 default: 945 Blocks.insert(I->first); 946 } 947 return !Blocks.empty(); 948} 949 950/// splitSingleBlocks - Split curli into a separate live interval inside each 951/// basic block in Blocks. 952void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 953 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 954 // Determine the first and last instruction using curli in each block. 955 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 956 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 957 IndexPairMap MBBRange; 958 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 959 E = sa_.usingInstrs_.end(); I != E; ++I) { 960 const MachineBasicBlock *MBB = (*I)->getParent(); 961 if (!Blocks.count(MBB)) 962 continue; 963 SlotIndex Idx = lis_.getInstructionIndex(*I); 964 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 965 IndexPair &IP = MBBRange[MBB]; 966 if (!IP.first.isValid() || Idx < IP.first) 967 IP.first = Idx; 968 if (!IP.second.isValid() || Idx > IP.second) 969 IP.second = Idx; 970 } 971 972 // Create a new interval for each block. 973 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 974 E = Blocks.end(); I != E; ++I) { 975 IndexPair &IP = MBBRange[*I]; 976 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 977 << IP.first << ';' << IP.second << ")\n"); 978 assert(IP.first.isValid() && IP.second.isValid()); 979 980 openIntv(); 981 enterIntvBefore(IP.first); 982 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 983 leaveIntvAfter(IP.second); 984 closeIntv(); 985 } 986 finish(); 987} 988 989 990//===----------------------------------------------------------------------===// 991// Sub Block Splitting 992//===----------------------------------------------------------------------===// 993 994/// getBlockForInsideSplit - If curli is contained inside a single basic block, 995/// and it wou pay to subdivide the interval inside that block, return it. 996/// Otherwise return NULL. The returned block can be passed to 997/// SplitEditor::splitInsideBlock. 998const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 999 // The interval must be exclusive to one block. 1000 if (usingBlocks_.size() != 1) 1001 return 0; 1002 // Don't to this for less than 4 instructions. We want to be sure that 1003 // splitting actually reduces the instruction count per interval. 1004 if (usingInstrs_.size() < 4) 1005 return 0; 1006 return usingBlocks_.begin()->first; 1007} 1008 1009/// splitInsideBlock - Split curli into multiple intervals inside MBB. 1010void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1011 SmallVector<SlotIndex, 32> Uses; 1012 Uses.reserve(sa_.usingInstrs_.size()); 1013 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1014 E = sa_.usingInstrs_.end(); I != E; ++I) 1015 if ((*I)->getParent() == MBB) 1016 Uses.push_back(lis_.getInstructionIndex(*I)); 1017 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1018 << Uses.size() << " instructions.\n"); 1019 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1020 array_pod_sort(Uses.begin(), Uses.end()); 1021 1022 // Simple algorithm: Find the largest gap between uses as determined by slot 1023 // indices. Create new intervals for instructions before the gap and after the 1024 // gap. 1025 unsigned bestPos = 0; 1026 int bestGap = 0; 1027 DEBUG(dbgs() << " dist (" << Uses[0]); 1028 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1029 int g = Uses[i-1].distance(Uses[i]); 1030 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1031 if (g > bestGap) 1032 bestPos = i, bestGap = g; 1033 } 1034 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1035 1036 // bestPos points to the first use after the best gap. 1037 assert(bestPos > 0 && "Invalid gap"); 1038 1039 // FIXME: Don't create intervals for low densities. 1040 1041 // First interval before the gap. Don't create single-instr intervals. 1042 if (bestPos > 1) { 1043 openIntv(); 1044 enterIntvBefore(Uses.front()); 1045 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1046 leaveIntvAfter(Uses[bestPos-1]); 1047 closeIntv(); 1048 } 1049 1050 // Second interval after the gap. 1051 if (bestPos < Uses.size()-1) { 1052 openIntv(); 1053 enterIntvBefore(Uses[bestPos]); 1054 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1055 leaveIntvAfter(Uses.back()); 1056 closeIntv(); 1057 } 1058 1059 finish(); 1060} 1061