SplitKit.cpp revision 2c1442e1b2ea874a8766025e2ccff96e87879c2b
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "splitter"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : mf_(mf),
44    lis_(lis),
45    loops_(mli),
46    tii_(*mf.getTarget().getInstrInfo()),
47    curli_(0) {}
48
49void SplitAnalysis::clear() {
50  usingInstrs_.clear();
51  usingBlocks_.clear();
52  usingLoops_.clear();
53  curli_ = 0;
54}
55
56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57  MachineBasicBlock *T, *F;
58  SmallVector<MachineOperand, 4> Cond;
59  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60}
61
62/// analyzeUses - Count instructions, basic blocks, and loops using curli.
63void SplitAnalysis::analyzeUses() {
64  const MachineRegisterInfo &MRI = mf_.getRegInfo();
65  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66       MachineInstr *MI = I.skipInstruction();) {
67    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68      continue;
69    MachineBasicBlock *MBB = MI->getParent();
70    if (usingBlocks_[MBB]++)
71      continue;
72    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
73         Loop = Loop->getParentLoop())
74      usingLoops_[Loop]++;
75  }
76  DEBUG(dbgs() << "  counted "
77               << usingInstrs_.size() << " instrs, "
78               << usingBlocks_.size() << " blocks, "
79               << usingLoops_.size()  << " loops.\n");
80}
81
82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
83  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
84    unsigned count = usingBlocks_.lookup(*I);
85    OS << " BB#" << (*I)->getNumber();
86    if (count)
87      OS << '(' << count << ')';
88  }
89}
90
91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
92// predecessor blocks, and exit blocks.
93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
94  Blocks.clear();
95
96  // Blocks in the loop.
97  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
98
99  // Predecessor blocks.
100  const MachineBasicBlock *Header = Loop->getHeader();
101  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
102       E = Header->pred_end(); I != E; ++I)
103    if (!Blocks.Loop.count(*I))
104      Blocks.Preds.insert(*I);
105
106  // Exit blocks.
107  for (MachineLoop::block_iterator I = Loop->block_begin(),
108       E = Loop->block_end(); I != E; ++I) {
109    const MachineBasicBlock *MBB = *I;
110    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
111       SE = MBB->succ_end(); SI != SE; ++SI)
112      if (!Blocks.Loop.count(*SI))
113        Blocks.Exits.insert(*SI);
114  }
115}
116
117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
118  OS << "Loop:";
119  print(B.Loop, OS);
120  OS << ", preds:";
121  print(B.Preds, OS);
122  OS << ", exits:";
123  print(B.Exits, OS);
124}
125
126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
127/// and around the Loop.
128SplitAnalysis::LoopPeripheralUse SplitAnalysis::
129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
130  LoopPeripheralUse use = ContainedInLoop;
131  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
132       I != E; ++I) {
133    const MachineBasicBlock *MBB = I->first;
134    // Is this a peripheral block?
135    if (use < MultiPeripheral &&
136        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
137      if (I->second > 1) use = MultiPeripheral;
138      else               use = SinglePeripheral;
139      continue;
140    }
141    // Is it a loop block?
142    if (Blocks.Loop.count(MBB))
143      continue;
144    // It must be an unrelated block.
145    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
146    return OutsideLoop;
147  }
148  return use;
149}
150
151/// getCriticalExits - It may be necessary to partially break critical edges
152/// leaving the loop if an exit block has predecessors from outside the loop
153/// periphery.
154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
155                                     BlockPtrSet &CriticalExits) {
156  CriticalExits.clear();
157
158  // A critical exit block has curli line-in, and has a predecessor that is not
159  // in the loop nor a loop predecessor. For such an exit block, the edges
160  // carrying the new variable must be moved to a new pre-exit block.
161  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
162       I != E; ++I) {
163    const MachineBasicBlock *Exit = *I;
164    // A single-predecessor exit block is definitely not a critical edge.
165    if (Exit->pred_size() == 1)
166      continue;
167    // This exit may not have curli live in at all. No need to split.
168    if (!lis_.isLiveInToMBB(*curli_, Exit))
169      continue;
170    // Does this exit block have a predecessor that is not a loop block or loop
171    // predecessor?
172    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
173         PE = Exit->pred_end(); PI != PE; ++PI) {
174      const MachineBasicBlock *Pred = *PI;
175      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
176        continue;
177      // This is a critical exit block, and we need to split the exit edge.
178      CriticalExits.insert(Exit);
179      break;
180    }
181  }
182}
183
184/// canSplitCriticalExits - Return true if it is possible to insert new exit
185/// blocks before the blocks in CriticalExits.
186bool
187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
188                                     BlockPtrSet &CriticalExits) {
189  // If we don't allow critical edge splitting, require no critical exits.
190  if (!AllowSplit)
191    return CriticalExits.empty();
192
193  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
194       I != E; ++I) {
195    const MachineBasicBlock *Succ = *I;
196    // We want to insert a new pre-exit MBB before Succ, and change all the
197    // in-loop blocks to branch to the pre-exit instead of Succ.
198    // Check that all the in-loop predecessors can be changed.
199    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
200         PE = Succ->pred_end(); PI != PE; ++PI) {
201      const MachineBasicBlock *Pred = *PI;
202      // The external predecessors won't be altered.
203      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
204        continue;
205      if (!canAnalyzeBranch(Pred))
206        return false;
207    }
208
209    // If Succ's layout predecessor falls through, that too must be analyzable.
210    // We need to insert the pre-exit block in the gap.
211    MachineFunction::const_iterator MFI = Succ;
212    if (MFI == mf_.begin())
213      continue;
214    if (!canAnalyzeBranch(--MFI))
215      return false;
216  }
217  // No problems found.
218  return true;
219}
220
221void SplitAnalysis::analyze(const LiveInterval *li) {
222  clear();
223  curli_ = li;
224  analyzeUses();
225}
226
227const MachineLoop *SplitAnalysis::getBestSplitLoop() {
228  assert(curli_ && "Call analyze() before getBestSplitLoop");
229  if (usingLoops_.empty())
230    return 0;
231
232  LoopPtrSet Loops;
233  LoopBlocks Blocks;
234  BlockPtrSet CriticalExits;
235
236  // We split around loops where curli is used outside the periphery.
237  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
238       E = usingLoops_.end(); I != E; ++I) {
239    const MachineLoop *Loop = I->first;
240    getLoopBlocks(Loop, Blocks);
241    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
242
243    switch(analyzeLoopPeripheralUse(Blocks)) {
244    case OutsideLoop:
245      break;
246    case MultiPeripheral:
247      // FIXME: We could split a live range with multiple uses in a peripheral
248      // block and still make progress. However, it is possible that splitting
249      // another live range will insert copies into a peripheral block, and
250      // there is a small chance we can enter an infinity loop, inserting copies
251      // forever.
252      // For safety, stick to splitting live ranges with uses outside the
253      // periphery.
254      DEBUG(dbgs() << ": multiple peripheral uses\n");
255      break;
256    case ContainedInLoop:
257      DEBUG(dbgs() << ": fully contained\n");
258      continue;
259    case SinglePeripheral:
260      DEBUG(dbgs() << ": single peripheral use\n");
261      continue;
262    }
263    // Will it be possible to split around this loop?
264    getCriticalExits(Blocks, CriticalExits);
265    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
266    if (!canSplitCriticalExits(Blocks, CriticalExits))
267      continue;
268    // This is a possible split.
269    Loops.insert(Loop);
270  }
271
272  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
273               << " candidate loops.\n");
274
275  if (Loops.empty())
276    return 0;
277
278  // Pick the earliest loop.
279  // FIXME: Are there other heuristics to consider?
280  const MachineLoop *Best = 0;
281  SlotIndex BestIdx;
282  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
283       ++I) {
284    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
285    if (!Best || Idx < BestIdx)
286      Best = *I, BestIdx = Idx;
287  }
288  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
289  return Best;
290}
291
292/// getMultiUseBlocks - if curli has more than one use in a basic block, it
293/// may be an advantage to split curli for the duration of the block.
294bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
295  // If curli is local to one block, there is no point to splitting it.
296  if (usingBlocks_.size() <= 1)
297    return false;
298  // Add blocks with multiple uses.
299  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
300       I != E; ++I)
301    switch (I->second) {
302    case 0:
303    case 1:
304      continue;
305    case 2: {
306      // It doesn't pay to split a 2-instr block if it redefines curli.
307      VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
308      VNInfo *VN2 =
309        curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
310      // live-in and live-out with a different value.
311      if (VN1 && VN2 && VN1 != VN2)
312        continue;
313    } // Fall through.
314    default:
315      Blocks.insert(I->first);
316    }
317  return !Blocks.empty();
318}
319
320//===----------------------------------------------------------------------===//
321//                               LiveIntervalMap
322//===----------------------------------------------------------------------===//
323
324// Work around the fact that the std::pair constructors are broken for pointer
325// pairs in some implementations. makeVV(x, 0) works.
326static inline std::pair<const VNInfo*, VNInfo*>
327makeVV(const VNInfo *a, VNInfo *b) {
328  return std::make_pair(a, b);
329}
330
331void LiveIntervalMap::reset(LiveInterval *li) {
332  li_ = li;
333  valueMap_.clear();
334}
335
336bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
337  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
338  return i != valueMap_.end() && i->second == 0;
339}
340
341// defValue - Introduce a li_ def for ParentVNI that could be later than
342// ParentVNI->def.
343VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
344  assert(li_ && "call reset first");
345  assert(ParentVNI && "Mapping  NULL value");
346  assert(Idx.isValid() && "Invalid SlotIndex");
347  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
348
349  // Create a new value.
350  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
351
352  // Use insert for lookup, so we can add missing values with a second lookup.
353  std::pair<ValueMap::iterator,bool> InsP =
354    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
355
356  // This is now a complex def. Mark with a NULL in valueMap.
357  if (!InsP.second)
358    InsP.first->second = 0;
359
360  return VNI;
361}
362
363
364// mapValue - Find the mapped value for ParentVNI at Idx.
365// Potentially create phi-def values.
366VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
367                                  bool *simple) {
368  assert(li_ && "call reset first");
369  assert(ParentVNI && "Mapping  NULL value");
370  assert(Idx.isValid() && "Invalid SlotIndex");
371  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
372
373  // Use insert for lookup, so we can add missing values with a second lookup.
374  std::pair<ValueMap::iterator,bool> InsP =
375    valueMap_.insert(makeVV(ParentVNI, 0));
376
377  // This was an unknown value. Create a simple mapping.
378  if (InsP.second) {
379    if (simple) *simple = true;
380    return InsP.first->second = li_->createValueCopy(ParentVNI,
381                                                     lis_.getVNInfoAllocator());
382  }
383
384  // This was a simple mapped value.
385  if (InsP.first->second) {
386    if (simple) *simple = true;
387    return InsP.first->second;
388  }
389
390  // This is a complex mapped value. There may be multiple defs, and we may need
391  // to create phi-defs.
392  if (simple) *simple = false;
393  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
394  assert(IdxMBB && "No MBB at Idx");
395
396  // Is there a def in the same MBB we can extend?
397  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
398    return VNI;
399
400  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
401  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
402  // Perform a depth-first search for predecessor blocks where we know the
403  // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
404
405  // Track MBBs where we have created or learned the dominating value.
406  // This may change during the DFS as we create new phi-defs.
407  typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
408  MBBValueMap DomValue;
409  typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
410  BlockPtrSet Visited;
411
412  // Iterate over IdxMBB predecessors in a depth-first order.
413  // Skip begin() since that is always IdxMBB.
414  for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
415         IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
416         IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
417    MachineBasicBlock *MBB = *IDFI;
418    SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
419
420    // We are operating on the restricted CFG where ParentVNI is live.
421    if (parentli_.getVNInfoAt(End) != ParentVNI) {
422      IDFI.skipChildren();
423      continue;
424    }
425
426    // Do we have a dominating value in this block?
427    VNInfo *VNI = extendTo(MBB, End);
428    if (!VNI) {
429      ++IDFI;
430      continue;
431    }
432
433    // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
434    Visited.erase(MBB);
435
436    // Track the path back to IdxMBB, creating phi-defs
437    // as needed along the way.
438    for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
439      // Start from MBB's immediate successor. End at IdxMBB.
440      MachineBasicBlock *Succ = IDFI.getPath(PI-1);
441      std::pair<MBBValueMap::iterator, bool> InsP =
442        DomValue.insert(MBBValueMap::value_type(Succ, VNI));
443
444      // This is the first time we backtrack to Succ.
445      if (InsP.second)
446        continue;
447
448      // We reached Succ again with the same VNI. Nothing is going to change.
449      VNInfo *OVNI = InsP.first->second;
450      if (OVNI == VNI)
451        break;
452
453      // Succ already has a phi-def. No need to continue.
454      SlotIndex Start = lis_.getMBBStartIdx(Succ);
455      if (OVNI->def == Start)
456        break;
457
458      // We have a collision between the old and new VNI at Succ. That means
459      // neither dominates and we need a new phi-def.
460      VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
461      VNI->setIsPHIDef(true);
462      InsP.first->second = VNI;
463
464      // Replace OVNI with VNI in the remaining path.
465      for (; PI > 1 ; --PI) {
466        MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
467        if (I == DomValue.end() || I->second != OVNI)
468          break;
469        I->second = VNI;
470      }
471    }
472
473    // No need to search the children, we found a dominating value.
474    IDFI.skipChildren();
475  }
476
477  // The search should at least find a dominating value for IdxMBB.
478  assert(!DomValue.empty() && "Couldn't find a reaching definition");
479
480  // Since we went through the trouble of a full DFS visiting all reaching defs,
481  // the values in DomValue are now accurate. No more phi-defs are needed for
482  // these blocks, so we can color the live ranges.
483  // This makes the next mapValue call much faster.
484  VNInfo *IdxVNI = 0;
485  for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
486       ++I) {
487     MachineBasicBlock *MBB = I->first;
488     VNInfo *VNI = I->second;
489     SlotIndex Start = lis_.getMBBStartIdx(MBB);
490     if (MBB == IdxMBB) {
491       // Don't add full liveness to IdxMBB, stop at Idx.
492       if (Start != Idx)
493         li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
494       // The caller had better add some liveness to IdxVNI, or it leaks.
495       IdxVNI = VNI;
496     } else
497      li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
498  }
499
500  assert(IdxVNI && "Didn't find value for Idx");
501  return IdxVNI;
502}
503
504// extendTo - Find the last li_ value defined in MBB at or before Idx. The
505// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
506// Return the found VNInfo, or NULL.
507VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
508  assert(li_ && "call reset first");
509  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
510  if (I == li_->begin())
511    return 0;
512  --I;
513  if (I->end <= lis_.getMBBStartIdx(MBB))
514    return 0;
515  if (I->end <= Idx)
516    I->end = Idx.getNextSlot();
517  return I->valno;
518}
519
520// addSimpleRange - Add a simple range from parentli_ to li_.
521// ParentVNI must be live in the [Start;End) interval.
522void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
523                                     const VNInfo *ParentVNI) {
524  assert(li_ && "call reset first");
525  bool simple;
526  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
527  // A simple mapping is easy.
528  if (simple) {
529    li_->addRange(LiveRange(Start, End, VNI));
530    return;
531  }
532
533  // ParentVNI is a complex value. We must map per MBB.
534  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
535  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
536
537  if (MBB == MBBE) {
538    li_->addRange(LiveRange(Start, End, VNI));
539    return;
540  }
541
542  // First block.
543  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
544
545  // Run sequence of full blocks.
546  for (++MBB; MBB != MBBE; ++MBB) {
547    Start = lis_.getMBBStartIdx(MBB);
548    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
549                            mapValue(ParentVNI, Start)));
550  }
551
552  // Final block.
553  Start = lis_.getMBBStartIdx(MBB);
554  if (Start != End)
555    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
556}
557
558/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
559/// All needed values whose def is not inside [Start;End) must be defined
560/// beforehand so mapValue will work.
561void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
562  assert(li_ && "call reset first");
563  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
564  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
565
566  // Check if --I begins before Start and overlaps.
567  if (I != B) {
568    --I;
569    if (I->end > Start)
570      addSimpleRange(Start, std::min(End, I->end), I->valno);
571    ++I;
572  }
573
574  // The remaining ranges begin after Start.
575  for (;I != E && I->start < End; ++I)
576    addSimpleRange(I->start, std::min(End, I->end), I->valno);
577}
578
579VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
580                                       const VNInfo *ParentVNI,
581                                       MachineBasicBlock &MBB,
582                                       MachineBasicBlock::iterator I) {
583  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
584    get(TargetOpcode::COPY);
585  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
586  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
587  VNInfo *VNI = defValue(ParentVNI, DefIdx);
588  VNI->setCopy(MI);
589  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
590  return VNI;
591}
592
593//===----------------------------------------------------------------------===//
594//                               Split Editor
595//===----------------------------------------------------------------------===//
596
597/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
598SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
599                         LiveRangeEdit &edit)
600  : sa_(sa), lis_(lis), vrm_(vrm),
601    mri_(vrm.getMachineFunction().getRegInfo()),
602    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
603    edit_(edit),
604    dupli_(lis_, edit.getParent()),
605    openli_(lis_, edit.getParent())
606{
607}
608
609bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
610  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
611    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
612      return true;
613  return false;
614}
615
616/// Create a new virtual register and live interval.
617void SplitEditor::openIntv() {
618  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
619
620  if (!dupli_.getLI())
621    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
622
623  openli_.reset(&edit_.create(mri_, lis_, vrm_));
624}
625
626/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
627/// not live before Idx, a COPY is not inserted.
628void SplitEditor::enterIntvBefore(SlotIndex Idx) {
629  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
630  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
631  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
632  if (!ParentVNI) {
633    DEBUG(dbgs() << ": not live\n");
634    return;
635  }
636  DEBUG(dbgs() << ": valno " << ParentVNI->id);
637  truncatedValues.insert(ParentVNI);
638  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
639  assert(MI && "enterIntvBefore called with invalid index");
640  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
641                                      *MI->getParent(), MI);
642  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
643  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
644}
645
646/// enterIntvAtEnd - Enter openli at the end of MBB.
647void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
648  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
649  SlotIndex End = lis_.getMBBEndIdx(&MBB);
650  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
651  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
652  if (!ParentVNI) {
653    DEBUG(dbgs() << ": not live\n");
654    return;
655  }
656  DEBUG(dbgs() << ": valno " << ParentVNI->id);
657  truncatedValues.insert(ParentVNI);
658  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
659                                      MBB, MBB.getFirstTerminator());
660  // Make sure openli is live out of MBB.
661  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
662  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
663}
664
665/// useIntv - indicate that all instructions in MBB should use openli.
666void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
667  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
668}
669
670void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
671  assert(openli_.getLI() && "openIntv not called before useIntv");
672  openli_.addRange(Start, End);
673  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
674               << *openli_.getLI() << '\n');
675}
676
677/// leaveIntvAfter - Leave openli after the instruction at Idx.
678void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
679  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
680  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
681
682  // The interval must be live beyond the instruction at Idx.
683  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
684  if (!ParentVNI) {
685    DEBUG(dbgs() << ": not live\n");
686    return;
687  }
688  DEBUG(dbgs() << ": valno " << ParentVNI->id);
689
690  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
691  MachineBasicBlock *MBB = MII->getParent();
692  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
693                                     llvm::next(MII));
694
695  // Finally we must make sure that openli is properly extended from Idx to the
696  // new copy.
697  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
698  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
699}
700
701/// leaveIntvAtTop - Leave the interval at the top of MBB.
702/// Currently, only one value can leave the interval.
703void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
704  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
705  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
706  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
707
708  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
709  if (!ParentVNI) {
710    DEBUG(dbgs() << ": not live\n");
711    return;
712  }
713
714  // We are going to insert a back copy, so we must have a dupli_.
715  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
716                                     MBB, MBB.begin());
717
718  // Finally we must make sure that openli is properly extended from Start to
719  // the new copy.
720  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
721  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
722}
723
724/// closeIntv - Indicate that we are done editing the currently open
725/// LiveInterval, and ranges can be trimmed.
726void SplitEditor::closeIntv() {
727  assert(openli_.getLI() && "openIntv not called before closeIntv");
728
729  DEBUG(dbgs() << "    closeIntv cleaning up\n");
730  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
731  openli_.reset(0);
732}
733
734/// rewrite - Rewrite all uses of reg to use the new registers.
735void SplitEditor::rewrite(unsigned reg) {
736  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
737       RE = mri_.reg_end(); RI != RE;) {
738    MachineOperand &MO = RI.getOperand();
739    MachineInstr *MI = MO.getParent();
740    ++RI;
741    if (MI->isDebugValue()) {
742      DEBUG(dbgs() << "Zapping " << *MI);
743      // FIXME: We can do much better with debug values.
744      MO.setReg(0);
745      continue;
746    }
747    SlotIndex Idx = lis_.getInstructionIndex(MI);
748    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
749    LiveInterval *LI = 0;
750    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
751         ++I) {
752      LiveInterval *testli = *I;
753      if (testli->liveAt(Idx)) {
754        LI = testli;
755        break;
756      }
757    }
758    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
759    assert(LI && "No register was live at use");
760    MO.setReg(LI->reg);
761    DEBUG(dbgs() << '\t' << *MI);
762  }
763}
764
765void
766SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
767  // Build vector of iterator pairs from the intervals.
768  typedef std::pair<LiveInterval::const_iterator,
769                    LiveInterval::const_iterator> IIPair;
770  SmallVector<IIPair, 8> Iters;
771  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
772       ++LI) {
773    if (*LI == dupli_.getLI())
774      continue;
775    LiveInterval::const_iterator I = (*LI)->find(Start);
776    LiveInterval::const_iterator E = (*LI)->end();
777    if (I != E)
778      Iters.push_back(std::make_pair(I, E));
779  }
780
781  SlotIndex sidx = Start;
782  // Break [Start;End) into segments that don't overlap any intervals.
783  for (;;) {
784    SlotIndex next = sidx, eidx = End;
785    // Find overlapping intervals.
786    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
787      LiveInterval::const_iterator I = Iters[i].first;
788      // Interval I is overlapping [sidx;eidx). Trim sidx.
789      if (I->start <= sidx) {
790        sidx = I->end;
791        // Move to the next run, remove iters when all are consumed.
792        I = ++Iters[i].first;
793        if (I == Iters[i].second) {
794          Iters.erase(Iters.begin() + i);
795          --i;
796          continue;
797        }
798      }
799      // Trim eidx too if needed.
800      if (I->start >= eidx)
801        continue;
802      eidx = I->start;
803      next = I->end;
804    }
805    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
806    if (sidx < eidx)
807      dupli_.addSimpleRange(sidx, eidx, VNI);
808    // If the interval end was truncated, we can try again from next.
809    if (next <= sidx)
810      break;
811    sidx = next;
812  }
813}
814
815void SplitEditor::computeRemainder() {
816  // First we need to fill in the live ranges in dupli.
817  // If values were redefined, we need a full recoloring with SSA update.
818  // If values were truncated, we only need to truncate the ranges.
819  // If values were partially rematted, we should shrink to uses.
820  // If values were fully rematted, they should be omitted.
821  // FIXME: If a single value is redefined, just move the def and truncate.
822  LiveInterval &parent = edit_.getParent();
823
824  // Values that are fully contained in the split intervals.
825  SmallPtrSet<const VNInfo*, 8> deadValues;
826  // Map all curli values that should have live defs in dupli.
827  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
828       E = parent.vni_end(); I != E; ++I) {
829    const VNInfo *VNI = *I;
830    // Original def is contained in the split intervals.
831    if (intervalsLiveAt(VNI->def)) {
832      // Did this value escape?
833      if (dupli_.isMapped(VNI))
834        truncatedValues.insert(VNI);
835      else
836        deadValues.insert(VNI);
837      continue;
838    }
839    // Add minimal live range at the definition.
840    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
841    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
842  }
843
844  // Add all ranges to dupli.
845  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
846       I != E; ++I) {
847    const LiveRange &LR = *I;
848    if (truncatedValues.count(LR.valno)) {
849      // recolor after removing intervals_.
850      addTruncSimpleRange(LR.start, LR.end, LR.valno);
851    } else if (!deadValues.count(LR.valno)) {
852      // recolor without truncation.
853      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
854    }
855  }
856}
857
858void SplitEditor::finish() {
859  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
860  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
861
862  // Complete dupli liveness.
863  computeRemainder();
864
865  // Get rid of unused values and set phi-kill flags.
866  dupli_.getLI()->RenumberValues(lis_);
867
868  // Now check if dupli was separated into multiple connected components.
869  ConnectedVNInfoEqClasses ConEQ(lis_);
870  if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) {
871    DEBUG(dbgs() << "  Remainder has " << NumComp << " connected components: "
872                 << *dupli_.getLI() << '\n');
873    // Did the remainder break up? Create intervals for all the components.
874    if (NumComp > 1) {
875      SmallVector<LiveInterval*, 8> dups;
876      dups.push_back(dupli_.getLI());
877      for (unsigned i = 1; i != NumComp; ++i)
878        dups.push_back(&edit_.create(mri_, lis_, vrm_));
879      ConEQ.Distribute(&dups[0]);
880      // Rewrite uses to the new regs.
881      rewrite(dupli_.getLI()->reg);
882    }
883  }
884
885  // Rewrite instructions.
886  rewrite(edit_.getReg());
887
888  // Calculate spill weight and allocation hints for new intervals.
889  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
890  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
891    LiveInterval &li = **I;
892    vrai.CalculateRegClass(li.reg);
893    vrai.CalculateWeightAndHint(li);
894    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
895                 << ":" << li << '\n');
896  }
897}
898
899
900//===----------------------------------------------------------------------===//
901//                               Loop Splitting
902//===----------------------------------------------------------------------===//
903
904void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
905  SplitAnalysis::LoopBlocks Blocks;
906  sa_.getLoopBlocks(Loop, Blocks);
907
908  DEBUG({
909    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
910  });
911
912  // Break critical edges as needed.
913  SplitAnalysis::BlockPtrSet CriticalExits;
914  sa_.getCriticalExits(Blocks, CriticalExits);
915  assert(CriticalExits.empty() && "Cannot break critical exits yet");
916
917  // Create new live interval for the loop.
918  openIntv();
919
920  // Insert copies in the predecessors.
921  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
922       E = Blocks.Preds.end(); I != E; ++I) {
923    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
924    enterIntvAtEnd(MBB);
925  }
926
927  // Switch all loop blocks.
928  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
929       E = Blocks.Loop.end(); I != E; ++I)
930     useIntv(**I);
931
932  // Insert back copies in the exit blocks.
933  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
934       E = Blocks.Exits.end(); I != E; ++I) {
935    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
936    leaveIntvAtTop(MBB);
937  }
938
939  // Done.
940  closeIntv();
941  finish();
942}
943
944
945//===----------------------------------------------------------------------===//
946//                            Single Block Splitting
947//===----------------------------------------------------------------------===//
948
949/// splitSingleBlocks - Split curli into a separate live interval inside each
950/// basic block in Blocks.
951void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
952  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
953  // Determine the first and last instruction using curli in each block.
954  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
955  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
956  IndexPairMap MBBRange;
957  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
958       E = sa_.usingInstrs_.end(); I != E; ++I) {
959    const MachineBasicBlock *MBB = (*I)->getParent();
960    if (!Blocks.count(MBB))
961      continue;
962    SlotIndex Idx = lis_.getInstructionIndex(*I);
963    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
964    IndexPair &IP = MBBRange[MBB];
965    if (!IP.first.isValid() || Idx < IP.first)
966      IP.first = Idx;
967    if (!IP.second.isValid() || Idx > IP.second)
968      IP.second = Idx;
969  }
970
971  // Create a new interval for each block.
972  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
973       E = Blocks.end(); I != E; ++I) {
974    IndexPair &IP = MBBRange[*I];
975    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
976                 << IP.first << ';' << IP.second << ")\n");
977    assert(IP.first.isValid() && IP.second.isValid());
978
979    openIntv();
980    enterIntvBefore(IP.first);
981    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
982    leaveIntvAfter(IP.second);
983    closeIntv();
984  }
985  finish();
986}
987
988
989//===----------------------------------------------------------------------===//
990//                            Sub Block Splitting
991//===----------------------------------------------------------------------===//
992
993/// getBlockForInsideSplit - If curli is contained inside a single basic block,
994/// and it wou pay to subdivide the interval inside that block, return it.
995/// Otherwise return NULL. The returned block can be passed to
996/// SplitEditor::splitInsideBlock.
997const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
998  // The interval must be exclusive to one block.
999  if (usingBlocks_.size() != 1)
1000    return 0;
1001  // Don't to this for less than 4 instructions. We want to be sure that
1002  // splitting actually reduces the instruction count per interval.
1003  if (usingInstrs_.size() < 4)
1004    return 0;
1005  return usingBlocks_.begin()->first;
1006}
1007
1008/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1009void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1010  SmallVector<SlotIndex, 32> Uses;
1011  Uses.reserve(sa_.usingInstrs_.size());
1012  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1013       E = sa_.usingInstrs_.end(); I != E; ++I)
1014    if ((*I)->getParent() == MBB)
1015      Uses.push_back(lis_.getInstructionIndex(*I));
1016  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1017               << Uses.size() << " instructions.\n");
1018  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1019  array_pod_sort(Uses.begin(), Uses.end());
1020
1021  // Simple algorithm: Find the largest gap between uses as determined by slot
1022  // indices. Create new intervals for instructions before the gap and after the
1023  // gap.
1024  unsigned bestPos = 0;
1025  int bestGap = 0;
1026  DEBUG(dbgs() << "    dist (" << Uses[0]);
1027  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1028    int g = Uses[i-1].distance(Uses[i]);
1029    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1030    if (g > bestGap)
1031      bestPos = i, bestGap = g;
1032  }
1033  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1034
1035  // bestPos points to the first use after the best gap.
1036  assert(bestPos > 0 && "Invalid gap");
1037
1038  // FIXME: Don't create intervals for low densities.
1039
1040  // First interval before the gap. Don't create single-instr intervals.
1041  if (bestPos > 1) {
1042    openIntv();
1043    enterIntvBefore(Uses.front());
1044    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1045    leaveIntvAfter(Uses[bestPos-1]);
1046    closeIntv();
1047  }
1048
1049  // Second interval after the gap.
1050  if (bestPos < Uses.size()-1) {
1051    openIntv();
1052    enterIntvBefore(Uses[bestPos]);
1053    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1054    leaveIntvAfter(Uses.back());
1055    closeIntv();
1056  }
1057
1058  finish();
1059}
1060