SplitKit.cpp revision 2c1442e1b2ea874a8766025e2ccff96e87879c2b
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "splitter" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/CodeGen/CalcSpillWeights.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineInstrBuilder.h" 22#include "llvm/CodeGen/MachineLoopInfo.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/Support/CommandLine.h" 25#include "llvm/Support/Debug.h" 26#include "llvm/Support/raw_ostream.h" 27#include "llvm/Target/TargetInstrInfo.h" 28#include "llvm/Target/TargetMachine.h" 29 30using namespace llvm; 31 32static cl::opt<bool> 33AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36//===----------------------------------------------------------------------===// 37// Split Analysis 38//===----------------------------------------------------------------------===// 39 40SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : mf_(mf), 44 lis_(lis), 45 loops_(mli), 46 tii_(*mf.getTarget().getInstrInfo()), 47 curli_(0) {} 48 49void SplitAnalysis::clear() { 50 usingInstrs_.clear(); 51 usingBlocks_.clear(); 52 usingLoops_.clear(); 53 curli_ = 0; 54} 55 56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 57 MachineBasicBlock *T, *F; 58 SmallVector<MachineOperand, 4> Cond; 59 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 60} 61 62/// analyzeUses - Count instructions, basic blocks, and loops using curli. 63void SplitAnalysis::analyzeUses() { 64 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 65 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 66 MachineInstr *MI = I.skipInstruction();) { 67 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 68 continue; 69 MachineBasicBlock *MBB = MI->getParent(); 70 if (usingBlocks_[MBB]++) 71 continue; 72 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 73 Loop = Loop->getParentLoop()) 74 usingLoops_[Loop]++; 75 } 76 DEBUG(dbgs() << " counted " 77 << usingInstrs_.size() << " instrs, " 78 << usingBlocks_.size() << " blocks, " 79 << usingLoops_.size() << " loops.\n"); 80} 81 82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 83 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 84 unsigned count = usingBlocks_.lookup(*I); 85 OS << " BB#" << (*I)->getNumber(); 86 if (count) 87 OS << '(' << count << ')'; 88 } 89} 90 91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 92// predecessor blocks, and exit blocks. 93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 94 Blocks.clear(); 95 96 // Blocks in the loop. 97 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 98 99 // Predecessor blocks. 100 const MachineBasicBlock *Header = Loop->getHeader(); 101 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 102 E = Header->pred_end(); I != E; ++I) 103 if (!Blocks.Loop.count(*I)) 104 Blocks.Preds.insert(*I); 105 106 // Exit blocks. 107 for (MachineLoop::block_iterator I = Loop->block_begin(), 108 E = Loop->block_end(); I != E; ++I) { 109 const MachineBasicBlock *MBB = *I; 110 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 111 SE = MBB->succ_end(); SI != SE; ++SI) 112 if (!Blocks.Loop.count(*SI)) 113 Blocks.Exits.insert(*SI); 114 } 115} 116 117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 118 OS << "Loop:"; 119 print(B.Loop, OS); 120 OS << ", preds:"; 121 print(B.Preds, OS); 122 OS << ", exits:"; 123 print(B.Exits, OS); 124} 125 126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 127/// and around the Loop. 128SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 130 LoopPeripheralUse use = ContainedInLoop; 131 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 132 I != E; ++I) { 133 const MachineBasicBlock *MBB = I->first; 134 // Is this a peripheral block? 135 if (use < MultiPeripheral && 136 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 137 if (I->second > 1) use = MultiPeripheral; 138 else use = SinglePeripheral; 139 continue; 140 } 141 // Is it a loop block? 142 if (Blocks.Loop.count(MBB)) 143 continue; 144 // It must be an unrelated block. 145 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 146 return OutsideLoop; 147 } 148 return use; 149} 150 151/// getCriticalExits - It may be necessary to partially break critical edges 152/// leaving the loop if an exit block has predecessors from outside the loop 153/// periphery. 154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 155 BlockPtrSet &CriticalExits) { 156 CriticalExits.clear(); 157 158 // A critical exit block has curli line-in, and has a predecessor that is not 159 // in the loop nor a loop predecessor. For such an exit block, the edges 160 // carrying the new variable must be moved to a new pre-exit block. 161 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 162 I != E; ++I) { 163 const MachineBasicBlock *Exit = *I; 164 // A single-predecessor exit block is definitely not a critical edge. 165 if (Exit->pred_size() == 1) 166 continue; 167 // This exit may not have curli live in at all. No need to split. 168 if (!lis_.isLiveInToMBB(*curli_, Exit)) 169 continue; 170 // Does this exit block have a predecessor that is not a loop block or loop 171 // predecessor? 172 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 173 PE = Exit->pred_end(); PI != PE; ++PI) { 174 const MachineBasicBlock *Pred = *PI; 175 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 176 continue; 177 // This is a critical exit block, and we need to split the exit edge. 178 CriticalExits.insert(Exit); 179 break; 180 } 181 } 182} 183 184/// canSplitCriticalExits - Return true if it is possible to insert new exit 185/// blocks before the blocks in CriticalExits. 186bool 187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 188 BlockPtrSet &CriticalExits) { 189 // If we don't allow critical edge splitting, require no critical exits. 190 if (!AllowSplit) 191 return CriticalExits.empty(); 192 193 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Succ = *I; 196 // We want to insert a new pre-exit MBB before Succ, and change all the 197 // in-loop blocks to branch to the pre-exit instead of Succ. 198 // Check that all the in-loop predecessors can be changed. 199 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 200 PE = Succ->pred_end(); PI != PE; ++PI) { 201 const MachineBasicBlock *Pred = *PI; 202 // The external predecessors won't be altered. 203 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 204 continue; 205 if (!canAnalyzeBranch(Pred)) 206 return false; 207 } 208 209 // If Succ's layout predecessor falls through, that too must be analyzable. 210 // We need to insert the pre-exit block in the gap. 211 MachineFunction::const_iterator MFI = Succ; 212 if (MFI == mf_.begin()) 213 continue; 214 if (!canAnalyzeBranch(--MFI)) 215 return false; 216 } 217 // No problems found. 218 return true; 219} 220 221void SplitAnalysis::analyze(const LiveInterval *li) { 222 clear(); 223 curli_ = li; 224 analyzeUses(); 225} 226 227const MachineLoop *SplitAnalysis::getBestSplitLoop() { 228 assert(curli_ && "Call analyze() before getBestSplitLoop"); 229 if (usingLoops_.empty()) 230 return 0; 231 232 LoopPtrSet Loops; 233 LoopBlocks Blocks; 234 BlockPtrSet CriticalExits; 235 236 // We split around loops where curli is used outside the periphery. 237 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 238 E = usingLoops_.end(); I != E; ++I) { 239 const MachineLoop *Loop = I->first; 240 getLoopBlocks(Loop, Blocks); 241 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 242 243 switch(analyzeLoopPeripheralUse(Blocks)) { 244 case OutsideLoop: 245 break; 246 case MultiPeripheral: 247 // FIXME: We could split a live range with multiple uses in a peripheral 248 // block and still make progress. However, it is possible that splitting 249 // another live range will insert copies into a peripheral block, and 250 // there is a small chance we can enter an infinity loop, inserting copies 251 // forever. 252 // For safety, stick to splitting live ranges with uses outside the 253 // periphery. 254 DEBUG(dbgs() << ": multiple peripheral uses\n"); 255 break; 256 case ContainedInLoop: 257 DEBUG(dbgs() << ": fully contained\n"); 258 continue; 259 case SinglePeripheral: 260 DEBUG(dbgs() << ": single peripheral use\n"); 261 continue; 262 } 263 // Will it be possible to split around this loop? 264 getCriticalExits(Blocks, CriticalExits); 265 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 266 if (!canSplitCriticalExits(Blocks, CriticalExits)) 267 continue; 268 // This is a possible split. 269 Loops.insert(Loop); 270 } 271 272 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 273 << " candidate loops.\n"); 274 275 if (Loops.empty()) 276 return 0; 277 278 // Pick the earliest loop. 279 // FIXME: Are there other heuristics to consider? 280 const MachineLoop *Best = 0; 281 SlotIndex BestIdx; 282 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 283 ++I) { 284 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 285 if (!Best || Idx < BestIdx) 286 Best = *I, BestIdx = Idx; 287 } 288 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 289 return Best; 290} 291 292/// getMultiUseBlocks - if curli has more than one use in a basic block, it 293/// may be an advantage to split curli for the duration of the block. 294bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 295 // If curli is local to one block, there is no point to splitting it. 296 if (usingBlocks_.size() <= 1) 297 return false; 298 // Add blocks with multiple uses. 299 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 300 I != E; ++I) 301 switch (I->second) { 302 case 0: 303 case 1: 304 continue; 305 case 2: { 306 // It doesn't pay to split a 2-instr block if it redefines curli. 307 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 308 VNInfo *VN2 = 309 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 310 // live-in and live-out with a different value. 311 if (VN1 && VN2 && VN1 != VN2) 312 continue; 313 } // Fall through. 314 default: 315 Blocks.insert(I->first); 316 } 317 return !Blocks.empty(); 318} 319 320//===----------------------------------------------------------------------===// 321// LiveIntervalMap 322//===----------------------------------------------------------------------===// 323 324// Work around the fact that the std::pair constructors are broken for pointer 325// pairs in some implementations. makeVV(x, 0) works. 326static inline std::pair<const VNInfo*, VNInfo*> 327makeVV(const VNInfo *a, VNInfo *b) { 328 return std::make_pair(a, b); 329} 330 331void LiveIntervalMap::reset(LiveInterval *li) { 332 li_ = li; 333 valueMap_.clear(); 334} 335 336bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 337 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 338 return i != valueMap_.end() && i->second == 0; 339} 340 341// defValue - Introduce a li_ def for ParentVNI that could be later than 342// ParentVNI->def. 343VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 344 assert(li_ && "call reset first"); 345 assert(ParentVNI && "Mapping NULL value"); 346 assert(Idx.isValid() && "Invalid SlotIndex"); 347 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 348 349 // Create a new value. 350 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 351 352 // Use insert for lookup, so we can add missing values with a second lookup. 353 std::pair<ValueMap::iterator,bool> InsP = 354 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 355 356 // This is now a complex def. Mark with a NULL in valueMap. 357 if (!InsP.second) 358 InsP.first->second = 0; 359 360 return VNI; 361} 362 363 364// mapValue - Find the mapped value for ParentVNI at Idx. 365// Potentially create phi-def values. 366VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 367 bool *simple) { 368 assert(li_ && "call reset first"); 369 assert(ParentVNI && "Mapping NULL value"); 370 assert(Idx.isValid() && "Invalid SlotIndex"); 371 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 372 373 // Use insert for lookup, so we can add missing values with a second lookup. 374 std::pair<ValueMap::iterator,bool> InsP = 375 valueMap_.insert(makeVV(ParentVNI, 0)); 376 377 // This was an unknown value. Create a simple mapping. 378 if (InsP.second) { 379 if (simple) *simple = true; 380 return InsP.first->second = li_->createValueCopy(ParentVNI, 381 lis_.getVNInfoAllocator()); 382 } 383 384 // This was a simple mapped value. 385 if (InsP.first->second) { 386 if (simple) *simple = true; 387 return InsP.first->second; 388 } 389 390 // This is a complex mapped value. There may be multiple defs, and we may need 391 // to create phi-defs. 392 if (simple) *simple = false; 393 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 394 assert(IdxMBB && "No MBB at Idx"); 395 396 // Is there a def in the same MBB we can extend? 397 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 398 return VNI; 399 400 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 401 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 402 // Perform a depth-first search for predecessor blocks where we know the 403 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 404 405 // Track MBBs where we have created or learned the dominating value. 406 // This may change during the DFS as we create new phi-defs. 407 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 408 MBBValueMap DomValue; 409 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 410 BlockPtrSet Visited; 411 412 // Iterate over IdxMBB predecessors in a depth-first order. 413 // Skip begin() since that is always IdxMBB. 414 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 415 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 416 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 417 MachineBasicBlock *MBB = *IDFI; 418 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 419 420 // We are operating on the restricted CFG where ParentVNI is live. 421 if (parentli_.getVNInfoAt(End) != ParentVNI) { 422 IDFI.skipChildren(); 423 continue; 424 } 425 426 // Do we have a dominating value in this block? 427 VNInfo *VNI = extendTo(MBB, End); 428 if (!VNI) { 429 ++IDFI; 430 continue; 431 } 432 433 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 434 Visited.erase(MBB); 435 436 // Track the path back to IdxMBB, creating phi-defs 437 // as needed along the way. 438 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 439 // Start from MBB's immediate successor. End at IdxMBB. 440 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 441 std::pair<MBBValueMap::iterator, bool> InsP = 442 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 443 444 // This is the first time we backtrack to Succ. 445 if (InsP.second) 446 continue; 447 448 // We reached Succ again with the same VNI. Nothing is going to change. 449 VNInfo *OVNI = InsP.first->second; 450 if (OVNI == VNI) 451 break; 452 453 // Succ already has a phi-def. No need to continue. 454 SlotIndex Start = lis_.getMBBStartIdx(Succ); 455 if (OVNI->def == Start) 456 break; 457 458 // We have a collision between the old and new VNI at Succ. That means 459 // neither dominates and we need a new phi-def. 460 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 461 VNI->setIsPHIDef(true); 462 InsP.first->second = VNI; 463 464 // Replace OVNI with VNI in the remaining path. 465 for (; PI > 1 ; --PI) { 466 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 467 if (I == DomValue.end() || I->second != OVNI) 468 break; 469 I->second = VNI; 470 } 471 } 472 473 // No need to search the children, we found a dominating value. 474 IDFI.skipChildren(); 475 } 476 477 // The search should at least find a dominating value for IdxMBB. 478 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 479 480 // Since we went through the trouble of a full DFS visiting all reaching defs, 481 // the values in DomValue are now accurate. No more phi-defs are needed for 482 // these blocks, so we can color the live ranges. 483 // This makes the next mapValue call much faster. 484 VNInfo *IdxVNI = 0; 485 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 486 ++I) { 487 MachineBasicBlock *MBB = I->first; 488 VNInfo *VNI = I->second; 489 SlotIndex Start = lis_.getMBBStartIdx(MBB); 490 if (MBB == IdxMBB) { 491 // Don't add full liveness to IdxMBB, stop at Idx. 492 if (Start != Idx) 493 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 494 // The caller had better add some liveness to IdxVNI, or it leaks. 495 IdxVNI = VNI; 496 } else 497 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 498 } 499 500 assert(IdxVNI && "Didn't find value for Idx"); 501 return IdxVNI; 502} 503 504// extendTo - Find the last li_ value defined in MBB at or before Idx. The 505// parentli_ is assumed to be live at Idx. Extend the live range to Idx. 506// Return the found VNInfo, or NULL. 507VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 508 assert(li_ && "call reset first"); 509 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 510 if (I == li_->begin()) 511 return 0; 512 --I; 513 if (I->end <= lis_.getMBBStartIdx(MBB)) 514 return 0; 515 if (I->end <= Idx) 516 I->end = Idx.getNextSlot(); 517 return I->valno; 518} 519 520// addSimpleRange - Add a simple range from parentli_ to li_. 521// ParentVNI must be live in the [Start;End) interval. 522void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 523 const VNInfo *ParentVNI) { 524 assert(li_ && "call reset first"); 525 bool simple; 526 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 527 // A simple mapping is easy. 528 if (simple) { 529 li_->addRange(LiveRange(Start, End, VNI)); 530 return; 531 } 532 533 // ParentVNI is a complex value. We must map per MBB. 534 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 535 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 536 537 if (MBB == MBBE) { 538 li_->addRange(LiveRange(Start, End, VNI)); 539 return; 540 } 541 542 // First block. 543 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 544 545 // Run sequence of full blocks. 546 for (++MBB; MBB != MBBE; ++MBB) { 547 Start = lis_.getMBBStartIdx(MBB); 548 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 549 mapValue(ParentVNI, Start))); 550 } 551 552 // Final block. 553 Start = lis_.getMBBStartIdx(MBB); 554 if (Start != End) 555 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 556} 557 558/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 559/// All needed values whose def is not inside [Start;End) must be defined 560/// beforehand so mapValue will work. 561void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 562 assert(li_ && "call reset first"); 563 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 564 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 565 566 // Check if --I begins before Start and overlaps. 567 if (I != B) { 568 --I; 569 if (I->end > Start) 570 addSimpleRange(Start, std::min(End, I->end), I->valno); 571 ++I; 572 } 573 574 // The remaining ranges begin after Start. 575 for (;I != E && I->start < End; ++I) 576 addSimpleRange(I->start, std::min(End, I->end), I->valno); 577} 578 579VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 580 const VNInfo *ParentVNI, 581 MachineBasicBlock &MBB, 582 MachineBasicBlock::iterator I) { 583 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 584 get(TargetOpcode::COPY); 585 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 586 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 587 VNInfo *VNI = defValue(ParentVNI, DefIdx); 588 VNI->setCopy(MI); 589 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 590 return VNI; 591} 592 593//===----------------------------------------------------------------------===// 594// Split Editor 595//===----------------------------------------------------------------------===// 596 597/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 598SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 599 LiveRangeEdit &edit) 600 : sa_(sa), lis_(lis), vrm_(vrm), 601 mri_(vrm.getMachineFunction().getRegInfo()), 602 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 603 edit_(edit), 604 dupli_(lis_, edit.getParent()), 605 openli_(lis_, edit.getParent()) 606{ 607} 608 609bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 610 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 611 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 612 return true; 613 return false; 614} 615 616/// Create a new virtual register and live interval. 617void SplitEditor::openIntv() { 618 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 619 620 if (!dupli_.getLI()) 621 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 622 623 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 624} 625 626/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 627/// not live before Idx, a COPY is not inserted. 628void SplitEditor::enterIntvBefore(SlotIndex Idx) { 629 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 630 DEBUG(dbgs() << " enterIntvBefore " << Idx); 631 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 632 if (!ParentVNI) { 633 DEBUG(dbgs() << ": not live\n"); 634 return; 635 } 636 DEBUG(dbgs() << ": valno " << ParentVNI->id); 637 truncatedValues.insert(ParentVNI); 638 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 639 assert(MI && "enterIntvBefore called with invalid index"); 640 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 641 *MI->getParent(), MI); 642 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 643 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 644} 645 646/// enterIntvAtEnd - Enter openli at the end of MBB. 647void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 648 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 649 SlotIndex End = lis_.getMBBEndIdx(&MBB); 650 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 651 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 652 if (!ParentVNI) { 653 DEBUG(dbgs() << ": not live\n"); 654 return; 655 } 656 DEBUG(dbgs() << ": valno " << ParentVNI->id); 657 truncatedValues.insert(ParentVNI); 658 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 659 MBB, MBB.getFirstTerminator()); 660 // Make sure openli is live out of MBB. 661 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 662 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 663} 664 665/// useIntv - indicate that all instructions in MBB should use openli. 666void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 667 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 668} 669 670void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 671 assert(openli_.getLI() && "openIntv not called before useIntv"); 672 openli_.addRange(Start, End); 673 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 674 << *openli_.getLI() << '\n'); 675} 676 677/// leaveIntvAfter - Leave openli after the instruction at Idx. 678void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 679 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 680 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 681 682 // The interval must be live beyond the instruction at Idx. 683 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 684 if (!ParentVNI) { 685 DEBUG(dbgs() << ": not live\n"); 686 return; 687 } 688 DEBUG(dbgs() << ": valno " << ParentVNI->id); 689 690 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 691 MachineBasicBlock *MBB = MII->getParent(); 692 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 693 llvm::next(MII)); 694 695 // Finally we must make sure that openli is properly extended from Idx to the 696 // new copy. 697 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 698 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 699} 700 701/// leaveIntvAtTop - Leave the interval at the top of MBB. 702/// Currently, only one value can leave the interval. 703void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 704 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 705 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 706 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 707 708 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 709 if (!ParentVNI) { 710 DEBUG(dbgs() << ": not live\n"); 711 return; 712 } 713 714 // We are going to insert a back copy, so we must have a dupli_. 715 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 716 MBB, MBB.begin()); 717 718 // Finally we must make sure that openli is properly extended from Start to 719 // the new copy. 720 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 721 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 722} 723 724/// closeIntv - Indicate that we are done editing the currently open 725/// LiveInterval, and ranges can be trimmed. 726void SplitEditor::closeIntv() { 727 assert(openli_.getLI() && "openIntv not called before closeIntv"); 728 729 DEBUG(dbgs() << " closeIntv cleaning up\n"); 730 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 731 openli_.reset(0); 732} 733 734/// rewrite - Rewrite all uses of reg to use the new registers. 735void SplitEditor::rewrite(unsigned reg) { 736 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 737 RE = mri_.reg_end(); RI != RE;) { 738 MachineOperand &MO = RI.getOperand(); 739 MachineInstr *MI = MO.getParent(); 740 ++RI; 741 if (MI->isDebugValue()) { 742 DEBUG(dbgs() << "Zapping " << *MI); 743 // FIXME: We can do much better with debug values. 744 MO.setReg(0); 745 continue; 746 } 747 SlotIndex Idx = lis_.getInstructionIndex(MI); 748 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 749 LiveInterval *LI = 0; 750 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 751 ++I) { 752 LiveInterval *testli = *I; 753 if (testli->liveAt(Idx)) { 754 LI = testli; 755 break; 756 } 757 } 758 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 759 assert(LI && "No register was live at use"); 760 MO.setReg(LI->reg); 761 DEBUG(dbgs() << '\t' << *MI); 762 } 763} 764 765void 766SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 767 // Build vector of iterator pairs from the intervals. 768 typedef std::pair<LiveInterval::const_iterator, 769 LiveInterval::const_iterator> IIPair; 770 SmallVector<IIPair, 8> Iters; 771 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 772 ++LI) { 773 if (*LI == dupli_.getLI()) 774 continue; 775 LiveInterval::const_iterator I = (*LI)->find(Start); 776 LiveInterval::const_iterator E = (*LI)->end(); 777 if (I != E) 778 Iters.push_back(std::make_pair(I, E)); 779 } 780 781 SlotIndex sidx = Start; 782 // Break [Start;End) into segments that don't overlap any intervals. 783 for (;;) { 784 SlotIndex next = sidx, eidx = End; 785 // Find overlapping intervals. 786 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 787 LiveInterval::const_iterator I = Iters[i].first; 788 // Interval I is overlapping [sidx;eidx). Trim sidx. 789 if (I->start <= sidx) { 790 sidx = I->end; 791 // Move to the next run, remove iters when all are consumed. 792 I = ++Iters[i].first; 793 if (I == Iters[i].second) { 794 Iters.erase(Iters.begin() + i); 795 --i; 796 continue; 797 } 798 } 799 // Trim eidx too if needed. 800 if (I->start >= eidx) 801 continue; 802 eidx = I->start; 803 next = I->end; 804 } 805 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 806 if (sidx < eidx) 807 dupli_.addSimpleRange(sidx, eidx, VNI); 808 // If the interval end was truncated, we can try again from next. 809 if (next <= sidx) 810 break; 811 sidx = next; 812 } 813} 814 815void SplitEditor::computeRemainder() { 816 // First we need to fill in the live ranges in dupli. 817 // If values were redefined, we need a full recoloring with SSA update. 818 // If values were truncated, we only need to truncate the ranges. 819 // If values were partially rematted, we should shrink to uses. 820 // If values were fully rematted, they should be omitted. 821 // FIXME: If a single value is redefined, just move the def and truncate. 822 LiveInterval &parent = edit_.getParent(); 823 824 // Values that are fully contained in the split intervals. 825 SmallPtrSet<const VNInfo*, 8> deadValues; 826 // Map all curli values that should have live defs in dupli. 827 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 828 E = parent.vni_end(); I != E; ++I) { 829 const VNInfo *VNI = *I; 830 // Original def is contained in the split intervals. 831 if (intervalsLiveAt(VNI->def)) { 832 // Did this value escape? 833 if (dupli_.isMapped(VNI)) 834 truncatedValues.insert(VNI); 835 else 836 deadValues.insert(VNI); 837 continue; 838 } 839 // Add minimal live range at the definition. 840 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 841 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 842 } 843 844 // Add all ranges to dupli. 845 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 846 I != E; ++I) { 847 const LiveRange &LR = *I; 848 if (truncatedValues.count(LR.valno)) { 849 // recolor after removing intervals_. 850 addTruncSimpleRange(LR.start, LR.end, LR.valno); 851 } else if (!deadValues.count(LR.valno)) { 852 // recolor without truncation. 853 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 854 } 855 } 856} 857 858void SplitEditor::finish() { 859 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 860 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 861 862 // Complete dupli liveness. 863 computeRemainder(); 864 865 // Get rid of unused values and set phi-kill flags. 866 dupli_.getLI()->RenumberValues(lis_); 867 868 // Now check if dupli was separated into multiple connected components. 869 ConnectedVNInfoEqClasses ConEQ(lis_); 870 if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) { 871 DEBUG(dbgs() << " Remainder has " << NumComp << " connected components: " 872 << *dupli_.getLI() << '\n'); 873 // Did the remainder break up? Create intervals for all the components. 874 if (NumComp > 1) { 875 SmallVector<LiveInterval*, 8> dups; 876 dups.push_back(dupli_.getLI()); 877 for (unsigned i = 1; i != NumComp; ++i) 878 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 879 ConEQ.Distribute(&dups[0]); 880 // Rewrite uses to the new regs. 881 rewrite(dupli_.getLI()->reg); 882 } 883 } 884 885 // Rewrite instructions. 886 rewrite(edit_.getReg()); 887 888 // Calculate spill weight and allocation hints for new intervals. 889 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 890 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 891 LiveInterval &li = **I; 892 vrai.CalculateRegClass(li.reg); 893 vrai.CalculateWeightAndHint(li); 894 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 895 << ":" << li << '\n'); 896 } 897} 898 899 900//===----------------------------------------------------------------------===// 901// Loop Splitting 902//===----------------------------------------------------------------------===// 903 904void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 905 SplitAnalysis::LoopBlocks Blocks; 906 sa_.getLoopBlocks(Loop, Blocks); 907 908 DEBUG({ 909 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 910 }); 911 912 // Break critical edges as needed. 913 SplitAnalysis::BlockPtrSet CriticalExits; 914 sa_.getCriticalExits(Blocks, CriticalExits); 915 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 916 917 // Create new live interval for the loop. 918 openIntv(); 919 920 // Insert copies in the predecessors. 921 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 922 E = Blocks.Preds.end(); I != E; ++I) { 923 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 924 enterIntvAtEnd(MBB); 925 } 926 927 // Switch all loop blocks. 928 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 929 E = Blocks.Loop.end(); I != E; ++I) 930 useIntv(**I); 931 932 // Insert back copies in the exit blocks. 933 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 934 E = Blocks.Exits.end(); I != E; ++I) { 935 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 936 leaveIntvAtTop(MBB); 937 } 938 939 // Done. 940 closeIntv(); 941 finish(); 942} 943 944 945//===----------------------------------------------------------------------===// 946// Single Block Splitting 947//===----------------------------------------------------------------------===// 948 949/// splitSingleBlocks - Split curli into a separate live interval inside each 950/// basic block in Blocks. 951void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 952 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 953 // Determine the first and last instruction using curli in each block. 954 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 955 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 956 IndexPairMap MBBRange; 957 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 958 E = sa_.usingInstrs_.end(); I != E; ++I) { 959 const MachineBasicBlock *MBB = (*I)->getParent(); 960 if (!Blocks.count(MBB)) 961 continue; 962 SlotIndex Idx = lis_.getInstructionIndex(*I); 963 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 964 IndexPair &IP = MBBRange[MBB]; 965 if (!IP.first.isValid() || Idx < IP.first) 966 IP.first = Idx; 967 if (!IP.second.isValid() || Idx > IP.second) 968 IP.second = Idx; 969 } 970 971 // Create a new interval for each block. 972 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 973 E = Blocks.end(); I != E; ++I) { 974 IndexPair &IP = MBBRange[*I]; 975 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 976 << IP.first << ';' << IP.second << ")\n"); 977 assert(IP.first.isValid() && IP.second.isValid()); 978 979 openIntv(); 980 enterIntvBefore(IP.first); 981 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 982 leaveIntvAfter(IP.second); 983 closeIntv(); 984 } 985 finish(); 986} 987 988 989//===----------------------------------------------------------------------===// 990// Sub Block Splitting 991//===----------------------------------------------------------------------===// 992 993/// getBlockForInsideSplit - If curli is contained inside a single basic block, 994/// and it wou pay to subdivide the interval inside that block, return it. 995/// Otherwise return NULL. The returned block can be passed to 996/// SplitEditor::splitInsideBlock. 997const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 998 // The interval must be exclusive to one block. 999 if (usingBlocks_.size() != 1) 1000 return 0; 1001 // Don't to this for less than 4 instructions. We want to be sure that 1002 // splitting actually reduces the instruction count per interval. 1003 if (usingInstrs_.size() < 4) 1004 return 0; 1005 return usingBlocks_.begin()->first; 1006} 1007 1008/// splitInsideBlock - Split curli into multiple intervals inside MBB. 1009void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1010 SmallVector<SlotIndex, 32> Uses; 1011 Uses.reserve(sa_.usingInstrs_.size()); 1012 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1013 E = sa_.usingInstrs_.end(); I != E; ++I) 1014 if ((*I)->getParent() == MBB) 1015 Uses.push_back(lis_.getInstructionIndex(*I)); 1016 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1017 << Uses.size() << " instructions.\n"); 1018 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1019 array_pod_sort(Uses.begin(), Uses.end()); 1020 1021 // Simple algorithm: Find the largest gap between uses as determined by slot 1022 // indices. Create new intervals for instructions before the gap and after the 1023 // gap. 1024 unsigned bestPos = 0; 1025 int bestGap = 0; 1026 DEBUG(dbgs() << " dist (" << Uses[0]); 1027 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1028 int g = Uses[i-1].distance(Uses[i]); 1029 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1030 if (g > bestGap) 1031 bestPos = i, bestGap = g; 1032 } 1033 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1034 1035 // bestPos points to the first use after the best gap. 1036 assert(bestPos > 0 && "Invalid gap"); 1037 1038 // FIXME: Don't create intervals for low densities. 1039 1040 // First interval before the gap. Don't create single-instr intervals. 1041 if (bestPos > 1) { 1042 openIntv(); 1043 enterIntvBefore(Uses.front()); 1044 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1045 leaveIntvAfter(Uses[bestPos-1]); 1046 closeIntv(); 1047 } 1048 1049 // Second interval after the gap. 1050 if (bestPos < Uses.size()-1) { 1051 openIntv(); 1052 enterIntvBefore(Uses[bestPos]); 1053 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1054 leaveIntvAfter(Uses.back()); 1055 closeIntv(); 1056 } 1057 1058 finish(); 1059} 1060