SplitKit.cpp revision 2debd48ca790ac01be6e12e094fdf4fdcadc8364
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "regalloc" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineDominators.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineRegisterInfo.h" 25#include "llvm/Support/Debug.h" 26#include "llvm/Support/raw_ostream.h" 27#include "llvm/Target/TargetInstrInfo.h" 28#include "llvm/Target/TargetMachine.h" 29 30using namespace llvm; 31 32STATISTIC(NumFinished, "Number of splits finished"); 33STATISTIC(NumSimple, "Number of splits that were simple"); 34STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38//===----------------------------------------------------------------------===// 39// Split Analysis 40//===----------------------------------------------------------------------===// 41 42SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59} 60 61SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 66 // Compute split points on the first call. The pair is independent of the 67 // current live interval. 68 if (!LSP.first.isValid()) { 69 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 70 if (FirstTerm == MBB->end()) 71 LSP.first = LIS.getMBBEndIdx(MBB); 72 else 73 LSP.first = LIS.getInstructionIndex(FirstTerm); 74 75 // If there is a landing pad successor, also find the call instruction. 76 if (!LPad) 77 return LSP.first; 78 // There may not be a call instruction (?) in which case we ignore LPad. 79 LSP.second = LSP.first; 80 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 81 I != E;) { 82 --I; 83 if (I->getDesc().isCall()) { 84 LSP.second = LIS.getInstructionIndex(I); 85 break; 86 } 87 } 88 } 89 90 // If CurLI is live into a landing pad successor, move the last split point 91 // back to the call that may throw. 92 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 93 return LSP.second; 94 else 95 return LSP.first; 96} 97 98/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 99void SplitAnalysis::analyzeUses() { 100 assert(UseSlots.empty() && "Call clear first"); 101 102 // First get all the defs from the interval values. This provides the correct 103 // slots for early clobbers. 104 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 105 E = CurLI->vni_end(); I != E; ++I) 106 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 107 UseSlots.push_back((*I)->def); 108 109 // Get use slots form the use-def chain. 110 const MachineRegisterInfo &MRI = MF.getRegInfo(); 111 for (MachineRegisterInfo::use_nodbg_iterator 112 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 113 ++I) 114 if (!I.getOperand().isUndef()) 115 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot()); 116 117 array_pod_sort(UseSlots.begin(), UseSlots.end()); 118 119 // Remove duplicates, keeping the smaller slot for each instruction. 120 // That is what we want for early clobbers. 121 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 122 SlotIndex::isSameInstr), 123 UseSlots.end()); 124 125 // Compute per-live block info. 126 if (!calcLiveBlockInfo()) { 127 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 128 // I am looking at you, RegisterCoalescer! 129 DidRepairRange = true; 130 ++NumRepairs; 131 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 132 const_cast<LiveIntervals&>(LIS) 133 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 134 UseBlocks.clear(); 135 ThroughBlocks.clear(); 136 bool fixed = calcLiveBlockInfo(); 137 (void)fixed; 138 assert(fixed && "Couldn't fix broken live interval"); 139 } 140 141 DEBUG(dbgs() << "Analyze counted " 142 << UseSlots.size() << " instrs in " 143 << UseBlocks.size() << " blocks, through " 144 << NumThroughBlocks << " blocks.\n"); 145} 146 147/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 148/// where CurLI is live. 149bool SplitAnalysis::calcLiveBlockInfo() { 150 ThroughBlocks.resize(MF.getNumBlockIDs()); 151 NumThroughBlocks = NumGapBlocks = 0; 152 if (CurLI->empty()) 153 return true; 154 155 LiveInterval::const_iterator LVI = CurLI->begin(); 156 LiveInterval::const_iterator LVE = CurLI->end(); 157 158 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 159 UseI = UseSlots.begin(); 160 UseE = UseSlots.end(); 161 162 // Loop over basic blocks where CurLI is live. 163 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 164 for (;;) { 165 BlockInfo BI; 166 BI.MBB = MFI; 167 SlotIndex Start, Stop; 168 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 169 170 // If the block contains no uses, the range must be live through. At one 171 // point, RegisterCoalescer could create dangling ranges that ended 172 // mid-block. 173 if (UseI == UseE || *UseI >= Stop) { 174 ++NumThroughBlocks; 175 ThroughBlocks.set(BI.MBB->getNumber()); 176 // The range shouldn't end mid-block if there are no uses. This shouldn't 177 // happen. 178 if (LVI->end < Stop) 179 return false; 180 } else { 181 // This block has uses. Find the first and last uses in the block. 182 BI.FirstInstr = *UseI; 183 assert(BI.FirstInstr >= Start); 184 do ++UseI; 185 while (UseI != UseE && *UseI < Stop); 186 BI.LastInstr = UseI[-1]; 187 assert(BI.LastInstr < Stop); 188 189 // LVI is the first live segment overlapping MBB. 190 BI.LiveIn = LVI->start <= Start; 191 192 // When not live in, the first use should be a def. 193 if (!BI.LiveIn) { 194 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 195 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 196 BI.FirstDef = BI.FirstInstr; 197 } 198 199 // Look for gaps in the live range. 200 BI.LiveOut = true; 201 while (LVI->end < Stop) { 202 SlotIndex LastStop = LVI->end; 203 if (++LVI == LVE || LVI->start >= Stop) { 204 BI.LiveOut = false; 205 BI.LastInstr = LastStop; 206 break; 207 } 208 209 if (LastStop < LVI->start) { 210 // There is a gap in the live range. Create duplicate entries for the 211 // live-in snippet and the live-out snippet. 212 ++NumGapBlocks; 213 214 // Push the Live-in part. 215 BI.LiveOut = false; 216 UseBlocks.push_back(BI); 217 UseBlocks.back().LastInstr = LastStop; 218 219 // Set up BI for the live-out part. 220 BI.LiveIn = false; 221 BI.LiveOut = true; 222 BI.FirstInstr = BI.FirstDef = LVI->start; 223 } 224 225 // A LiveRange that starts in the middle of the block must be a def. 226 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 227 if (!BI.FirstDef) 228 BI.FirstDef = LVI->start; 229 } 230 231 UseBlocks.push_back(BI); 232 233 // LVI is now at LVE or LVI->end >= Stop. 234 if (LVI == LVE) 235 break; 236 } 237 238 // Live segment ends exactly at Stop. Move to the next segment. 239 if (LVI->end == Stop && ++LVI == LVE) 240 break; 241 242 // Pick the next basic block. 243 if (LVI->start < Stop) 244 ++MFI; 245 else 246 MFI = LIS.getMBBFromIndex(LVI->start); 247 } 248 249 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 250 return true; 251} 252 253unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 254 if (cli->empty()) 255 return 0; 256 LiveInterval *li = const_cast<LiveInterval*>(cli); 257 LiveInterval::iterator LVI = li->begin(); 258 LiveInterval::iterator LVE = li->end(); 259 unsigned Count = 0; 260 261 // Loop over basic blocks where li is live. 262 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 263 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 264 for (;;) { 265 ++Count; 266 LVI = li->advanceTo(LVI, Stop); 267 if (LVI == LVE) 268 return Count; 269 do { 270 ++MFI; 271 Stop = LIS.getMBBEndIdx(MFI); 272 } while (Stop <= LVI->start); 273 } 274} 275 276bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 277 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 278 const LiveInterval &Orig = LIS.getInterval(OrigReg); 279 assert(!Orig.empty() && "Splitting empty interval?"); 280 LiveInterval::const_iterator I = Orig.find(Idx); 281 282 // Range containing Idx should begin at Idx. 283 if (I != Orig.end() && I->start <= Idx) 284 return I->start == Idx; 285 286 // Range does not contain Idx, previous must end at Idx. 287 return I != Orig.begin() && (--I)->end == Idx; 288} 289 290void SplitAnalysis::analyze(const LiveInterval *li) { 291 clear(); 292 CurLI = li; 293 analyzeUses(); 294} 295 296 297//===----------------------------------------------------------------------===// 298// Split Editor 299//===----------------------------------------------------------------------===// 300 301/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 302SplitEditor::SplitEditor(SplitAnalysis &sa, 303 LiveIntervals &lis, 304 VirtRegMap &vrm, 305 MachineDominatorTree &mdt) 306 : SA(sa), LIS(lis), VRM(vrm), 307 MRI(vrm.getMachineFunction().getRegInfo()), 308 MDT(mdt), 309 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 310 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 311 Edit(0), 312 OpenIdx(0), 313 SpillMode(SM_Partition), 314 RegAssign(Allocator) 315{} 316 317void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 318 Edit = &LRE; 319 SpillMode = SM; 320 OpenIdx = 0; 321 RegAssign.clear(); 322 Values.clear(); 323 324 // Reset the LiveRangeCalc instances needed for this spill mode. 325 LRCalc[0].reset(&VRM.getMachineFunction()); 326 if (SpillMode) 327 LRCalc[1].reset(&VRM.getMachineFunction()); 328 329 // We don't need an AliasAnalysis since we will only be performing 330 // cheap-as-a-copy remats anyway. 331 Edit->anyRematerializable(LIS, TII, 0); 332} 333 334void SplitEditor::dump() const { 335 if (RegAssign.empty()) { 336 dbgs() << " empty\n"; 337 return; 338 } 339 340 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 341 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 342 dbgs() << '\n'; 343} 344 345VNInfo *SplitEditor::defValue(unsigned RegIdx, 346 const VNInfo *ParentVNI, 347 SlotIndex Idx) { 348 assert(ParentVNI && "Mapping NULL value"); 349 assert(Idx.isValid() && "Invalid SlotIndex"); 350 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 351 LiveInterval *LI = Edit->get(RegIdx); 352 353 // Create a new value. 354 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 355 356 // Use insert for lookup, so we can add missing values with a second lookup. 357 std::pair<ValueMap::iterator, bool> InsP = 358 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 359 ValueForcePair(VNI, false))); 360 361 // This was the first time (RegIdx, ParentVNI) was mapped. 362 // Keep it as a simple def without any liveness. 363 if (InsP.second) 364 return VNI; 365 366 // If the previous value was a simple mapping, add liveness for it now. 367 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 368 SlotIndex Def = OldVNI->def; 369 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 370 // No longer a simple mapping. Switch to a complex, non-forced mapping. 371 InsP.first->second = ValueForcePair(); 372 } 373 374 // This is a complex mapping, add liveness for VNI 375 SlotIndex Def = VNI->def; 376 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 377 378 return VNI; 379} 380 381void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 382 assert(ParentVNI && "Mapping NULL value"); 383 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 384 VNInfo *VNI = VFP.getPointer(); 385 386 // ParentVNI was either unmapped or already complex mapped. Either way, just 387 // set the force bit. 388 if (!VNI) { 389 VFP.setInt(true); 390 return; 391 } 392 393 // This was previously a single mapping. Make sure the old def is represented 394 // by a trivial live range. 395 SlotIndex Def = VNI->def; 396 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 397 // Mark as complex mapped, forced. 398 VFP = ValueForcePair(0, true); 399} 400 401VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 402 VNInfo *ParentVNI, 403 SlotIndex UseIdx, 404 MachineBasicBlock &MBB, 405 MachineBasicBlock::iterator I) { 406 MachineInstr *CopyMI = 0; 407 SlotIndex Def; 408 LiveInterval *LI = Edit->get(RegIdx); 409 410 // We may be trying to avoid interference that ends at a deleted instruction, 411 // so always begin RegIdx 0 early and all others late. 412 bool Late = RegIdx != 0; 413 414 // Attempt cheap-as-a-copy rematerialization. 415 LiveRangeEdit::Remat RM(ParentVNI); 416 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 417 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 418 ++NumRemats; 419 } else { 420 // Can't remat, just insert a copy from parent. 421 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 422 .addReg(Edit->getReg()); 423 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 424 .getRegSlot(); 425 ++NumCopies; 426 } 427 428 // Define the value in Reg. 429 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 430 VNI->setCopy(CopyMI); 431 return VNI; 432} 433 434/// Create a new virtual register and live interval. 435unsigned SplitEditor::openIntv() { 436 // Create the complement as index 0. 437 if (Edit->empty()) 438 Edit->create(LIS, VRM); 439 440 // Create the open interval. 441 OpenIdx = Edit->size(); 442 Edit->create(LIS, VRM); 443 return OpenIdx; 444} 445 446void SplitEditor::selectIntv(unsigned Idx) { 447 assert(Idx != 0 && "Cannot select the complement interval"); 448 assert(Idx < Edit->size() && "Can only select previously opened interval"); 449 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 450 OpenIdx = Idx; 451} 452 453SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 454 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 455 DEBUG(dbgs() << " enterIntvBefore " << Idx); 456 Idx = Idx.getBaseIndex(); 457 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 458 if (!ParentVNI) { 459 DEBUG(dbgs() << ": not live\n"); 460 return Idx; 461 } 462 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 463 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 464 assert(MI && "enterIntvBefore called with invalid index"); 465 466 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 467 return VNI->def; 468} 469 470SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 471 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 472 DEBUG(dbgs() << " enterIntvAfter " << Idx); 473 Idx = Idx.getBoundaryIndex(); 474 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 475 if (!ParentVNI) { 476 DEBUG(dbgs() << ": not live\n"); 477 return Idx; 478 } 479 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 480 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 481 assert(MI && "enterIntvAfter called with invalid index"); 482 483 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 484 llvm::next(MachineBasicBlock::iterator(MI))); 485 return VNI->def; 486} 487 488SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 489 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 490 SlotIndex End = LIS.getMBBEndIdx(&MBB); 491 SlotIndex Last = End.getPrevSlot(); 492 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 493 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 494 if (!ParentVNI) { 495 DEBUG(dbgs() << ": not live\n"); 496 return End; 497 } 498 DEBUG(dbgs() << ": valno " << ParentVNI->id); 499 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 500 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 501 RegAssign.insert(VNI->def, End, OpenIdx); 502 DEBUG(dump()); 503 return VNI->def; 504} 505 506/// useIntv - indicate that all instructions in MBB should use OpenLI. 507void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 508 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 509} 510 511void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 512 assert(OpenIdx && "openIntv not called before useIntv"); 513 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 514 RegAssign.insert(Start, End, OpenIdx); 515 DEBUG(dump()); 516} 517 518SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 519 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 520 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 521 522 // The interval must be live beyond the instruction at Idx. 523 SlotIndex Boundary = Idx.getBoundaryIndex(); 524 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 525 if (!ParentVNI) { 526 DEBUG(dbgs() << ": not live\n"); 527 return Boundary.getNextSlot(); 528 } 529 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 530 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 531 assert(MI && "No instruction at index"); 532 533 // In spill mode, make live ranges as short as possible by inserting the copy 534 // before MI. This is only possible if that instruction doesn't redefine the 535 // value. The inserted COPY is not a kill, and we don't need to recompute 536 // the source live range. The spiller also won't try to hoist this copy. 537 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 538 MI->readsVirtualRegister(Edit->getReg())) { 539 forceRecompute(0, ParentVNI); 540 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 541 return Idx; 542 } 543 544 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 545 llvm::next(MachineBasicBlock::iterator(MI))); 546 return VNI->def; 547} 548 549SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 550 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 551 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 552 553 // The interval must be live into the instruction at Idx. 554 Idx = Idx.getBaseIndex(); 555 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 556 if (!ParentVNI) { 557 DEBUG(dbgs() << ": not live\n"); 558 return Idx.getNextSlot(); 559 } 560 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 561 562 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 563 assert(MI && "No instruction at index"); 564 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 565 return VNI->def; 566} 567 568SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 569 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 570 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 571 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 572 573 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 574 if (!ParentVNI) { 575 DEBUG(dbgs() << ": not live\n"); 576 return Start; 577 } 578 579 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 580 MBB.SkipPHIsAndLabels(MBB.begin())); 581 RegAssign.insert(Start, VNI->def, OpenIdx); 582 DEBUG(dump()); 583 return VNI->def; 584} 585 586void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 587 assert(OpenIdx && "openIntv not called before overlapIntv"); 588 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 589 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 590 "Parent changes value in extended range"); 591 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 592 "Range cannot span basic blocks"); 593 594 // The complement interval will be extended as needed by LRCalc.extend(). 595 if (ParentVNI) 596 forceRecompute(0, ParentVNI); 597 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 598 RegAssign.insert(Start, End, OpenIdx); 599 DEBUG(dump()); 600} 601 602//===----------------------------------------------------------------------===// 603// Spill modes 604//===----------------------------------------------------------------------===// 605 606void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 607 LiveInterval *LI = Edit->get(0); 608 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 609 RegAssignMap::iterator AssignI; 610 AssignI.setMap(RegAssign); 611 612 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 613 VNInfo *VNI = Copies[i]; 614 SlotIndex Def = VNI->def; 615 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 616 assert(MI && "No instruction for back-copy"); 617 618 MachineBasicBlock *MBB = MI->getParent(); 619 MachineBasicBlock::iterator MBBI(MI); 620 bool AtBegin; 621 do AtBegin = MBBI == MBB->begin(); 622 while (!AtBegin && (--MBBI)->isDebugValue()); 623 624 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 625 LI->removeValNo(VNI); 626 LIS.RemoveMachineInstrFromMaps(MI); 627 MI->eraseFromParent(); 628 629 // Adjust RegAssign if a register assignment is killed at VNI->def. We 630 // want to avoid calculating the live range of the source register if 631 // possible. 632 AssignI.find(VNI->def.getPrevSlot()); 633 if (!AssignI.valid() || AssignI.start() >= Def) 634 continue; 635 // If MI doesn't kill the assigned register, just leave it. 636 if (AssignI.stop() != Def) 637 continue; 638 unsigned RegIdx = AssignI.value(); 639 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 640 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 641 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 642 } else { 643 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 644 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 645 AssignI.setStop(Kill); 646 } 647 } 648} 649 650MachineBasicBlock* 651SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 652 MachineBasicBlock *DefMBB) { 653 if (MBB == DefMBB) 654 return MBB; 655 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 656 657 const MachineLoopInfo &Loops = SA.Loops; 658 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 659 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 660 661 // Best candidate so far. 662 MachineBasicBlock *BestMBB = MBB; 663 unsigned BestDepth = UINT_MAX; 664 665 for (;;) { 666 const MachineLoop *Loop = Loops.getLoopFor(MBB); 667 668 // MBB isn't in a loop, it doesn't get any better. All dominators have a 669 // higher frequency by definition. 670 if (!Loop) { 671 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 672 << MBB->getNumber() << " at depth 0\n"); 673 return MBB; 674 } 675 676 // We'll never be able to exit the DefLoop. 677 if (Loop == DefLoop) { 678 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 679 << MBB->getNumber() << " in the same loop\n"); 680 return MBB; 681 } 682 683 // Least busy dominator seen so far. 684 unsigned Depth = Loop->getLoopDepth(); 685 if (Depth < BestDepth) { 686 BestMBB = MBB; 687 BestDepth = Depth; 688 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 689 << MBB->getNumber() << " at depth " << Depth << '\n'); 690 } 691 692 // Leave loop by going to the immediate dominator of the loop header. 693 // This is a bigger stride than simply walking up the dominator tree. 694 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 695 696 // Too far up the dominator tree? 697 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 698 return BestMBB; 699 700 MBB = IDom->getBlock(); 701 } 702} 703 704void SplitEditor::hoistCopiesForSize() { 705 // Get the complement interval, always RegIdx 0. 706 LiveInterval *LI = Edit->get(0); 707 LiveInterval *Parent = &Edit->getParent(); 708 709 // Track the nearest common dominator for all back-copies for each ParentVNI, 710 // indexed by ParentVNI->id. 711 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 712 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 713 714 // Find the nearest common dominator for parent values with multiple 715 // back-copies. If a single back-copy dominates, put it in DomPair.second. 716 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 717 VI != VE; ++VI) { 718 VNInfo *VNI = *VI; 719 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 720 assert(ParentVNI && "Parent not live at complement def"); 721 722 // Don't hoist remats. The complement is probably going to disappear 723 // completely anyway. 724 if (Edit->didRematerialize(ParentVNI)) 725 continue; 726 727 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 728 DomPair &Dom = NearestDom[ParentVNI->id]; 729 730 // Keep directly defined parent values. This is either a PHI or an 731 // instruction in the complement range. All other copies of ParentVNI 732 // should be eliminated. 733 if (VNI->def == ParentVNI->def) { 734 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 735 Dom = DomPair(ValMBB, VNI->def); 736 continue; 737 } 738 // Skip the singly mapped values. There is nothing to gain from hoisting a 739 // single back-copy. 740 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 741 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 742 continue; 743 } 744 745 if (!Dom.first) { 746 // First time we see ParentVNI. VNI dominates itself. 747 Dom = DomPair(ValMBB, VNI->def); 748 } else if (Dom.first == ValMBB) { 749 // Two defs in the same block. Pick the earlier def. 750 if (!Dom.second.isValid() || VNI->def < Dom.second) 751 Dom.second = VNI->def; 752 } else { 753 // Different basic blocks. Check if one dominates. 754 MachineBasicBlock *Near = 755 MDT.findNearestCommonDominator(Dom.first, ValMBB); 756 if (Near == ValMBB) 757 // Def ValMBB dominates. 758 Dom = DomPair(ValMBB, VNI->def); 759 else if (Near != Dom.first) 760 // None dominate. Hoist to common dominator, need new def. 761 Dom = DomPair(Near, SlotIndex()); 762 } 763 764 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 765 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 766 << " hoist to BB#" << Dom.first->getNumber() << ' ' 767 << Dom.second << '\n'); 768 } 769 770 // Insert the hoisted copies. 771 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 772 DomPair &Dom = NearestDom[i]; 773 if (!Dom.first || Dom.second.isValid()) 774 continue; 775 // This value needs a hoisted copy inserted at the end of Dom.first. 776 VNInfo *ParentVNI = Parent->getValNumInfo(i); 777 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 778 // Get a less loopy dominator than Dom.first. 779 Dom.first = findShallowDominator(Dom.first, DefMBB); 780 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 781 Dom.second = 782 defFromParent(0, ParentVNI, Last, *Dom.first, 783 LIS.getLastSplitPoint(Edit->getParent(), Dom.first))->def; 784 } 785 786 // Remove redundant back-copies that are now known to be dominated by another 787 // def with the same value. 788 SmallVector<VNInfo*, 8> BackCopies; 789 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 790 VI != VE; ++VI) { 791 VNInfo *VNI = *VI; 792 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 793 const DomPair &Dom = NearestDom[ParentVNI->id]; 794 if (!Dom.first || Dom.second == VNI->def) 795 continue; 796 BackCopies.push_back(VNI); 797 forceRecompute(0, ParentVNI); 798 } 799 removeBackCopies(BackCopies); 800} 801 802 803/// transferValues - Transfer all possible values to the new live ranges. 804/// Values that were rematerialized are left alone, they need LRCalc.extend(). 805bool SplitEditor::transferValues() { 806 bool Skipped = false; 807 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 808 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 809 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 810 DEBUG(dbgs() << " blit " << *ParentI << ':'); 811 VNInfo *ParentVNI = ParentI->valno; 812 // RegAssign has holes where RegIdx 0 should be used. 813 SlotIndex Start = ParentI->start; 814 AssignI.advanceTo(Start); 815 do { 816 unsigned RegIdx; 817 SlotIndex End = ParentI->end; 818 if (!AssignI.valid()) { 819 RegIdx = 0; 820 } else if (AssignI.start() <= Start) { 821 RegIdx = AssignI.value(); 822 if (AssignI.stop() < End) { 823 End = AssignI.stop(); 824 ++AssignI; 825 } 826 } else { 827 RegIdx = 0; 828 End = std::min(End, AssignI.start()); 829 } 830 831 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 832 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 833 LiveInterval *LI = Edit->get(RegIdx); 834 835 // Check for a simply defined value that can be blitted directly. 836 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 837 if (VNInfo *VNI = VFP.getPointer()) { 838 DEBUG(dbgs() << ':' << VNI->id); 839 LI->addRange(LiveRange(Start, End, VNI)); 840 Start = End; 841 continue; 842 } 843 844 // Skip values with forced recomputation. 845 if (VFP.getInt()) { 846 DEBUG(dbgs() << "(recalc)"); 847 Skipped = true; 848 Start = End; 849 continue; 850 } 851 852 LiveRangeCalc &LRC = getLRCalc(RegIdx); 853 854 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 855 // so the live range is accurate. Add live-in blocks in [Start;End) to the 856 // LiveInBlocks. 857 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 858 SlotIndex BlockStart, BlockEnd; 859 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 860 861 // The first block may be live-in, or it may have its own def. 862 if (Start != BlockStart) { 863 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 864 assert(VNI && "Missing def for complex mapped value"); 865 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 866 // MBB has its own def. Is it also live-out? 867 if (BlockEnd <= End) 868 LRC.setLiveOutValue(MBB, VNI); 869 870 // Skip to the next block for live-in. 871 ++MBB; 872 BlockStart = BlockEnd; 873 } 874 875 // Handle the live-in blocks covered by [Start;End). 876 assert(Start <= BlockStart && "Expected live-in block"); 877 while (BlockStart < End) { 878 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 879 BlockEnd = LIS.getMBBEndIdx(MBB); 880 if (BlockStart == ParentVNI->def) { 881 // This block has the def of a parent PHI, so it isn't live-in. 882 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 883 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 884 assert(VNI && "Missing def for complex mapped parent PHI"); 885 if (End >= BlockEnd) 886 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 887 } else { 888 // This block needs a live-in value. The last block covered may not 889 // be live-out. 890 if (End < BlockEnd) 891 LRC.addLiveInBlock(LI, MDT[MBB], End); 892 else { 893 // Live-through, and we don't know the value. 894 LRC.addLiveInBlock(LI, MDT[MBB]); 895 LRC.setLiveOutValue(MBB, 0); 896 } 897 } 898 BlockStart = BlockEnd; 899 ++MBB; 900 } 901 Start = End; 902 } while (Start != ParentI->end); 903 DEBUG(dbgs() << '\n'); 904 } 905 906 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 907 &LIS.getVNInfoAllocator()); 908 if (SpillMode) 909 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 910 &LIS.getVNInfoAllocator()); 911 912 return Skipped; 913} 914 915void SplitEditor::extendPHIKillRanges() { 916 // Extend live ranges to be live-out for successor PHI values. 917 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 918 E = Edit->getParent().vni_end(); I != E; ++I) { 919 const VNInfo *PHIVNI = *I; 920 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 921 continue; 922 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 923 LiveInterval *LI = Edit->get(RegIdx); 924 LiveRangeCalc &LRC = getLRCalc(RegIdx); 925 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 926 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 927 PE = MBB->pred_end(); PI != PE; ++PI) { 928 SlotIndex End = LIS.getMBBEndIdx(*PI); 929 SlotIndex LastUse = End.getPrevSlot(); 930 // The predecessor may not have a live-out value. That is OK, like an 931 // undef PHI operand. 932 if (Edit->getParent().liveAt(LastUse)) { 933 assert(RegAssign.lookup(LastUse) == RegIdx && 934 "Different register assignment in phi predecessor"); 935 LRC.extend(LI, End, 936 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 937 } 938 } 939 } 940} 941 942/// rewriteAssigned - Rewrite all uses of Edit->getReg(). 943void SplitEditor::rewriteAssigned(bool ExtendRanges) { 944 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 945 RE = MRI.reg_end(); RI != RE;) { 946 MachineOperand &MO = RI.getOperand(); 947 MachineInstr *MI = MO.getParent(); 948 ++RI; 949 // LiveDebugVariables should have handled all DBG_VALUE instructions. 950 if (MI->isDebugValue()) { 951 DEBUG(dbgs() << "Zapping " << *MI); 952 MO.setReg(0); 953 continue; 954 } 955 956 // <undef> operands don't really read the register, so it doesn't matter 957 // which register we choose. When the use operand is tied to a def, we must 958 // use the same register as the def, so just do that always. 959 SlotIndex Idx = LIS.getInstructionIndex(MI); 960 if (MO.isDef() || MO.isUndef()) 961 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 962 963 // Rewrite to the mapped register at Idx. 964 unsigned RegIdx = RegAssign.lookup(Idx); 965 LiveInterval *LI = Edit->get(RegIdx); 966 MO.setReg(LI->reg); 967 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 968 << Idx << ':' << RegIdx << '\t' << *MI); 969 970 // Extend liveness to Idx if the instruction reads reg. 971 if (!ExtendRanges || MO.isUndef()) 972 continue; 973 974 // Skip instructions that don't read Reg. 975 if (MO.isDef()) { 976 if (!MO.getSubReg() && !MO.isEarlyClobber()) 977 continue; 978 // We may wan't to extend a live range for a partial redef, or for a use 979 // tied to an early clobber. 980 Idx = Idx.getPrevSlot(); 981 if (!Edit->getParent().liveAt(Idx)) 982 continue; 983 } else 984 Idx = Idx.getRegSlot(true); 985 986 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 987 &MDT, &LIS.getVNInfoAllocator()); 988 } 989} 990 991void SplitEditor::deleteRematVictims() { 992 SmallVector<MachineInstr*, 8> Dead; 993 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 994 LiveInterval *LI = *I; 995 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 996 LII != LIE; ++LII) { 997 // Dead defs end at the store slot. 998 if (LII->end != LII->valno->def.getNextSlot()) 999 continue; 1000 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1001 assert(MI && "Missing instruction for dead def"); 1002 MI->addRegisterDead(LI->reg, &TRI); 1003 1004 if (!MI->allDefsAreDead()) 1005 continue; 1006 1007 DEBUG(dbgs() << "All defs dead: " << *MI); 1008 Dead.push_back(MI); 1009 } 1010 } 1011 1012 if (Dead.empty()) 1013 return; 1014 1015 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 1016} 1017 1018void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1019 ++NumFinished; 1020 1021 // At this point, the live intervals in Edit contain VNInfos corresponding to 1022 // the inserted copies. 1023 1024 // Add the original defs from the parent interval. 1025 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1026 E = Edit->getParent().vni_end(); I != E; ++I) { 1027 const VNInfo *ParentVNI = *I; 1028 if (ParentVNI->isUnused()) 1029 continue; 1030 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1031 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 1032 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 1033 VNI->setCopy(ParentVNI->getCopy()); 1034 1035 // Force rematted values to be recomputed everywhere. 1036 // The new live ranges may be truncated. 1037 if (Edit->didRematerialize(ParentVNI)) 1038 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1039 forceRecompute(i, ParentVNI); 1040 } 1041 1042 // Hoist back-copies to the complement interval when in spill mode. 1043 switch (SpillMode) { 1044 case SM_Partition: 1045 // Leave all back-copies as is. 1046 break; 1047 case SM_Size: 1048 hoistCopiesForSize(); 1049 break; 1050 case SM_Speed: 1051 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1052 break; 1053 } 1054 1055 // Transfer the simply mapped values, check if any are skipped. 1056 bool Skipped = transferValues(); 1057 if (Skipped) 1058 extendPHIKillRanges(); 1059 else 1060 ++NumSimple; 1061 1062 // Rewrite virtual registers, possibly extending ranges. 1063 rewriteAssigned(Skipped); 1064 1065 // Delete defs that were rematted everywhere. 1066 if (Skipped) 1067 deleteRematVictims(); 1068 1069 // Get rid of unused values and set phi-kill flags. 1070 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1071 (*I)->RenumberValues(LIS); 1072 1073 // Provide a reverse mapping from original indices to Edit ranges. 1074 if (LRMap) { 1075 LRMap->clear(); 1076 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1077 LRMap->push_back(i); 1078 } 1079 1080 // Now check if any registers were separated into multiple components. 1081 ConnectedVNInfoEqClasses ConEQ(LIS); 1082 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1083 // Don't use iterators, they are invalidated by create() below. 1084 LiveInterval *li = Edit->get(i); 1085 unsigned NumComp = ConEQ.Classify(li); 1086 if (NumComp <= 1) 1087 continue; 1088 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1089 SmallVector<LiveInterval*, 8> dups; 1090 dups.push_back(li); 1091 for (unsigned j = 1; j != NumComp; ++j) 1092 dups.push_back(&Edit->create(LIS, VRM)); 1093 ConEQ.Distribute(&dups[0], MRI); 1094 // The new intervals all map back to i. 1095 if (LRMap) 1096 LRMap->resize(Edit->size(), i); 1097 } 1098 1099 // Calculate spill weight and allocation hints for new intervals. 1100 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1101 1102 assert(!LRMap || LRMap->size() == Edit->size()); 1103} 1104 1105 1106//===----------------------------------------------------------------------===// 1107// Single Block Splitting 1108//===----------------------------------------------------------------------===// 1109 1110bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1111 bool SingleInstrs) const { 1112 // Always split for multiple instructions. 1113 if (!BI.isOneInstr()) 1114 return true; 1115 // Don't split for single instructions unless explicitly requested. 1116 if (!SingleInstrs) 1117 return false; 1118 // Splitting a live-through range always makes progress. 1119 if (BI.LiveIn && BI.LiveOut) 1120 return true; 1121 // No point in isolating a copy. It has no register class constraints. 1122 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1123 return false; 1124 // Finally, don't isolate an end point that was created by earlier splits. 1125 return isOriginalEndpoint(BI.FirstInstr); 1126} 1127 1128void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1129 openIntv(); 1130 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1131 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1132 LastSplitPoint)); 1133 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1134 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1135 } else { 1136 // The last use is after the last valid split point. 1137 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1138 useIntv(SegStart, SegStop); 1139 overlapIntv(SegStop, BI.LastInstr); 1140 } 1141} 1142 1143 1144//===----------------------------------------------------------------------===// 1145// Global Live Range Splitting Support 1146//===----------------------------------------------------------------------===// 1147 1148// These methods support a method of global live range splitting that uses a 1149// global algorithm to decide intervals for CFG edges. They will insert split 1150// points and color intervals in basic blocks while avoiding interference. 1151// 1152// Note that splitSingleBlock is also useful for blocks where both CFG edges 1153// are on the stack. 1154 1155void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1156 unsigned IntvIn, SlotIndex LeaveBefore, 1157 unsigned IntvOut, SlotIndex EnterAfter){ 1158 SlotIndex Start, Stop; 1159 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1160 1161 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1162 << ") intf " << LeaveBefore << '-' << EnterAfter 1163 << ", live-through " << IntvIn << " -> " << IntvOut); 1164 1165 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1166 1167 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1168 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1169 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1170 1171 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1172 1173 if (!IntvOut) { 1174 DEBUG(dbgs() << ", spill on entry.\n"); 1175 // 1176 // <<<<<<<<< Possible LeaveBefore interference. 1177 // |-----------| Live through. 1178 // -____________ Spill on entry. 1179 // 1180 selectIntv(IntvIn); 1181 SlotIndex Idx = leaveIntvAtTop(*MBB); 1182 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1183 (void)Idx; 1184 return; 1185 } 1186 1187 if (!IntvIn) { 1188 DEBUG(dbgs() << ", reload on exit.\n"); 1189 // 1190 // >>>>>>> Possible EnterAfter interference. 1191 // |-----------| Live through. 1192 // ___________-- Reload on exit. 1193 // 1194 selectIntv(IntvOut); 1195 SlotIndex Idx = enterIntvAtEnd(*MBB); 1196 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1197 (void)Idx; 1198 return; 1199 } 1200 1201 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1202 DEBUG(dbgs() << ", straight through.\n"); 1203 // 1204 // |-----------| Live through. 1205 // ------------- Straight through, same intv, no interference. 1206 // 1207 selectIntv(IntvOut); 1208 useIntv(Start, Stop); 1209 return; 1210 } 1211 1212 // We cannot legally insert splits after LSP. 1213 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1214 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1215 1216 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1217 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1218 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1219 // 1220 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1221 // |-----------| Live through. 1222 // ------======= Switch intervals between interference. 1223 // 1224 selectIntv(IntvOut); 1225 SlotIndex Idx; 1226 if (LeaveBefore && LeaveBefore < LSP) { 1227 Idx = enterIntvBefore(LeaveBefore); 1228 useIntv(Idx, Stop); 1229 } else { 1230 Idx = enterIntvAtEnd(*MBB); 1231 } 1232 selectIntv(IntvIn); 1233 useIntv(Start, Idx); 1234 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1235 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1236 return; 1237 } 1238 1239 DEBUG(dbgs() << ", create local intv for interference.\n"); 1240 // 1241 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1242 // |-----------| Live through. 1243 // ==---------== Switch intervals before/after interference. 1244 // 1245 assert(LeaveBefore <= EnterAfter && "Missed case"); 1246 1247 selectIntv(IntvOut); 1248 SlotIndex Idx = enterIntvAfter(EnterAfter); 1249 useIntv(Idx, Stop); 1250 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1251 1252 selectIntv(IntvIn); 1253 Idx = leaveIntvBefore(LeaveBefore); 1254 useIntv(Start, Idx); 1255 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1256} 1257 1258 1259void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1260 unsigned IntvIn, SlotIndex LeaveBefore) { 1261 SlotIndex Start, Stop; 1262 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1263 1264 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1265 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1266 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1267 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1268 1269 assert(IntvIn && "Must have register in"); 1270 assert(BI.LiveIn && "Must be live-in"); 1271 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1272 1273 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1274 DEBUG(dbgs() << " before interference.\n"); 1275 // 1276 // <<< Interference after kill. 1277 // |---o---x | Killed in block. 1278 // ========= Use IntvIn everywhere. 1279 // 1280 selectIntv(IntvIn); 1281 useIntv(Start, BI.LastInstr); 1282 return; 1283 } 1284 1285 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1286 1287 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1288 // 1289 // <<< Possible interference after last use. 1290 // |---o---o---| Live-out on stack. 1291 // =========____ Leave IntvIn after last use. 1292 // 1293 // < Interference after last use. 1294 // |---o---o--o| Live-out on stack, late last use. 1295 // ============ Copy to stack after LSP, overlap IntvIn. 1296 // \_____ Stack interval is live-out. 1297 // 1298 if (BI.LastInstr < LSP) { 1299 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1300 selectIntv(IntvIn); 1301 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1302 useIntv(Start, Idx); 1303 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1304 } else { 1305 DEBUG(dbgs() << ", spill before last split point.\n"); 1306 selectIntv(IntvIn); 1307 SlotIndex Idx = leaveIntvBefore(LSP); 1308 overlapIntv(Idx, BI.LastInstr); 1309 useIntv(Start, Idx); 1310 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1311 } 1312 return; 1313 } 1314 1315 // The interference is overlapping somewhere we wanted to use IntvIn. That 1316 // means we need to create a local interval that can be allocated a 1317 // different register. 1318 unsigned LocalIntv = openIntv(); 1319 (void)LocalIntv; 1320 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1321 1322 if (!BI.LiveOut || BI.LastInstr < LSP) { 1323 // 1324 // <<<<<<< Interference overlapping uses. 1325 // |---o---o---| Live-out on stack. 1326 // =====----____ Leave IntvIn before interference, then spill. 1327 // 1328 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1329 SlotIndex From = enterIntvBefore(LeaveBefore); 1330 useIntv(From, To); 1331 selectIntv(IntvIn); 1332 useIntv(Start, From); 1333 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1334 return; 1335 } 1336 1337 // <<<<<<< Interference overlapping uses. 1338 // |---o---o--o| Live-out on stack, late last use. 1339 // =====------- Copy to stack before LSP, overlap LocalIntv. 1340 // \_____ Stack interval is live-out. 1341 // 1342 SlotIndex To = leaveIntvBefore(LSP); 1343 overlapIntv(To, BI.LastInstr); 1344 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1345 useIntv(From, To); 1346 selectIntv(IntvIn); 1347 useIntv(Start, From); 1348 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1349} 1350 1351void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1352 unsigned IntvOut, SlotIndex EnterAfter) { 1353 SlotIndex Start, Stop; 1354 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1355 1356 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1357 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1358 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1359 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1360 1361 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1362 1363 assert(IntvOut && "Must have register out"); 1364 assert(BI.LiveOut && "Must be live-out"); 1365 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1366 1367 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1368 DEBUG(dbgs() << " after interference.\n"); 1369 // 1370 // >>>> Interference before def. 1371 // | o---o---| Defined in block. 1372 // ========= Use IntvOut everywhere. 1373 // 1374 selectIntv(IntvOut); 1375 useIntv(BI.FirstInstr, Stop); 1376 return; 1377 } 1378 1379 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1380 DEBUG(dbgs() << ", reload after interference.\n"); 1381 // 1382 // >>>> Interference before def. 1383 // |---o---o---| Live-through, stack-in. 1384 // ____========= Enter IntvOut before first use. 1385 // 1386 selectIntv(IntvOut); 1387 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1388 useIntv(Idx, Stop); 1389 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1390 return; 1391 } 1392 1393 // The interference is overlapping somewhere we wanted to use IntvOut. That 1394 // means we need to create a local interval that can be allocated a 1395 // different register. 1396 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1397 // 1398 // >>>>>>> Interference overlapping uses. 1399 // |---o---o---| Live-through, stack-in. 1400 // ____---====== Create local interval for interference range. 1401 // 1402 selectIntv(IntvOut); 1403 SlotIndex Idx = enterIntvAfter(EnterAfter); 1404 useIntv(Idx, Stop); 1405 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1406 1407 openIntv(); 1408 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1409 useIntv(From, Idx); 1410} 1411