SplitKit.cpp revision 3a0e0715a5691e26ca70bc853d6d3d116e5949b8
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "splitter"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : mf_(mf),
44    lis_(lis),
45    loops_(mli),
46    tii_(*mf.getTarget().getInstrInfo()),
47    curli_(0) {}
48
49void SplitAnalysis::clear() {
50  usingInstrs_.clear();
51  usingBlocks_.clear();
52  usingLoops_.clear();
53  curli_ = 0;
54}
55
56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57  MachineBasicBlock *T, *F;
58  SmallVector<MachineOperand, 4> Cond;
59  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60}
61
62/// analyzeUses - Count instructions, basic blocks, and loops using curli.
63void SplitAnalysis::analyzeUses() {
64  const MachineRegisterInfo &MRI = mf_.getRegInfo();
65  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66       MachineInstr *MI = I.skipInstruction();) {
67    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68      continue;
69    MachineBasicBlock *MBB = MI->getParent();
70    if (usingBlocks_[MBB]++)
71      continue;
72    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
73         Loop = Loop->getParentLoop())
74      usingLoops_[Loop]++;
75  }
76  DEBUG(dbgs() << "  counted "
77               << usingInstrs_.size() << " instrs, "
78               << usingBlocks_.size() << " blocks, "
79               << usingLoops_.size()  << " loops.\n");
80}
81
82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
83  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
84    unsigned count = usingBlocks_.lookup(*I);
85    OS << " BB#" << (*I)->getNumber();
86    if (count)
87      OS << '(' << count << ')';
88  }
89}
90
91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
92// predecessor blocks, and exit blocks.
93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
94  Blocks.clear();
95
96  // Blocks in the loop.
97  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
98
99  // Predecessor blocks.
100  const MachineBasicBlock *Header = Loop->getHeader();
101  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
102       E = Header->pred_end(); I != E; ++I)
103    if (!Blocks.Loop.count(*I))
104      Blocks.Preds.insert(*I);
105
106  // Exit blocks.
107  for (MachineLoop::block_iterator I = Loop->block_begin(),
108       E = Loop->block_end(); I != E; ++I) {
109    const MachineBasicBlock *MBB = *I;
110    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
111       SE = MBB->succ_end(); SI != SE; ++SI)
112      if (!Blocks.Loop.count(*SI))
113        Blocks.Exits.insert(*SI);
114  }
115}
116
117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
118  OS << "Loop:";
119  print(B.Loop, OS);
120  OS << ", preds:";
121  print(B.Preds, OS);
122  OS << ", exits:";
123  print(B.Exits, OS);
124}
125
126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
127/// and around the Loop.
128SplitAnalysis::LoopPeripheralUse SplitAnalysis::
129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
130  LoopPeripheralUse use = ContainedInLoop;
131  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
132       I != E; ++I) {
133    const MachineBasicBlock *MBB = I->first;
134    // Is this a peripheral block?
135    if (use < MultiPeripheral &&
136        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
137      if (I->second > 1) use = MultiPeripheral;
138      else               use = SinglePeripheral;
139      continue;
140    }
141    // Is it a loop block?
142    if (Blocks.Loop.count(MBB))
143      continue;
144    // It must be an unrelated block.
145    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
146    return OutsideLoop;
147  }
148  return use;
149}
150
151/// getCriticalExits - It may be necessary to partially break critical edges
152/// leaving the loop if an exit block has predecessors from outside the loop
153/// periphery.
154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
155                                     BlockPtrSet &CriticalExits) {
156  CriticalExits.clear();
157
158  // A critical exit block has curli line-in, and has a predecessor that is not
159  // in the loop nor a loop predecessor. For such an exit block, the edges
160  // carrying the new variable must be moved to a new pre-exit block.
161  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
162       I != E; ++I) {
163    const MachineBasicBlock *Exit = *I;
164    // A single-predecessor exit block is definitely not a critical edge.
165    if (Exit->pred_size() == 1)
166      continue;
167    // This exit may not have curli live in at all. No need to split.
168    if (!lis_.isLiveInToMBB(*curli_, Exit))
169      continue;
170    // Does this exit block have a predecessor that is not a loop block or loop
171    // predecessor?
172    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
173         PE = Exit->pred_end(); PI != PE; ++PI) {
174      const MachineBasicBlock *Pred = *PI;
175      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
176        continue;
177      // This is a critical exit block, and we need to split the exit edge.
178      CriticalExits.insert(Exit);
179      break;
180    }
181  }
182}
183
184/// canSplitCriticalExits - Return true if it is possible to insert new exit
185/// blocks before the blocks in CriticalExits.
186bool
187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
188                                     BlockPtrSet &CriticalExits) {
189  // If we don't allow critical edge splitting, require no critical exits.
190  if (!AllowSplit)
191    return CriticalExits.empty();
192
193  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
194       I != E; ++I) {
195    const MachineBasicBlock *Succ = *I;
196    // We want to insert a new pre-exit MBB before Succ, and change all the
197    // in-loop blocks to branch to the pre-exit instead of Succ.
198    // Check that all the in-loop predecessors can be changed.
199    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
200         PE = Succ->pred_end(); PI != PE; ++PI) {
201      const MachineBasicBlock *Pred = *PI;
202      // The external predecessors won't be altered.
203      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
204        continue;
205      if (!canAnalyzeBranch(Pred))
206        return false;
207    }
208
209    // If Succ's layout predecessor falls through, that too must be analyzable.
210    // We need to insert the pre-exit block in the gap.
211    MachineFunction::const_iterator MFI = Succ;
212    if (MFI == mf_.begin())
213      continue;
214    if (!canAnalyzeBranch(--MFI))
215      return false;
216  }
217  // No problems found.
218  return true;
219}
220
221void SplitAnalysis::analyze(const LiveInterval *li) {
222  clear();
223  curli_ = li;
224  analyzeUses();
225}
226
227const MachineLoop *SplitAnalysis::getBestSplitLoop() {
228  assert(curli_ && "Call analyze() before getBestSplitLoop");
229  if (usingLoops_.empty())
230    return 0;
231
232  LoopPtrSet Loops;
233  LoopBlocks Blocks;
234  BlockPtrSet CriticalExits;
235
236  // We split around loops where curli is used outside the periphery.
237  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
238       E = usingLoops_.end(); I != E; ++I) {
239    const MachineLoop *Loop = I->first;
240    getLoopBlocks(Loop, Blocks);
241    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
242
243    switch(analyzeLoopPeripheralUse(Blocks)) {
244    case OutsideLoop:
245      break;
246    case MultiPeripheral:
247      // FIXME: We could split a live range with multiple uses in a peripheral
248      // block and still make progress. However, it is possible that splitting
249      // another live range will insert copies into a peripheral block, and
250      // there is a small chance we can enter an infinity loop, inserting copies
251      // forever.
252      // For safety, stick to splitting live ranges with uses outside the
253      // periphery.
254      DEBUG(dbgs() << ": multiple peripheral uses\n");
255      break;
256    case ContainedInLoop:
257      DEBUG(dbgs() << ": fully contained\n");
258      continue;
259    case SinglePeripheral:
260      DEBUG(dbgs() << ": single peripheral use\n");
261      continue;
262    }
263    // Will it be possible to split around this loop?
264    getCriticalExits(Blocks, CriticalExits);
265    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
266    if (!canSplitCriticalExits(Blocks, CriticalExits))
267      continue;
268    // This is a possible split.
269    Loops.insert(Loop);
270  }
271
272  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
273               << " candidate loops.\n");
274
275  if (Loops.empty())
276    return 0;
277
278  // Pick the earliest loop.
279  // FIXME: Are there other heuristics to consider?
280  const MachineLoop *Best = 0;
281  SlotIndex BestIdx;
282  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
283       ++I) {
284    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
285    if (!Best || Idx < BestIdx)
286      Best = *I, BestIdx = Idx;
287  }
288  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
289  return Best;
290}
291
292//===----------------------------------------------------------------------===//
293//                               LiveIntervalMap
294//===----------------------------------------------------------------------===//
295
296// Work around the fact that the std::pair constructors are broken for pointer
297// pairs in some implementations. makeVV(x, 0) works.
298static inline std::pair<const VNInfo*, VNInfo*>
299makeVV(const VNInfo *a, VNInfo *b) {
300  return std::make_pair(a, b);
301}
302
303void LiveIntervalMap::reset(LiveInterval *li) {
304  li_ = li;
305  valueMap_.clear();
306}
307
308bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
309  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
310  return i != valueMap_.end() && i->second == 0;
311}
312
313// defValue - Introduce a li_ def for ParentVNI that could be later than
314// ParentVNI->def.
315VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
316  assert(li_ && "call reset first");
317  assert(ParentVNI && "Mapping  NULL value");
318  assert(Idx.isValid() && "Invalid SlotIndex");
319  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
320
321  // Create a new value.
322  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
323
324  // Preserve the PHIDef bit.
325  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
326    VNI->setIsPHIDef(true);
327
328  // Use insert for lookup, so we can add missing values with a second lookup.
329  std::pair<ValueMap::iterator,bool> InsP =
330    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
331
332  // This is now a complex def. Mark with a NULL in valueMap.
333  if (!InsP.second)
334    InsP.first->second = 0;
335
336  return VNI;
337}
338
339
340// mapValue - Find the mapped value for ParentVNI at Idx.
341// Potentially create phi-def values.
342VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
343                                  bool *simple) {
344  assert(li_ && "call reset first");
345  assert(ParentVNI && "Mapping  NULL value");
346  assert(Idx.isValid() && "Invalid SlotIndex");
347  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
348
349  // Use insert for lookup, so we can add missing values with a second lookup.
350  std::pair<ValueMap::iterator,bool> InsP =
351    valueMap_.insert(makeVV(ParentVNI, 0));
352
353  // This was an unknown value. Create a simple mapping.
354  if (InsP.second) {
355    if (simple) *simple = true;
356    return InsP.first->second = li_->createValueCopy(ParentVNI,
357                                                     lis_.getVNInfoAllocator());
358  }
359
360  // This was a simple mapped value.
361  if (InsP.first->second) {
362    if (simple) *simple = true;
363    return InsP.first->second;
364  }
365
366  // This is a complex mapped value. There may be multiple defs, and we may need
367  // to create phi-defs.
368  if (simple) *simple = false;
369  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
370  assert(IdxMBB && "No MBB at Idx");
371
372  // Is there a def in the same MBB we can extend?
373  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
374    return VNI;
375
376  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
377  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
378  // Perform a depth-first search for predecessor blocks where we know the
379  // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
380
381  // Track MBBs where we have created or learned the dominating value.
382  // This may change during the DFS as we create new phi-defs.
383  typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
384  MBBValueMap DomValue;
385  typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
386  BlockPtrSet Visited;
387
388  // Iterate over IdxMBB predecessors in a depth-first order.
389  // Skip begin() since that is always IdxMBB.
390  for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
391         IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
392         IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
393    MachineBasicBlock *MBB = *IDFI;
394    SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
395
396    // We are operating on the restricted CFG where ParentVNI is live.
397    if (parentli_.getVNInfoAt(End) != ParentVNI) {
398      IDFI.skipChildren();
399      continue;
400    }
401
402    // Do we have a dominating value in this block?
403    VNInfo *VNI = extendTo(MBB, End);
404    if (!VNI) {
405      ++IDFI;
406      continue;
407    }
408
409    // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
410    Visited.erase(MBB);
411
412    // Track the path back to IdxMBB, creating phi-defs
413    // as needed along the way.
414    for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
415      // Start from MBB's immediate successor. End at IdxMBB.
416      MachineBasicBlock *Succ = IDFI.getPath(PI-1);
417      std::pair<MBBValueMap::iterator, bool> InsP =
418        DomValue.insert(MBBValueMap::value_type(Succ, VNI));
419
420      // This is the first time we backtrack to Succ.
421      if (InsP.second)
422        continue;
423
424      // We reached Succ again with the same VNI. Nothing is going to change.
425      VNInfo *OVNI = InsP.first->second;
426      if (OVNI == VNI)
427        break;
428
429      // Succ already has a phi-def. No need to continue.
430      SlotIndex Start = lis_.getMBBStartIdx(Succ);
431      if (OVNI->def == Start)
432        break;
433
434      // We have a collision between the old and new VNI at Succ. That means
435      // neither dominates and we need a new phi-def.
436      VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
437      VNI->setIsPHIDef(true);
438      InsP.first->second = VNI;
439
440      // Replace OVNI with VNI in the remaining path.
441      for (; PI > 1 ; --PI) {
442        MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
443        if (I == DomValue.end() || I->second != OVNI)
444          break;
445        I->second = VNI;
446      }
447    }
448
449    // No need to search the children, we found a dominating value.
450    IDFI.skipChildren();
451  }
452
453  // The search should at least find a dominating value for IdxMBB.
454  assert(!DomValue.empty() && "Couldn't find a reaching definition");
455
456  // Since we went through the trouble of a full DFS visiting all reaching defs,
457  // the values in DomValue are now accurate. No more phi-defs are needed for
458  // these blocks, so we can color the live ranges.
459  // This makes the next mapValue call much faster.
460  VNInfo *IdxVNI = 0;
461  for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
462       ++I) {
463     MachineBasicBlock *MBB = I->first;
464     VNInfo *VNI = I->second;
465     SlotIndex Start = lis_.getMBBStartIdx(MBB);
466     if (MBB == IdxMBB) {
467       // Don't add full liveness to IdxMBB, stop at Idx.
468       if (Start != Idx)
469         li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
470       // The caller had better add some liveness to IdxVNI, or it leaks.
471       IdxVNI = VNI;
472     } else
473      li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
474  }
475
476  assert(IdxVNI && "Didn't find value for Idx");
477  return IdxVNI;
478}
479
480// extendTo - Find the last li_ value defined in MBB at or before Idx. The
481// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
482// Return the found VNInfo, or NULL.
483VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
484  assert(li_ && "call reset first");
485  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
486  if (I == li_->begin())
487    return 0;
488  --I;
489  if (I->end <= lis_.getMBBStartIdx(MBB))
490    return 0;
491  if (I->end <= Idx)
492    I->end = Idx.getNextSlot();
493  return I->valno;
494}
495
496// addSimpleRange - Add a simple range from parentli_ to li_.
497// ParentVNI must be live in the [Start;End) interval.
498void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
499                                     const VNInfo *ParentVNI) {
500  assert(li_ && "call reset first");
501  bool simple;
502  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
503  // A simple mapping is easy.
504  if (simple) {
505    li_->addRange(LiveRange(Start, End, VNI));
506    return;
507  }
508
509  // ParentVNI is a complex value. We must map per MBB.
510  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
511  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
512
513  if (MBB == MBBE) {
514    li_->addRange(LiveRange(Start, End, VNI));
515    return;
516  }
517
518  // First block.
519  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
520
521  // Run sequence of full blocks.
522  for (++MBB; MBB != MBBE; ++MBB) {
523    Start = lis_.getMBBStartIdx(MBB);
524    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
525                            mapValue(ParentVNI, Start)));
526  }
527
528  // Final block.
529  Start = lis_.getMBBStartIdx(MBB);
530  if (Start != End)
531    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
532}
533
534/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
535/// All needed values whose def is not inside [Start;End) must be defined
536/// beforehand so mapValue will work.
537void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
538  assert(li_ && "call reset first");
539  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
540  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
541
542  // Check if --I begins before Start and overlaps.
543  if (I != B) {
544    --I;
545    if (I->end > Start)
546      addSimpleRange(Start, std::min(End, I->end), I->valno);
547    ++I;
548  }
549
550  // The remaining ranges begin after Start.
551  for (;I != E && I->start < End; ++I)
552    addSimpleRange(I->start, std::min(End, I->end), I->valno);
553}
554
555VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
556                                       const VNInfo *ParentVNI,
557                                       MachineBasicBlock &MBB,
558                                       MachineBasicBlock::iterator I) {
559  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
560    get(TargetOpcode::COPY);
561  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
562  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
563  VNInfo *VNI = defValue(ParentVNI, DefIdx);
564  VNI->setCopy(MI);
565  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
566  return VNI;
567}
568
569//===----------------------------------------------------------------------===//
570//                               Split Editor
571//===----------------------------------------------------------------------===//
572
573/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
574SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
575                         LiveRangeEdit &edit)
576  : sa_(sa), lis_(lis), vrm_(vrm),
577    mri_(vrm.getMachineFunction().getRegInfo()),
578    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
579    edit_(edit),
580    dupli_(lis_, edit.getParent()),
581    openli_(lis_, edit.getParent())
582{
583}
584
585bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
586  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
587    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
588      return true;
589  return false;
590}
591
592/// Create a new virtual register and live interval.
593void SplitEditor::openIntv() {
594  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
595
596  if (!dupli_.getLI())
597    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
598
599  openli_.reset(&edit_.create(mri_, lis_, vrm_));
600}
601
602/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
603/// not live before Idx, a COPY is not inserted.
604void SplitEditor::enterIntvBefore(SlotIndex Idx) {
605  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
606  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
607  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
608  if (!ParentVNI) {
609    DEBUG(dbgs() << ": not live\n");
610    return;
611  }
612  DEBUG(dbgs() << ": valno " << ParentVNI->id);
613  truncatedValues.insert(ParentVNI);
614  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
615  assert(MI && "enterIntvBefore called with invalid index");
616  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
617                                      *MI->getParent(), MI);
618  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
619  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
620}
621
622/// enterIntvAtEnd - Enter openli at the end of MBB.
623void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
624  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
625  SlotIndex End = lis_.getMBBEndIdx(&MBB);
626  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
627  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
628  if (!ParentVNI) {
629    DEBUG(dbgs() << ": not live\n");
630    return;
631  }
632  DEBUG(dbgs() << ": valno " << ParentVNI->id);
633  truncatedValues.insert(ParentVNI);
634  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
635                                      MBB, MBB.getFirstTerminator());
636  // Make sure openli is live out of MBB.
637  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
638  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
639}
640
641/// useIntv - indicate that all instructions in MBB should use openli.
642void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
643  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
644}
645
646void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
647  assert(openli_.getLI() && "openIntv not called before useIntv");
648  openli_.addRange(Start, End);
649  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
650               << *openli_.getLI() << '\n');
651}
652
653/// leaveIntvAfter - Leave openli after the instruction at Idx.
654void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
655  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
656  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
657
658  // The interval must be live beyond the instruction at Idx.
659  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
660  if (!ParentVNI) {
661    DEBUG(dbgs() << ": not live\n");
662    return;
663  }
664  DEBUG(dbgs() << ": valno " << ParentVNI->id);
665
666  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
667  MachineBasicBlock *MBB = MII->getParent();
668  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
669                                     llvm::next(MII));
670
671  // Finally we must make sure that openli is properly extended from Idx to the
672  // new copy.
673  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
674  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
675}
676
677/// leaveIntvAtTop - Leave the interval at the top of MBB.
678/// Currently, only one value can leave the interval.
679void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
680  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
681  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
682  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
683
684  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
685  if (!ParentVNI) {
686    DEBUG(dbgs() << ": not live\n");
687    return;
688  }
689
690  // We are going to insert a back copy, so we must have a dupli_.
691  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
692                                     MBB, MBB.begin());
693
694  // Finally we must make sure that openli is properly extended from Start to
695  // the new copy.
696  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
697  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
698}
699
700/// closeIntv - Indicate that we are done editing the currently open
701/// LiveInterval, and ranges can be trimmed.
702void SplitEditor::closeIntv() {
703  assert(openli_.getLI() && "openIntv not called before closeIntv");
704
705  DEBUG(dbgs() << "    closeIntv cleaning up\n");
706  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
707  openli_.reset(0);
708}
709
710/// rewrite - Rewrite all uses of reg to use the new registers.
711void SplitEditor::rewrite(unsigned reg) {
712  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
713       RE = mri_.reg_end(); RI != RE;) {
714    MachineOperand &MO = RI.getOperand();
715    MachineInstr *MI = MO.getParent();
716    ++RI;
717    if (MI->isDebugValue()) {
718      DEBUG(dbgs() << "Zapping " << *MI);
719      // FIXME: We can do much better with debug values.
720      MO.setReg(0);
721      continue;
722    }
723    SlotIndex Idx = lis_.getInstructionIndex(MI);
724    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
725    LiveInterval *LI = 0;
726    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
727         ++I) {
728      LiveInterval *testli = *I;
729      if (testli->liveAt(Idx)) {
730        LI = testli;
731        break;
732      }
733    }
734    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
735    assert(LI && "No register was live at use");
736    MO.setReg(LI->reg);
737    DEBUG(dbgs() << '\t' << *MI);
738  }
739}
740
741void
742SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
743  // Build vector of iterator pairs from the intervals.
744  typedef std::pair<LiveInterval::const_iterator,
745                    LiveInterval::const_iterator> IIPair;
746  SmallVector<IIPair, 8> Iters;
747  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
748       ++LI) {
749    if (*LI == dupli_.getLI())
750      continue;
751    LiveInterval::const_iterator I = (*LI)->find(Start);
752    LiveInterval::const_iterator E = (*LI)->end();
753    if (I != E)
754      Iters.push_back(std::make_pair(I, E));
755  }
756
757  SlotIndex sidx = Start;
758  // Break [Start;End) into segments that don't overlap any intervals.
759  for (;;) {
760    SlotIndex next = sidx, eidx = End;
761    // Find overlapping intervals.
762    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
763      LiveInterval::const_iterator I = Iters[i].first;
764      // Interval I is overlapping [sidx;eidx). Trim sidx.
765      if (I->start <= sidx) {
766        sidx = I->end;
767        // Move to the next run, remove iters when all are consumed.
768        I = ++Iters[i].first;
769        if (I == Iters[i].second) {
770          Iters.erase(Iters.begin() + i);
771          --i;
772          continue;
773        }
774      }
775      // Trim eidx too if needed.
776      if (I->start >= eidx)
777        continue;
778      eidx = I->start;
779      next = I->end;
780    }
781    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
782    if (sidx < eidx)
783      dupli_.addSimpleRange(sidx, eidx, VNI);
784    // If the interval end was truncated, we can try again from next.
785    if (next <= sidx)
786      break;
787    sidx = next;
788  }
789}
790
791void SplitEditor::computeRemainder() {
792  // First we need to fill in the live ranges in dupli.
793  // If values were redefined, we need a full recoloring with SSA update.
794  // If values were truncated, we only need to truncate the ranges.
795  // If values were partially rematted, we should shrink to uses.
796  // If values were fully rematted, they should be omitted.
797  // FIXME: If a single value is redefined, just move the def and truncate.
798  LiveInterval &parent = edit_.getParent();
799
800  // Values that are fully contained in the split intervals.
801  SmallPtrSet<const VNInfo*, 8> deadValues;
802  // Map all curli values that should have live defs in dupli.
803  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
804       E = parent.vni_end(); I != E; ++I) {
805    const VNInfo *VNI = *I;
806    // Original def is contained in the split intervals.
807    if (intervalsLiveAt(VNI->def)) {
808      // Did this value escape?
809      if (dupli_.isMapped(VNI))
810        truncatedValues.insert(VNI);
811      else
812        deadValues.insert(VNI);
813      continue;
814    }
815    // Add minimal live range at the definition.
816    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
817    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
818  }
819
820  // Add all ranges to dupli.
821  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
822       I != E; ++I) {
823    const LiveRange &LR = *I;
824    if (truncatedValues.count(LR.valno)) {
825      // recolor after removing intervals_.
826      addTruncSimpleRange(LR.start, LR.end, LR.valno);
827    } else if (!deadValues.count(LR.valno)) {
828      // recolor without truncation.
829      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
830    }
831  }
832}
833
834void SplitEditor::finish() {
835  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
836  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
837
838  // Complete dupli liveness.
839  computeRemainder();
840
841  // Get rid of unused values and set phi-kill flags.
842  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
843    (*I)->RenumberValues(lis_);
844
845  // Rewrite instructions.
846  rewrite(edit_.getReg());
847
848  // Now check if any registers were separated into multiple components.
849  ConnectedVNInfoEqClasses ConEQ(lis_);
850  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
851    // Don't use iterators, they are invalidated by create() below.
852    LiveInterval *li = edit_.get(i);
853    unsigned NumComp = ConEQ.Classify(li);
854    if (NumComp <= 1)
855      continue;
856    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
857    SmallVector<LiveInterval*, 8> dups;
858    dups.push_back(li);
859    for (unsigned i = 1; i != NumComp; ++i)
860      dups.push_back(&edit_.create(mri_, lis_, vrm_));
861    ConEQ.Distribute(&dups[0]);
862    // Rewrite uses to the new regs.
863    rewrite(li->reg);
864  }
865
866  // Calculate spill weight and allocation hints for new intervals.
867  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
868  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
869    LiveInterval &li = **I;
870    vrai.CalculateRegClass(li.reg);
871    vrai.CalculateWeightAndHint(li);
872    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
873                 << ":" << li << '\n');
874  }
875}
876
877
878//===----------------------------------------------------------------------===//
879//                               Loop Splitting
880//===----------------------------------------------------------------------===//
881
882void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
883  SplitAnalysis::LoopBlocks Blocks;
884  sa_.getLoopBlocks(Loop, Blocks);
885
886  DEBUG({
887    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
888  });
889
890  // Break critical edges as needed.
891  SplitAnalysis::BlockPtrSet CriticalExits;
892  sa_.getCriticalExits(Blocks, CriticalExits);
893  assert(CriticalExits.empty() && "Cannot break critical exits yet");
894
895  // Create new live interval for the loop.
896  openIntv();
897
898  // Insert copies in the predecessors.
899  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
900       E = Blocks.Preds.end(); I != E; ++I) {
901    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
902    enterIntvAtEnd(MBB);
903  }
904
905  // Switch all loop blocks.
906  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
907       E = Blocks.Loop.end(); I != E; ++I)
908     useIntv(**I);
909
910  // Insert back copies in the exit blocks.
911  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
912       E = Blocks.Exits.end(); I != E; ++I) {
913    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
914    leaveIntvAtTop(MBB);
915  }
916
917  // Done.
918  closeIntv();
919  finish();
920}
921
922
923//===----------------------------------------------------------------------===//
924//                            Single Block Splitting
925//===----------------------------------------------------------------------===//
926
927/// getMultiUseBlocks - if curli has more than one use in a basic block, it
928/// may be an advantage to split curli for the duration of the block.
929bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
930  // If curli is local to one block, there is no point to splitting it.
931  if (usingBlocks_.size() <= 1)
932    return false;
933  // Add blocks with multiple uses.
934  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
935       I != E; ++I)
936    switch (I->second) {
937    case 0:
938    case 1:
939      continue;
940    case 2: {
941      // When there are only two uses and curli is both live in and live out,
942      // we don't really win anything by isolating the block since we would be
943      // inserting two copies.
944      // The remaing register would still have two uses in the block. (Unless it
945      // separates into disconnected components).
946      if (lis_.isLiveInToMBB(*curli_, I->first) &&
947          lis_.isLiveOutOfMBB(*curli_, I->first))
948        continue;
949    } // Fall through.
950    default:
951      Blocks.insert(I->first);
952    }
953  return !Blocks.empty();
954}
955
956/// splitSingleBlocks - Split curli into a separate live interval inside each
957/// basic block in Blocks.
958void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
959  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
960  // Determine the first and last instruction using curli in each block.
961  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
962  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
963  IndexPairMap MBBRange;
964  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
965       E = sa_.usingInstrs_.end(); I != E; ++I) {
966    const MachineBasicBlock *MBB = (*I)->getParent();
967    if (!Blocks.count(MBB))
968      continue;
969    SlotIndex Idx = lis_.getInstructionIndex(*I);
970    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
971    IndexPair &IP = MBBRange[MBB];
972    if (!IP.first.isValid() || Idx < IP.first)
973      IP.first = Idx;
974    if (!IP.second.isValid() || Idx > IP.second)
975      IP.second = Idx;
976  }
977
978  // Create a new interval for each block.
979  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
980       E = Blocks.end(); I != E; ++I) {
981    IndexPair &IP = MBBRange[*I];
982    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
983                 << IP.first << ';' << IP.second << ")\n");
984    assert(IP.first.isValid() && IP.second.isValid());
985
986    openIntv();
987    enterIntvBefore(IP.first);
988    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
989    leaveIntvAfter(IP.second);
990    closeIntv();
991  }
992  finish();
993}
994
995
996//===----------------------------------------------------------------------===//
997//                            Sub Block Splitting
998//===----------------------------------------------------------------------===//
999
1000/// getBlockForInsideSplit - If curli is contained inside a single basic block,
1001/// and it wou pay to subdivide the interval inside that block, return it.
1002/// Otherwise return NULL. The returned block can be passed to
1003/// SplitEditor::splitInsideBlock.
1004const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1005  // The interval must be exclusive to one block.
1006  if (usingBlocks_.size() != 1)
1007    return 0;
1008  // Don't to this for less than 4 instructions. We want to be sure that
1009  // splitting actually reduces the instruction count per interval.
1010  if (usingInstrs_.size() < 4)
1011    return 0;
1012  return usingBlocks_.begin()->first;
1013}
1014
1015/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1016void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1017  SmallVector<SlotIndex, 32> Uses;
1018  Uses.reserve(sa_.usingInstrs_.size());
1019  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1020       E = sa_.usingInstrs_.end(); I != E; ++I)
1021    if ((*I)->getParent() == MBB)
1022      Uses.push_back(lis_.getInstructionIndex(*I));
1023  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1024               << Uses.size() << " instructions.\n");
1025  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1026  array_pod_sort(Uses.begin(), Uses.end());
1027
1028  // Simple algorithm: Find the largest gap between uses as determined by slot
1029  // indices. Create new intervals for instructions before the gap and after the
1030  // gap.
1031  unsigned bestPos = 0;
1032  int bestGap = 0;
1033  DEBUG(dbgs() << "    dist (" << Uses[0]);
1034  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1035    int g = Uses[i-1].distance(Uses[i]);
1036    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1037    if (g > bestGap)
1038      bestPos = i, bestGap = g;
1039  }
1040  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1041
1042  // bestPos points to the first use after the best gap.
1043  assert(bestPos > 0 && "Invalid gap");
1044
1045  // FIXME: Don't create intervals for low densities.
1046
1047  // First interval before the gap. Don't create single-instr intervals.
1048  if (bestPos > 1) {
1049    openIntv();
1050    enterIntvBefore(Uses.front());
1051    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1052    leaveIntvAfter(Uses[bestPos-1]);
1053    closeIntv();
1054  }
1055
1056  // Second interval after the gap.
1057  if (bestPos < Uses.size()-1) {
1058    openIntv();
1059    enterIntvBefore(Uses[bestPos]);
1060    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1061    leaveIntvAfter(Uses.back());
1062    closeIntv();
1063  }
1064
1065  finish();
1066}
1067