SplitKit.cpp revision 3a0e0715a5691e26ca70bc853d6d3d116e5949b8
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "splitter" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/CodeGen/CalcSpillWeights.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineInstrBuilder.h" 22#include "llvm/CodeGen/MachineLoopInfo.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/Support/CommandLine.h" 25#include "llvm/Support/Debug.h" 26#include "llvm/Support/raw_ostream.h" 27#include "llvm/Target/TargetInstrInfo.h" 28#include "llvm/Target/TargetMachine.h" 29 30using namespace llvm; 31 32static cl::opt<bool> 33AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36//===----------------------------------------------------------------------===// 37// Split Analysis 38//===----------------------------------------------------------------------===// 39 40SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : mf_(mf), 44 lis_(lis), 45 loops_(mli), 46 tii_(*mf.getTarget().getInstrInfo()), 47 curli_(0) {} 48 49void SplitAnalysis::clear() { 50 usingInstrs_.clear(); 51 usingBlocks_.clear(); 52 usingLoops_.clear(); 53 curli_ = 0; 54} 55 56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 57 MachineBasicBlock *T, *F; 58 SmallVector<MachineOperand, 4> Cond; 59 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 60} 61 62/// analyzeUses - Count instructions, basic blocks, and loops using curli. 63void SplitAnalysis::analyzeUses() { 64 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 65 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 66 MachineInstr *MI = I.skipInstruction();) { 67 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 68 continue; 69 MachineBasicBlock *MBB = MI->getParent(); 70 if (usingBlocks_[MBB]++) 71 continue; 72 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 73 Loop = Loop->getParentLoop()) 74 usingLoops_[Loop]++; 75 } 76 DEBUG(dbgs() << " counted " 77 << usingInstrs_.size() << " instrs, " 78 << usingBlocks_.size() << " blocks, " 79 << usingLoops_.size() << " loops.\n"); 80} 81 82void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 83 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 84 unsigned count = usingBlocks_.lookup(*I); 85 OS << " BB#" << (*I)->getNumber(); 86 if (count) 87 OS << '(' << count << ')'; 88 } 89} 90 91// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 92// predecessor blocks, and exit blocks. 93void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 94 Blocks.clear(); 95 96 // Blocks in the loop. 97 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 98 99 // Predecessor blocks. 100 const MachineBasicBlock *Header = Loop->getHeader(); 101 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 102 E = Header->pred_end(); I != E; ++I) 103 if (!Blocks.Loop.count(*I)) 104 Blocks.Preds.insert(*I); 105 106 // Exit blocks. 107 for (MachineLoop::block_iterator I = Loop->block_begin(), 108 E = Loop->block_end(); I != E; ++I) { 109 const MachineBasicBlock *MBB = *I; 110 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 111 SE = MBB->succ_end(); SI != SE; ++SI) 112 if (!Blocks.Loop.count(*SI)) 113 Blocks.Exits.insert(*SI); 114 } 115} 116 117void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 118 OS << "Loop:"; 119 print(B.Loop, OS); 120 OS << ", preds:"; 121 print(B.Preds, OS); 122 OS << ", exits:"; 123 print(B.Exits, OS); 124} 125 126/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 127/// and around the Loop. 128SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 129analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 130 LoopPeripheralUse use = ContainedInLoop; 131 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 132 I != E; ++I) { 133 const MachineBasicBlock *MBB = I->first; 134 // Is this a peripheral block? 135 if (use < MultiPeripheral && 136 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 137 if (I->second > 1) use = MultiPeripheral; 138 else use = SinglePeripheral; 139 continue; 140 } 141 // Is it a loop block? 142 if (Blocks.Loop.count(MBB)) 143 continue; 144 // It must be an unrelated block. 145 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 146 return OutsideLoop; 147 } 148 return use; 149} 150 151/// getCriticalExits - It may be necessary to partially break critical edges 152/// leaving the loop if an exit block has predecessors from outside the loop 153/// periphery. 154void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 155 BlockPtrSet &CriticalExits) { 156 CriticalExits.clear(); 157 158 // A critical exit block has curli line-in, and has a predecessor that is not 159 // in the loop nor a loop predecessor. For such an exit block, the edges 160 // carrying the new variable must be moved to a new pre-exit block. 161 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 162 I != E; ++I) { 163 const MachineBasicBlock *Exit = *I; 164 // A single-predecessor exit block is definitely not a critical edge. 165 if (Exit->pred_size() == 1) 166 continue; 167 // This exit may not have curli live in at all. No need to split. 168 if (!lis_.isLiveInToMBB(*curli_, Exit)) 169 continue; 170 // Does this exit block have a predecessor that is not a loop block or loop 171 // predecessor? 172 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 173 PE = Exit->pred_end(); PI != PE; ++PI) { 174 const MachineBasicBlock *Pred = *PI; 175 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 176 continue; 177 // This is a critical exit block, and we need to split the exit edge. 178 CriticalExits.insert(Exit); 179 break; 180 } 181 } 182} 183 184/// canSplitCriticalExits - Return true if it is possible to insert new exit 185/// blocks before the blocks in CriticalExits. 186bool 187SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 188 BlockPtrSet &CriticalExits) { 189 // If we don't allow critical edge splitting, require no critical exits. 190 if (!AllowSplit) 191 return CriticalExits.empty(); 192 193 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Succ = *I; 196 // We want to insert a new pre-exit MBB before Succ, and change all the 197 // in-loop blocks to branch to the pre-exit instead of Succ. 198 // Check that all the in-loop predecessors can be changed. 199 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 200 PE = Succ->pred_end(); PI != PE; ++PI) { 201 const MachineBasicBlock *Pred = *PI; 202 // The external predecessors won't be altered. 203 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 204 continue; 205 if (!canAnalyzeBranch(Pred)) 206 return false; 207 } 208 209 // If Succ's layout predecessor falls through, that too must be analyzable. 210 // We need to insert the pre-exit block in the gap. 211 MachineFunction::const_iterator MFI = Succ; 212 if (MFI == mf_.begin()) 213 continue; 214 if (!canAnalyzeBranch(--MFI)) 215 return false; 216 } 217 // No problems found. 218 return true; 219} 220 221void SplitAnalysis::analyze(const LiveInterval *li) { 222 clear(); 223 curli_ = li; 224 analyzeUses(); 225} 226 227const MachineLoop *SplitAnalysis::getBestSplitLoop() { 228 assert(curli_ && "Call analyze() before getBestSplitLoop"); 229 if (usingLoops_.empty()) 230 return 0; 231 232 LoopPtrSet Loops; 233 LoopBlocks Blocks; 234 BlockPtrSet CriticalExits; 235 236 // We split around loops where curli is used outside the periphery. 237 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 238 E = usingLoops_.end(); I != E; ++I) { 239 const MachineLoop *Loop = I->first; 240 getLoopBlocks(Loop, Blocks); 241 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 242 243 switch(analyzeLoopPeripheralUse(Blocks)) { 244 case OutsideLoop: 245 break; 246 case MultiPeripheral: 247 // FIXME: We could split a live range with multiple uses in a peripheral 248 // block and still make progress. However, it is possible that splitting 249 // another live range will insert copies into a peripheral block, and 250 // there is a small chance we can enter an infinity loop, inserting copies 251 // forever. 252 // For safety, stick to splitting live ranges with uses outside the 253 // periphery. 254 DEBUG(dbgs() << ": multiple peripheral uses\n"); 255 break; 256 case ContainedInLoop: 257 DEBUG(dbgs() << ": fully contained\n"); 258 continue; 259 case SinglePeripheral: 260 DEBUG(dbgs() << ": single peripheral use\n"); 261 continue; 262 } 263 // Will it be possible to split around this loop? 264 getCriticalExits(Blocks, CriticalExits); 265 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 266 if (!canSplitCriticalExits(Blocks, CriticalExits)) 267 continue; 268 // This is a possible split. 269 Loops.insert(Loop); 270 } 271 272 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 273 << " candidate loops.\n"); 274 275 if (Loops.empty()) 276 return 0; 277 278 // Pick the earliest loop. 279 // FIXME: Are there other heuristics to consider? 280 const MachineLoop *Best = 0; 281 SlotIndex BestIdx; 282 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 283 ++I) { 284 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 285 if (!Best || Idx < BestIdx) 286 Best = *I, BestIdx = Idx; 287 } 288 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 289 return Best; 290} 291 292//===----------------------------------------------------------------------===// 293// LiveIntervalMap 294//===----------------------------------------------------------------------===// 295 296// Work around the fact that the std::pair constructors are broken for pointer 297// pairs in some implementations. makeVV(x, 0) works. 298static inline std::pair<const VNInfo*, VNInfo*> 299makeVV(const VNInfo *a, VNInfo *b) { 300 return std::make_pair(a, b); 301} 302 303void LiveIntervalMap::reset(LiveInterval *li) { 304 li_ = li; 305 valueMap_.clear(); 306} 307 308bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 309 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 310 return i != valueMap_.end() && i->second == 0; 311} 312 313// defValue - Introduce a li_ def for ParentVNI that could be later than 314// ParentVNI->def. 315VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 316 assert(li_ && "call reset first"); 317 assert(ParentVNI && "Mapping NULL value"); 318 assert(Idx.isValid() && "Invalid SlotIndex"); 319 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 320 321 // Create a new value. 322 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 323 324 // Preserve the PHIDef bit. 325 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 326 VNI->setIsPHIDef(true); 327 328 // Use insert for lookup, so we can add missing values with a second lookup. 329 std::pair<ValueMap::iterator,bool> InsP = 330 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 331 332 // This is now a complex def. Mark with a NULL in valueMap. 333 if (!InsP.second) 334 InsP.first->second = 0; 335 336 return VNI; 337} 338 339 340// mapValue - Find the mapped value for ParentVNI at Idx. 341// Potentially create phi-def values. 342VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 343 bool *simple) { 344 assert(li_ && "call reset first"); 345 assert(ParentVNI && "Mapping NULL value"); 346 assert(Idx.isValid() && "Invalid SlotIndex"); 347 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 348 349 // Use insert for lookup, so we can add missing values with a second lookup. 350 std::pair<ValueMap::iterator,bool> InsP = 351 valueMap_.insert(makeVV(ParentVNI, 0)); 352 353 // This was an unknown value. Create a simple mapping. 354 if (InsP.second) { 355 if (simple) *simple = true; 356 return InsP.first->second = li_->createValueCopy(ParentVNI, 357 lis_.getVNInfoAllocator()); 358 } 359 360 // This was a simple mapped value. 361 if (InsP.first->second) { 362 if (simple) *simple = true; 363 return InsP.first->second; 364 } 365 366 // This is a complex mapped value. There may be multiple defs, and we may need 367 // to create phi-defs. 368 if (simple) *simple = false; 369 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 370 assert(IdxMBB && "No MBB at Idx"); 371 372 // Is there a def in the same MBB we can extend? 373 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 374 return VNI; 375 376 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 377 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 378 // Perform a depth-first search for predecessor blocks where we know the 379 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 380 381 // Track MBBs where we have created or learned the dominating value. 382 // This may change during the DFS as we create new phi-defs. 383 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 384 MBBValueMap DomValue; 385 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 386 BlockPtrSet Visited; 387 388 // Iterate over IdxMBB predecessors in a depth-first order. 389 // Skip begin() since that is always IdxMBB. 390 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 391 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 392 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 393 MachineBasicBlock *MBB = *IDFI; 394 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 395 396 // We are operating on the restricted CFG where ParentVNI is live. 397 if (parentli_.getVNInfoAt(End) != ParentVNI) { 398 IDFI.skipChildren(); 399 continue; 400 } 401 402 // Do we have a dominating value in this block? 403 VNInfo *VNI = extendTo(MBB, End); 404 if (!VNI) { 405 ++IDFI; 406 continue; 407 } 408 409 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 410 Visited.erase(MBB); 411 412 // Track the path back to IdxMBB, creating phi-defs 413 // as needed along the way. 414 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 415 // Start from MBB's immediate successor. End at IdxMBB. 416 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 417 std::pair<MBBValueMap::iterator, bool> InsP = 418 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 419 420 // This is the first time we backtrack to Succ. 421 if (InsP.second) 422 continue; 423 424 // We reached Succ again with the same VNI. Nothing is going to change. 425 VNInfo *OVNI = InsP.first->second; 426 if (OVNI == VNI) 427 break; 428 429 // Succ already has a phi-def. No need to continue. 430 SlotIndex Start = lis_.getMBBStartIdx(Succ); 431 if (OVNI->def == Start) 432 break; 433 434 // We have a collision between the old and new VNI at Succ. That means 435 // neither dominates and we need a new phi-def. 436 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 437 VNI->setIsPHIDef(true); 438 InsP.first->second = VNI; 439 440 // Replace OVNI with VNI in the remaining path. 441 for (; PI > 1 ; --PI) { 442 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 443 if (I == DomValue.end() || I->second != OVNI) 444 break; 445 I->second = VNI; 446 } 447 } 448 449 // No need to search the children, we found a dominating value. 450 IDFI.skipChildren(); 451 } 452 453 // The search should at least find a dominating value for IdxMBB. 454 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 455 456 // Since we went through the trouble of a full DFS visiting all reaching defs, 457 // the values in DomValue are now accurate. No more phi-defs are needed for 458 // these blocks, so we can color the live ranges. 459 // This makes the next mapValue call much faster. 460 VNInfo *IdxVNI = 0; 461 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 462 ++I) { 463 MachineBasicBlock *MBB = I->first; 464 VNInfo *VNI = I->second; 465 SlotIndex Start = lis_.getMBBStartIdx(MBB); 466 if (MBB == IdxMBB) { 467 // Don't add full liveness to IdxMBB, stop at Idx. 468 if (Start != Idx) 469 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 470 // The caller had better add some liveness to IdxVNI, or it leaks. 471 IdxVNI = VNI; 472 } else 473 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 474 } 475 476 assert(IdxVNI && "Didn't find value for Idx"); 477 return IdxVNI; 478} 479 480// extendTo - Find the last li_ value defined in MBB at or before Idx. The 481// parentli_ is assumed to be live at Idx. Extend the live range to Idx. 482// Return the found VNInfo, or NULL. 483VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 484 assert(li_ && "call reset first"); 485 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 486 if (I == li_->begin()) 487 return 0; 488 --I; 489 if (I->end <= lis_.getMBBStartIdx(MBB)) 490 return 0; 491 if (I->end <= Idx) 492 I->end = Idx.getNextSlot(); 493 return I->valno; 494} 495 496// addSimpleRange - Add a simple range from parentli_ to li_. 497// ParentVNI must be live in the [Start;End) interval. 498void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 499 const VNInfo *ParentVNI) { 500 assert(li_ && "call reset first"); 501 bool simple; 502 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 503 // A simple mapping is easy. 504 if (simple) { 505 li_->addRange(LiveRange(Start, End, VNI)); 506 return; 507 } 508 509 // ParentVNI is a complex value. We must map per MBB. 510 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 511 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 512 513 if (MBB == MBBE) { 514 li_->addRange(LiveRange(Start, End, VNI)); 515 return; 516 } 517 518 // First block. 519 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 520 521 // Run sequence of full blocks. 522 for (++MBB; MBB != MBBE; ++MBB) { 523 Start = lis_.getMBBStartIdx(MBB); 524 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 525 mapValue(ParentVNI, Start))); 526 } 527 528 // Final block. 529 Start = lis_.getMBBStartIdx(MBB); 530 if (Start != End) 531 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 532} 533 534/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 535/// All needed values whose def is not inside [Start;End) must be defined 536/// beforehand so mapValue will work. 537void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 538 assert(li_ && "call reset first"); 539 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 540 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 541 542 // Check if --I begins before Start and overlaps. 543 if (I != B) { 544 --I; 545 if (I->end > Start) 546 addSimpleRange(Start, std::min(End, I->end), I->valno); 547 ++I; 548 } 549 550 // The remaining ranges begin after Start. 551 for (;I != E && I->start < End; ++I) 552 addSimpleRange(I->start, std::min(End, I->end), I->valno); 553} 554 555VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 556 const VNInfo *ParentVNI, 557 MachineBasicBlock &MBB, 558 MachineBasicBlock::iterator I) { 559 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 560 get(TargetOpcode::COPY); 561 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 562 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 563 VNInfo *VNI = defValue(ParentVNI, DefIdx); 564 VNI->setCopy(MI); 565 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 566 return VNI; 567} 568 569//===----------------------------------------------------------------------===// 570// Split Editor 571//===----------------------------------------------------------------------===// 572 573/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 574SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 575 LiveRangeEdit &edit) 576 : sa_(sa), lis_(lis), vrm_(vrm), 577 mri_(vrm.getMachineFunction().getRegInfo()), 578 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 579 edit_(edit), 580 dupli_(lis_, edit.getParent()), 581 openli_(lis_, edit.getParent()) 582{ 583} 584 585bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 586 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 587 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 588 return true; 589 return false; 590} 591 592/// Create a new virtual register and live interval. 593void SplitEditor::openIntv() { 594 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 595 596 if (!dupli_.getLI()) 597 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 598 599 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 600} 601 602/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 603/// not live before Idx, a COPY is not inserted. 604void SplitEditor::enterIntvBefore(SlotIndex Idx) { 605 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 606 DEBUG(dbgs() << " enterIntvBefore " << Idx); 607 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 608 if (!ParentVNI) { 609 DEBUG(dbgs() << ": not live\n"); 610 return; 611 } 612 DEBUG(dbgs() << ": valno " << ParentVNI->id); 613 truncatedValues.insert(ParentVNI); 614 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 615 assert(MI && "enterIntvBefore called with invalid index"); 616 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 617 *MI->getParent(), MI); 618 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 619 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 620} 621 622/// enterIntvAtEnd - Enter openli at the end of MBB. 623void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 624 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 625 SlotIndex End = lis_.getMBBEndIdx(&MBB); 626 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 627 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 628 if (!ParentVNI) { 629 DEBUG(dbgs() << ": not live\n"); 630 return; 631 } 632 DEBUG(dbgs() << ": valno " << ParentVNI->id); 633 truncatedValues.insert(ParentVNI); 634 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 635 MBB, MBB.getFirstTerminator()); 636 // Make sure openli is live out of MBB. 637 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 638 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 639} 640 641/// useIntv - indicate that all instructions in MBB should use openli. 642void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 643 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 644} 645 646void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 647 assert(openli_.getLI() && "openIntv not called before useIntv"); 648 openli_.addRange(Start, End); 649 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 650 << *openli_.getLI() << '\n'); 651} 652 653/// leaveIntvAfter - Leave openli after the instruction at Idx. 654void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 655 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 656 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 657 658 // The interval must be live beyond the instruction at Idx. 659 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 660 if (!ParentVNI) { 661 DEBUG(dbgs() << ": not live\n"); 662 return; 663 } 664 DEBUG(dbgs() << ": valno " << ParentVNI->id); 665 666 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 667 MachineBasicBlock *MBB = MII->getParent(); 668 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 669 llvm::next(MII)); 670 671 // Finally we must make sure that openli is properly extended from Idx to the 672 // new copy. 673 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 674 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 675} 676 677/// leaveIntvAtTop - Leave the interval at the top of MBB. 678/// Currently, only one value can leave the interval. 679void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 680 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 681 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 682 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 683 684 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 685 if (!ParentVNI) { 686 DEBUG(dbgs() << ": not live\n"); 687 return; 688 } 689 690 // We are going to insert a back copy, so we must have a dupli_. 691 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 692 MBB, MBB.begin()); 693 694 // Finally we must make sure that openli is properly extended from Start to 695 // the new copy. 696 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 697 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 698} 699 700/// closeIntv - Indicate that we are done editing the currently open 701/// LiveInterval, and ranges can be trimmed. 702void SplitEditor::closeIntv() { 703 assert(openli_.getLI() && "openIntv not called before closeIntv"); 704 705 DEBUG(dbgs() << " closeIntv cleaning up\n"); 706 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 707 openli_.reset(0); 708} 709 710/// rewrite - Rewrite all uses of reg to use the new registers. 711void SplitEditor::rewrite(unsigned reg) { 712 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 713 RE = mri_.reg_end(); RI != RE;) { 714 MachineOperand &MO = RI.getOperand(); 715 MachineInstr *MI = MO.getParent(); 716 ++RI; 717 if (MI->isDebugValue()) { 718 DEBUG(dbgs() << "Zapping " << *MI); 719 // FIXME: We can do much better with debug values. 720 MO.setReg(0); 721 continue; 722 } 723 SlotIndex Idx = lis_.getInstructionIndex(MI); 724 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 725 LiveInterval *LI = 0; 726 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 727 ++I) { 728 LiveInterval *testli = *I; 729 if (testli->liveAt(Idx)) { 730 LI = testli; 731 break; 732 } 733 } 734 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 735 assert(LI && "No register was live at use"); 736 MO.setReg(LI->reg); 737 DEBUG(dbgs() << '\t' << *MI); 738 } 739} 740 741void 742SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 743 // Build vector of iterator pairs from the intervals. 744 typedef std::pair<LiveInterval::const_iterator, 745 LiveInterval::const_iterator> IIPair; 746 SmallVector<IIPair, 8> Iters; 747 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 748 ++LI) { 749 if (*LI == dupli_.getLI()) 750 continue; 751 LiveInterval::const_iterator I = (*LI)->find(Start); 752 LiveInterval::const_iterator E = (*LI)->end(); 753 if (I != E) 754 Iters.push_back(std::make_pair(I, E)); 755 } 756 757 SlotIndex sidx = Start; 758 // Break [Start;End) into segments that don't overlap any intervals. 759 for (;;) { 760 SlotIndex next = sidx, eidx = End; 761 // Find overlapping intervals. 762 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 763 LiveInterval::const_iterator I = Iters[i].first; 764 // Interval I is overlapping [sidx;eidx). Trim sidx. 765 if (I->start <= sidx) { 766 sidx = I->end; 767 // Move to the next run, remove iters when all are consumed. 768 I = ++Iters[i].first; 769 if (I == Iters[i].second) { 770 Iters.erase(Iters.begin() + i); 771 --i; 772 continue; 773 } 774 } 775 // Trim eidx too if needed. 776 if (I->start >= eidx) 777 continue; 778 eidx = I->start; 779 next = I->end; 780 } 781 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 782 if (sidx < eidx) 783 dupli_.addSimpleRange(sidx, eidx, VNI); 784 // If the interval end was truncated, we can try again from next. 785 if (next <= sidx) 786 break; 787 sidx = next; 788 } 789} 790 791void SplitEditor::computeRemainder() { 792 // First we need to fill in the live ranges in dupli. 793 // If values were redefined, we need a full recoloring with SSA update. 794 // If values were truncated, we only need to truncate the ranges. 795 // If values were partially rematted, we should shrink to uses. 796 // If values were fully rematted, they should be omitted. 797 // FIXME: If a single value is redefined, just move the def and truncate. 798 LiveInterval &parent = edit_.getParent(); 799 800 // Values that are fully contained in the split intervals. 801 SmallPtrSet<const VNInfo*, 8> deadValues; 802 // Map all curli values that should have live defs in dupli. 803 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 804 E = parent.vni_end(); I != E; ++I) { 805 const VNInfo *VNI = *I; 806 // Original def is contained in the split intervals. 807 if (intervalsLiveAt(VNI->def)) { 808 // Did this value escape? 809 if (dupli_.isMapped(VNI)) 810 truncatedValues.insert(VNI); 811 else 812 deadValues.insert(VNI); 813 continue; 814 } 815 // Add minimal live range at the definition. 816 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 817 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 818 } 819 820 // Add all ranges to dupli. 821 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 822 I != E; ++I) { 823 const LiveRange &LR = *I; 824 if (truncatedValues.count(LR.valno)) { 825 // recolor after removing intervals_. 826 addTruncSimpleRange(LR.start, LR.end, LR.valno); 827 } else if (!deadValues.count(LR.valno)) { 828 // recolor without truncation. 829 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 830 } 831 } 832} 833 834void SplitEditor::finish() { 835 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 836 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 837 838 // Complete dupli liveness. 839 computeRemainder(); 840 841 // Get rid of unused values and set phi-kill flags. 842 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 843 (*I)->RenumberValues(lis_); 844 845 // Rewrite instructions. 846 rewrite(edit_.getReg()); 847 848 // Now check if any registers were separated into multiple components. 849 ConnectedVNInfoEqClasses ConEQ(lis_); 850 for (unsigned i = 0, e = edit_.size(); i != e; ++i) { 851 // Don't use iterators, they are invalidated by create() below. 852 LiveInterval *li = edit_.get(i); 853 unsigned NumComp = ConEQ.Classify(li); 854 if (NumComp <= 1) 855 continue; 856 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 857 SmallVector<LiveInterval*, 8> dups; 858 dups.push_back(li); 859 for (unsigned i = 1; i != NumComp; ++i) 860 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 861 ConEQ.Distribute(&dups[0]); 862 // Rewrite uses to the new regs. 863 rewrite(li->reg); 864 } 865 866 // Calculate spill weight and allocation hints for new intervals. 867 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 868 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 869 LiveInterval &li = **I; 870 vrai.CalculateRegClass(li.reg); 871 vrai.CalculateWeightAndHint(li); 872 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 873 << ":" << li << '\n'); 874 } 875} 876 877 878//===----------------------------------------------------------------------===// 879// Loop Splitting 880//===----------------------------------------------------------------------===// 881 882void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 883 SplitAnalysis::LoopBlocks Blocks; 884 sa_.getLoopBlocks(Loop, Blocks); 885 886 DEBUG({ 887 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 888 }); 889 890 // Break critical edges as needed. 891 SplitAnalysis::BlockPtrSet CriticalExits; 892 sa_.getCriticalExits(Blocks, CriticalExits); 893 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 894 895 // Create new live interval for the loop. 896 openIntv(); 897 898 // Insert copies in the predecessors. 899 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 900 E = Blocks.Preds.end(); I != E; ++I) { 901 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 902 enterIntvAtEnd(MBB); 903 } 904 905 // Switch all loop blocks. 906 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 907 E = Blocks.Loop.end(); I != E; ++I) 908 useIntv(**I); 909 910 // Insert back copies in the exit blocks. 911 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 912 E = Blocks.Exits.end(); I != E; ++I) { 913 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 914 leaveIntvAtTop(MBB); 915 } 916 917 // Done. 918 closeIntv(); 919 finish(); 920} 921 922 923//===----------------------------------------------------------------------===// 924// Single Block Splitting 925//===----------------------------------------------------------------------===// 926 927/// getMultiUseBlocks - if curli has more than one use in a basic block, it 928/// may be an advantage to split curli for the duration of the block. 929bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 930 // If curli is local to one block, there is no point to splitting it. 931 if (usingBlocks_.size() <= 1) 932 return false; 933 // Add blocks with multiple uses. 934 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 935 I != E; ++I) 936 switch (I->second) { 937 case 0: 938 case 1: 939 continue; 940 case 2: { 941 // When there are only two uses and curli is both live in and live out, 942 // we don't really win anything by isolating the block since we would be 943 // inserting two copies. 944 // The remaing register would still have two uses in the block. (Unless it 945 // separates into disconnected components). 946 if (lis_.isLiveInToMBB(*curli_, I->first) && 947 lis_.isLiveOutOfMBB(*curli_, I->first)) 948 continue; 949 } // Fall through. 950 default: 951 Blocks.insert(I->first); 952 } 953 return !Blocks.empty(); 954} 955 956/// splitSingleBlocks - Split curli into a separate live interval inside each 957/// basic block in Blocks. 958void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 959 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 960 // Determine the first and last instruction using curli in each block. 961 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 962 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 963 IndexPairMap MBBRange; 964 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 965 E = sa_.usingInstrs_.end(); I != E; ++I) { 966 const MachineBasicBlock *MBB = (*I)->getParent(); 967 if (!Blocks.count(MBB)) 968 continue; 969 SlotIndex Idx = lis_.getInstructionIndex(*I); 970 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 971 IndexPair &IP = MBBRange[MBB]; 972 if (!IP.first.isValid() || Idx < IP.first) 973 IP.first = Idx; 974 if (!IP.second.isValid() || Idx > IP.second) 975 IP.second = Idx; 976 } 977 978 // Create a new interval for each block. 979 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 980 E = Blocks.end(); I != E; ++I) { 981 IndexPair &IP = MBBRange[*I]; 982 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 983 << IP.first << ';' << IP.second << ")\n"); 984 assert(IP.first.isValid() && IP.second.isValid()); 985 986 openIntv(); 987 enterIntvBefore(IP.first); 988 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 989 leaveIntvAfter(IP.second); 990 closeIntv(); 991 } 992 finish(); 993} 994 995 996//===----------------------------------------------------------------------===// 997// Sub Block Splitting 998//===----------------------------------------------------------------------===// 999 1000/// getBlockForInsideSplit - If curli is contained inside a single basic block, 1001/// and it wou pay to subdivide the interval inside that block, return it. 1002/// Otherwise return NULL. The returned block can be passed to 1003/// SplitEditor::splitInsideBlock. 1004const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1005 // The interval must be exclusive to one block. 1006 if (usingBlocks_.size() != 1) 1007 return 0; 1008 // Don't to this for less than 4 instructions. We want to be sure that 1009 // splitting actually reduces the instruction count per interval. 1010 if (usingInstrs_.size() < 4) 1011 return 0; 1012 return usingBlocks_.begin()->first; 1013} 1014 1015/// splitInsideBlock - Split curli into multiple intervals inside MBB. 1016void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1017 SmallVector<SlotIndex, 32> Uses; 1018 Uses.reserve(sa_.usingInstrs_.size()); 1019 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1020 E = sa_.usingInstrs_.end(); I != E; ++I) 1021 if ((*I)->getParent() == MBB) 1022 Uses.push_back(lis_.getInstructionIndex(*I)); 1023 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1024 << Uses.size() << " instructions.\n"); 1025 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1026 array_pod_sort(Uses.begin(), Uses.end()); 1027 1028 // Simple algorithm: Find the largest gap between uses as determined by slot 1029 // indices. Create new intervals for instructions before the gap and after the 1030 // gap. 1031 unsigned bestPos = 0; 1032 int bestGap = 0; 1033 DEBUG(dbgs() << " dist (" << Uses[0]); 1034 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1035 int g = Uses[i-1].distance(Uses[i]); 1036 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1037 if (g > bestGap) 1038 bestPos = i, bestGap = g; 1039 } 1040 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1041 1042 // bestPos points to the first use after the best gap. 1043 assert(bestPos > 0 && "Invalid gap"); 1044 1045 // FIXME: Don't create intervals for low densities. 1046 1047 // First interval before the gap. Don't create single-instr intervals. 1048 if (bestPos > 1) { 1049 openIntv(); 1050 enterIntvBefore(Uses.front()); 1051 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1052 leaveIntvAfter(Uses[bestPos-1]); 1053 closeIntv(); 1054 } 1055 1056 // Second interval after the gap. 1057 if (bestPos < Uses.size()-1) { 1058 openIntv(); 1059 enterIntvBefore(Uses[bestPos]); 1060 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1061 leaveIntvAfter(Uses.back()); 1062 closeIntv(); 1063 } 1064 1065 finish(); 1066} 1067