SplitKit.cpp revision 3b1088a2cc15a39c7a7b8dd95a56143f1dda6863
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32STATISTIC(NumFinished, "Number of splits finished");
33STATISTIC(NumSimple,   "Number of splits that were simple");
34STATISTIC(NumCopies,   "Number of copies inserted for splitting");
35STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
36STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
37
38//===----------------------------------------------------------------------===//
39//                                 Split Analysis
40//===----------------------------------------------------------------------===//
41
42SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43                             const LiveIntervals &lis,
44                             const MachineLoopInfo &mli)
45  : MF(vrm.getMachineFunction()),
46    VRM(vrm),
47    LIS(lis),
48    Loops(mli),
49    TII(*MF.getTarget().getInstrInfo()),
50    CurLI(0),
51    LastSplitPoint(MF.getNumBlockIDs()) {}
52
53void SplitAnalysis::clear() {
54  UseSlots.clear();
55  UseBlocks.clear();
56  ThroughBlocks.clear();
57  CurLI = 0;
58  DidRepairRange = false;
59}
60
61SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65  SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67  // Compute split points on the first call. The pair is independent of the
68  // current live interval.
69  if (!LSP.first.isValid()) {
70    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71    if (FirstTerm == MBB->end())
72      LSP.first = MBBEnd;
73    else
74      LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76    // If there is a landing pad successor, also find the call instruction.
77    if (!LPad)
78      return LSP.first;
79    // There may not be a call instruction (?) in which case we ignore LPad.
80    LSP.second = LSP.first;
81    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82         I != E;) {
83      --I;
84      if (I->isCall()) {
85        LSP.second = LIS.getInstructionIndex(I);
86        break;
87      }
88    }
89  }
90
91  // If CurLI is live into a landing pad successor, move the last split point
92  // back to the call that may throw.
93  if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94    return LSP.first;
95
96  // Find the value leaving MBB.
97  const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98  if (!VNI)
99    return LSP.first;
100
101  // If the value leaving MBB was defined after the call in MBB, it can't
102  // really be live-in to the landing pad.  This can happen if the landing pad
103  // has a PHI, and this register is undef on the exceptional edge.
104  // <rdar://problem/10664933>
105  if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106    return LSP.first;
107
108  // Value is properly live-in to the landing pad.
109  // Only allow splits before the call.
110  return LSP.second;
111}
112
113MachineBasicBlock::iterator
114SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115  SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116  if (LSP == LIS.getMBBEndIdx(MBB))
117    return MBB->end();
118  return LIS.getInstructionFromIndex(LSP);
119}
120
121/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122void SplitAnalysis::analyzeUses() {
123  assert(UseSlots.empty() && "Call clear first");
124
125  // First get all the defs from the interval values. This provides the correct
126  // slots for early clobbers.
127  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128       E = CurLI->vni_end(); I != E; ++I)
129    if (!(*I)->isPHIDef() && !(*I)->isUnused())
130      UseSlots.push_back((*I)->def);
131
132  // Get use slots form the use-def chain.
133  const MachineRegisterInfo &MRI = MF.getRegInfo();
134  for (MachineRegisterInfo::use_nodbg_iterator
135       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136       ++I)
137    if (!I.getOperand().isUndef())
138      UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140  array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142  // Remove duplicates, keeping the smaller slot for each instruction.
143  // That is what we want for early clobbers.
144  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145                             SlotIndex::isSameInstr),
146                 UseSlots.end());
147
148  // Compute per-live block info.
149  if (!calcLiveBlockInfo()) {
150    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151    // I am looking at you, RegisterCoalescer!
152    DidRepairRange = true;
153    ++NumRepairs;
154    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155    const_cast<LiveIntervals&>(LIS)
156      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157    UseBlocks.clear();
158    ThroughBlocks.clear();
159    bool fixed = calcLiveBlockInfo();
160    (void)fixed;
161    assert(fixed && "Couldn't fix broken live interval");
162  }
163
164  DEBUG(dbgs() << "Analyze counted "
165               << UseSlots.size() << " instrs in "
166               << UseBlocks.size() << " blocks, through "
167               << NumThroughBlocks << " blocks.\n");
168}
169
170/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171/// where CurLI is live.
172bool SplitAnalysis::calcLiveBlockInfo() {
173  ThroughBlocks.resize(MF.getNumBlockIDs());
174  NumThroughBlocks = NumGapBlocks = 0;
175  if (CurLI->empty())
176    return true;
177
178  LiveInterval::const_iterator LVI = CurLI->begin();
179  LiveInterval::const_iterator LVE = CurLI->end();
180
181  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182  UseI = UseSlots.begin();
183  UseE = UseSlots.end();
184
185  // Loop over basic blocks where CurLI is live.
186  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187  for (;;) {
188    BlockInfo BI;
189    BI.MBB = MFI;
190    SlotIndex Start, Stop;
191    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193    // If the block contains no uses, the range must be live through. At one
194    // point, RegisterCoalescer could create dangling ranges that ended
195    // mid-block.
196    if (UseI == UseE || *UseI >= Stop) {
197      ++NumThroughBlocks;
198      ThroughBlocks.set(BI.MBB->getNumber());
199      // The range shouldn't end mid-block if there are no uses. This shouldn't
200      // happen.
201      if (LVI->end < Stop)
202        return false;
203    } else {
204      // This block has uses. Find the first and last uses in the block.
205      BI.FirstInstr = *UseI;
206      assert(BI.FirstInstr >= Start);
207      do ++UseI;
208      while (UseI != UseE && *UseI < Stop);
209      BI.LastInstr = UseI[-1];
210      assert(BI.LastInstr < Stop);
211
212      // LVI is the first live segment overlapping MBB.
213      BI.LiveIn = LVI->start <= Start;
214
215      // When not live in, the first use should be a def.
216      if (!BI.LiveIn) {
217        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219        BI.FirstDef = BI.FirstInstr;
220      }
221
222      // Look for gaps in the live range.
223      BI.LiveOut = true;
224      while (LVI->end < Stop) {
225        SlotIndex LastStop = LVI->end;
226        if (++LVI == LVE || LVI->start >= Stop) {
227          BI.LiveOut = false;
228          BI.LastInstr = LastStop;
229          break;
230        }
231
232        if (LastStop < LVI->start) {
233          // There is a gap in the live range. Create duplicate entries for the
234          // live-in snippet and the live-out snippet.
235          ++NumGapBlocks;
236
237          // Push the Live-in part.
238          BI.LiveOut = false;
239          UseBlocks.push_back(BI);
240          UseBlocks.back().LastInstr = LastStop;
241
242          // Set up BI for the live-out part.
243          BI.LiveIn = false;
244          BI.LiveOut = true;
245          BI.FirstInstr = BI.FirstDef = LVI->start;
246        }
247
248        // A LiveRange that starts in the middle of the block must be a def.
249        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250        if (!BI.FirstDef)
251          BI.FirstDef = LVI->start;
252      }
253
254      UseBlocks.push_back(BI);
255
256      // LVI is now at LVE or LVI->end >= Stop.
257      if (LVI == LVE)
258        break;
259    }
260
261    // Live segment ends exactly at Stop. Move to the next segment.
262    if (LVI->end == Stop && ++LVI == LVE)
263      break;
264
265    // Pick the next basic block.
266    if (LVI->start < Stop)
267      ++MFI;
268    else
269      MFI = LIS.getMBBFromIndex(LVI->start);
270  }
271
272  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273  return true;
274}
275
276unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277  if (cli->empty())
278    return 0;
279  LiveInterval *li = const_cast<LiveInterval*>(cli);
280  LiveInterval::iterator LVI = li->begin();
281  LiveInterval::iterator LVE = li->end();
282  unsigned Count = 0;
283
284  // Loop over basic blocks where li is live.
285  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287  for (;;) {
288    ++Count;
289    LVI = li->advanceTo(LVI, Stop);
290    if (LVI == LVE)
291      return Count;
292    do {
293      ++MFI;
294      Stop = LIS.getMBBEndIdx(MFI);
295    } while (Stop <= LVI->start);
296  }
297}
298
299bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301  const LiveInterval &Orig = LIS.getInterval(OrigReg);
302  assert(!Orig.empty() && "Splitting empty interval?");
303  LiveInterval::const_iterator I = Orig.find(Idx);
304
305  // Range containing Idx should begin at Idx.
306  if (I != Orig.end() && I->start <= Idx)
307    return I->start == Idx;
308
309  // Range does not contain Idx, previous must end at Idx.
310  return I != Orig.begin() && (--I)->end == Idx;
311}
312
313void SplitAnalysis::analyze(const LiveInterval *li) {
314  clear();
315  CurLI = li;
316  analyzeUses();
317}
318
319
320//===----------------------------------------------------------------------===//
321//                               Split Editor
322//===----------------------------------------------------------------------===//
323
324/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
325SplitEditor::SplitEditor(SplitAnalysis &sa,
326                         LiveIntervals &lis,
327                         VirtRegMap &vrm,
328                         MachineDominatorTree &mdt)
329  : SA(sa), LIS(lis), VRM(vrm),
330    MRI(vrm.getMachineFunction().getRegInfo()),
331    MDT(mdt),
332    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
333    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
334    Edit(0),
335    OpenIdx(0),
336    SpillMode(SM_Partition),
337    RegAssign(Allocator)
338{}
339
340void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
341  Edit = &LRE;
342  SpillMode = SM;
343  OpenIdx = 0;
344  RegAssign.clear();
345  Values.clear();
346
347  // Reset the LiveRangeCalc instances needed for this spill mode.
348  LRCalc[0].reset(&VRM.getMachineFunction());
349  if (SpillMode)
350    LRCalc[1].reset(&VRM.getMachineFunction());
351
352  // We don't need an AliasAnalysis since we will only be performing
353  // cheap-as-a-copy remats anyway.
354  Edit->anyRematerializable(LIS, TII, 0);
355}
356
357void SplitEditor::dump() const {
358  if (RegAssign.empty()) {
359    dbgs() << " empty\n";
360    return;
361  }
362
363  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
364    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
365  dbgs() << '\n';
366}
367
368VNInfo *SplitEditor::defValue(unsigned RegIdx,
369                              const VNInfo *ParentVNI,
370                              SlotIndex Idx) {
371  assert(ParentVNI && "Mapping  NULL value");
372  assert(Idx.isValid() && "Invalid SlotIndex");
373  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
374  LiveInterval *LI = Edit->get(RegIdx);
375
376  // Create a new value.
377  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
378
379  // Use insert for lookup, so we can add missing values with a second lookup.
380  std::pair<ValueMap::iterator, bool> InsP =
381    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
382                                 ValueForcePair(VNI, false)));
383
384  // This was the first time (RegIdx, ParentVNI) was mapped.
385  // Keep it as a simple def without any liveness.
386  if (InsP.second)
387    return VNI;
388
389  // If the previous value was a simple mapping, add liveness for it now.
390  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
391    SlotIndex Def = OldVNI->def;
392    LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
393    // No longer a simple mapping.  Switch to a complex, non-forced mapping.
394    InsP.first->second = ValueForcePair();
395  }
396
397  // This is a complex mapping, add liveness for VNI
398  SlotIndex Def = VNI->def;
399  LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
400
401  return VNI;
402}
403
404void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
405  assert(ParentVNI && "Mapping  NULL value");
406  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
407  VNInfo *VNI = VFP.getPointer();
408
409  // ParentVNI was either unmapped or already complex mapped. Either way, just
410  // set the force bit.
411  if (!VNI) {
412    VFP.setInt(true);
413    return;
414  }
415
416  // This was previously a single mapping. Make sure the old def is represented
417  // by a trivial live range.
418  SlotIndex Def = VNI->def;
419  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
420  // Mark as complex mapped, forced.
421  VFP = ValueForcePair(0, true);
422}
423
424VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
425                                   VNInfo *ParentVNI,
426                                   SlotIndex UseIdx,
427                                   MachineBasicBlock &MBB,
428                                   MachineBasicBlock::iterator I) {
429  MachineInstr *CopyMI = 0;
430  SlotIndex Def;
431  LiveInterval *LI = Edit->get(RegIdx);
432
433  // We may be trying to avoid interference that ends at a deleted instruction,
434  // so always begin RegIdx 0 early and all others late.
435  bool Late = RegIdx != 0;
436
437  // Attempt cheap-as-a-copy rematerialization.
438  LiveRangeEdit::Remat RM(ParentVNI);
439  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
440    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
441    ++NumRemats;
442  } else {
443    // Can't remat, just insert a copy from parent.
444    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
445               .addReg(Edit->getReg());
446    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
447            .getRegSlot();
448    ++NumCopies;
449  }
450
451  // Define the value in Reg.
452  return defValue(RegIdx, ParentVNI, Def);
453}
454
455/// Create a new virtual register and live interval.
456unsigned SplitEditor::openIntv() {
457  // Create the complement as index 0.
458  if (Edit->empty())
459    Edit->create(LIS, VRM);
460
461  // Create the open interval.
462  OpenIdx = Edit->size();
463  Edit->create(LIS, VRM);
464  return OpenIdx;
465}
466
467void SplitEditor::selectIntv(unsigned Idx) {
468  assert(Idx != 0 && "Cannot select the complement interval");
469  assert(Idx < Edit->size() && "Can only select previously opened interval");
470  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
471  OpenIdx = Idx;
472}
473
474SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
475  assert(OpenIdx && "openIntv not called before enterIntvBefore");
476  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
477  Idx = Idx.getBaseIndex();
478  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
479  if (!ParentVNI) {
480    DEBUG(dbgs() << ": not live\n");
481    return Idx;
482  }
483  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
484  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
485  assert(MI && "enterIntvBefore called with invalid index");
486
487  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
488  return VNI->def;
489}
490
491SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
492  assert(OpenIdx && "openIntv not called before enterIntvAfter");
493  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
494  Idx = Idx.getBoundaryIndex();
495  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
496  if (!ParentVNI) {
497    DEBUG(dbgs() << ": not live\n");
498    return Idx;
499  }
500  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
501  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
502  assert(MI && "enterIntvAfter called with invalid index");
503
504  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
505                              llvm::next(MachineBasicBlock::iterator(MI)));
506  return VNI->def;
507}
508
509SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
510  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
511  SlotIndex End = LIS.getMBBEndIdx(&MBB);
512  SlotIndex Last = End.getPrevSlot();
513  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
514  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
515  if (!ParentVNI) {
516    DEBUG(dbgs() << ": not live\n");
517    return End;
518  }
519  DEBUG(dbgs() << ": valno " << ParentVNI->id);
520  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
521                              SA.getLastSplitPointIter(&MBB));
522  RegAssign.insert(VNI->def, End, OpenIdx);
523  DEBUG(dump());
524  return VNI->def;
525}
526
527/// useIntv - indicate that all instructions in MBB should use OpenLI.
528void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
529  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
530}
531
532void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
533  assert(OpenIdx && "openIntv not called before useIntv");
534  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
535  RegAssign.insert(Start, End, OpenIdx);
536  DEBUG(dump());
537}
538
539SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
540  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
541  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
542
543  // The interval must be live beyond the instruction at Idx.
544  SlotIndex Boundary = Idx.getBoundaryIndex();
545  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
546  if (!ParentVNI) {
547    DEBUG(dbgs() << ": not live\n");
548    return Boundary.getNextSlot();
549  }
550  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
551  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
552  assert(MI && "No instruction at index");
553
554  // In spill mode, make live ranges as short as possible by inserting the copy
555  // before MI.  This is only possible if that instruction doesn't redefine the
556  // value.  The inserted COPY is not a kill, and we don't need to recompute
557  // the source live range.  The spiller also won't try to hoist this copy.
558  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
559      MI->readsVirtualRegister(Edit->getReg())) {
560    forceRecompute(0, ParentVNI);
561    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
562    return Idx;
563  }
564
565  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
566                              llvm::next(MachineBasicBlock::iterator(MI)));
567  return VNI->def;
568}
569
570SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
571  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
572  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
573
574  // The interval must be live into the instruction at Idx.
575  Idx = Idx.getBaseIndex();
576  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
577  if (!ParentVNI) {
578    DEBUG(dbgs() << ": not live\n");
579    return Idx.getNextSlot();
580  }
581  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
582
583  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
584  assert(MI && "No instruction at index");
585  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
586  return VNI->def;
587}
588
589SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
590  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
591  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
592  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
593
594  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
595  if (!ParentVNI) {
596    DEBUG(dbgs() << ": not live\n");
597    return Start;
598  }
599
600  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
601                              MBB.SkipPHIsAndLabels(MBB.begin()));
602  RegAssign.insert(Start, VNI->def, OpenIdx);
603  DEBUG(dump());
604  return VNI->def;
605}
606
607void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
608  assert(OpenIdx && "openIntv not called before overlapIntv");
609  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
610  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
611         "Parent changes value in extended range");
612  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
613         "Range cannot span basic blocks");
614
615  // The complement interval will be extended as needed by LRCalc.extend().
616  if (ParentVNI)
617    forceRecompute(0, ParentVNI);
618  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
619  RegAssign.insert(Start, End, OpenIdx);
620  DEBUG(dump());
621}
622
623//===----------------------------------------------------------------------===//
624//                                  Spill modes
625//===----------------------------------------------------------------------===//
626
627void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
628  LiveInterval *LI = Edit->get(0);
629  DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
630  RegAssignMap::iterator AssignI;
631  AssignI.setMap(RegAssign);
632
633  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
634    VNInfo *VNI = Copies[i];
635    SlotIndex Def = VNI->def;
636    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
637    assert(MI && "No instruction for back-copy");
638
639    MachineBasicBlock *MBB = MI->getParent();
640    MachineBasicBlock::iterator MBBI(MI);
641    bool AtBegin;
642    do AtBegin = MBBI == MBB->begin();
643    while (!AtBegin && (--MBBI)->isDebugValue());
644
645    DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
646    LI->removeValNo(VNI);
647    LIS.RemoveMachineInstrFromMaps(MI);
648    MI->eraseFromParent();
649
650    // Adjust RegAssign if a register assignment is killed at VNI->def.  We
651    // want to avoid calculating the live range of the source register if
652    // possible.
653    AssignI.find(VNI->def.getPrevSlot());
654    if (!AssignI.valid() || AssignI.start() >= Def)
655      continue;
656    // If MI doesn't kill the assigned register, just leave it.
657    if (AssignI.stop() != Def)
658      continue;
659    unsigned RegIdx = AssignI.value();
660    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
661      DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
662      forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
663    } else {
664      SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
665      DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
666      AssignI.setStop(Kill);
667    }
668  }
669}
670
671MachineBasicBlock*
672SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
673                                  MachineBasicBlock *DefMBB) {
674  if (MBB == DefMBB)
675    return MBB;
676  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
677
678  const MachineLoopInfo &Loops = SA.Loops;
679  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
680  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
681
682  // Best candidate so far.
683  MachineBasicBlock *BestMBB = MBB;
684  unsigned BestDepth = UINT_MAX;
685
686  for (;;) {
687    const MachineLoop *Loop = Loops.getLoopFor(MBB);
688
689    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
690    // higher frequency by definition.
691    if (!Loop) {
692      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693                   << MBB->getNumber() << " at depth 0\n");
694      return MBB;
695    }
696
697    // We'll never be able to exit the DefLoop.
698    if (Loop == DefLoop) {
699      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700                   << MBB->getNumber() << " in the same loop\n");
701      return MBB;
702    }
703
704    // Least busy dominator seen so far.
705    unsigned Depth = Loop->getLoopDepth();
706    if (Depth < BestDepth) {
707      BestMBB = MBB;
708      BestDepth = Depth;
709      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
710                   << MBB->getNumber() << " at depth " << Depth << '\n');
711    }
712
713    // Leave loop by going to the immediate dominator of the loop header.
714    // This is a bigger stride than simply walking up the dominator tree.
715    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
716
717    // Too far up the dominator tree?
718    if (!IDom || !MDT.dominates(DefDomNode, IDom))
719      return BestMBB;
720
721    MBB = IDom->getBlock();
722  }
723}
724
725void SplitEditor::hoistCopiesForSize() {
726  // Get the complement interval, always RegIdx 0.
727  LiveInterval *LI = Edit->get(0);
728  LiveInterval *Parent = &Edit->getParent();
729
730  // Track the nearest common dominator for all back-copies for each ParentVNI,
731  // indexed by ParentVNI->id.
732  typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
733  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
734
735  // Find the nearest common dominator for parent values with multiple
736  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
737  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
738       VI != VE; ++VI) {
739    VNInfo *VNI = *VI;
740    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
741    assert(ParentVNI && "Parent not live at complement def");
742
743    // Don't hoist remats.  The complement is probably going to disappear
744    // completely anyway.
745    if (Edit->didRematerialize(ParentVNI))
746      continue;
747
748    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
749    DomPair &Dom = NearestDom[ParentVNI->id];
750
751    // Keep directly defined parent values.  This is either a PHI or an
752    // instruction in the complement range.  All other copies of ParentVNI
753    // should be eliminated.
754    if (VNI->def == ParentVNI->def) {
755      DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
756      Dom = DomPair(ValMBB, VNI->def);
757      continue;
758    }
759    // Skip the singly mapped values.  There is nothing to gain from hoisting a
760    // single back-copy.
761    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
762      DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
763      continue;
764    }
765
766    if (!Dom.first) {
767      // First time we see ParentVNI.  VNI dominates itself.
768      Dom = DomPair(ValMBB, VNI->def);
769    } else if (Dom.first == ValMBB) {
770      // Two defs in the same block.  Pick the earlier def.
771      if (!Dom.second.isValid() || VNI->def < Dom.second)
772        Dom.second = VNI->def;
773    } else {
774      // Different basic blocks. Check if one dominates.
775      MachineBasicBlock *Near =
776        MDT.findNearestCommonDominator(Dom.first, ValMBB);
777      if (Near == ValMBB)
778        // Def ValMBB dominates.
779        Dom = DomPair(ValMBB, VNI->def);
780      else if (Near != Dom.first)
781        // None dominate. Hoist to common dominator, need new def.
782        Dom = DomPair(Near, SlotIndex());
783    }
784
785    DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
786                 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
787                 << " hoist to BB#" << Dom.first->getNumber() << ' '
788                 << Dom.second << '\n');
789  }
790
791  // Insert the hoisted copies.
792  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
793    DomPair &Dom = NearestDom[i];
794    if (!Dom.first || Dom.second.isValid())
795      continue;
796    // This value needs a hoisted copy inserted at the end of Dom.first.
797    VNInfo *ParentVNI = Parent->getValNumInfo(i);
798    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
799    // Get a less loopy dominator than Dom.first.
800    Dom.first = findShallowDominator(Dom.first, DefMBB);
801    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
802    Dom.second =
803      defFromParent(0, ParentVNI, Last, *Dom.first,
804                    SA.getLastSplitPointIter(Dom.first))->def;
805  }
806
807  // Remove redundant back-copies that are now known to be dominated by another
808  // def with the same value.
809  SmallVector<VNInfo*, 8> BackCopies;
810  for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
811       VI != VE; ++VI) {
812    VNInfo *VNI = *VI;
813    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
814    const DomPair &Dom = NearestDom[ParentVNI->id];
815    if (!Dom.first || Dom.second == VNI->def)
816      continue;
817    BackCopies.push_back(VNI);
818    forceRecompute(0, ParentVNI);
819  }
820  removeBackCopies(BackCopies);
821}
822
823
824/// transferValues - Transfer all possible values to the new live ranges.
825/// Values that were rematerialized are left alone, they need LRCalc.extend().
826bool SplitEditor::transferValues() {
827  bool Skipped = false;
828  RegAssignMap::const_iterator AssignI = RegAssign.begin();
829  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
830         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
831    DEBUG(dbgs() << "  blit " << *ParentI << ':');
832    VNInfo *ParentVNI = ParentI->valno;
833    // RegAssign has holes where RegIdx 0 should be used.
834    SlotIndex Start = ParentI->start;
835    AssignI.advanceTo(Start);
836    do {
837      unsigned RegIdx;
838      SlotIndex End = ParentI->end;
839      if (!AssignI.valid()) {
840        RegIdx = 0;
841      } else if (AssignI.start() <= Start) {
842        RegIdx = AssignI.value();
843        if (AssignI.stop() < End) {
844          End = AssignI.stop();
845          ++AssignI;
846        }
847      } else {
848        RegIdx = 0;
849        End = std::min(End, AssignI.start());
850      }
851
852      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
853      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
854      LiveInterval *LI = Edit->get(RegIdx);
855
856      // Check for a simply defined value that can be blitted directly.
857      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
858      if (VNInfo *VNI = VFP.getPointer()) {
859        DEBUG(dbgs() << ':' << VNI->id);
860        LI->addRange(LiveRange(Start, End, VNI));
861        Start = End;
862        continue;
863      }
864
865      // Skip values with forced recomputation.
866      if (VFP.getInt()) {
867        DEBUG(dbgs() << "(recalc)");
868        Skipped = true;
869        Start = End;
870        continue;
871      }
872
873      LiveRangeCalc &LRC = getLRCalc(RegIdx);
874
875      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
876      // so the live range is accurate. Add live-in blocks in [Start;End) to the
877      // LiveInBlocks.
878      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
879      SlotIndex BlockStart, BlockEnd;
880      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
881
882      // The first block may be live-in, or it may have its own def.
883      if (Start != BlockStart) {
884        VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
885        assert(VNI && "Missing def for complex mapped value");
886        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
887        // MBB has its own def. Is it also live-out?
888        if (BlockEnd <= End)
889          LRC.setLiveOutValue(MBB, VNI);
890
891        // Skip to the next block for live-in.
892        ++MBB;
893        BlockStart = BlockEnd;
894      }
895
896      // Handle the live-in blocks covered by [Start;End).
897      assert(Start <= BlockStart && "Expected live-in block");
898      while (BlockStart < End) {
899        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
900        BlockEnd = LIS.getMBBEndIdx(MBB);
901        if (BlockStart == ParentVNI->def) {
902          // This block has the def of a parent PHI, so it isn't live-in.
903          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
904          VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
905          assert(VNI && "Missing def for complex mapped parent PHI");
906          if (End >= BlockEnd)
907            LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
908        } else {
909          // This block needs a live-in value.  The last block covered may not
910          // be live-out.
911          if (End < BlockEnd)
912            LRC.addLiveInBlock(LI, MDT[MBB], End);
913          else {
914            // Live-through, and we don't know the value.
915            LRC.addLiveInBlock(LI, MDT[MBB]);
916            LRC.setLiveOutValue(MBB, 0);
917          }
918        }
919        BlockStart = BlockEnd;
920        ++MBB;
921      }
922      Start = End;
923    } while (Start != ParentI->end);
924    DEBUG(dbgs() << '\n');
925  }
926
927  LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT,
928                            &LIS.getVNInfoAllocator());
929  if (SpillMode)
930    LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT,
931                              &LIS.getVNInfoAllocator());
932
933  return Skipped;
934}
935
936void SplitEditor::extendPHIKillRanges() {
937    // Extend live ranges to be live-out for successor PHI values.
938  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
939       E = Edit->getParent().vni_end(); I != E; ++I) {
940    const VNInfo *PHIVNI = *I;
941    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
942      continue;
943    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
944    LiveInterval *LI = Edit->get(RegIdx);
945    LiveRangeCalc &LRC = getLRCalc(RegIdx);
946    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
947    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
948         PE = MBB->pred_end(); PI != PE; ++PI) {
949      SlotIndex End = LIS.getMBBEndIdx(*PI);
950      SlotIndex LastUse = End.getPrevSlot();
951      // The predecessor may not have a live-out value. That is OK, like an
952      // undef PHI operand.
953      if (Edit->getParent().liveAt(LastUse)) {
954        assert(RegAssign.lookup(LastUse) == RegIdx &&
955               "Different register assignment in phi predecessor");
956        LRC.extend(LI, End,
957                   LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
958      }
959    }
960  }
961}
962
963/// rewriteAssigned - Rewrite all uses of Edit->getReg().
964void SplitEditor::rewriteAssigned(bool ExtendRanges) {
965  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
966       RE = MRI.reg_end(); RI != RE;) {
967    MachineOperand &MO = RI.getOperand();
968    MachineInstr *MI = MO.getParent();
969    ++RI;
970    // LiveDebugVariables should have handled all DBG_VALUE instructions.
971    if (MI->isDebugValue()) {
972      DEBUG(dbgs() << "Zapping " << *MI);
973      MO.setReg(0);
974      continue;
975    }
976
977    // <undef> operands don't really read the register, so it doesn't matter
978    // which register we choose.  When the use operand is tied to a def, we must
979    // use the same register as the def, so just do that always.
980    SlotIndex Idx = LIS.getInstructionIndex(MI);
981    if (MO.isDef() || MO.isUndef())
982      Idx = Idx.getRegSlot(MO.isEarlyClobber());
983
984    // Rewrite to the mapped register at Idx.
985    unsigned RegIdx = RegAssign.lookup(Idx);
986    LiveInterval *LI = Edit->get(RegIdx);
987    MO.setReg(LI->reg);
988    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
989                 << Idx << ':' << RegIdx << '\t' << *MI);
990
991    // Extend liveness to Idx if the instruction reads reg.
992    if (!ExtendRanges || MO.isUndef())
993      continue;
994
995    // Skip instructions that don't read Reg.
996    if (MO.isDef()) {
997      if (!MO.getSubReg() && !MO.isEarlyClobber())
998        continue;
999      // We may wan't to extend a live range for a partial redef, or for a use
1000      // tied to an early clobber.
1001      Idx = Idx.getPrevSlot();
1002      if (!Edit->getParent().liveAt(Idx))
1003        continue;
1004    } else
1005      Idx = Idx.getRegSlot(true);
1006
1007    getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(),
1008                             &MDT, &LIS.getVNInfoAllocator());
1009  }
1010}
1011
1012void SplitEditor::deleteRematVictims() {
1013  SmallVector<MachineInstr*, 8> Dead;
1014  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1015    LiveInterval *LI = *I;
1016    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1017           LII != LIE; ++LII) {
1018      // Dead defs end at the dead slot.
1019      if (LII->end != LII->valno->def.getDeadSlot())
1020        continue;
1021      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1022      assert(MI && "Missing instruction for dead def");
1023      MI->addRegisterDead(LI->reg, &TRI);
1024
1025      if (!MI->allDefsAreDead())
1026        continue;
1027
1028      DEBUG(dbgs() << "All defs dead: " << *MI);
1029      Dead.push_back(MI);
1030    }
1031  }
1032
1033  if (Dead.empty())
1034    return;
1035
1036  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
1037}
1038
1039void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1040  ++NumFinished;
1041
1042  // At this point, the live intervals in Edit contain VNInfos corresponding to
1043  // the inserted copies.
1044
1045  // Add the original defs from the parent interval.
1046  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1047         E = Edit->getParent().vni_end(); I != E; ++I) {
1048    const VNInfo *ParentVNI = *I;
1049    if (ParentVNI->isUnused())
1050      continue;
1051    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1052    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1053    VNI->setIsPHIDef(ParentVNI->isPHIDef());
1054
1055    // Force rematted values to be recomputed everywhere.
1056    // The new live ranges may be truncated.
1057    if (Edit->didRematerialize(ParentVNI))
1058      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1059        forceRecompute(i, ParentVNI);
1060  }
1061
1062  // Hoist back-copies to the complement interval when in spill mode.
1063  switch (SpillMode) {
1064  case SM_Partition:
1065    // Leave all back-copies as is.
1066    break;
1067  case SM_Size:
1068    hoistCopiesForSize();
1069    break;
1070  case SM_Speed:
1071    llvm_unreachable("Spill mode 'speed' not implemented yet");
1072  }
1073
1074  // Transfer the simply mapped values, check if any are skipped.
1075  bool Skipped = transferValues();
1076  if (Skipped)
1077    extendPHIKillRanges();
1078  else
1079    ++NumSimple;
1080
1081  // Rewrite virtual registers, possibly extending ranges.
1082  rewriteAssigned(Skipped);
1083
1084  // Delete defs that were rematted everywhere.
1085  if (Skipped)
1086    deleteRematVictims();
1087
1088  // Get rid of unused values and set phi-kill flags.
1089  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1090    (*I)->RenumberValues(LIS);
1091
1092  // Provide a reverse mapping from original indices to Edit ranges.
1093  if (LRMap) {
1094    LRMap->clear();
1095    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1096      LRMap->push_back(i);
1097  }
1098
1099  // Now check if any registers were separated into multiple components.
1100  ConnectedVNInfoEqClasses ConEQ(LIS);
1101  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1102    // Don't use iterators, they are invalidated by create() below.
1103    LiveInterval *li = Edit->get(i);
1104    unsigned NumComp = ConEQ.Classify(li);
1105    if (NumComp <= 1)
1106      continue;
1107    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1108    SmallVector<LiveInterval*, 8> dups;
1109    dups.push_back(li);
1110    for (unsigned j = 1; j != NumComp; ++j)
1111      dups.push_back(&Edit->create(LIS, VRM));
1112    ConEQ.Distribute(&dups[0], MRI);
1113    // The new intervals all map back to i.
1114    if (LRMap)
1115      LRMap->resize(Edit->size(), i);
1116  }
1117
1118  // Calculate spill weight and allocation hints for new intervals.
1119  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1120
1121  assert(!LRMap || LRMap->size() == Edit->size());
1122}
1123
1124
1125//===----------------------------------------------------------------------===//
1126//                            Single Block Splitting
1127//===----------------------------------------------------------------------===//
1128
1129bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1130                                           bool SingleInstrs) const {
1131  // Always split for multiple instructions.
1132  if (!BI.isOneInstr())
1133    return true;
1134  // Don't split for single instructions unless explicitly requested.
1135  if (!SingleInstrs)
1136    return false;
1137  // Splitting a live-through range always makes progress.
1138  if (BI.LiveIn && BI.LiveOut)
1139    return true;
1140  // No point in isolating a copy. It has no register class constraints.
1141  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1142    return false;
1143  // Finally, don't isolate an end point that was created by earlier splits.
1144  return isOriginalEndpoint(BI.FirstInstr);
1145}
1146
1147void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1148  openIntv();
1149  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1150  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1151    LastSplitPoint));
1152  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1153    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1154  } else {
1155      // The last use is after the last valid split point.
1156    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1157    useIntv(SegStart, SegStop);
1158    overlapIntv(SegStop, BI.LastInstr);
1159  }
1160}
1161
1162
1163//===----------------------------------------------------------------------===//
1164//                    Global Live Range Splitting Support
1165//===----------------------------------------------------------------------===//
1166
1167// These methods support a method of global live range splitting that uses a
1168// global algorithm to decide intervals for CFG edges. They will insert split
1169// points and color intervals in basic blocks while avoiding interference.
1170//
1171// Note that splitSingleBlock is also useful for blocks where both CFG edges
1172// are on the stack.
1173
1174void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1175                                        unsigned IntvIn, SlotIndex LeaveBefore,
1176                                        unsigned IntvOut, SlotIndex EnterAfter){
1177  SlotIndex Start, Stop;
1178  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1179
1180  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1181               << ") intf " << LeaveBefore << '-' << EnterAfter
1182               << ", live-through " << IntvIn << " -> " << IntvOut);
1183
1184  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1185
1186  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1187  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1188  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1189
1190  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1191
1192  if (!IntvOut) {
1193    DEBUG(dbgs() << ", spill on entry.\n");
1194    //
1195    //        <<<<<<<<<    Possible LeaveBefore interference.
1196    //    |-----------|    Live through.
1197    //    -____________    Spill on entry.
1198    //
1199    selectIntv(IntvIn);
1200    SlotIndex Idx = leaveIntvAtTop(*MBB);
1201    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1202    (void)Idx;
1203    return;
1204  }
1205
1206  if (!IntvIn) {
1207    DEBUG(dbgs() << ", reload on exit.\n");
1208    //
1209    //    >>>>>>>          Possible EnterAfter interference.
1210    //    |-----------|    Live through.
1211    //    ___________--    Reload on exit.
1212    //
1213    selectIntv(IntvOut);
1214    SlotIndex Idx = enterIntvAtEnd(*MBB);
1215    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1216    (void)Idx;
1217    return;
1218  }
1219
1220  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1221    DEBUG(dbgs() << ", straight through.\n");
1222    //
1223    //    |-----------|    Live through.
1224    //    -------------    Straight through, same intv, no interference.
1225    //
1226    selectIntv(IntvOut);
1227    useIntv(Start, Stop);
1228    return;
1229  }
1230
1231  // We cannot legally insert splits after LSP.
1232  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1233  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1234
1235  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1236                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1237    DEBUG(dbgs() << ", switch avoiding interference.\n");
1238    //
1239    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1240    //    |-----------|    Live through.
1241    //    ------=======    Switch intervals between interference.
1242    //
1243    selectIntv(IntvOut);
1244    SlotIndex Idx;
1245    if (LeaveBefore && LeaveBefore < LSP) {
1246      Idx = enterIntvBefore(LeaveBefore);
1247      useIntv(Idx, Stop);
1248    } else {
1249      Idx = enterIntvAtEnd(*MBB);
1250    }
1251    selectIntv(IntvIn);
1252    useIntv(Start, Idx);
1253    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1254    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1255    return;
1256  }
1257
1258  DEBUG(dbgs() << ", create local intv for interference.\n");
1259  //
1260  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1261  //    |-----------|    Live through.
1262  //    ==---------==    Switch intervals before/after interference.
1263  //
1264  assert(LeaveBefore <= EnterAfter && "Missed case");
1265
1266  selectIntv(IntvOut);
1267  SlotIndex Idx = enterIntvAfter(EnterAfter);
1268  useIntv(Idx, Stop);
1269  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1270
1271  selectIntv(IntvIn);
1272  Idx = leaveIntvBefore(LeaveBefore);
1273  useIntv(Start, Idx);
1274  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1275}
1276
1277
1278void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1279                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1280  SlotIndex Start, Stop;
1281  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1282
1283  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1284               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1285               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1286               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1287
1288  assert(IntvIn && "Must have register in");
1289  assert(BI.LiveIn && "Must be live-in");
1290  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1291
1292  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1293    DEBUG(dbgs() << " before interference.\n");
1294    //
1295    //               <<<    Interference after kill.
1296    //     |---o---x   |    Killed in block.
1297    //     =========        Use IntvIn everywhere.
1298    //
1299    selectIntv(IntvIn);
1300    useIntv(Start, BI.LastInstr);
1301    return;
1302  }
1303
1304  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1305
1306  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1307    //
1308    //               <<<    Possible interference after last use.
1309    //     |---o---o---|    Live-out on stack.
1310    //     =========____    Leave IntvIn after last use.
1311    //
1312    //                 <    Interference after last use.
1313    //     |---o---o--o|    Live-out on stack, late last use.
1314    //     ============     Copy to stack after LSP, overlap IntvIn.
1315    //            \_____    Stack interval is live-out.
1316    //
1317    if (BI.LastInstr < LSP) {
1318      DEBUG(dbgs() << ", spill after last use before interference.\n");
1319      selectIntv(IntvIn);
1320      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1321      useIntv(Start, Idx);
1322      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1323    } else {
1324      DEBUG(dbgs() << ", spill before last split point.\n");
1325      selectIntv(IntvIn);
1326      SlotIndex Idx = leaveIntvBefore(LSP);
1327      overlapIntv(Idx, BI.LastInstr);
1328      useIntv(Start, Idx);
1329      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1330    }
1331    return;
1332  }
1333
1334  // The interference is overlapping somewhere we wanted to use IntvIn. That
1335  // means we need to create a local interval that can be allocated a
1336  // different register.
1337  unsigned LocalIntv = openIntv();
1338  (void)LocalIntv;
1339  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1340
1341  if (!BI.LiveOut || BI.LastInstr < LSP) {
1342    //
1343    //           <<<<<<<    Interference overlapping uses.
1344    //     |---o---o---|    Live-out on stack.
1345    //     =====----____    Leave IntvIn before interference, then spill.
1346    //
1347    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1348    SlotIndex From = enterIntvBefore(LeaveBefore);
1349    useIntv(From, To);
1350    selectIntv(IntvIn);
1351    useIntv(Start, From);
1352    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1353    return;
1354  }
1355
1356  //           <<<<<<<    Interference overlapping uses.
1357  //     |---o---o--o|    Live-out on stack, late last use.
1358  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1359  //            \_____    Stack interval is live-out.
1360  //
1361  SlotIndex To = leaveIntvBefore(LSP);
1362  overlapIntv(To, BI.LastInstr);
1363  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1364  useIntv(From, To);
1365  selectIntv(IntvIn);
1366  useIntv(Start, From);
1367  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1368}
1369
1370void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1371                                   unsigned IntvOut, SlotIndex EnterAfter) {
1372  SlotIndex Start, Stop;
1373  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1374
1375  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1376               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1377               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1378               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1379
1380  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1381
1382  assert(IntvOut && "Must have register out");
1383  assert(BI.LiveOut && "Must be live-out");
1384  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1385
1386  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1387    DEBUG(dbgs() << " after interference.\n");
1388    //
1389    //    >>>>             Interference before def.
1390    //    |   o---o---|    Defined in block.
1391    //        =========    Use IntvOut everywhere.
1392    //
1393    selectIntv(IntvOut);
1394    useIntv(BI.FirstInstr, Stop);
1395    return;
1396  }
1397
1398  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1399    DEBUG(dbgs() << ", reload after interference.\n");
1400    //
1401    //    >>>>             Interference before def.
1402    //    |---o---o---|    Live-through, stack-in.
1403    //    ____=========    Enter IntvOut before first use.
1404    //
1405    selectIntv(IntvOut);
1406    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1407    useIntv(Idx, Stop);
1408    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1409    return;
1410  }
1411
1412  // The interference is overlapping somewhere we wanted to use IntvOut. That
1413  // means we need to create a local interval that can be allocated a
1414  // different register.
1415  DEBUG(dbgs() << ", interference overlaps uses.\n");
1416  //
1417  //    >>>>>>>          Interference overlapping uses.
1418  //    |---o---o---|    Live-through, stack-in.
1419  //    ____---======    Create local interval for interference range.
1420  //
1421  selectIntv(IntvOut);
1422  SlotIndex Idx = enterIntvAfter(EnterAfter);
1423  useIntv(Idx, Stop);
1424  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1425
1426  openIntv();
1427  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1428  useIntv(From, Idx);
1429}
1430