SplitKit.cpp revision 4b3041c43e8134d0f2471255c736745f2eb3214d
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "splitter" 16#include "SplitKit.h" 17#include "VirtRegMap.h" 18#include "llvm/CodeGen/CalcSpillWeights.h" 19#include "llvm/CodeGen/LiveIntervalAnalysis.h" 20#include "llvm/CodeGen/MachineInstrBuilder.h" 21#include "llvm/CodeGen/MachineLoopInfo.h" 22#include "llvm/CodeGen/MachineRegisterInfo.h" 23#include "llvm/Support/CommandLine.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/raw_ostream.h" 26#include "llvm/Target/TargetInstrInfo.h" 27#include "llvm/Target/TargetMachine.h" 28 29using namespace llvm; 30 31static cl::opt<bool> 32AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35//===----------------------------------------------------------------------===// 36// Split Analysis 37//===----------------------------------------------------------------------===// 38 39SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53} 54 55bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59} 60 61/// analyzeUses - Count instructions, basic blocks, and loops using curli. 62void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 72 Loop = Loop->getParentLoop()) 73 usingLoops_[Loop]++; 74 } 75 DEBUG(dbgs() << " counted " 76 << usingInstrs_.size() << " instrs, " 77 << usingBlocks_.size() << " blocks, " 78 << usingLoops_.size() << " loops.\n"); 79} 80 81// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 82// predecessor blocks, and exit blocks. 83void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 84 Blocks.clear(); 85 86 // Blocks in the loop. 87 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 88 89 // Predecessor blocks. 90 const MachineBasicBlock *Header = Loop->getHeader(); 91 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 92 E = Header->pred_end(); I != E; ++I) 93 if (!Blocks.Loop.count(*I)) 94 Blocks.Preds.insert(*I); 95 96 // Exit blocks. 97 for (MachineLoop::block_iterator I = Loop->block_begin(), 98 E = Loop->block_end(); I != E; ++I) { 99 const MachineBasicBlock *MBB = *I; 100 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 101 SE = MBB->succ_end(); SI != SE; ++SI) 102 if (!Blocks.Loop.count(*SI)) 103 Blocks.Exits.insert(*SI); 104 } 105} 106 107/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 108/// and around the Loop. 109SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 110analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 111 LoopPeripheralUse use = ContainedInLoop; 112 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 113 I != E; ++I) { 114 const MachineBasicBlock *MBB = I->first; 115 // Is this a peripheral block? 116 if (use < MultiPeripheral && 117 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 118 if (I->second > 1) use = MultiPeripheral; 119 else use = SinglePeripheral; 120 continue; 121 } 122 // Is it a loop block? 123 if (Blocks.Loop.count(MBB)) 124 continue; 125 // It must be an unrelated block. 126 return OutsideLoop; 127 } 128 return use; 129} 130 131/// getCriticalExits - It may be necessary to partially break critical edges 132/// leaving the loop if an exit block has phi uses of curli. Collect the exit 133/// blocks that need special treatment into CriticalExits. 134void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 135 BlockPtrSet &CriticalExits) { 136 CriticalExits.clear(); 137 138 // A critical exit block contains a phi def of curli, and has a predecessor 139 // that is not in the loop nor a loop predecessor. 140 // For such an exit block, the edges carrying the new variable must be moved 141 // to a new pre-exit block. 142 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 143 I != E; ++I) { 144 const MachineBasicBlock *Succ = *I; 145 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 146 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 147 // This exit may not have curli live in at all. No need to split. 148 if (!SuccVNI) 149 continue; 150 // If this is not a PHI def, it is either using a value from before the 151 // loop, or a value defined inside the loop. Both are safe. 152 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 153 continue; 154 // This exit block does have a PHI. Does it also have a predecessor that is 155 // not a loop block or loop predecessor? 156 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 157 PE = Succ->pred_end(); PI != PE; ++PI) { 158 const MachineBasicBlock *Pred = *PI; 159 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 160 continue; 161 // This is a critical exit block, and we need to split the exit edge. 162 CriticalExits.insert(Succ); 163 break; 164 } 165 } 166} 167 168/// canSplitCriticalExits - Return true if it is possible to insert new exit 169/// blocks before the blocks in CriticalExits. 170bool 171SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 172 BlockPtrSet &CriticalExits) { 173 // If we don't allow critical edge splitting, require no critical exits. 174 if (!AllowSplit) 175 return CriticalExits.empty(); 176 177 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 178 I != E; ++I) { 179 const MachineBasicBlock *Succ = *I; 180 // We want to insert a new pre-exit MBB before Succ, and change all the 181 // in-loop blocks to branch to the pre-exit instead of Succ. 182 // Check that all the in-loop predecessors can be changed. 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 // The external predecessors won't be altered. 187 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 188 continue; 189 if (!canAnalyzeBranch(Pred)) 190 return false; 191 } 192 193 // If Succ's layout predecessor falls through, that too must be analyzable. 194 // We need to insert the pre-exit block in the gap. 195 MachineFunction::const_iterator MFI = Succ; 196 if (MFI == mf_.begin()) 197 continue; 198 if (!canAnalyzeBranch(--MFI)) 199 return false; 200 } 201 // No problems found. 202 return true; 203} 204 205void SplitAnalysis::analyze(const LiveInterval *li) { 206 clear(); 207 curli_ = li; 208 analyzeUses(); 209} 210 211const MachineLoop *SplitAnalysis::getBestSplitLoop() { 212 assert(curli_ && "Call analyze() before getBestSplitLoop"); 213 if (usingLoops_.empty()) 214 return 0; 215 216 LoopPtrSet Loops, SecondLoops; 217 LoopBlocks Blocks; 218 BlockPtrSet CriticalExits; 219 220 // Find first-class and second class candidate loops. 221 // We prefer to split around loops where curli is used outside the periphery. 222 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 223 E = usingLoops_.end(); I != E; ++I) { 224 const MachineLoop *Loop = I->first; 225 getLoopBlocks(Loop, Blocks); 226 227 LoopPtrSet *LPS = 0; 228 switch(analyzeLoopPeripheralUse(Blocks)) { 229 case OutsideLoop: 230 LPS = &Loops; 231 break; 232 case MultiPeripheral: 233 LPS = &SecondLoops; 234 break; 235 case ContainedInLoop: 236 DEBUG(dbgs() << " contained in " << *Loop); 237 continue; 238 case SinglePeripheral: 239 DEBUG(dbgs() << " single peripheral use in " << *Loop); 240 continue; 241 } 242 // Will it be possible to split around this loop? 243 getCriticalExits(Blocks, CriticalExits); 244 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 245 << *Loop); 246 if (!canSplitCriticalExits(Blocks, CriticalExits)) 247 continue; 248 // This is a possible split. 249 assert(LPS); 250 LPS->insert(Loop); 251 } 252 253 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 254 << SecondLoops.size() << " candidate loops.\n"); 255 256 // If there are no first class loops available, look at second class loops. 257 if (Loops.empty()) 258 Loops = SecondLoops; 259 260 if (Loops.empty()) 261 return 0; 262 263 // Pick the earliest loop. 264 // FIXME: Are there other heuristics to consider? 265 const MachineLoop *Best = 0; 266 SlotIndex BestIdx; 267 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 268 ++I) { 269 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 270 if (!Best || Idx < BestIdx) 271 Best = *I, BestIdx = Idx; 272 } 273 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 274 return Best; 275} 276 277/// getMultiUseBlocks - if curli has more than one use in a basic block, it 278/// may be an advantage to split curli for the duration of the block. 279bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 280 // If curli is local to one block, there is no point to splitting it. 281 if (usingBlocks_.size() <= 1) 282 return false; 283 // Add blocks with multiple uses. 284 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 285 I != E; ++I) 286 switch (I->second) { 287 case 0: 288 case 1: 289 continue; 290 case 2: { 291 // It doesn't pay to split a 2-instr block if it redefines curli. 292 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 293 VNInfo *VN2 = 294 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 295 // live-in and live-out with a different value. 296 if (VN1 && VN2 && VN1 != VN2) 297 continue; 298 } // Fall through. 299 default: 300 Blocks.insert(I->first); 301 } 302 return !Blocks.empty(); 303} 304 305//===----------------------------------------------------------------------===// 306// LiveIntervalMap 307//===----------------------------------------------------------------------===// 308 309// Work around the fact that the std::pair constructors are broken for pointer 310// pairs in some implementations. makeVV(x, 0) works. 311static inline std::pair<const VNInfo*, VNInfo*> 312makeVV(const VNInfo *a, VNInfo *b) { 313 return std::make_pair(a, b); 314} 315 316void LiveIntervalMap::reset(LiveInterval *li) { 317 li_ = li; 318 valueMap_.clear(); 319} 320 321bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 322 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 323 return i != valueMap_.end() && i->second == 0; 324} 325 326// defValue - Introduce a li_ def for ParentVNI that could be later than 327// ParentVNI->def. 328VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 329 assert(li_ && "call reset first"); 330 assert(ParentVNI && "Mapping NULL value"); 331 assert(Idx.isValid() && "Invalid SlotIndex"); 332 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 333 334 // Create a new value. 335 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 336 337 // Use insert for lookup, so we can add missing values with a second lookup. 338 std::pair<ValueMap::iterator,bool> InsP = 339 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 340 341 // This is now a complex def. Mark with a NULL in valueMap. 342 if (!InsP.second) 343 InsP.first->second = 0; 344 345 return VNI; 346} 347 348 349// mapValue - Find the mapped value for ParentVNI at Idx. 350// Potentially create phi-def values. 351VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 352 bool *simple) { 353 assert(li_ && "call reset first"); 354 assert(ParentVNI && "Mapping NULL value"); 355 assert(Idx.isValid() && "Invalid SlotIndex"); 356 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 357 358 // Use insert for lookup, so we can add missing values with a second lookup. 359 std::pair<ValueMap::iterator,bool> InsP = 360 valueMap_.insert(makeVV(ParentVNI, 0)); 361 362 // This was an unknown value. Create a simple mapping. 363 if (InsP.second) { 364 if (simple) *simple = true; 365 return InsP.first->second = li_->createValueCopy(ParentVNI, 366 lis_.getVNInfoAllocator()); 367 } 368 369 // This was a simple mapped value. 370 if (InsP.first->second) { 371 if (simple) *simple = true; 372 return InsP.first->second; 373 } 374 375 // This is a complex mapped value. There may be multiple defs, and we may need 376 // to create phi-defs. 377 if (simple) *simple = false; 378 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 379 assert(IdxMBB && "No MBB at Idx"); 380 381 // Is there a def in the same MBB we can extend? 382 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 383 return VNI; 384 385 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 386 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 387 // Perform a depth-first search for predecessor blocks where we know the 388 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 389 390 // Track MBBs where we have created or learned the dominating value. 391 // This may change during the DFS as we create new phi-defs. 392 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 393 MBBValueMap DomValue; 394 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 395 BlockPtrSet Visited; 396 397 // Iterate over IdxMBB predecessors in a depth-first order. 398 // Skip begin() since that is always IdxMBB. 399 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 400 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 401 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 402 MachineBasicBlock *MBB = *IDFI; 403 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 404 405 // We are operating on the restricted CFG where ParentVNI is live. 406 if (parentli_.getVNInfoAt(End) != ParentVNI) { 407 IDFI.skipChildren(); 408 continue; 409 } 410 411 // Do we have a dominating value in this block? 412 VNInfo *VNI = extendTo(MBB, End); 413 if (!VNI) { 414 ++IDFI; 415 continue; 416 } 417 418 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 419 Visited.erase(MBB); 420 421 // Track the path back to IdxMBB, creating phi-defs 422 // as needed along the way. 423 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 424 // Start from MBB's immediate successor. End at IdxMBB. 425 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 426 std::pair<MBBValueMap::iterator, bool> InsP = 427 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 428 429 // This is the first time we backtrack to Succ. 430 if (InsP.second) 431 continue; 432 433 // We reached Succ again with the same VNI. Nothing is going to change. 434 VNInfo *OVNI = InsP.first->second; 435 if (OVNI == VNI) 436 break; 437 438 // Succ already has a phi-def. No need to continue. 439 SlotIndex Start = lis_.getMBBStartIdx(Succ); 440 if (OVNI->def == Start) 441 break; 442 443 // We have a collision between the old and new VNI at Succ. That means 444 // neither dominates and we need a new phi-def. 445 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 446 VNI->setIsPHIDef(true); 447 InsP.first->second = VNI; 448 449 // Replace OVNI with VNI in the remaining path. 450 for (; PI > 1 ; --PI) { 451 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 452 if (I == DomValue.end() || I->second != OVNI) 453 break; 454 I->second = VNI; 455 } 456 } 457 458 // No need to search the children, we found a dominating value. 459 IDFI.skipChildren(); 460 } 461 462 // The search should at least find a dominating value for IdxMBB. 463 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 464 465 // Since we went through the trouble of a full DFS visiting all reaching defs, 466 // the values in DomValue are now accurate. No more phi-defs are needed for 467 // these blocks, so we can color the live ranges. 468 // This makes the next mapValue call much faster. 469 VNInfo *IdxVNI = 0; 470 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 471 ++I) { 472 MachineBasicBlock *MBB = I->first; 473 VNInfo *VNI = I->second; 474 SlotIndex Start = lis_.getMBBStartIdx(MBB); 475 if (MBB == IdxMBB) { 476 // Don't add full liveness to IdxMBB, stop at Idx. 477 if (Start != Idx) 478 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 479 // The caller had better add some liveness to IdxVNI, or it leaks. 480 IdxVNI = VNI; 481 } else 482 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 483 } 484 485 assert(IdxVNI && "Didn't find value for Idx"); 486 return IdxVNI; 487} 488 489// extendTo - Find the last li_ value defined in MBB at or before Idx. The 490// parentli_ is assumed to be live at Idx. Extend the live range to Idx. 491// Return the found VNInfo, or NULL. 492VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 493 assert(li_ && "call reset first"); 494 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 495 if (I == li_->begin()) 496 return 0; 497 --I; 498 if (I->end <= lis_.getMBBStartIdx(MBB)) 499 return 0; 500 if (I->end <= Idx) 501 I->end = Idx.getNextSlot(); 502 return I->valno; 503} 504 505// addSimpleRange - Add a simple range from parentli_ to li_. 506// ParentVNI must be live in the [Start;End) interval. 507void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 508 const VNInfo *ParentVNI) { 509 assert(li_ && "call reset first"); 510 bool simple; 511 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 512 // A simple mapping is easy. 513 if (simple) { 514 li_->addRange(LiveRange(Start, End, VNI)); 515 return; 516 } 517 518 // ParentVNI is a complex value. We must map per MBB. 519 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 520 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 521 522 if (MBB == MBBE) { 523 li_->addRange(LiveRange(Start, End, VNI)); 524 return; 525 } 526 527 // First block. 528 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 529 530 // Run sequence of full blocks. 531 for (++MBB; MBB != MBBE; ++MBB) { 532 Start = lis_.getMBBStartIdx(MBB); 533 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 534 mapValue(ParentVNI, Start))); 535 } 536 537 // Final block. 538 Start = lis_.getMBBStartIdx(MBB); 539 if (Start != End) 540 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 541} 542 543/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 544/// All needed values whose def is not inside [Start;End) must be defined 545/// beforehand so mapValue will work. 546void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 547 assert(li_ && "call reset first"); 548 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 549 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 550 551 // Check if --I begins before Start and overlaps. 552 if (I != B) { 553 --I; 554 if (I->end > Start) 555 addSimpleRange(Start, std::min(End, I->end), I->valno); 556 ++I; 557 } 558 559 // The remaining ranges begin after Start. 560 for (;I != E && I->start < End; ++I) 561 addSimpleRange(I->start, std::min(End, I->end), I->valno); 562} 563 564VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 565 const VNInfo *ParentVNI, 566 MachineBasicBlock &MBB, 567 MachineBasicBlock::iterator I) { 568 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 569 get(TargetOpcode::COPY); 570 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 571 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 572 VNInfo *VNI = defValue(ParentVNI, DefIdx); 573 VNI->setCopy(MI); 574 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 575 return VNI; 576} 577 578//===----------------------------------------------------------------------===// 579// Split Editor 580//===----------------------------------------------------------------------===// 581 582/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 583SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 584 SmallVectorImpl<LiveInterval*> &intervals) 585 : sa_(sa), lis_(lis), vrm_(vrm), 586 mri_(vrm.getMachineFunction().getRegInfo()), 587 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 588 curli_(sa_.getCurLI()), 589 dupli_(lis_, *curli_), 590 openli_(lis_, *curli_), 591 intervals_(intervals), 592 firstInterval(intervals_.size()) 593{ 594 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 595 596 // Make sure curli_ is assigned a stack slot, so all our intervals get the 597 // same slot as curli_. 598 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 599 vrm_.assignVirt2StackSlot(curli_->reg); 600 601} 602 603LiveInterval *SplitEditor::createInterval() { 604 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 605 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 606 vrm_.grow(); 607 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 608 return &Intv; 609} 610 611bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 612 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 613 if (intervals_[i]->liveAt(Idx)) 614 return true; 615 return false; 616} 617 618/// Create a new virtual register and live interval. 619void SplitEditor::openIntv() { 620 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 621 622 if (!dupli_.getLI()) 623 dupli_.reset(createInterval()); 624 625 openli_.reset(createInterval()); 626 intervals_.push_back(openli_.getLI()); 627} 628 629/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 630/// not live before Idx, a COPY is not inserted. 631void SplitEditor::enterIntvBefore(SlotIndex Idx) { 632 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 633 DEBUG(dbgs() << " enterIntvBefore " << Idx); 634 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 635 if (!ParentVNI) { 636 DEBUG(dbgs() << ": not live\n"); 637 return; 638 } 639 DEBUG(dbgs() << ": valno " << ParentVNI->id); 640 truncatedValues.insert(ParentVNI); 641 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 642 assert(MI && "enterIntvBefore called with invalid index"); 643 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 644 *MI->getParent(), MI); 645 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 646 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 647} 648 649/// enterIntvAtEnd - Enter openli at the end of MBB. 650void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 651 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 652 SlotIndex End = lis_.getMBBEndIdx(&MBB); 653 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 654 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 655 if (!ParentVNI) { 656 DEBUG(dbgs() << ": not live\n"); 657 return; 658 } 659 DEBUG(dbgs() << ": valno " << ParentVNI->id); 660 truncatedValues.insert(ParentVNI); 661 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 662 MBB, MBB.getFirstTerminator()); 663 // Make sure openli is live out of MBB. 664 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 665 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 666} 667 668/// useIntv - indicate that all instructions in MBB should use openli. 669void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 670 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 671} 672 673void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 674 assert(openli_.getLI() && "openIntv not called before useIntv"); 675 openli_.addRange(Start, End); 676 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 677 << *openli_.getLI() << '\n'); 678} 679 680/// leaveIntvAfter - Leave openli after the instruction at Idx. 681void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 682 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 683 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 684 685 // The interval must be live beyond the instruction at Idx. 686 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); 687 if (!ParentVNI) { 688 DEBUG(dbgs() << ": not live\n"); 689 return; 690 } 691 DEBUG(dbgs() << ": valno " << ParentVNI->id); 692 693 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 694 MachineBasicBlock *MBB = MII->getParent(); 695 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 696 llvm::next(MII)); 697 698 // Finally we must make sure that openli is properly extended from Idx to the 699 // new copy. 700 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 701 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 702} 703 704/// leaveIntvAtTop - Leave the interval at the top of MBB. 705/// Currently, only one value can leave the interval. 706void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 707 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 708 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 709 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 710 711 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 712 if (!ParentVNI) { 713 DEBUG(dbgs() << ": not live\n"); 714 return; 715 } 716 717 // We are going to insert a back copy, so we must have a dupli_. 718 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 719 MBB, MBB.begin()); 720 721 // Finally we must make sure that openli is properly extended from Start to 722 // the new copy. 723 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 724 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 725} 726 727/// closeIntv - Indicate that we are done editing the currently open 728/// LiveInterval, and ranges can be trimmed. 729void SplitEditor::closeIntv() { 730 assert(openli_.getLI() && "openIntv not called before closeIntv"); 731 732 DEBUG(dbgs() << " closeIntv cleaning up\n"); 733 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 734 openli_.reset(0); 735} 736 737void 738SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 739 // Build vector of iterator pairs from the intervals. 740 typedef std::pair<LiveInterval::const_iterator, 741 LiveInterval::const_iterator> IIPair; 742 SmallVector<IIPair, 8> Iters; 743 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) { 744 LiveInterval::const_iterator I = intervals_[i]->find(Start); 745 LiveInterval::const_iterator E = intervals_[i]->end(); 746 if (I != E) 747 Iters.push_back(std::make_pair(I, E)); 748 } 749 750 SlotIndex sidx = Start; 751 // Break [Start;End) into segments that don't overlap any intervals. 752 for (;;) { 753 SlotIndex next = sidx, eidx = End; 754 // Find overlapping intervals. 755 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 756 LiveInterval::const_iterator I = Iters[i].first; 757 // Interval I is overlapping [sidx;eidx). Trim sidx. 758 if (I->start <= sidx) { 759 sidx = I->end; 760 // Move to the next run, remove iters when all are consumed. 761 I = ++Iters[i].first; 762 if (I == Iters[i].second) { 763 Iters.erase(Iters.begin() + i); 764 --i; 765 continue; 766 } 767 } 768 // Trim eidx too if needed. 769 if (I->start >= eidx) 770 continue; 771 eidx = I->start; 772 next = I->end; 773 } 774 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 775 if (sidx < eidx) 776 dupli_.addSimpleRange(sidx, eidx, VNI); 777 // If the interval end was truncated, we can try again from next. 778 if (next <= sidx) 779 break; 780 sidx = next; 781 } 782} 783 784/// rewrite - after all the new live ranges have been created, rewrite 785/// instructions using curli to use the new intervals. 786void SplitEditor::rewrite() { 787 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 788 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 789 790 // First we need to fill in the live ranges in dupli. 791 // If values were redefined, we need a full recoloring with SSA update. 792 // If values were truncated, we only need to truncate the ranges. 793 // If values were partially rematted, we should shrink to uses. 794 // If values were fully rematted, they should be omitted. 795 // FIXME: If a single value is redefined, just move the def and truncate. 796 797 // Values that are fully contained in the split intervals. 798 SmallPtrSet<const VNInfo*, 8> deadValues; 799 800 // Map all curli values that should have live defs in dupli. 801 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 802 E = curli_->vni_end(); I != E; ++I) { 803 const VNInfo *VNI = *I; 804 // Original def is contained in the split intervals. 805 if (intervalsLiveAt(VNI->def)) { 806 // Did this value escape? 807 if (dupli_.isMapped(VNI)) 808 truncatedValues.insert(VNI); 809 else 810 deadValues.insert(VNI); 811 continue; 812 } 813 // Add minimal live range at the definition. 814 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 815 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 816 } 817 818 // Add all ranges to dupli. 819 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 820 I != E; ++I) { 821 const LiveRange &LR = *I; 822 if (truncatedValues.count(LR.valno)) { 823 // recolor after removing intervals_. 824 addTruncSimpleRange(LR.start, LR.end, LR.valno); 825 } else if (!deadValues.count(LR.valno)) { 826 // recolor without truncation. 827 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 828 } 829 } 830 831 832 const LiveInterval *curli = sa_.getCurLI(); 833 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 834 RE = mri_.reg_end(); RI != RE;) { 835 MachineOperand &MO = RI.getOperand(); 836 MachineInstr *MI = MO.getParent(); 837 ++RI; 838 if (MI->isDebugValue()) { 839 DEBUG(dbgs() << "Zapping " << *MI); 840 // FIXME: We can do much better with debug values. 841 MO.setReg(0); 842 continue; 843 } 844 SlotIndex Idx = lis_.getInstructionIndex(MI); 845 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 846 LiveInterval *LI = dupli_.getLI(); 847 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 848 LiveInterval *testli = intervals_[i]; 849 if (testli->liveAt(Idx)) { 850 LI = testli; 851 break; 852 } 853 } 854 MO.setReg(LI->reg); 855 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 856 } 857 858 // dupli_ goes in last, after rewriting. 859 if (dupli_.getLI()->empty()) { 860 DEBUG(dbgs() << " dupli became empty?\n"); 861 lis_.removeInterval(dupli_.getLI()->reg); 862 dupli_.reset(0); 863 } else { 864 dupli_.getLI()->RenumberValues(lis_); 865 intervals_.push_back(dupli_.getLI()); 866 } 867 868 // Calculate spill weight and allocation hints for new intervals. 869 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 870 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 871 LiveInterval &li = *intervals_[i]; 872 vrai.CalculateRegClass(li.reg); 873 vrai.CalculateWeightAndHint(li); 874 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 875 << ":" << li << '\n'); 876 } 877} 878 879 880//===----------------------------------------------------------------------===// 881// Loop Splitting 882//===----------------------------------------------------------------------===// 883 884void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 885 SplitAnalysis::LoopBlocks Blocks; 886 sa_.getLoopBlocks(Loop, Blocks); 887 888 // Break critical edges as needed. 889 SplitAnalysis::BlockPtrSet CriticalExits; 890 sa_.getCriticalExits(Blocks, CriticalExits); 891 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 892 893 // Create new live interval for the loop. 894 openIntv(); 895 896 // Insert copies in the predecessors. 897 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 898 E = Blocks.Preds.end(); I != E; ++I) { 899 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 900 enterIntvAtEnd(MBB); 901 } 902 903 // Switch all loop blocks. 904 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 905 E = Blocks.Loop.end(); I != E; ++I) 906 useIntv(**I); 907 908 // Insert back copies in the exit blocks. 909 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 910 E = Blocks.Exits.end(); I != E; ++I) { 911 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 912 leaveIntvAtTop(MBB); 913 } 914 915 // Done. 916 closeIntv(); 917 rewrite(); 918} 919 920 921//===----------------------------------------------------------------------===// 922// Single Block Splitting 923//===----------------------------------------------------------------------===// 924 925/// splitSingleBlocks - Split curli into a separate live interval inside each 926/// basic block in Blocks. 927void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 928 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 929 // Determine the first and last instruction using curli in each block. 930 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 931 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 932 IndexPairMap MBBRange; 933 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 934 E = sa_.usingInstrs_.end(); I != E; ++I) { 935 const MachineBasicBlock *MBB = (*I)->getParent(); 936 if (!Blocks.count(MBB)) 937 continue; 938 SlotIndex Idx = lis_.getInstructionIndex(*I); 939 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 940 IndexPair &IP = MBBRange[MBB]; 941 if (!IP.first.isValid() || Idx < IP.first) 942 IP.first = Idx; 943 if (!IP.second.isValid() || Idx > IP.second) 944 IP.second = Idx; 945 } 946 947 // Create a new interval for each block. 948 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 949 E = Blocks.end(); I != E; ++I) { 950 IndexPair &IP = MBBRange[*I]; 951 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 952 << IP.first << ';' << IP.second << ")\n"); 953 assert(IP.first.isValid() && IP.second.isValid()); 954 955 openIntv(); 956 enterIntvBefore(IP.first); 957 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 958 leaveIntvAfter(IP.second); 959 closeIntv(); 960 } 961 rewrite(); 962} 963 964 965//===----------------------------------------------------------------------===// 966// Sub Block Splitting 967//===----------------------------------------------------------------------===// 968 969/// getBlockForInsideSplit - If curli is contained inside a single basic block, 970/// and it wou pay to subdivide the interval inside that block, return it. 971/// Otherwise return NULL. The returned block can be passed to 972/// SplitEditor::splitInsideBlock. 973const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 974 // The interval must be exclusive to one block. 975 if (usingBlocks_.size() != 1) 976 return 0; 977 // Don't to this for less than 4 instructions. We want to be sure that 978 // splitting actually reduces the instruction count per interval. 979 if (usingInstrs_.size() < 4) 980 return 0; 981 return usingBlocks_.begin()->first; 982} 983 984/// splitInsideBlock - Split curli into multiple intervals inside MBB. 985void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 986 SmallVector<SlotIndex, 32> Uses; 987 Uses.reserve(sa_.usingInstrs_.size()); 988 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 989 E = sa_.usingInstrs_.end(); I != E; ++I) 990 if ((*I)->getParent() == MBB) 991 Uses.push_back(lis_.getInstructionIndex(*I)); 992 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 993 << Uses.size() << " instructions.\n"); 994 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 995 array_pod_sort(Uses.begin(), Uses.end()); 996 997 // Simple algorithm: Find the largest gap between uses as determined by slot 998 // indices. Create new intervals for instructions before the gap and after the 999 // gap. 1000 unsigned bestPos = 0; 1001 int bestGap = 0; 1002 DEBUG(dbgs() << " dist (" << Uses[0]); 1003 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1004 int g = Uses[i-1].distance(Uses[i]); 1005 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1006 if (g > bestGap) 1007 bestPos = i, bestGap = g; 1008 } 1009 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1010 1011 // bestPos points to the first use after the best gap. 1012 assert(bestPos > 0 && "Invalid gap"); 1013 1014 // FIXME: Don't create intervals for low densities. 1015 1016 // First interval before the gap. Don't create single-instr intervals. 1017 if (bestPos > 1) { 1018 openIntv(); 1019 enterIntvBefore(Uses.front()); 1020 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1021 leaveIntvAfter(Uses[bestPos-1]); 1022 closeIntv(); 1023 } 1024 1025 // Second interval after the gap. 1026 if (bestPos < Uses.size()-1) { 1027 openIntv(); 1028 enterIntvBefore(Uses[bestPos]); 1029 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1030 leaveIntvAfter(Uses.back()); 1031 closeIntv(); 1032 } 1033 1034 rewrite(); 1035} 1036