SplitKit.cpp revision 6715be20e23ac19efd20e16d43fdd1f608e3e415
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "splitter" 16#include "SplitKit.h" 17#include "VirtRegMap.h" 18#include "llvm/CodeGen/CalcSpillWeights.h" 19#include "llvm/CodeGen/LiveIntervalAnalysis.h" 20#include "llvm/CodeGen/MachineInstrBuilder.h" 21#include "llvm/CodeGen/MachineLoopInfo.h" 22#include "llvm/CodeGen/MachineRegisterInfo.h" 23#include "llvm/Support/CommandLine.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/raw_ostream.h" 26#include "llvm/Target/TargetInstrInfo.h" 27#include "llvm/Target/TargetMachine.h" 28 29using namespace llvm; 30 31static cl::opt<bool> 32AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35//===----------------------------------------------------------------------===// 36// Split Analysis 37//===----------------------------------------------------------------------===// 38 39SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53} 54 55bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59} 60 61/// analyzeUses - Count instructions, basic blocks, and loops using curli. 62void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78} 79 80/// removeUse - Update statistics by noting that MI no longer uses curli. 81void SplitAnalysis::removeUse(const MachineInstr *MI) { 82 if (!usingInstrs_.erase(MI)) 83 return; 84 85 // Decrement MBB count. 86 const MachineBasicBlock *MBB = MI->getParent(); 87 BlockCountMap::iterator bi = usingBlocks_.find(MBB); 88 assert(bi != usingBlocks_.end() && "MBB missing"); 89 assert(bi->second && "0 count in map"); 90 if (--bi->second) 91 return; 92 // No more uses in MBB. 93 usingBlocks_.erase(bi); 94 95 // Decrement loop count. 96 MachineLoop *Loop = loops_.getLoopFor(MBB); 97 if (!Loop) 98 return; 99 LoopCountMap::iterator li = usingLoops_.find(Loop); 100 assert(li != usingLoops_.end() && "Loop missing"); 101 assert(li->second && "0 count in map"); 102 if (--li->second) 103 return; 104 // No more blocks in Loop. 105 usingLoops_.erase(li); 106} 107 108// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 109// predecessor blocks, and exit blocks. 110void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 111 Blocks.clear(); 112 113 // Blocks in the loop. 114 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 115 116 // Predecessor blocks. 117 const MachineBasicBlock *Header = Loop->getHeader(); 118 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 119 E = Header->pred_end(); I != E; ++I) 120 if (!Blocks.Loop.count(*I)) 121 Blocks.Preds.insert(*I); 122 123 // Exit blocks. 124 for (MachineLoop::block_iterator I = Loop->block_begin(), 125 E = Loop->block_end(); I != E; ++I) { 126 const MachineBasicBlock *MBB = *I; 127 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 128 SE = MBB->succ_end(); SI != SE; ++SI) 129 if (!Blocks.Loop.count(*SI)) 130 Blocks.Exits.insert(*SI); 131 } 132} 133 134/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 135/// and around the Loop. 136SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 return OutsideLoop; 154 } 155 return use; 156} 157 158/// getCriticalExits - It may be necessary to partially break critical edges 159/// leaving the loop if an exit block has phi uses of curli. Collect the exit 160/// blocks that need special treatment into CriticalExits. 161void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 162 BlockPtrSet &CriticalExits) { 163 CriticalExits.clear(); 164 165 // A critical exit block contains a phi def of curli, and has a predecessor 166 // that is not in the loop nor a loop predecessor. 167 // For such an exit block, the edges carrying the new variable must be moved 168 // to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Succ = *I; 172 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 173 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 174 // This exit may not have curli live in at all. No need to split. 175 if (!SuccVNI) 176 continue; 177 // If this is not a PHI def, it is either using a value from before the 178 // loop, or a value defined inside the loop. Both are safe. 179 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 180 continue; 181 // This exit block does have a PHI. Does it also have a predecessor that is 182 // not a loop block or loop predecessor? 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 187 continue; 188 // This is a critical exit block, and we need to split the exit edge. 189 CriticalExits.insert(Succ); 190 break; 191 } 192 } 193} 194 195/// canSplitCriticalExits - Return true if it is possible to insert new exit 196/// blocks before the blocks in CriticalExits. 197bool 198SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 199 BlockPtrSet &CriticalExits) { 200 // If we don't allow critical edge splitting, require no critical exits. 201 if (!AllowSplit) 202 return CriticalExits.empty(); 203 204 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 205 I != E; ++I) { 206 const MachineBasicBlock *Succ = *I; 207 // We want to insert a new pre-exit MBB before Succ, and change all the 208 // in-loop blocks to branch to the pre-exit instead of Succ. 209 // Check that all the in-loop predecessors can be changed. 210 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 211 PE = Succ->pred_end(); PI != PE; ++PI) { 212 const MachineBasicBlock *Pred = *PI; 213 // The external predecessors won't be altered. 214 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 215 continue; 216 if (!canAnalyzeBranch(Pred)) 217 return false; 218 } 219 220 // If Succ's layout predecessor falls through, that too must be analyzable. 221 // We need to insert the pre-exit block in the gap. 222 MachineFunction::const_iterator MFI = Succ; 223 if (MFI == mf_.begin()) 224 continue; 225 if (!canAnalyzeBranch(--MFI)) 226 return false; 227 } 228 // No problems found. 229 return true; 230} 231 232void SplitAnalysis::analyze(const LiveInterval *li) { 233 clear(); 234 curli_ = li; 235 analyzeUses(); 236} 237 238const MachineLoop *SplitAnalysis::getBestSplitLoop() { 239 assert(curli_ && "Call analyze() before getBestSplitLoop"); 240 if (usingLoops_.empty()) 241 return 0; 242 243 LoopPtrSet Loops, SecondLoops; 244 LoopBlocks Blocks; 245 BlockPtrSet CriticalExits; 246 247 // Find first-class and second class candidate loops. 248 // We prefer to split around loops where curli is used outside the periphery. 249 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 250 E = usingLoops_.end(); I != E; ++I) { 251 const MachineLoop *Loop = I->first; 252 getLoopBlocks(Loop, Blocks); 253 254 // FIXME: We need an SSA updater to properly handle multiple exit blocks. 255 if (Blocks.Exits.size() > 1) { 256 DEBUG(dbgs() << " multiple exits from " << *Loop); 257 continue; 258 } 259 260 LoopPtrSet *LPS = 0; 261 switch(analyzeLoopPeripheralUse(Blocks)) { 262 case OutsideLoop: 263 LPS = &Loops; 264 break; 265 case MultiPeripheral: 266 LPS = &SecondLoops; 267 break; 268 case ContainedInLoop: 269 DEBUG(dbgs() << " contained in " << *Loop); 270 continue; 271 case SinglePeripheral: 272 DEBUG(dbgs() << " single peripheral use in " << *Loop); 273 continue; 274 } 275 // Will it be possible to split around this loop? 276 getCriticalExits(Blocks, CriticalExits); 277 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 278 << *Loop); 279 if (!canSplitCriticalExits(Blocks, CriticalExits)) 280 continue; 281 // This is a possible split. 282 assert(LPS); 283 LPS->insert(Loop); 284 } 285 286 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 287 << SecondLoops.size() << " candidate loops.\n"); 288 289 // If there are no first class loops available, look at second class loops. 290 if (Loops.empty()) 291 Loops = SecondLoops; 292 293 if (Loops.empty()) 294 return 0; 295 296 // Pick the earliest loop. 297 // FIXME: Are there other heuristics to consider? 298 const MachineLoop *Best = 0; 299 SlotIndex BestIdx; 300 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 301 ++I) { 302 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 303 if (!Best || Idx < BestIdx) 304 Best = *I, BestIdx = Idx; 305 } 306 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 307 return Best; 308} 309 310/// getMultiUseBlocks - if curli has more than one use in a basic block, it 311/// may be an advantage to split curli for the duration of the block. 312bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 313 // If curli is local to one block, there is no point to splitting it. 314 if (usingBlocks_.size() <= 1) 315 return false; 316 // Add blocks with multiple uses. 317 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 318 I != E; ++I) 319 switch (I->second) { 320 case 0: 321 case 1: 322 continue; 323 case 2: { 324 // It doesn't pay to split a 2-instr block if it redefines curli. 325 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 326 VNInfo *VN2 = 327 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 328 // live-in and live-out with a different value. 329 if (VN1 && VN2 && VN1 != VN2) 330 continue; 331 } // Fall through. 332 default: 333 Blocks.insert(I->first); 334 } 335 return !Blocks.empty(); 336} 337 338//===----------------------------------------------------------------------===// 339// LiveIntervalMap 340//===----------------------------------------------------------------------===// 341 342// defValue - Introduce a li_ def for ParentVNI that could be later than 343// ParentVNI->def. 344VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 345 assert(ParentVNI && "Mapping NULL value"); 346 assert(Idx.isValid() && "Invalid SlotIndex"); 347 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 348 349 // Is this a simple 1-1 mapping? Not likely. 350 if (Idx == ParentVNI->def) 351 return mapValue(ParentVNI, Idx); 352 353 // This is a complex def. Mark with a NULL in valueMap. 354 VNInfo *OldVNI = 355 valueMap_.insert( 356 ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))).first->second; 357 // The static_cast<VNInfo *> is only needed to work around a bug in an 358 // old version of the C++0x standard which the following compilers 359 // implemented and have yet to fix: 360 // 361 // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel 362 // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 363 // 364 // If/When we move to C++0x, this can be replaced by nullptr. 365 (void)OldVNI; 366 assert(OldVNI == 0 && "Simple/Complex values mixed"); 367 368 // Should we insert a minimal snippet of VNI LiveRange, or can we count on 369 // callers to do that? We need it for lookups of complex values. 370 VNInfo *VNI = li_.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator()); 371 return VNI; 372} 373 374// mapValue - Find the mapped value for ParentVNI at Idx. 375// Potentially create phi-def values. 376VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) { 377 assert(ParentVNI && "Mapping NULL value"); 378 assert(Idx.isValid() && "Invalid SlotIndex"); 379 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 380 381 // Use insert for lookup, so we can add missing values with a second lookup. 382 std::pair<ValueMap::iterator,bool> InsP = 383 valueMap_.insert(ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))); 384 // The static_cast<VNInfo *> is only needed to work around a bug in an 385 // old version of the C++0x standard which the following compilers 386 // implemented and have yet to fix: 387 // 388 // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel 389 // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 390 // 391 // If/When we move to C++0x, this can be replaced by nullptr. 392 393 // This was an unknown value. Create a simple mapping. 394 if (InsP.second) 395 return InsP.first->second = li_.createValueCopy(ParentVNI, 396 lis_.getVNInfoAllocator()); 397 // This was a simple mapped value. 398 if (InsP.first->second) 399 return InsP.first->second; 400 401 // This is a complex mapped value. There may be multiple defs, and we may need 402 // to create phi-defs. 403 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 404 assert(IdxMBB && "No MBB at Idx"); 405 406 // Is there a def in the same MBB we can extend? 407 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 408 return VNI; 409 410 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 411 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 412 // Perform a depth-first search for predecessor blocks where we know the 413 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 414 415 // Track MBBs where we have created or learned the dominating value. 416 // This may change during the DFS as we create new phi-defs. 417 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 418 MBBValueMap DomValue; 419 420 for (idf_iterator<MachineBasicBlock*> 421 IDFI = idf_begin(IdxMBB), 422 IDFE = idf_end(IdxMBB); IDFI != IDFE;) { 423 MachineBasicBlock *MBB = *IDFI; 424 SlotIndex End = lis_.getMBBEndIdx(MBB); 425 426 // We are operating on the restricted CFG where ParentVNI is live. 427 if (parentli_.getVNInfoAt(End.getPrevSlot()) != ParentVNI) { 428 IDFI.skipChildren(); 429 continue; 430 } 431 432 // Do we have a dominating value in this block? 433 VNInfo *VNI = extendTo(MBB, End); 434 if (!VNI) { 435 ++IDFI; 436 continue; 437 } 438 439 // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs 440 // as needed along the way. 441 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 442 // Start from MBB's immediate successor. End at IdxMBB. 443 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 444 std::pair<MBBValueMap::iterator, bool> InsP = 445 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 446 447 // This is the first time we backtrack to Succ. 448 if (InsP.second) 449 continue; 450 451 // We reached Succ again with the same VNI. Nothing is going to change. 452 VNInfo *OVNI = InsP.first->second; 453 if (OVNI == VNI) 454 break; 455 456 // Succ already has a phi-def. No need to continue. 457 SlotIndex Start = lis_.getMBBStartIdx(Succ); 458 if (OVNI->def == Start) 459 break; 460 461 // We have a collision between the old and new VNI at Succ. That means 462 // neither dominates and we need a new phi-def. 463 VNI = li_.getNextValue(Start, 0, true, lis_.getVNInfoAllocator()); 464 VNI->setIsPHIDef(true); 465 InsP.first->second = VNI; 466 467 // Replace OVNI with VNI in the remaining path. 468 for (; PI > 1 ; --PI) { 469 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 470 if (I == DomValue.end() || I->second != OVNI) 471 break; 472 I->second = VNI; 473 } 474 } 475 476 // No need to search the children, we found a dominating value. 477 IDFI.skipChildren(); 478 } 479 480 // The search should at least find a dominating value for IdxMBB. 481 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 482 483 // Since we went through the trouble of a full DFS visiting all reaching defs, 484 // the values in DomValue are now accurate. No more phi-defs are needed for 485 // these blocks, so we can color the live ranges. 486 // This makes the next mapValue call much faster. 487 VNInfo *IdxVNI = 0; 488 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 489 ++I) { 490 MachineBasicBlock *MBB = I->first; 491 VNInfo *VNI = I->second; 492 SlotIndex Start = lis_.getMBBStartIdx(MBB); 493 if (MBB == IdxMBB) { 494 // Don't add full liveness to IdxMBB, stop at Idx. 495 if (Start != Idx) 496 li_.addRange(LiveRange(Start, Idx, VNI)); 497 // The caller had better add some liveness to IdxVNI, or it leaks. 498 IdxVNI = VNI; 499 } else 500 li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 501 } 502 503 assert(IdxVNI && "Didn't find value for Idx"); 504 return IdxVNI; 505} 506 507// extendTo - Find the last li_ value defined in MBB at or before Idx. The 508// parentli_ is assumed to be live at Idx. Extend the live range to Idx. 509// Return the found VNInfo, or NULL. 510VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 511 LiveInterval::iterator I = std::upper_bound(li_.begin(), li_.end(), Idx); 512 if (I == li_.begin()) 513 return 0; 514 --I; 515 if (I->start < lis_.getMBBStartIdx(MBB)) 516 return 0; 517 if (I->end < Idx) 518 I->end = Idx; 519 return I->valno; 520} 521 522// addSimpleRange - Add a simple range from parentli_ to li_. 523// ParentVNI must be live in the [Start;End) interval. 524void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 525 const VNInfo *ParentVNI) { 526 VNInfo *VNI = mapValue(ParentVNI, Start); 527 // A simple mappoing is easy. 528 if (VNI->def == ParentVNI->def) { 529 li_.addRange(LiveRange(Start, End, VNI)); 530 return; 531 } 532 533 // ParentVNI is a complex value. We must map per MBB. 534 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 535 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End); 536 537 if (MBB == MBBE) { 538 li_.addRange(LiveRange(Start, End, VNI)); 539 return; 540 } 541 542 // First block. 543 li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 544 545 // Run sequence of full blocks. 546 for (++MBB; MBB != MBBE; ++MBB) { 547 Start = lis_.getMBBStartIdx(MBB); 548 li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 549 mapValue(ParentVNI, Start))); 550 } 551 552 // Final block. 553 Start = lis_.getMBBStartIdx(MBB); 554 if (Start != End) 555 li_.addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 556} 557 558/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 559/// All needed values whose def is not inside [Start;End) must be defined 560/// beforehand so mapValue will work. 561void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 562 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 563 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 564 565 // Check if --I begins before Start and overlaps. 566 if (I != B) { 567 --I; 568 if (I->end > Start) 569 addSimpleRange(Start, std::min(End, I->end), I->valno); 570 ++I; 571 } 572 573 // The remaining ranges begin after Start. 574 for (;I != E && I->start < End; ++I) 575 addSimpleRange(I->start, std::min(End, I->end), I->valno); 576} 577 578//===----------------------------------------------------------------------===// 579// Split Editor 580//===----------------------------------------------------------------------===// 581 582/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 583SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 584 SmallVectorImpl<LiveInterval*> &intervals) 585 : sa_(sa), lis_(lis), vrm_(vrm), 586 mri_(vrm.getMachineFunction().getRegInfo()), 587 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 588 curli_(sa_.getCurLI()), 589 dupli_(0), openli_(0), 590 intervals_(intervals), 591 firstInterval(intervals_.size()) 592{ 593 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 594 595 // Make sure curli_ is assigned a stack slot, so all our intervals get the 596 // same slot as curli_. 597 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 598 vrm_.assignVirt2StackSlot(curli_->reg); 599 600} 601 602LiveInterval *SplitEditor::createInterval() { 603 unsigned curli = sa_.getCurLI()->reg; 604 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli)); 605 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 606 vrm_.grow(); 607 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli)); 608 return &Intv; 609} 610 611LiveInterval *SplitEditor::getDupLI() { 612 if (!dupli_) { 613 // Create an interval for dupli that is a copy of curli. 614 dupli_ = createInterval(); 615 dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator()); 616 } 617 return dupli_; 618} 619 620VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) { 621 VNInfo *&VNI = valueMap_[curliVNI]; 622 if (!VNI) 623 VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator()); 624 return VNI; 625} 626 627/// Insert a COPY instruction curli -> li. Allocate a new value from li 628/// defined by the COPY. Note that rewrite() will deal with the curli 629/// register, so this function can be used to copy from any interval - openli, 630/// curli, or dupli. 631VNInfo *SplitEditor::insertCopy(LiveInterval &LI, 632 MachineBasicBlock &MBB, 633 MachineBasicBlock::iterator I) { 634 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), 635 LI.reg).addReg(curli_->reg); 636 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 637 return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator()); 638} 639 640/// Create a new virtual register and live interval. 641void SplitEditor::openIntv() { 642 assert(!openli_ && "Previous LI not closed before openIntv"); 643 openli_ = createInterval(); 644 intervals_.push_back(openli_); 645 liveThrough_ = false; 646} 647 648/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 649/// not live before Idx, a COPY is not inserted. 650void SplitEditor::enterIntvBefore(SlotIndex Idx) { 651 assert(openli_ && "openIntv not called before enterIntvBefore"); 652 653 // Copy from curli_ if it is live. 654 if (VNInfo *CurVNI = curli_->getVNInfoAt(Idx.getUseIndex())) { 655 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 656 assert(MI && "enterIntvBefore called with invalid index"); 657 VNInfo *VNI = insertCopy(*openli_, *MI->getParent(), MI); 658 openli_->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 659 660 // Make sure CurVNI is properly mapped. 661 VNInfo *&mapVNI = valueMap_[CurVNI]; 662 // We dont have SSA update yet, so only one entry per value is allowed. 663 assert(!mapVNI && "enterIntvBefore called more than once for the same value"); 664 mapVNI = VNI; 665 } 666 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_ << '\n'); 667} 668 669/// enterIntvAtEnd - Enter openli at the end of MBB. 670/// PhiMBB is a successor inside openli where a PHI value is created. 671/// Currently, all entries must share the same PhiMBB. 672void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) { 673 assert(openli_ && "openIntv not called before enterIntvAtEnd"); 674 675 SlotIndex EndA = lis_.getMBBEndIdx(&A); 676 VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex()); 677 if (!CurVNIA) { 678 DEBUG(dbgs() << " enterIntvAtEnd, curli not live out of BB#" 679 << A.getNumber() << ".\n"); 680 return; 681 } 682 683 // Add a phi kill value and live range out of A. 684 VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator()); 685 openli_->addRange(LiveRange(VNIA->def, EndA, VNIA)); 686 687 // FIXME: If this is the only entry edge, we don't need the extra PHI value. 688 // FIXME: If there are multiple entry blocks (so not a loop), we need proper 689 // SSA update. 690 691 // Now look at the start of B. 692 SlotIndex StartB = lis_.getMBBStartIdx(&B); 693 SlotIndex EndB = lis_.getMBBEndIdx(&B); 694 const LiveRange *CurB = curli_->getLiveRangeContaining(StartB); 695 if (!CurB) { 696 DEBUG(dbgs() << " enterIntvAtEnd: curli not live in to BB#" 697 << B.getNumber() << ".\n"); 698 return; 699 } 700 701 VNInfo *VNIB = openli_->getVNInfoAt(StartB); 702 if (!VNIB) { 703 // Create a phi value. 704 VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false, 705 lis_.getVNInfoAllocator()); 706 VNIB->setIsPHIDef(true); 707 VNInfo *&mapVNI = valueMap_[CurB->valno]; 708 if (mapVNI) { 709 // Multiple copies - must create PHI value. 710 abort(); 711 } else { 712 // This is the first copy of dupLR. Mark the mapping. 713 mapVNI = VNIB; 714 } 715 716 } 717 718 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n'); 719} 720 721/// useIntv - indicate that all instructions in MBB should use openli. 722void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 723 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 724} 725 726void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 727 assert(openli_ && "openIntv not called before useIntv"); 728 729 // Map the curli values from the interval into openli_ 730 LiveInterval::const_iterator B = curli_->begin(), E = curli_->end(); 731 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 732 733 if (I != B) { 734 --I; 735 // I begins before Start, but overlaps. 736 if (I->end > Start) 737 openli_->addRange(LiveRange(Start, std::min(End, I->end), 738 mapValue(I->valno))); 739 ++I; 740 } 741 742 // The remaining ranges begin after Start. 743 for (;I != E && I->start < End; ++I) 744 openli_->addRange(LiveRange(I->start, std::min(End, I->end), 745 mapValue(I->valno))); 746 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " << *openli_ 747 << '\n'); 748} 749 750/// leaveIntvAfter - Leave openli after the instruction at Idx. 751void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 752 assert(openli_ && "openIntv not called before leaveIntvAfter"); 753 754 const LiveRange *CurLR = curli_->getLiveRangeContaining(Idx.getDefIndex()); 755 if (!CurLR || CurLR->end <= Idx.getBoundaryIndex()) { 756 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 757 return; 758 } 759 760 // Was this value of curli live through openli? 761 if (!openli_->liveAt(CurLR->valno->def)) { 762 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": using external value\n"); 763 liveThrough_ = true; 764 return; 765 } 766 767 // We are going to insert a back copy, so we must have a dupli_. 768 LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Idx.getDefIndex()); 769 assert(DupLR && "dupli not live into black, but curli is?"); 770 771 // Insert the COPY instruction. 772 MachineBasicBlock::iterator I = lis_.getInstructionFromIndex(Idx); 773 MachineInstr *MI = BuildMI(*I->getParent(), llvm::next(I), I->getDebugLoc(), 774 tii_.get(TargetOpcode::COPY), dupli_->reg) 775 .addReg(openli_->reg); 776 SlotIndex CopyIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 777 openli_->addRange(LiveRange(Idx.getDefIndex(), CopyIdx, 778 mapValue(CurLR->valno))); 779 DupLR->valno->def = CopyIdx; 780 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_ << '\n'); 781} 782 783/// leaveIntvAtTop - Leave the interval at the top of MBB. 784/// Currently, only one value can leave the interval. 785void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 786 assert(openli_ && "openIntv not called before leaveIntvAtTop"); 787 788 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 789 const LiveRange *CurLR = curli_->getLiveRangeContaining(Start); 790 791 // Is curli even live-in to MBB? 792 if (!CurLR) { 793 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 794 return; 795 } 796 797 // Is curli defined by PHI at the beginning of MBB? 798 bool isPHIDef = CurLR->valno->isPHIDef() && 799 CurLR->valno->def.getBaseIndex() == Start; 800 801 // If MBB is using a value of curli that was defined outside the openli range, 802 // we don't want to copy it back here. 803 if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) { 804 DEBUG(dbgs() << " leaveIntvAtTop at " << Start 805 << ": using external value\n"); 806 liveThrough_ = true; 807 return; 808 } 809 810 // We are going to insert a back copy, so we must have a dupli_. 811 LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start); 812 assert(DupLR && "dupli not live into black, but curli is?"); 813 814 // Insert the COPY instruction. 815 MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(), 816 tii_.get(TargetOpcode::COPY), dupli_->reg) 817 .addReg(openli_->reg); 818 SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 819 820 // Adjust dupli and openli values. 821 if (isPHIDef) { 822 // dupli was already a PHI on entry to MBB. Simply insert an openli PHI, 823 // and shift the dupli def down to the COPY. 824 VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, 825 lis_.getVNInfoAllocator()); 826 VNI->setIsPHIDef(true); 827 openli_->addRange(LiveRange(VNI->def, Idx, VNI)); 828 829 dupli_->removeRange(Start, Idx); 830 DupLR->valno->def = Idx; 831 DupLR->valno->setIsPHIDef(false); 832 } else { 833 // The dupli value was defined somewhere inside the openli range. 834 DEBUG(dbgs() << " leaveIntvAtTop source value defined at " 835 << DupLR->valno->def << "\n"); 836 // FIXME: We may not need a PHI here if all predecessors have the same 837 // value. 838 VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, 839 lis_.getVNInfoAllocator()); 840 VNI->setIsPHIDef(true); 841 openli_->addRange(LiveRange(VNI->def, Idx, VNI)); 842 843 // FIXME: What if DupLR->valno is used by multiple exits? SSA Update. 844 845 // closeIntv is going to remove the superfluous live ranges. 846 DupLR->valno->def = Idx; 847 DupLR->valno->setIsPHIDef(false); 848 } 849 850 DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n'); 851} 852 853/// closeIntv - Indicate that we are done editing the currently open 854/// LiveInterval, and ranges can be trimmed. 855void SplitEditor::closeIntv() { 856 assert(openli_ && "openIntv not called before closeIntv"); 857 858 DEBUG(dbgs() << " closeIntv cleaning up\n"); 859 DEBUG(dbgs() << " open " << *openli_ << '\n'); 860 861 if (liveThrough_) { 862 DEBUG(dbgs() << " value live through region, leaving dupli as is.\n"); 863 } else { 864 // live out with copies inserted, or killed by region. Either way we need to 865 // remove the overlapping region from dupli. 866 getDupLI(); 867 for (LiveInterval::iterator I = openli_->begin(), E = openli_->end(); 868 I != E; ++I) { 869 dupli_->removeRange(I->start, I->end); 870 } 871 // FIXME: A block branching to the entry block may also branch elsewhere 872 // curli is live. We need both openli and curli to be live in that case. 873 DEBUG(dbgs() << " dup2 " << *dupli_ << '\n'); 874 } 875 openli_ = 0; 876 valueMap_.clear(); 877} 878 879/// rewrite - after all the new live ranges have been created, rewrite 880/// instructions using curli to use the new intervals. 881void SplitEditor::rewrite() { 882 assert(!openli_ && "Previous LI not closed before rewrite"); 883 const LiveInterval *curli = sa_.getCurLI(); 884 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 885 RE = mri_.reg_end(); RI != RE;) { 886 MachineOperand &MO = RI.getOperand(); 887 MachineInstr *MI = MO.getParent(); 888 ++RI; 889 if (MI->isDebugValue()) { 890 DEBUG(dbgs() << "Zapping " << *MI); 891 // FIXME: We can do much better with debug values. 892 MO.setReg(0); 893 continue; 894 } 895 SlotIndex Idx = lis_.getInstructionIndex(MI); 896 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 897 LiveInterval *LI = dupli_; 898 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 899 LiveInterval *testli = intervals_[i]; 900 if (testli->liveAt(Idx)) { 901 LI = testli; 902 break; 903 } 904 } 905 if (LI) { 906 MO.setReg(LI->reg); 907 sa_.removeUse(MI); 908 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 909 } 910 } 911 912 // dupli_ goes in last, after rewriting. 913 if (dupli_) { 914 if (dupli_->empty()) { 915 DEBUG(dbgs() << " dupli became empty?\n"); 916 lis_.removeInterval(dupli_->reg); 917 dupli_ = 0; 918 } else { 919 dupli_->RenumberValues(lis_); 920 intervals_.push_back(dupli_); 921 } 922 } 923 924 // Calculate spill weight and allocation hints for new intervals. 925 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 926 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 927 LiveInterval &li = *intervals_[i]; 928 vrai.CalculateRegClass(li.reg); 929 vrai.CalculateWeightAndHint(li); 930 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 931 << ":" << li << '\n'); 932 } 933} 934 935 936//===----------------------------------------------------------------------===// 937// Loop Splitting 938//===----------------------------------------------------------------------===// 939 940bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 941 SplitAnalysis::LoopBlocks Blocks; 942 sa_.getLoopBlocks(Loop, Blocks); 943 944 // Break critical edges as needed. 945 SplitAnalysis::BlockPtrSet CriticalExits; 946 sa_.getCriticalExits(Blocks, CriticalExits); 947 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 948 949 // Create new live interval for the loop. 950 openIntv(); 951 952 // Insert copies in the predecessors. 953 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 954 E = Blocks.Preds.end(); I != E; ++I) { 955 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 956 enterIntvAtEnd(MBB, *Loop->getHeader()); 957 } 958 959 // Switch all loop blocks. 960 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 961 E = Blocks.Loop.end(); I != E; ++I) 962 useIntv(**I); 963 964 // Insert back copies in the exit blocks. 965 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 966 E = Blocks.Exits.end(); I != E; ++I) { 967 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 968 leaveIntvAtTop(MBB); 969 } 970 971 // Done. 972 closeIntv(); 973 rewrite(); 974 return dupli_; 975} 976 977 978//===----------------------------------------------------------------------===// 979// Single Block Splitting 980//===----------------------------------------------------------------------===// 981 982/// splitSingleBlocks - Split curli into a separate live interval inside each 983/// basic block in Blocks. Return true if curli has been completely replaced, 984/// false if curli is still intact, and needs to be spilled or split further. 985bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 986 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 987 // Determine the first and last instruction using curli in each block. 988 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 989 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 990 IndexPairMap MBBRange; 991 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 992 E = sa_.usingInstrs_.end(); I != E; ++I) { 993 const MachineBasicBlock *MBB = (*I)->getParent(); 994 if (!Blocks.count(MBB)) 995 continue; 996 SlotIndex Idx = lis_.getInstructionIndex(*I); 997 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 998 IndexPair &IP = MBBRange[MBB]; 999 if (!IP.first.isValid() || Idx < IP.first) 1000 IP.first = Idx; 1001 if (!IP.second.isValid() || Idx > IP.second) 1002 IP.second = Idx; 1003 } 1004 1005 // Create a new interval for each block. 1006 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1007 E = Blocks.end(); I != E; ++I) { 1008 IndexPair &IP = MBBRange[*I]; 1009 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1010 << IP.first << ';' << IP.second << ")\n"); 1011 assert(IP.first.isValid() && IP.second.isValid()); 1012 1013 openIntv(); 1014 enterIntvBefore(IP.first); 1015 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 1016 leaveIntvAfter(IP.second); 1017 closeIntv(); 1018 } 1019 rewrite(); 1020 return dupli_; 1021} 1022 1023 1024//===----------------------------------------------------------------------===// 1025// Sub Block Splitting 1026//===----------------------------------------------------------------------===// 1027 1028/// getBlockForInsideSplit - If curli is contained inside a single basic block, 1029/// and it wou pay to subdivide the interval inside that block, return it. 1030/// Otherwise return NULL. The returned block can be passed to 1031/// SplitEditor::splitInsideBlock. 1032const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1033 // The interval must be exclusive to one block. 1034 if (usingBlocks_.size() != 1) 1035 return 0; 1036 // Don't to this for less than 4 instructions. We want to be sure that 1037 // splitting actually reduces the instruction count per interval. 1038 if (usingInstrs_.size() < 4) 1039 return 0; 1040 return usingBlocks_.begin()->first; 1041} 1042 1043/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return 1044/// true if curli has been completely replaced, false if curli is still 1045/// intact, and needs to be spilled or split further. 1046bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1047 SmallVector<SlotIndex, 32> Uses; 1048 Uses.reserve(sa_.usingInstrs_.size()); 1049 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1050 E = sa_.usingInstrs_.end(); I != E; ++I) 1051 if ((*I)->getParent() == MBB) 1052 Uses.push_back(lis_.getInstructionIndex(*I)); 1053 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1054 << Uses.size() << " instructions.\n"); 1055 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1056 array_pod_sort(Uses.begin(), Uses.end()); 1057 1058 // Simple algorithm: Find the largest gap between uses as determined by slot 1059 // indices. Create new intervals for instructions before the gap and after the 1060 // gap. 1061 unsigned bestPos = 0; 1062 int bestGap = 0; 1063 DEBUG(dbgs() << " dist (" << Uses[0]); 1064 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1065 int g = Uses[i-1].distance(Uses[i]); 1066 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1067 if (g > bestGap) 1068 bestPos = i, bestGap = g; 1069 } 1070 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1071 1072 // bestPos points to the first use after the best gap. 1073 assert(bestPos > 0 && "Invalid gap"); 1074 1075 // FIXME: Don't create intervals for low densities. 1076 1077 // First interval before the gap. Don't create single-instr intervals. 1078 if (bestPos > 1) { 1079 openIntv(); 1080 enterIntvBefore(Uses.front()); 1081 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1082 leaveIntvAfter(Uses[bestPos-1]); 1083 closeIntv(); 1084 } 1085 1086 // Second interval after the gap. 1087 if (bestPos < Uses.size()-1) { 1088 openIntv(); 1089 enterIntvBefore(Uses[bestPos]); 1090 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1091 leaveIntvAfter(Uses.back()); 1092 closeIntv(); 1093 } 1094 1095 rewrite(); 1096 return dupli_; 1097} 1098