SplitKit.cpp revision a372d16f92392bb4cd4184783466f0300a51a9ae
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "regalloc" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/CodeGen/CalcSpillWeights.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineDominators.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineRegisterInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/Support/raw_ostream.h" 28#include "llvm/Target/TargetInstrInfo.h" 29#include "llvm/Target/TargetMachine.h" 30 31using namespace llvm; 32 33static cl::opt<bool> 34AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37//===----------------------------------------------------------------------===// 38// Split Analysis 39//===----------------------------------------------------------------------===// 40 41SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(mf), 45 LIS(lis), 46 Loops(mli), 47 TII(*mf.getTarget().getInstrInfo()), 48 CurLI(0) {} 49 50void SplitAnalysis::clear() { 51 UseSlots.clear(); 52 UsingInstrs.clear(); 53 UsingBlocks.clear(); 54 UsingLoops.clear(); 55 CurLI = 0; 56} 57 58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 59 MachineBasicBlock *T, *F; 60 SmallVector<MachineOperand, 4> Cond; 61 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 62} 63 64/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 65void SplitAnalysis::analyzeUses() { 66 const MachineRegisterInfo &MRI = MF.getRegInfo(); 67 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 68 E = MRI.reg_end(); I != E; ++I) { 69 MachineOperand &MO = I.getOperand(); 70 if (MO.isUse() && MO.isUndef()) 71 continue; 72 MachineInstr *MI = MO.getParent(); 73 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 74 continue; 75 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 76 MachineBasicBlock *MBB = MI->getParent(); 77 if (UsingBlocks[MBB]++) 78 continue; 79 for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop; 80 Loop = Loop->getParentLoop()) 81 UsingLoops[Loop]++; 82 } 83 array_pod_sort(UseSlots.begin(), UseSlots.end()); 84 DEBUG(dbgs() << " counted " 85 << UsingInstrs.size() << " instrs, " 86 << UsingBlocks.size() << " blocks, " 87 << UsingLoops.size() << " loops.\n"); 88} 89 90void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 91 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 92 unsigned count = UsingBlocks.lookup(*I); 93 OS << " BB#" << (*I)->getNumber(); 94 if (count) 95 OS << '(' << count << ')'; 96 } 97} 98 99// Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 100// predecessor blocks, and exit blocks. 101void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 102 Blocks.clear(); 103 104 // Blocks in the loop. 105 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 106 107 // Predecessor blocks. 108 const MachineBasicBlock *Header = Loop->getHeader(); 109 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 110 E = Header->pred_end(); I != E; ++I) 111 if (!Blocks.Loop.count(*I)) 112 Blocks.Preds.insert(*I); 113 114 // Exit blocks. 115 for (MachineLoop::block_iterator I = Loop->block_begin(), 116 E = Loop->block_end(); I != E; ++I) { 117 const MachineBasicBlock *MBB = *I; 118 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 119 SE = MBB->succ_end(); SI != SE; ++SI) 120 if (!Blocks.Loop.count(*SI)) 121 Blocks.Exits.insert(*SI); 122 } 123} 124 125void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 126 OS << "Loop:"; 127 print(B.Loop, OS); 128 OS << ", preds:"; 129 print(B.Preds, OS); 130 OS << ", exits:"; 131 print(B.Exits, OS); 132} 133 134/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in 135/// and around the Loop. 136SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 154 return OutsideLoop; 155 } 156 return use; 157} 158 159/// getCriticalExits - It may be necessary to partially break critical edges 160/// leaving the loop if an exit block has predecessors from outside the loop 161/// periphery. 162void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 163 BlockPtrSet &CriticalExits) { 164 CriticalExits.clear(); 165 166 // A critical exit block has CurLI live-in, and has a predecessor that is not 167 // in the loop nor a loop predecessor. For such an exit block, the edges 168 // carrying the new variable must be moved to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Exit = *I; 172 // A single-predecessor exit block is definitely not a critical edge. 173 if (Exit->pred_size() == 1) 174 continue; 175 // This exit may not have CurLI live in at all. No need to split. 176 if (!LIS.isLiveInToMBB(*CurLI, Exit)) 177 continue; 178 // Does this exit block have a predecessor that is not a loop block or loop 179 // predecessor? 180 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 181 PE = Exit->pred_end(); PI != PE; ++PI) { 182 const MachineBasicBlock *Pred = *PI; 183 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 184 continue; 185 // This is a critical exit block, and we need to split the exit edge. 186 CriticalExits.insert(Exit); 187 break; 188 } 189 } 190} 191 192void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 193 BlockPtrSet &CriticalPreds) { 194 CriticalPreds.clear(); 195 196 // A critical predecessor block has CurLI live-out, and has a successor that 197 // has CurLI live-in and is not in the loop nor a loop exit block. For such a 198 // predecessor block, we must carry the value in both the 'inside' and 199 // 'outside' registers. 200 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 201 I != E; ++I) { 202 const MachineBasicBlock *Pred = *I; 203 // Definitely not a critical edge. 204 if (Pred->succ_size() == 1) 205 continue; 206 // This block may not have CurLI live out at all if there is a PHI. 207 if (!LIS.isLiveOutOfMBB(*CurLI, Pred)) 208 continue; 209 // Does this block have a successor outside the loop? 210 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 211 SE = Pred->succ_end(); SI != SE; ++SI) { 212 const MachineBasicBlock *Succ = *SI; 213 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 214 continue; 215 if (!LIS.isLiveInToMBB(*CurLI, Succ)) 216 continue; 217 // This is a critical predecessor block. 218 CriticalPreds.insert(Pred); 219 break; 220 } 221 } 222} 223 224/// canSplitCriticalExits - Return true if it is possible to insert new exit 225/// blocks before the blocks in CriticalExits. 226bool 227SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 228 BlockPtrSet &CriticalExits) { 229 // If we don't allow critical edge splitting, require no critical exits. 230 if (!AllowSplit) 231 return CriticalExits.empty(); 232 233 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 234 I != E; ++I) { 235 const MachineBasicBlock *Succ = *I; 236 // We want to insert a new pre-exit MBB before Succ, and change all the 237 // in-loop blocks to branch to the pre-exit instead of Succ. 238 // Check that all the in-loop predecessors can be changed. 239 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 240 PE = Succ->pred_end(); PI != PE; ++PI) { 241 const MachineBasicBlock *Pred = *PI; 242 // The external predecessors won't be altered. 243 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 244 continue; 245 if (!canAnalyzeBranch(Pred)) 246 return false; 247 } 248 249 // If Succ's layout predecessor falls through, that too must be analyzable. 250 // We need to insert the pre-exit block in the gap. 251 MachineFunction::const_iterator MFI = Succ; 252 if (MFI == MF.begin()) 253 continue; 254 if (!canAnalyzeBranch(--MFI)) 255 return false; 256 } 257 // No problems found. 258 return true; 259} 260 261void SplitAnalysis::analyze(const LiveInterval *li) { 262 clear(); 263 CurLI = li; 264 analyzeUses(); 265} 266 267void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) { 268 assert(CurLI && "Call analyze() before getSplitLoops"); 269 if (UsingLoops.empty()) 270 return; 271 272 LoopBlocks Blocks; 273 BlockPtrSet CriticalExits; 274 275 // We split around loops where CurLI is used outside the periphery. 276 for (LoopCountMap::const_iterator I = UsingLoops.begin(), 277 E = UsingLoops.end(); I != E; ++I) { 278 const MachineLoop *Loop = I->first; 279 getLoopBlocks(Loop, Blocks); 280 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 281 282 switch(analyzeLoopPeripheralUse(Blocks)) { 283 case OutsideLoop: 284 break; 285 case MultiPeripheral: 286 // FIXME: We could split a live range with multiple uses in a peripheral 287 // block and still make progress. However, it is possible that splitting 288 // another live range will insert copies into a peripheral block, and 289 // there is a small chance we can enter an infinite loop, inserting copies 290 // forever. 291 // For safety, stick to splitting live ranges with uses outside the 292 // periphery. 293 DEBUG(dbgs() << ": multiple peripheral uses"); 294 break; 295 case ContainedInLoop: 296 DEBUG(dbgs() << ": fully contained\n"); 297 continue; 298 case SinglePeripheral: 299 DEBUG(dbgs() << ": single peripheral use\n"); 300 continue; 301 } 302 // Will it be possible to split around this loop? 303 getCriticalExits(Blocks, CriticalExits); 304 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 305 if (!canSplitCriticalExits(Blocks, CriticalExits)) 306 continue; 307 // This is a possible split. 308 Loops.insert(Loop); 309 } 310 311 DEBUG(dbgs() << " getSplitLoops found " << Loops.size() 312 << " candidate loops.\n"); 313} 314 315const MachineLoop *SplitAnalysis::getBestSplitLoop() { 316 LoopPtrSet Loops; 317 getSplitLoops(Loops); 318 if (Loops.empty()) 319 return 0; 320 321 // Pick the earliest loop. 322 // FIXME: Are there other heuristics to consider? 323 const MachineLoop *Best = 0; 324 SlotIndex BestIdx; 325 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 326 ++I) { 327 SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader()); 328 if (!Best || Idx < BestIdx) 329 Best = *I, BestIdx = Idx; 330 } 331 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 332 return Best; 333} 334 335/// isBypassLoop - Return true if CurLI is live through Loop and has no uses 336/// inside the loop. Bypass loops are candidates for splitting because it can 337/// prevent interference inside the loop. 338bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) { 339 // If CurLI is live into the loop header and there are no uses in the loop, it 340 // must be live in the entire loop and live on at least one exiting edge. 341 return !UsingLoops.count(Loop) && 342 LIS.isLiveInToMBB(*CurLI, Loop->getHeader()); 343} 344 345/// getBypassLoops - Get all the maximal bypass loops. These are the bypass 346/// loops whose parent is not a bypass loop. 347void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) { 348 SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end()); 349 while (!Todo.empty()) { 350 MachineLoop *Loop = Todo.pop_back_val(); 351 if (!UsingLoops.count(Loop)) { 352 // This is either a bypass loop or completely irrelevant. 353 if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader())) 354 BypassLoops.insert(Loop); 355 // Either way, skip the child loops. 356 continue; 357 } 358 359 // The child loops may be bypass loops. 360 Todo.append(Loop->begin(), Loop->end()); 361 } 362} 363 364 365//===----------------------------------------------------------------------===// 366// LiveIntervalMap 367//===----------------------------------------------------------------------===// 368 369// Work around the fact that the std::pair constructors are broken for pointer 370// pairs in some implementations. makeVV(x, 0) works. 371static inline std::pair<const VNInfo*, VNInfo*> 372makeVV(const VNInfo *a, VNInfo *b) { 373 return std::make_pair(a, b); 374} 375 376void LiveIntervalMap::reset(LiveInterval *li) { 377 LI = li; 378 Values.clear(); 379 LiveOutCache.clear(); 380} 381 382bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 383 ValueMap::const_iterator i = Values.find(ParentVNI); 384 return i != Values.end() && i->second == 0; 385} 386 387// defValue - Introduce a LI def for ParentVNI that could be later than 388// ParentVNI->def. 389VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 390 assert(LI && "call reset first"); 391 assert(ParentVNI && "Mapping NULL value"); 392 assert(Idx.isValid() && "Invalid SlotIndex"); 393 assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 394 395 // Create a new value. 396 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 397 398 // Preserve the PHIDef bit. 399 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 400 VNI->setIsPHIDef(true); 401 402 // Use insert for lookup, so we can add missing values with a second lookup. 403 std::pair<ValueMap::iterator,bool> InsP = 404 Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 405 406 // This is now a complex def. Mark with a NULL in valueMap. 407 if (!InsP.second) 408 InsP.first->second = 0; 409 410 return VNI; 411} 412 413 414// mapValue - Find the mapped value for ParentVNI at Idx. 415// Potentially create phi-def values. 416VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 417 bool *simple) { 418 assert(LI && "call reset first"); 419 assert(ParentVNI && "Mapping NULL value"); 420 assert(Idx.isValid() && "Invalid SlotIndex"); 421 assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 422 423 // Use insert for lookup, so we can add missing values with a second lookup. 424 std::pair<ValueMap::iterator,bool> InsP = 425 Values.insert(makeVV(ParentVNI, 0)); 426 427 // This was an unknown value. Create a simple mapping. 428 if (InsP.second) { 429 if (simple) *simple = true; 430 return InsP.first->second = LI->createValueCopy(ParentVNI, 431 LIS.getVNInfoAllocator()); 432 } 433 434 // This was a simple mapped value. 435 if (InsP.first->second) { 436 if (simple) *simple = true; 437 return InsP.first->second; 438 } 439 440 // This is a complex mapped value. There may be multiple defs, and we may need 441 // to create phi-defs. 442 if (simple) *simple = false; 443 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 444 assert(IdxMBB && "No MBB at Idx"); 445 446 // Is there a def in the same MBB we can extend? 447 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 448 return VNI; 449 450 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 451 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 452 // Perform a search for all predecessor blocks where we know the dominating 453 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 454 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 455 << " at " << Idx << " in " << *LI << '\n'); 456 457 // Blocks where LI should be live-in. 458 SmallVector<MachineDomTreeNode*, 16> LiveIn; 459 LiveIn.push_back(MDT[IdxMBB]); 460 461 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 462 for (unsigned i = 0; i != LiveIn.size(); ++i) { 463 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 464 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 465 PE = MBB->pred_end(); PI != PE; ++PI) { 466 MachineBasicBlock *Pred = *PI; 467 // Is this a known live-out block? 468 std::pair<LiveOutMap::iterator,bool> LOIP = 469 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 470 // Yes, we have been here before. 471 if (!LOIP.second) { 472 DEBUG(if (VNInfo *VNI = LOIP.first->second.first) 473 dbgs() << " known valno #" << VNI->id 474 << " at BB#" << Pred->getNumber() << '\n'); 475 continue; 476 } 477 478 // Does Pred provide a live-out value? 479 SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot(); 480 if (VNInfo *VNI = extendTo(Pred, Last)) { 481 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 482 DEBUG(dbgs() << " found valno #" << VNI->id 483 << " from BB#" << DefMBB->getNumber() 484 << " at BB#" << Pred->getNumber() << '\n'); 485 LiveOutPair &LOP = LOIP.first->second; 486 LOP.first = VNI; 487 LOP.second = MDT[DefMBB]; 488 continue; 489 } 490 // No, we need a live-in value for Pred as well 491 if (Pred != IdxMBB) 492 LiveIn.push_back(MDT[Pred]); 493 } 494 } 495 496 // We may need to add phi-def values to preserve the SSA form. 497 // This is essentially the same iterative algorithm that SSAUpdater uses, 498 // except we already have a dominator tree, so we don't have to recompute it. 499 VNInfo *IdxVNI = 0; 500 unsigned Changes; 501 do { 502 Changes = 0; 503 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 504 // Propagate live-out values down the dominator tree, inserting phi-defs when 505 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 506 // likely for us to visit immediate dominators before their children. 507 for (unsigned i = LiveIn.size(); i; --i) { 508 MachineDomTreeNode *Node = LiveIn[i-1]; 509 MachineBasicBlock *MBB = Node->getBlock(); 510 MachineDomTreeNode *IDom = Node->getIDom(); 511 LiveOutPair IDomValue; 512 // We need a live-in value to a block with no immediate dominator? 513 // This is probably an unreachable block that has survived somehow. 514 bool needPHI = !IDom; 515 516 // Get the IDom live-out value. 517 if (!needPHI) { 518 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 519 if (I != LiveOutCache.end()) 520 IDomValue = I->second; 521 else 522 // If IDom is outside our set of live-out blocks, there must be new 523 // defs, and we need a phi-def here. 524 needPHI = true; 525 } 526 527 // IDom dominates all of our predecessors, but it may not be the immediate 528 // dominator. Check if any of them have live-out values that are properly 529 // dominated by IDom. If so, we need a phi-def here. 530 if (!needPHI) { 531 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 532 PE = MBB->pred_end(); PI != PE; ++PI) { 533 LiveOutPair Value = LiveOutCache[*PI]; 534 if (!Value.first || Value.first == IDomValue.first) 535 continue; 536 // This predecessor is carrying something other than IDomValue. 537 // It could be because IDomValue hasn't propagated yet, or it could be 538 // because MBB is in the dominance frontier of that value. 539 if (MDT.dominates(IDom, Value.second)) { 540 needPHI = true; 541 break; 542 } 543 } 544 } 545 546 // Create a phi-def if required. 547 if (needPHI) { 548 ++Changes; 549 SlotIndex Start = LIS.getMBBStartIdx(MBB); 550 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 551 VNI->setIsPHIDef(true); 552 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 553 << " phi-def #" << VNI->id << " at " << Start << '\n'); 554 // We no longer need LI to be live-in. 555 LiveIn.erase(LiveIn.begin()+(i-1)); 556 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 557 if (MBB == IdxMBB) 558 IdxVNI = VNI; 559 // Check if we need to update live-out info. 560 LiveOutMap::iterator I = LiveOutCache.find(MBB); 561 if (I == LiveOutCache.end() || I->second.second == Node) { 562 // We already have a live-out defined in MBB, so this must be IdxMBB. 563 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 564 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 565 } else { 566 // This phi-def is also live-out, so color the whole block. 567 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 568 I->second = LiveOutPair(VNI, Node); 569 } 570 } else if (IDomValue.first) { 571 // No phi-def here. Remember incoming value for IdxMBB. 572 if (MBB == IdxMBB) 573 IdxVNI = IDomValue.first; 574 // Propagate IDomValue if needed: 575 // MBB is live-out and doesn't define its own value. 576 LiveOutMap::iterator I = LiveOutCache.find(MBB); 577 if (I != LiveOutCache.end() && I->second.second != Node && 578 I->second.first != IDomValue.first) { 579 ++Changes; 580 I->second = IDomValue; 581 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 582 << " idom valno #" << IDomValue.first->id 583 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 584 } 585 } 586 } 587 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 588 } while (Changes); 589 590 assert(IdxVNI && "Didn't find value for Idx"); 591 592#ifndef NDEBUG 593 // Check the LiveOutCache invariants. 594 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 595 I != E; ++I) { 596 assert(I->first && "Null MBB entry in cache"); 597 assert(I->second.first && "Null VNInfo in cache"); 598 assert(I->second.second && "Null DomTreeNode in cache"); 599 if (I->second.second->getBlock() == I->first) 600 continue; 601 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 602 PE = I->first->pred_end(); PI != PE; ++PI) 603 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 604 } 605#endif 606 607 // Since we went through the trouble of a full BFS visiting all reaching defs, 608 // the values in LiveIn are now accurate. No more phi-defs are needed 609 // for these blocks, so we can color the live ranges. 610 // This makes the next mapValue call much faster. 611 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 612 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 613 SlotIndex Start = LIS.getMBBStartIdx(MBB); 614 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 615 616 // Anything in LiveIn other than IdxMBB is live-through. 617 // In IdxMBB, we should stop at Idx unless the same value is live-out. 618 if (MBB == IdxMBB && IdxVNI != VNI) 619 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 620 else 621 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 622 } 623 624 return IdxVNI; 625} 626 627#ifndef NDEBUG 628void LiveIntervalMap::dumpCache() { 629 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 630 I != E; ++I) { 631 assert(I->first && "Null MBB entry in cache"); 632 assert(I->second.first && "Null VNInfo in cache"); 633 assert(I->second.second && "Null DomTreeNode in cache"); 634 dbgs() << " cache: BB#" << I->first->getNumber() 635 << " has valno #" << I->second.first->id << " from BB#" 636 << I->second.second->getBlock()->getNumber() << ", preds"; 637 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 638 PE = I->first->pred_end(); PI != PE; ++PI) 639 dbgs() << " BB#" << (*PI)->getNumber(); 640 dbgs() << '\n'; 641 } 642 dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; 643} 644#endif 645 646// extendTo - Find the last LI value defined in MBB at or before Idx. The 647// ParentLI is assumed to be live at Idx. Extend the live range to Idx. 648// Return the found VNInfo, or NULL. 649VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 650 assert(LI && "call reset first"); 651 LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx); 652 if (I == LI->begin()) 653 return 0; 654 --I; 655 if (I->end <= LIS.getMBBStartIdx(MBB)) 656 return 0; 657 if (I->end <= Idx) 658 I->end = Idx.getNextSlot(); 659 return I->valno; 660} 661 662// addSimpleRange - Add a simple range from ParentLI to LI. 663// ParentVNI must be live in the [Start;End) interval. 664void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 665 const VNInfo *ParentVNI) { 666 assert(LI && "call reset first"); 667 bool simple; 668 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 669 // A simple mapping is easy. 670 if (simple) { 671 LI->addRange(LiveRange(Start, End, VNI)); 672 return; 673 } 674 675 // ParentVNI is a complex value. We must map per MBB. 676 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 677 MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot()); 678 679 if (MBB == MBBE) { 680 LI->addRange(LiveRange(Start, End, VNI)); 681 return; 682 } 683 684 // First block. 685 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 686 687 // Run sequence of full blocks. 688 for (++MBB; MBB != MBBE; ++MBB) { 689 Start = LIS.getMBBStartIdx(MBB); 690 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), 691 mapValue(ParentVNI, Start))); 692 } 693 694 // Final block. 695 Start = LIS.getMBBStartIdx(MBB); 696 if (Start != End) 697 LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 698} 699 700/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. 701/// All needed values whose def is not inside [Start;End) must be defined 702/// beforehand so mapValue will work. 703void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 704 assert(LI && "call reset first"); 705 LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end(); 706 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 707 708 // Check if --I begins before Start and overlaps. 709 if (I != B) { 710 --I; 711 if (I->end > Start) 712 addSimpleRange(Start, std::min(End, I->end), I->valno); 713 ++I; 714 } 715 716 // The remaining ranges begin after Start. 717 for (;I != E && I->start < End; ++I) 718 addSimpleRange(I->start, std::min(End, I->end), I->valno); 719} 720 721 722//===----------------------------------------------------------------------===// 723// Split Editor 724//===----------------------------------------------------------------------===// 725 726/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 727SplitEditor::SplitEditor(SplitAnalysis &sa, 728 LiveIntervals &lis, 729 VirtRegMap &vrm, 730 MachineDominatorTree &mdt, 731 LiveRangeEdit &edit) 732 : sa_(sa), LIS(lis), VRM(vrm), 733 MRI(vrm.getMachineFunction().getRegInfo()), 734 MDT(mdt), 735 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 736 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 737 Edit(edit), 738 OpenIdx(0), 739 RegAssign(Allocator) 740{ 741 // We don't need an AliasAnalysis since we will only be performing 742 // cheap-as-a-copy remats anyway. 743 Edit.anyRematerializable(LIS, TII, 0); 744} 745 746void SplitEditor::dump() const { 747 if (RegAssign.empty()) { 748 dbgs() << " empty\n"; 749 return; 750 } 751 752 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 753 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 754 dbgs() << '\n'; 755} 756 757VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 758 VNInfo *ParentVNI, 759 SlotIndex UseIdx, 760 MachineBasicBlock &MBB, 761 MachineBasicBlock::iterator I) { 762 MachineInstr *CopyMI = 0; 763 SlotIndex Def; 764 LiveInterval *LI = Edit.get(RegIdx); 765 766 // Attempt cheap-as-a-copy rematerialization. 767 LiveRangeEdit::Remat RM(ParentVNI); 768 if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { 769 Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 770 } else { 771 // Can't remat, just insert a copy from parent. 772 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 773 .addReg(Edit.getReg()); 774 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 775 } 776 777 // Define the value in Reg. 778 VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def); 779 VNI->setCopy(CopyMI); 780 781 // Add minimal liveness for the new value. 782 Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 783 return VNI; 784} 785 786/// Create a new virtual register and live interval. 787void SplitEditor::openIntv() { 788 assert(!OpenIdx && "Previous LI not closed before openIntv"); 789 790 // Create the complement as index 0. 791 if (Edit.empty()) { 792 Edit.create(MRI, LIS, VRM); 793 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 794 LIMappers.back().reset(Edit.get(0)); 795 } 796 797 // Create the open interval. 798 OpenIdx = Edit.size(); 799 Edit.create(MRI, LIS, VRM); 800 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 801 LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); 802} 803 804SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 805 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 806 DEBUG(dbgs() << " enterIntvBefore " << Idx); 807 Idx = Idx.getBaseIndex(); 808 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 809 if (!ParentVNI) { 810 DEBUG(dbgs() << ": not live\n"); 811 return Idx; 812 } 813 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 814 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 815 assert(MI && "enterIntvBefore called with invalid index"); 816 817 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 818 return VNI->def; 819} 820 821SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 822 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 823 SlotIndex End = LIS.getMBBEndIdx(&MBB); 824 SlotIndex Last = End.getPrevSlot(); 825 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 826 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); 827 if (!ParentVNI) { 828 DEBUG(dbgs() << ": not live\n"); 829 return End; 830 } 831 DEBUG(dbgs() << ": valno " << ParentVNI->id); 832 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 833 LIS.getLastSplitPoint(Edit.getParent(), &MBB)); 834 RegAssign.insert(VNI->def, End, OpenIdx); 835 DEBUG(dump()); 836 return VNI->def; 837} 838 839/// useIntv - indicate that all instructions in MBB should use OpenLI. 840void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 841 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 842} 843 844void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 845 assert(OpenIdx && "openIntv not called before useIntv"); 846 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 847 RegAssign.insert(Start, End, OpenIdx); 848 DEBUG(dump()); 849} 850 851SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 852 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 853 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 854 855 // The interval must be live beyond the instruction at Idx. 856 Idx = Idx.getBoundaryIndex(); 857 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 858 if (!ParentVNI) { 859 DEBUG(dbgs() << ": not live\n"); 860 return Idx.getNextSlot(); 861 } 862 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 863 864 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 865 assert(MI && "No instruction at index"); 866 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 867 llvm::next(MachineBasicBlock::iterator(MI))); 868 return VNI->def; 869} 870 871SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 872 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 873 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 874 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 875 876 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); 877 if (!ParentVNI) { 878 DEBUG(dbgs() << ": not live\n"); 879 return Start; 880 } 881 882 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 883 MBB.SkipPHIsAndLabels(MBB.begin())); 884 RegAssign.insert(Start, VNI->def, OpenIdx); 885 DEBUG(dump()); 886 return VNI->def; 887} 888 889void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 890 assert(OpenIdx && "openIntv not called before overlapIntv"); 891 assert(Edit.getParent().getVNInfoAt(Start) == 892 Edit.getParent().getVNInfoAt(End.getPrevSlot()) && 893 "Parent changes value in extended range"); 894 assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*"); 895 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 896 "Range cannot span basic blocks"); 897 898 // Treat this as useIntv() for now. The complement interval will be extended 899 // as needed by mapValue(). 900 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 901 RegAssign.insert(Start, End, OpenIdx); 902 DEBUG(dump()); 903} 904 905/// closeIntv - Indicate that we are done editing the currently open 906/// LiveInterval, and ranges can be trimmed. 907void SplitEditor::closeIntv() { 908 assert(OpenIdx && "openIntv not called before closeIntv"); 909 OpenIdx = 0; 910} 911 912/// rewriteAssigned - Rewrite all uses of Edit.getReg(). 913void SplitEditor::rewriteAssigned() { 914 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), 915 RE = MRI.reg_end(); RI != RE;) { 916 MachineOperand &MO = RI.getOperand(); 917 MachineInstr *MI = MO.getParent(); 918 ++RI; 919 // LiveDebugVariables should have handled all DBG_VALUE instructions. 920 if (MI->isDebugValue()) { 921 DEBUG(dbgs() << "Zapping " << *MI); 922 MO.setReg(0); 923 continue; 924 } 925 926 // <undef> operands don't really read the register, so just assign them to 927 // the complement. 928 if (MO.isUse() && MO.isUndef()) { 929 MO.setReg(Edit.get(0)->reg); 930 continue; 931 } 932 933 SlotIndex Idx = LIS.getInstructionIndex(MI); 934 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 935 936 // Rewrite to the mapped register at Idx. 937 unsigned RegIdx = RegAssign.lookup(Idx); 938 MO.setReg(Edit.get(RegIdx)->reg); 939 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 940 << Idx << ':' << RegIdx << '\t' << *MI); 941 942 // Extend liveness to Idx. 943 const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 944 LIMappers[RegIdx].mapValue(ParentVNI, Idx); 945 } 946} 947 948/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 949void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 950 const ConnectedVNInfoEqClasses &ConEq) { 951 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 952 RE = MRI.reg_end(); RI != RE;) { 953 MachineOperand &MO = RI.getOperand(); 954 MachineInstr *MI = MO.getParent(); 955 ++RI; 956 if (MO.isUse() && MO.isUndef()) 957 continue; 958 // DBG_VALUE instructions should have been eliminated earlier. 959 SlotIndex Idx = LIS.getInstructionIndex(MI); 960 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 961 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 962 << Idx << ':'); 963 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 964 assert(VNI && "Interval not live at use."); 965 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 966 DEBUG(dbgs() << VNI->id << '\t' << *MI); 967 } 968} 969 970void SplitEditor::finish() { 971 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 972 973 // At this point, the live intervals in Edit contain VNInfos corresponding to 974 // the inserted copies. 975 976 // Add the original defs from the parent interval. 977 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 978 E = Edit.getParent().vni_end(); I != E; ++I) { 979 const VNInfo *ParentVNI = *I; 980 if (ParentVNI->isUnused()) 981 continue; 982 LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)]; 983 VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def); 984 LIM.getLI()->addRange(LiveRange(ParentVNI->def, 985 ParentVNI->def.getNextSlot(), VNI)); 986 // Mark all values as complex to force liveness computation. 987 // This should really only be necessary for remat victims, but we are lazy. 988 LIM.markComplexMapped(ParentVNI); 989 } 990 991#ifndef NDEBUG 992 // Every new interval must have a def by now, otherwise the split is bogus. 993 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 994 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 995#endif 996 997 // FIXME: Don't recompute the liveness of all values, infer it from the 998 // overlaps between the parent live interval and RegAssign. 999 // The mapValue algorithm is only necessary when: 1000 // - The parent value maps to multiple defs, and new phis are needed, or 1001 // - The value has been rematerialized before some uses, and we want to 1002 // minimize the live range so it only reaches the remaining uses. 1003 // All other values have simple liveness that can be computed from RegAssign 1004 // and the parent live interval. 1005 1006 // Extend live ranges to be live-out for successor PHI values. 1007 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 1008 E = Edit.getParent().vni_end(); I != E; ++I) { 1009 const VNInfo *PHIVNI = *I; 1010 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 1011 continue; 1012 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 1013 LiveIntervalMap &LIM = LIMappers[RegIdx]; 1014 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 1015 DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def 1016 << " -> " << RegIdx << '\n'); 1017 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 1018 PE = MBB->pred_end(); PI != PE; ++PI) { 1019 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 1020 DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); 1021 // The predecessor may not have a live-out value. That is OK, like an 1022 // undef PHI operand. 1023 if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { 1024 DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); 1025 assert(RegAssign.lookup(End) == RegIdx && 1026 "Different register assignment in phi predecessor"); 1027 LIM.mapValue(VNI, End); 1028 } 1029 else 1030 DEBUG(dbgs() << " is not live-out\n"); 1031 } 1032 DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); 1033 } 1034 1035 // Rewrite instructions. 1036 rewriteAssigned(); 1037 1038 // FIXME: Delete defs that were rematted everywhere. 1039 1040 // Get rid of unused values and set phi-kill flags. 1041 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 1042 (*I)->RenumberValues(LIS); 1043 1044 // Now check if any registers were separated into multiple components. 1045 ConnectedVNInfoEqClasses ConEQ(LIS); 1046 for (unsigned i = 0, e = Edit.size(); i != e; ++i) { 1047 // Don't use iterators, they are invalidated by create() below. 1048 LiveInterval *li = Edit.get(i); 1049 unsigned NumComp = ConEQ.Classify(li); 1050 if (NumComp <= 1) 1051 continue; 1052 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1053 SmallVector<LiveInterval*, 8> dups; 1054 dups.push_back(li); 1055 for (unsigned i = 1; i != NumComp; ++i) 1056 dups.push_back(&Edit.create(MRI, LIS, VRM)); 1057 rewriteComponents(dups, ConEQ); 1058 ConEQ.Distribute(&dups[0]); 1059 } 1060 1061 // Calculate spill weight and allocation hints for new intervals. 1062 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops); 1063 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ 1064 LiveInterval &li = **I; 1065 vrai.CalculateRegClass(li.reg); 1066 vrai.CalculateWeightAndHint(li); 1067 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 1068 << ":" << li << '\n'); 1069 } 1070} 1071 1072 1073//===----------------------------------------------------------------------===// 1074// Loop Splitting 1075//===----------------------------------------------------------------------===// 1076 1077void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 1078 SplitAnalysis::LoopBlocks Blocks; 1079 sa_.getLoopBlocks(Loop, Blocks); 1080 1081 DEBUG({ 1082 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 1083 }); 1084 1085 // Break critical edges as needed. 1086 SplitAnalysis::BlockPtrSet CriticalExits; 1087 sa_.getCriticalExits(Blocks, CriticalExits); 1088 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 1089 1090 // Create new live interval for the loop. 1091 openIntv(); 1092 1093 // Insert copies in the predecessors if live-in to the header. 1094 if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) { 1095 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 1096 E = Blocks.Preds.end(); I != E; ++I) { 1097 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1098 enterIntvAtEnd(MBB); 1099 } 1100 } 1101 1102 // Switch all loop blocks. 1103 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 1104 E = Blocks.Loop.end(); I != E; ++I) 1105 useIntv(**I); 1106 1107 // Insert back copies in the exit blocks. 1108 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 1109 E = Blocks.Exits.end(); I != E; ++I) { 1110 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1111 leaveIntvAtTop(MBB); 1112 } 1113 1114 // Done. 1115 closeIntv(); 1116 finish(); 1117} 1118 1119 1120//===----------------------------------------------------------------------===// 1121// Single Block Splitting 1122//===----------------------------------------------------------------------===// 1123 1124/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1125/// may be an advantage to split CurLI for the duration of the block. 1126bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1127 // If CurLI is local to one block, there is no point to splitting it. 1128 if (UsingBlocks.size() <= 1) 1129 return false; 1130 // Add blocks with multiple uses. 1131 for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); 1132 I != E; ++I) 1133 switch (I->second) { 1134 case 0: 1135 case 1: 1136 continue; 1137 case 2: { 1138 // When there are only two uses and CurLI is both live in and live out, 1139 // we don't really win anything by isolating the block since we would be 1140 // inserting two copies. 1141 // The remaing register would still have two uses in the block. (Unless it 1142 // separates into disconnected components). 1143 if (LIS.isLiveInToMBB(*CurLI, I->first) && 1144 LIS.isLiveOutOfMBB(*CurLI, I->first)) 1145 continue; 1146 } // Fall through. 1147 default: 1148 Blocks.insert(I->first); 1149 } 1150 return !Blocks.empty(); 1151} 1152 1153/// splitSingleBlocks - Split CurLI into a separate live interval inside each 1154/// basic block in Blocks. 1155void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1156 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1157 // Determine the first and last instruction using CurLI in each block. 1158 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 1159 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 1160 IndexPairMap MBBRange; 1161 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), 1162 E = sa_.UsingInstrs.end(); I != E; ++I) { 1163 const MachineBasicBlock *MBB = (*I)->getParent(); 1164 if (!Blocks.count(MBB)) 1165 continue; 1166 SlotIndex Idx = LIS.getInstructionIndex(*I); 1167 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1168 IndexPair &IP = MBBRange[MBB]; 1169 if (!IP.first.isValid() || Idx < IP.first) 1170 IP.first = Idx; 1171 if (!IP.second.isValid() || Idx > IP.second) 1172 IP.second = Idx; 1173 } 1174 1175 // Create a new interval for each block. 1176 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1177 E = Blocks.end(); I != E; ++I) { 1178 IndexPair &IP = MBBRange[*I]; 1179 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1180 << IP.first << ';' << IP.second << ")\n"); 1181 assert(IP.first.isValid() && IP.second.isValid()); 1182 1183 openIntv(); 1184 useIntv(enterIntvBefore(IP.first), leaveIntvAfter(IP.second)); 1185 closeIntv(); 1186 } 1187 finish(); 1188} 1189 1190 1191//===----------------------------------------------------------------------===// 1192// Sub Block Splitting 1193//===----------------------------------------------------------------------===// 1194 1195/// getBlockForInsideSplit - If CurLI is contained inside a single basic block, 1196/// and it wou pay to subdivide the interval inside that block, return it. 1197/// Otherwise return NULL. The returned block can be passed to 1198/// SplitEditor::splitInsideBlock. 1199const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1200 // The interval must be exclusive to one block. 1201 if (UsingBlocks.size() != 1) 1202 return 0; 1203 // Don't to this for less than 4 instructions. We want to be sure that 1204 // splitting actually reduces the instruction count per interval. 1205 if (UsingInstrs.size() < 4) 1206 return 0; 1207 return UsingBlocks.begin()->first; 1208} 1209 1210/// splitInsideBlock - Split CurLI into multiple intervals inside MBB. 1211void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1212 SmallVector<SlotIndex, 32> Uses; 1213 Uses.reserve(sa_.UsingInstrs.size()); 1214 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), 1215 E = sa_.UsingInstrs.end(); I != E; ++I) 1216 if ((*I)->getParent() == MBB) 1217 Uses.push_back(LIS.getInstructionIndex(*I)); 1218 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1219 << Uses.size() << " instructions.\n"); 1220 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1221 array_pod_sort(Uses.begin(), Uses.end()); 1222 1223 // Simple algorithm: Find the largest gap between uses as determined by slot 1224 // indices. Create new intervals for instructions before the gap and after the 1225 // gap. 1226 unsigned bestPos = 0; 1227 int bestGap = 0; 1228 DEBUG(dbgs() << " dist (" << Uses[0]); 1229 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1230 int g = Uses[i-1].distance(Uses[i]); 1231 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1232 if (g > bestGap) 1233 bestPos = i, bestGap = g; 1234 } 1235 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1236 1237 // bestPos points to the first use after the best gap. 1238 assert(bestPos > 0 && "Invalid gap"); 1239 1240 // FIXME: Don't create intervals for low densities. 1241 1242 // First interval before the gap. Don't create single-instr intervals. 1243 if (bestPos > 1) { 1244 openIntv(); 1245 useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1])); 1246 closeIntv(); 1247 } 1248 1249 // Second interval after the gap. 1250 if (bestPos < Uses.size()-1) { 1251 openIntv(); 1252 useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back())); 1253 closeIntv(); 1254 } 1255 1256 finish(); 1257} 1258