SplitKit.cpp revision b09701db9e74298912164d988ddf40bb1b5ec19b
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "regalloc" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineDominators.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/raw_ostream.h" 26#include "llvm/Target/TargetInstrInfo.h" 27#include "llvm/Target/TargetMachine.h" 28 29using namespace llvm; 30 31STATISTIC(NumFinished, "Number of splits finished"); 32STATISTIC(NumSimple, "Number of splits that were simple"); 33STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37//===----------------------------------------------------------------------===// 38// Split Analysis 39//===----------------------------------------------------------------------===// 40 41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58} 59 60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95} 96 97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144} 145 146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147/// where CurLI is live. 148bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstUse = *UseI; 182 assert(BI.FirstUse >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastUse = UseI[-1]; 186 assert(BI.LastUse < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // Look for gaps in the live range. 192 BI.LiveOut = true; 193 while (LVI->end < Stop) { 194 SlotIndex LastStop = LVI->end; 195 if (++LVI == LVE || LVI->start >= Stop) { 196 BI.LiveOut = false; 197 BI.LastUse = LastStop; 198 break; 199 } 200 if (LastStop < LVI->start) { 201 // There is a gap in the live range. Create duplicate entries for the 202 // live-in snippet and the live-out snippet. 203 ++NumGapBlocks; 204 205 // Push the Live-in part. 206 BI.LiveThrough = false; 207 BI.LiveOut = false; 208 UseBlocks.push_back(BI); 209 UseBlocks.back().LastUse = LastStop; 210 211 // Set up BI for the live-out part. 212 BI.LiveIn = false; 213 BI.LiveOut = true; 214 BI.FirstUse = LVI->start; 215 } 216 } 217 218 // Don't set LiveThrough when the block has a gap. 219 BI.LiveThrough = BI.LiveIn && BI.LiveOut; 220 UseBlocks.push_back(BI); 221 222 // LVI is now at LVE or LVI->end >= Stop. 223 if (LVI == LVE) 224 break; 225 } 226 227 // Live segment ends exactly at Stop. Move to the next segment. 228 if (LVI->end == Stop && ++LVI == LVE) 229 break; 230 231 // Pick the next basic block. 232 if (LVI->start < Stop) 233 ++MFI; 234 else 235 MFI = LIS.getMBBFromIndex(LVI->start); 236 } 237 238 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 239 return true; 240} 241 242unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 243 if (cli->empty()) 244 return 0; 245 LiveInterval *li = const_cast<LiveInterval*>(cli); 246 LiveInterval::iterator LVI = li->begin(); 247 LiveInterval::iterator LVE = li->end(); 248 unsigned Count = 0; 249 250 // Loop over basic blocks where li is live. 251 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 252 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 253 for (;;) { 254 ++Count; 255 LVI = li->advanceTo(LVI, Stop); 256 if (LVI == LVE) 257 return Count; 258 do { 259 ++MFI; 260 Stop = LIS.getMBBEndIdx(MFI); 261 } while (Stop <= LVI->start); 262 } 263} 264 265bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 266 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 267 const LiveInterval &Orig = LIS.getInterval(OrigReg); 268 assert(!Orig.empty() && "Splitting empty interval?"); 269 LiveInterval::const_iterator I = Orig.find(Idx); 270 271 // Range containing Idx should begin at Idx. 272 if (I != Orig.end() && I->start <= Idx) 273 return I->start == Idx; 274 275 // Range does not contain Idx, previous must end at Idx. 276 return I != Orig.begin() && (--I)->end == Idx; 277} 278 279void SplitAnalysis::analyze(const LiveInterval *li) { 280 clear(); 281 CurLI = li; 282 analyzeUses(); 283} 284 285 286//===----------------------------------------------------------------------===// 287// Split Editor 288//===----------------------------------------------------------------------===// 289 290/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 291SplitEditor::SplitEditor(SplitAnalysis &sa, 292 LiveIntervals &lis, 293 VirtRegMap &vrm, 294 MachineDominatorTree &mdt) 295 : SA(sa), LIS(lis), VRM(vrm), 296 MRI(vrm.getMachineFunction().getRegInfo()), 297 MDT(mdt), 298 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 299 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 300 Edit(0), 301 OpenIdx(0), 302 RegAssign(Allocator) 303{} 304 305void SplitEditor::reset(LiveRangeEdit &lre) { 306 Edit = &lre; 307 OpenIdx = 0; 308 RegAssign.clear(); 309 Values.clear(); 310 311 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 312 LiveOutSeen.clear(); 313 314 // We don't need an AliasAnalysis since we will only be performing 315 // cheap-as-a-copy remats anyway. 316 Edit->anyRematerializable(LIS, TII, 0); 317} 318 319void SplitEditor::dump() const { 320 if (RegAssign.empty()) { 321 dbgs() << " empty\n"; 322 return; 323 } 324 325 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 326 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 327 dbgs() << '\n'; 328} 329 330VNInfo *SplitEditor::defValue(unsigned RegIdx, 331 const VNInfo *ParentVNI, 332 SlotIndex Idx) { 333 assert(ParentVNI && "Mapping NULL value"); 334 assert(Idx.isValid() && "Invalid SlotIndex"); 335 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 336 LiveInterval *LI = Edit->get(RegIdx); 337 338 // Create a new value. 339 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 340 341 // Use insert for lookup, so we can add missing values with a second lookup. 342 std::pair<ValueMap::iterator, bool> InsP = 343 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 344 345 // This was the first time (RegIdx, ParentVNI) was mapped. 346 // Keep it as a simple def without any liveness. 347 if (InsP.second) 348 return VNI; 349 350 // If the previous value was a simple mapping, add liveness for it now. 351 if (VNInfo *OldVNI = InsP.first->second) { 352 SlotIndex Def = OldVNI->def; 353 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 354 // No longer a simple mapping. 355 InsP.first->second = 0; 356 } 357 358 // This is a complex mapping, add liveness for VNI 359 SlotIndex Def = VNI->def; 360 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 361 362 return VNI; 363} 364 365void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 366 assert(ParentVNI && "Mapping NULL value"); 367 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 368 369 // ParentVNI was either unmapped or already complex mapped. Either way. 370 if (!VNI) 371 return; 372 373 // This was previously a single mapping. Make sure the old def is represented 374 // by a trivial live range. 375 SlotIndex Def = VNI->def; 376 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 377 VNI = 0; 378} 379 380// extendRange - Extend the live range to reach Idx. 381// Potentially create phi-def values. 382void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 383 assert(Idx.isValid() && "Invalid SlotIndex"); 384 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 385 assert(IdxMBB && "No MBB at Idx"); 386 LiveInterval *LI = Edit->get(RegIdx); 387 388 // Is there a def in the same MBB we can extend? 389 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 390 return; 391 392 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 393 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 394 // Perform a search for all predecessor blocks where we know the dominating 395 // VNInfo. 396 VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot()); 397 398 // When there were multiple different values, we may need new PHIs. 399 if (!VNI) 400 return updateSSA(); 401 402 // Poor man's SSA update for the single-value case. 403 LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]); 404 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 405 E = LiveInBlocks.end(); I != E; ++I) { 406 MachineBasicBlock *MBB = I->DomNode->getBlock(); 407 SlotIndex Start = LIS.getMBBStartIdx(MBB); 408 if (I->Kill.isValid()) 409 LI->addRange(LiveRange(Start, I->Kill, VNI)); 410 else { 411 LiveOutCache[MBB] = LOP; 412 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 413 } 414 } 415} 416 417/// findReachingDefs - Search the CFG for known live-out values. 418/// Add required live-in blocks to LiveInBlocks. 419VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI, 420 MachineBasicBlock *KillMBB, 421 SlotIndex Kill) { 422 // Initialize the live-out cache the first time it is needed. 423 if (LiveOutSeen.empty()) { 424 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 425 LiveOutSeen.resize(N); 426 LiveOutCache.resize(N); 427 } 428 429 // Blocks where LI should be live-in. 430 SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB); 431 432 // Remember if we have seen more than one value. 433 bool UniqueVNI = true; 434 VNInfo *TheVNI = 0; 435 436 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 437 for (unsigned i = 0; i != WorkList.size(); ++i) { 438 MachineBasicBlock *MBB = WorkList[i]; 439 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 440 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 441 PE = MBB->pred_end(); PI != PE; ++PI) { 442 MachineBasicBlock *Pred = *PI; 443 LiveOutPair &LOP = LiveOutCache[Pred]; 444 445 // Is this a known live-out block? 446 if (LiveOutSeen.test(Pred->getNumber())) { 447 if (VNInfo *VNI = LOP.first) { 448 if (TheVNI && TheVNI != VNI) 449 UniqueVNI = false; 450 TheVNI = VNI; 451 } 452 continue; 453 } 454 455 // First time. LOP is garbage and must be cleared below. 456 LiveOutSeen.set(Pred->getNumber()); 457 458 // Does Pred provide a live-out value? 459 SlotIndex Start, Last; 460 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 461 Last = Last.getPrevSlot(); 462 VNInfo *VNI = LI->extendInBlock(Start, Last); 463 LOP.first = VNI; 464 if (VNI) { 465 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 466 if (TheVNI && TheVNI != VNI) 467 UniqueVNI = false; 468 TheVNI = VNI; 469 continue; 470 } 471 LOP.second = 0; 472 473 // No, we need a live-in value for Pred as well 474 if (Pred != KillMBB) 475 WorkList.push_back(Pred); 476 else 477 // Loopback to KillMBB, so value is really live through. 478 Kill = SlotIndex(); 479 } 480 } 481 482 // Transfer WorkList to LiveInBlocks in reverse order. 483 // This ordering works best with updateSSA(). 484 LiveInBlocks.clear(); 485 LiveInBlocks.reserve(WorkList.size()); 486 while(!WorkList.empty()) 487 LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]); 488 489 // The kill block may not be live-through. 490 assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB); 491 LiveInBlocks.back().Kill = Kill; 492 493 return UniqueVNI ? TheVNI : 0; 494} 495 496void SplitEditor::updateSSA() { 497 // This is essentially the same iterative algorithm that SSAUpdater uses, 498 // except we already have a dominator tree, so we don't have to recompute it. 499 unsigned Changes; 500 do { 501 Changes = 0; 502 // Propagate live-out values down the dominator tree, inserting phi-defs 503 // when necessary. 504 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 505 E = LiveInBlocks.end(); I != E; ++I) { 506 MachineDomTreeNode *Node = I->DomNode; 507 // Skip block if the live-in value has already been determined. 508 if (!Node) 509 continue; 510 MachineBasicBlock *MBB = Node->getBlock(); 511 MachineDomTreeNode *IDom = Node->getIDom(); 512 LiveOutPair IDomValue; 513 514 // We need a live-in value to a block with no immediate dominator? 515 // This is probably an unreachable block that has survived somehow. 516 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 517 518 // IDom dominates all of our predecessors, but it may not be their 519 // immediate dominator. Check if any of them have live-out values that are 520 // properly dominated by IDom. If so, we need a phi-def here. 521 if (!needPHI) { 522 IDomValue = LiveOutCache[IDom->getBlock()]; 523 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 524 PE = MBB->pred_end(); PI != PE; ++PI) { 525 LiveOutPair Value = LiveOutCache[*PI]; 526 if (!Value.first || Value.first == IDomValue.first) 527 continue; 528 // This predecessor is carrying something other than IDomValue. 529 // It could be because IDomValue hasn't propagated yet, or it could be 530 // because MBB is in the dominance frontier of that value. 531 if (MDT.dominates(IDom, Value.second)) { 532 needPHI = true; 533 break; 534 } 535 } 536 } 537 538 // The value may be live-through even if Kill is set, as can happen when 539 // we are called from extendRange. In that case LiveOutSeen is true, and 540 // LiveOutCache indicates a foreign or missing value. 541 LiveOutPair &LOP = LiveOutCache[MBB]; 542 543 // Create a phi-def if required. 544 if (needPHI) { 545 ++Changes; 546 SlotIndex Start = LIS.getMBBStartIdx(MBB); 547 unsigned RegIdx = RegAssign.lookup(Start); 548 LiveInterval *LI = Edit->get(RegIdx); 549 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 550 VNI->setIsPHIDef(true); 551 I->Value = VNI; 552 // This block is done, we know the final value. 553 I->DomNode = 0; 554 if (I->Kill.isValid()) 555 LI->addRange(LiveRange(Start, I->Kill, VNI)); 556 else { 557 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 558 LOP = LiveOutPair(VNI, Node); 559 } 560 } else if (IDomValue.first) { 561 // No phi-def here. Remember incoming value. 562 I->Value = IDomValue.first; 563 if (I->Kill.isValid()) 564 continue; 565 // Propagate IDomValue if needed: 566 // MBB is live-out and doesn't define its own value. 567 if (LOP.second != Node && LOP.first != IDomValue.first) { 568 ++Changes; 569 LOP = IDomValue; 570 } 571 } 572 } 573 } while (Changes); 574 575 // The values in LiveInBlocks are now accurate. No more phi-defs are needed 576 // for these blocks, so we can color the live ranges. 577 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 578 E = LiveInBlocks.end(); I != E; ++I) { 579 if (!I->DomNode) 580 continue; 581 assert(I->Value && "No live-in value found"); 582 MachineBasicBlock *MBB = I->DomNode->getBlock(); 583 SlotIndex Start = LIS.getMBBStartIdx(MBB); 584 unsigned RegIdx = RegAssign.lookup(Start); 585 LiveInterval *LI = Edit->get(RegIdx); 586 LI->addRange(LiveRange(Start, I->Kill.isValid() ? 587 I->Kill : LIS.getMBBEndIdx(MBB), I->Value)); 588 } 589} 590 591VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 592 VNInfo *ParentVNI, 593 SlotIndex UseIdx, 594 MachineBasicBlock &MBB, 595 MachineBasicBlock::iterator I) { 596 MachineInstr *CopyMI = 0; 597 SlotIndex Def; 598 LiveInterval *LI = Edit->get(RegIdx); 599 600 // We may be trying to avoid interference that ends at a deleted instruction, 601 // so always begin RegIdx 0 early and all others late. 602 bool Late = RegIdx != 0; 603 604 // Attempt cheap-as-a-copy rematerialization. 605 LiveRangeEdit::Remat RM(ParentVNI); 606 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 607 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 608 ++NumRemats; 609 } else { 610 // Can't remat, just insert a copy from parent. 611 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 612 .addReg(Edit->getReg()); 613 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 614 .getDefIndex(); 615 ++NumCopies; 616 } 617 618 // Define the value in Reg. 619 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 620 VNI->setCopy(CopyMI); 621 return VNI; 622} 623 624/// Create a new virtual register and live interval. 625unsigned SplitEditor::openIntv() { 626 // Create the complement as index 0. 627 if (Edit->empty()) 628 Edit->create(LIS, VRM); 629 630 // Create the open interval. 631 OpenIdx = Edit->size(); 632 Edit->create(LIS, VRM); 633 return OpenIdx; 634} 635 636void SplitEditor::selectIntv(unsigned Idx) { 637 assert(Idx != 0 && "Cannot select the complement interval"); 638 assert(Idx < Edit->size() && "Can only select previously opened interval"); 639 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 640 OpenIdx = Idx; 641} 642 643SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 644 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 645 DEBUG(dbgs() << " enterIntvBefore " << Idx); 646 Idx = Idx.getBaseIndex(); 647 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 648 if (!ParentVNI) { 649 DEBUG(dbgs() << ": not live\n"); 650 return Idx; 651 } 652 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 653 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 654 assert(MI && "enterIntvBefore called with invalid index"); 655 656 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 657 return VNI->def; 658} 659 660SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 661 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 662 DEBUG(dbgs() << " enterIntvAfter " << Idx); 663 Idx = Idx.getBoundaryIndex(); 664 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 665 if (!ParentVNI) { 666 DEBUG(dbgs() << ": not live\n"); 667 return Idx; 668 } 669 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 670 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 671 assert(MI && "enterIntvAfter called with invalid index"); 672 673 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 674 llvm::next(MachineBasicBlock::iterator(MI))); 675 return VNI->def; 676} 677 678SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 679 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 680 SlotIndex End = LIS.getMBBEndIdx(&MBB); 681 SlotIndex Last = End.getPrevSlot(); 682 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 683 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 684 if (!ParentVNI) { 685 DEBUG(dbgs() << ": not live\n"); 686 return End; 687 } 688 DEBUG(dbgs() << ": valno " << ParentVNI->id); 689 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 690 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 691 RegAssign.insert(VNI->def, End, OpenIdx); 692 DEBUG(dump()); 693 return VNI->def; 694} 695 696/// useIntv - indicate that all instructions in MBB should use OpenLI. 697void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 698 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 699} 700 701void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 702 assert(OpenIdx && "openIntv not called before useIntv"); 703 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 704 RegAssign.insert(Start, End, OpenIdx); 705 DEBUG(dump()); 706} 707 708SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 709 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 710 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 711 712 // The interval must be live beyond the instruction at Idx. 713 Idx = Idx.getBoundaryIndex(); 714 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 715 if (!ParentVNI) { 716 DEBUG(dbgs() << ": not live\n"); 717 return Idx.getNextSlot(); 718 } 719 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 720 721 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 722 assert(MI && "No instruction at index"); 723 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 724 llvm::next(MachineBasicBlock::iterator(MI))); 725 return VNI->def; 726} 727 728SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 729 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 730 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 731 732 // The interval must be live into the instruction at Idx. 733 Idx = Idx.getBaseIndex(); 734 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 735 if (!ParentVNI) { 736 DEBUG(dbgs() << ": not live\n"); 737 return Idx.getNextSlot(); 738 } 739 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 740 741 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 742 assert(MI && "No instruction at index"); 743 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 744 return VNI->def; 745} 746 747SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 748 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 749 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 750 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 751 752 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 753 if (!ParentVNI) { 754 DEBUG(dbgs() << ": not live\n"); 755 return Start; 756 } 757 758 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 759 MBB.SkipPHIsAndLabels(MBB.begin())); 760 RegAssign.insert(Start, VNI->def, OpenIdx); 761 DEBUG(dump()); 762 return VNI->def; 763} 764 765void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 766 assert(OpenIdx && "openIntv not called before overlapIntv"); 767 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 768 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 769 "Parent changes value in extended range"); 770 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 771 "Range cannot span basic blocks"); 772 773 // The complement interval will be extended as needed by extendRange(). 774 if (ParentVNI) 775 markComplexMapped(0, ParentVNI); 776 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 777 RegAssign.insert(Start, End, OpenIdx); 778 DEBUG(dump()); 779} 780 781/// transferValues - Transfer all possible values to the new live ranges. 782/// Values that were rematerialized are left alone, they need extendRange(). 783bool SplitEditor::transferValues() { 784 bool Skipped = false; 785 LiveInBlocks.clear(); 786 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 787 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 788 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 789 DEBUG(dbgs() << " blit " << *ParentI << ':'); 790 VNInfo *ParentVNI = ParentI->valno; 791 // RegAssign has holes where RegIdx 0 should be used. 792 SlotIndex Start = ParentI->start; 793 AssignI.advanceTo(Start); 794 do { 795 unsigned RegIdx; 796 SlotIndex End = ParentI->end; 797 if (!AssignI.valid()) { 798 RegIdx = 0; 799 } else if (AssignI.start() <= Start) { 800 RegIdx = AssignI.value(); 801 if (AssignI.stop() < End) { 802 End = AssignI.stop(); 803 ++AssignI; 804 } 805 } else { 806 RegIdx = 0; 807 End = std::min(End, AssignI.start()); 808 } 809 810 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 811 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 812 LiveInterval *LI = Edit->get(RegIdx); 813 814 // Check for a simply defined value that can be blitted directly. 815 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 816 DEBUG(dbgs() << ':' << VNI->id); 817 LI->addRange(LiveRange(Start, End, VNI)); 818 Start = End; 819 continue; 820 } 821 822 // Skip rematerialized values, we need to use extendRange() and 823 // extendPHIKillRanges() to completely recompute the live ranges. 824 if (Edit->didRematerialize(ParentVNI)) { 825 DEBUG(dbgs() << "(remat)"); 826 Skipped = true; 827 Start = End; 828 continue; 829 } 830 831 // Initialize the live-out cache the first time it is needed. 832 if (LiveOutSeen.empty()) { 833 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 834 LiveOutSeen.resize(N); 835 LiveOutCache.resize(N); 836 } 837 838 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 839 // so the live range is accurate. Add live-in blocks in [Start;End) to the 840 // LiveInBlocks. 841 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 842 SlotIndex BlockStart, BlockEnd; 843 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 844 845 // The first block may be live-in, or it may have its own def. 846 if (Start != BlockStart) { 847 VNInfo *VNI = LI->extendInBlock(BlockStart, 848 std::min(BlockEnd, End).getPrevSlot()); 849 assert(VNI && "Missing def for complex mapped value"); 850 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 851 // MBB has its own def. Is it also live-out? 852 if (BlockEnd <= End) { 853 LiveOutSeen.set(MBB->getNumber()); 854 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 855 } 856 // Skip to the next block for live-in. 857 ++MBB; 858 BlockStart = BlockEnd; 859 } 860 861 // Handle the live-in blocks covered by [Start;End). 862 assert(Start <= BlockStart && "Expected live-in block"); 863 while (BlockStart < End) { 864 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 865 BlockEnd = LIS.getMBBEndIdx(MBB); 866 if (BlockStart == ParentVNI->def) { 867 // This block has the def of a parent PHI, so it isn't live-in. 868 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 869 VNInfo *VNI = LI->extendInBlock(BlockStart, 870 std::min(BlockEnd, End).getPrevSlot()); 871 assert(VNI && "Missing def for complex mapped parent PHI"); 872 if (End >= BlockEnd) { 873 // Live-out as well. 874 LiveOutSeen.set(MBB->getNumber()); 875 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 876 } 877 } else { 878 // This block needs a live-in value. 879 LiveInBlocks.push_back(MDT[MBB]); 880 // The last block covered may not be live-out. 881 if (End < BlockEnd) 882 LiveInBlocks.back().Kill = End; 883 else { 884 // Live-out, but we need updateSSA to tell us the value. 885 LiveOutSeen.set(MBB->getNumber()); 886 LiveOutCache[MBB] = LiveOutPair((VNInfo*)0, 887 (MachineDomTreeNode*)0); 888 } 889 } 890 BlockStart = BlockEnd; 891 ++MBB; 892 } 893 Start = End; 894 } while (Start != ParentI->end); 895 DEBUG(dbgs() << '\n'); 896 } 897 898 if (!LiveInBlocks.empty()) 899 updateSSA(); 900 901 return Skipped; 902} 903 904void SplitEditor::extendPHIKillRanges() { 905 // Extend live ranges to be live-out for successor PHI values. 906 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 907 E = Edit->getParent().vni_end(); I != E; ++I) { 908 const VNInfo *PHIVNI = *I; 909 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 910 continue; 911 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 912 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 913 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 914 PE = MBB->pred_end(); PI != PE; ++PI) { 915 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 916 // The predecessor may not have a live-out value. That is OK, like an 917 // undef PHI operand. 918 if (Edit->getParent().liveAt(End)) { 919 assert(RegAssign.lookup(End) == RegIdx && 920 "Different register assignment in phi predecessor"); 921 extendRange(RegIdx, End); 922 } 923 } 924 } 925} 926 927/// rewriteAssigned - Rewrite all uses of Edit->getReg(). 928void SplitEditor::rewriteAssigned(bool ExtendRanges) { 929 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 930 RE = MRI.reg_end(); RI != RE;) { 931 MachineOperand &MO = RI.getOperand(); 932 MachineInstr *MI = MO.getParent(); 933 ++RI; 934 // LiveDebugVariables should have handled all DBG_VALUE instructions. 935 if (MI->isDebugValue()) { 936 DEBUG(dbgs() << "Zapping " << *MI); 937 MO.setReg(0); 938 continue; 939 } 940 941 // <undef> operands don't really read the register, so it doesn't matter 942 // which register we choose. When the use operand is tied to a def, we must 943 // use the same register as the def, so just do that always. 944 SlotIndex Idx = LIS.getInstructionIndex(MI); 945 if (MO.isDef() || MO.isUndef()) 946 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 947 948 // Rewrite to the mapped register at Idx. 949 unsigned RegIdx = RegAssign.lookup(Idx); 950 MO.setReg(Edit->get(RegIdx)->reg); 951 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 952 << Idx << ':' << RegIdx << '\t' << *MI); 953 954 // Extend liveness to Idx if the instruction reads reg. 955 if (!ExtendRanges) 956 continue; 957 958 // Skip instructions that don't read Reg. 959 if (MO.isDef()) { 960 if (!MO.getSubReg() && !MO.isEarlyClobber()) 961 continue; 962 // We may wan't to extend a live range for a partial redef, or for a use 963 // tied to an early clobber. 964 Idx = Idx.getPrevSlot(); 965 if (!Edit->getParent().liveAt(Idx)) 966 continue; 967 } else 968 Idx = Idx.getUseIndex(); 969 970 extendRange(RegIdx, Idx); 971 } 972} 973 974void SplitEditor::deleteRematVictims() { 975 SmallVector<MachineInstr*, 8> Dead; 976 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 977 LiveInterval *LI = *I; 978 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 979 LII != LIE; ++LII) { 980 // Dead defs end at the store slot. 981 if (LII->end != LII->valno->def.getNextSlot()) 982 continue; 983 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 984 assert(MI && "Missing instruction for dead def"); 985 MI->addRegisterDead(LI->reg, &TRI); 986 987 if (!MI->allDefsAreDead()) 988 continue; 989 990 DEBUG(dbgs() << "All defs dead: " << *MI); 991 Dead.push_back(MI); 992 } 993 } 994 995 if (Dead.empty()) 996 return; 997 998 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 999} 1000 1001void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1002 ++NumFinished; 1003 1004 // At this point, the live intervals in Edit contain VNInfos corresponding to 1005 // the inserted copies. 1006 1007 // Add the original defs from the parent interval. 1008 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1009 E = Edit->getParent().vni_end(); I != E; ++I) { 1010 const VNInfo *ParentVNI = *I; 1011 if (ParentVNI->isUnused()) 1012 continue; 1013 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1014 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 1015 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 1016 VNI->setCopy(ParentVNI->getCopy()); 1017 1018 // Mark rematted values as complex everywhere to force liveness computation. 1019 // The new live ranges may be truncated. 1020 if (Edit->didRematerialize(ParentVNI)) 1021 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1022 markComplexMapped(i, ParentVNI); 1023 } 1024 1025 // Transfer the simply mapped values, check if any are skipped. 1026 bool Skipped = transferValues(); 1027 if (Skipped) 1028 extendPHIKillRanges(); 1029 else 1030 ++NumSimple; 1031 1032 // Rewrite virtual registers, possibly extending ranges. 1033 rewriteAssigned(Skipped); 1034 1035 // Delete defs that were rematted everywhere. 1036 if (Skipped) 1037 deleteRematVictims(); 1038 1039 // Get rid of unused values and set phi-kill flags. 1040 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1041 (*I)->RenumberValues(LIS); 1042 1043 // Provide a reverse mapping from original indices to Edit ranges. 1044 if (LRMap) { 1045 LRMap->clear(); 1046 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1047 LRMap->push_back(i); 1048 } 1049 1050 // Now check if any registers were separated into multiple components. 1051 ConnectedVNInfoEqClasses ConEQ(LIS); 1052 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1053 // Don't use iterators, they are invalidated by create() below. 1054 LiveInterval *li = Edit->get(i); 1055 unsigned NumComp = ConEQ.Classify(li); 1056 if (NumComp <= 1) 1057 continue; 1058 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1059 SmallVector<LiveInterval*, 8> dups; 1060 dups.push_back(li); 1061 for (unsigned j = 1; j != NumComp; ++j) 1062 dups.push_back(&Edit->create(LIS, VRM)); 1063 ConEQ.Distribute(&dups[0], MRI); 1064 // The new intervals all map back to i. 1065 if (LRMap) 1066 LRMap->resize(Edit->size(), i); 1067 } 1068 1069 // Calculate spill weight and allocation hints for new intervals. 1070 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1071 1072 assert(!LRMap || LRMap->size() == Edit->size()); 1073} 1074 1075 1076//===----------------------------------------------------------------------===// 1077// Single Block Splitting 1078//===----------------------------------------------------------------------===// 1079 1080/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1081/// may be an advantage to split CurLI for the duration of the block. 1082bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1083 // If CurLI is local to one block, there is no point to splitting it. 1084 if (UseBlocks.size() <= 1) 1085 return false; 1086 // Add blocks with multiple uses. 1087 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) { 1088 const BlockInfo &BI = UseBlocks[i]; 1089 if (BI.FirstUse == BI.LastUse) 1090 continue; 1091 Blocks.insert(BI.MBB); 1092 } 1093 return !Blocks.empty(); 1094} 1095 1096void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1097 openIntv(); 1098 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1099 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 1100 LastSplitPoint)); 1101 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 1102 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 1103 } else { 1104 // The last use is after the last valid split point. 1105 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1106 useIntv(SegStart, SegStop); 1107 overlapIntv(SegStop, BI.LastUse); 1108 } 1109} 1110 1111/// splitSingleBlocks - Split CurLI into a separate live interval inside each 1112/// basic block in Blocks. 1113void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1114 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1115 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks(); 1116 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1117 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1118 if (Blocks.count(BI.MBB)) 1119 splitSingleBlock(BI); 1120 } 1121 finish(); 1122} 1123 1124 1125//===----------------------------------------------------------------------===// 1126// Global Live Range Splitting Support 1127//===----------------------------------------------------------------------===// 1128 1129// These methods support a method of global live range splitting that uses a 1130// global algorithm to decide intervals for CFG edges. They will insert split 1131// points and color intervals in basic blocks while avoiding interference. 1132// 1133// Note that splitSingleBlock is also useful for blocks where both CFG edges 1134// are on the stack. 1135 1136void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1137 unsigned IntvIn, SlotIndex LeaveBefore, 1138 unsigned IntvOut, SlotIndex EnterAfter){ 1139 SlotIndex Start, Stop; 1140 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1141 1142 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1143 << ") intf " << LeaveBefore << '-' << EnterAfter 1144 << ", live-through " << IntvIn << " -> " << IntvOut); 1145 1146 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1147 1148 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1149 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1150 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1151 1152 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1153 1154 if (!IntvOut) { 1155 DEBUG(dbgs() << ", spill on entry.\n"); 1156 // 1157 // <<<<<<<<< Possible LeaveBefore interference. 1158 // |-----------| Live through. 1159 // -____________ Spill on entry. 1160 // 1161 selectIntv(IntvIn); 1162 SlotIndex Idx = leaveIntvAtTop(*MBB); 1163 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1164 (void)Idx; 1165 return; 1166 } 1167 1168 if (!IntvIn) { 1169 DEBUG(dbgs() << ", reload on exit.\n"); 1170 // 1171 // >>>>>>> Possible EnterAfter interference. 1172 // |-----------| Live through. 1173 // ___________-- Reload on exit. 1174 // 1175 selectIntv(IntvOut); 1176 SlotIndex Idx = enterIntvAtEnd(*MBB); 1177 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1178 (void)Idx; 1179 return; 1180 } 1181 1182 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1183 DEBUG(dbgs() << ", straight through.\n"); 1184 // 1185 // |-----------| Live through. 1186 // ------------- Straight through, same intv, no interference. 1187 // 1188 selectIntv(IntvOut); 1189 useIntv(Start, Stop); 1190 return; 1191 } 1192 1193 // We cannot legally insert splits after LSP. 1194 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1195 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1196 1197 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1198 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1199 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1200 // 1201 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1202 // |-----------| Live through. 1203 // ------======= Switch intervals between interference. 1204 // 1205 selectIntv(IntvOut); 1206 SlotIndex Idx; 1207 if (LeaveBefore && LeaveBefore < LSP) { 1208 Idx = enterIntvBefore(LeaveBefore); 1209 useIntv(Idx, Stop); 1210 } else { 1211 Idx = enterIntvAtEnd(*MBB); 1212 } 1213 selectIntv(IntvIn); 1214 useIntv(Start, Idx); 1215 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1216 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1217 return; 1218 } 1219 1220 DEBUG(dbgs() << ", create local intv for interference.\n"); 1221 // 1222 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1223 // |-----------| Live through. 1224 // ==---------== Switch intervals before/after interference. 1225 // 1226 assert(LeaveBefore <= EnterAfter && "Missed case"); 1227 1228 selectIntv(IntvOut); 1229 SlotIndex Idx = enterIntvAfter(EnterAfter); 1230 useIntv(Idx, Stop); 1231 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1232 1233 selectIntv(IntvIn); 1234 Idx = leaveIntvBefore(LeaveBefore); 1235 useIntv(Start, Idx); 1236 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1237} 1238 1239 1240void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1241 unsigned IntvIn, SlotIndex LeaveBefore) { 1242 SlotIndex Start, Stop; 1243 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1244 1245 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1246 << "), uses " << BI.FirstUse << '-' << BI.LastUse 1247 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1248 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1249 1250 assert(IntvIn && "Must have register in"); 1251 assert(BI.LiveIn && "Must be live-in"); 1252 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1253 1254 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastUse)) { 1255 DEBUG(dbgs() << " before interference.\n"); 1256 // 1257 // <<< Interference after kill. 1258 // |---o---x | Killed in block. 1259 // ========= Use IntvIn everywhere. 1260 // 1261 selectIntv(IntvIn); 1262 useIntv(Start, BI.LastUse); 1263 return; 1264 } 1265 1266 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1267 1268 if (!LeaveBefore || LeaveBefore > BI.LastUse.getBoundaryIndex()) { 1269 // 1270 // <<< Possible interference after last use. 1271 // |---o---o---| Live-out on stack. 1272 // =========____ Leave IntvIn after last use. 1273 // 1274 // < Interference after last use. 1275 // |---o---o--o| Live-out on stack, late last use. 1276 // ============ Copy to stack after LSP, overlap IntvIn. 1277 // \_____ Stack interval is live-out. 1278 // 1279 if (BI.LastUse < LSP) { 1280 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1281 selectIntv(IntvIn); 1282 SlotIndex Idx = leaveIntvAfter(BI.LastUse); 1283 useIntv(Start, Idx); 1284 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1285 } else { 1286 DEBUG(dbgs() << ", spill before last split point.\n"); 1287 selectIntv(IntvIn); 1288 SlotIndex Idx = leaveIntvBefore(LSP); 1289 overlapIntv(Idx, BI.LastUse); 1290 useIntv(Start, Idx); 1291 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1292 } 1293 return; 1294 } 1295 1296 // The interference is overlapping somewhere we wanted to use IntvIn. That 1297 // means we need to create a local interval that can be allocated a 1298 // different register. 1299 unsigned LocalIntv = openIntv(); 1300 (void)LocalIntv; 1301 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1302 1303 if (!BI.LiveOut || BI.LastUse < LSP) { 1304 // 1305 // <<<<<<< Interference overlapping uses. 1306 // |---o---o---| Live-out on stack. 1307 // =====----____ Leave IntvIn before interference, then spill. 1308 // 1309 SlotIndex To = leaveIntvAfter(BI.LastUse); 1310 SlotIndex From = enterIntvBefore(LeaveBefore); 1311 useIntv(From, To); 1312 selectIntv(IntvIn); 1313 useIntv(Start, From); 1314 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1315 return; 1316 } 1317 1318 // <<<<<<< Interference overlapping uses. 1319 // |---o---o--o| Live-out on stack, late last use. 1320 // =====------- Copy to stack before LSP, overlap LocalIntv. 1321 // \_____ Stack interval is live-out. 1322 // 1323 SlotIndex To = leaveIntvBefore(LSP); 1324 overlapIntv(To, BI.LastUse); 1325 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1326 useIntv(From, To); 1327 selectIntv(IntvIn); 1328 useIntv(Start, From); 1329 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1330} 1331 1332void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1333 unsigned IntvOut, SlotIndex EnterAfter) { 1334 SlotIndex Start, Stop; 1335 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1336 1337 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1338 << "), uses " << BI.FirstUse << '-' << BI.LastUse 1339 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1340 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1341 1342 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1343 1344 assert(IntvOut && "Must have register out"); 1345 assert(BI.LiveOut && "Must be live-out"); 1346 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1347 1348 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstUse)) { 1349 DEBUG(dbgs() << " after interference.\n"); 1350 // 1351 // >>>> Interference before def. 1352 // | o---o---| Defined in block. 1353 // ========= Use IntvOut everywhere. 1354 // 1355 selectIntv(IntvOut); 1356 useIntv(BI.FirstUse, Stop); 1357 return; 1358 } 1359 1360 if (!EnterAfter || EnterAfter < BI.FirstUse.getBaseIndex()) { 1361 DEBUG(dbgs() << ", reload after interference.\n"); 1362 // 1363 // >>>> Interference before def. 1364 // |---o---o---| Live-through, stack-in. 1365 // ____========= Enter IntvOut before first use. 1366 // 1367 selectIntv(IntvOut); 1368 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstUse)); 1369 useIntv(Idx, Stop); 1370 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1371 return; 1372 } 1373 1374 // The interference is overlapping somewhere we wanted to use IntvOut. That 1375 // means we need to create a local interval that can be allocated a 1376 // different register. 1377 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1378 // 1379 // >>>>>>> Interference overlapping uses. 1380 // |---o---o---| Live-through, stack-in. 1381 // ____---====== Create local interval for interference range. 1382 // 1383 selectIntv(IntvOut); 1384 SlotIndex Idx = enterIntvAfter(EnterAfter); 1385 useIntv(Idx, Stop); 1386 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1387 1388 openIntv(); 1389 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstUse)); 1390 useIntv(From, Idx); 1391} 1392