SplitKit.cpp revision e5a2e366322ef5f0d597b1fb8dbf55f2cf36cf15
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the SplitAnalysis class as well as mutator functions for 11// live range splitting. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "regalloc" 16#include "SplitKit.h" 17#include "LiveRangeEdit.h" 18#include "VirtRegMap.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/CodeGen/LiveIntervalAnalysis.h" 21#include "llvm/CodeGen/MachineDominators.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/raw_ostream.h" 26#include "llvm/Target/TargetInstrInfo.h" 27#include "llvm/Target/TargetMachine.h" 28 29using namespace llvm; 30 31STATISTIC(NumFinished, "Number of splits finished"); 32STATISTIC(NumSimple, "Number of splits that were simple"); 33STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37//===----------------------------------------------------------------------===// 38// Split Analysis 39//===----------------------------------------------------------------------===// 40 41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58} 59 60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95} 96 97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144} 145 146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147/// where CurLI is live. 148bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstInstr = *UseI; 182 assert(BI.FirstInstr >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastInstr = UseI[-1]; 186 assert(BI.LastInstr < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // When not live in, the first use should be a def. 192 if (!BI.LiveIn) { 193 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 194 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 195 BI.FirstDef = BI.FirstInstr; 196 } 197 198 // Look for gaps in the live range. 199 BI.LiveOut = true; 200 while (LVI->end < Stop) { 201 SlotIndex LastStop = LVI->end; 202 if (++LVI == LVE || LVI->start >= Stop) { 203 BI.LiveOut = false; 204 BI.LastInstr = LastStop; 205 break; 206 } 207 208 if (LastStop < LVI->start) { 209 // There is a gap in the live range. Create duplicate entries for the 210 // live-in snippet and the live-out snippet. 211 ++NumGapBlocks; 212 213 // Push the Live-in part. 214 BI.LiveOut = false; 215 UseBlocks.push_back(BI); 216 UseBlocks.back().LastInstr = LastStop; 217 218 // Set up BI for the live-out part. 219 BI.LiveIn = false; 220 BI.LiveOut = true; 221 BI.FirstInstr = BI.FirstDef = LVI->start; 222 } 223 224 // A LiveRange that starts in the middle of the block must be a def. 225 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 226 if (!BI.FirstDef) 227 BI.FirstDef = LVI->start; 228 } 229 230 UseBlocks.push_back(BI); 231 232 // LVI is now at LVE or LVI->end >= Stop. 233 if (LVI == LVE) 234 break; 235 } 236 237 // Live segment ends exactly at Stop. Move to the next segment. 238 if (LVI->end == Stop && ++LVI == LVE) 239 break; 240 241 // Pick the next basic block. 242 if (LVI->start < Stop) 243 ++MFI; 244 else 245 MFI = LIS.getMBBFromIndex(LVI->start); 246 } 247 248 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 249 return true; 250} 251 252unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 253 if (cli->empty()) 254 return 0; 255 LiveInterval *li = const_cast<LiveInterval*>(cli); 256 LiveInterval::iterator LVI = li->begin(); 257 LiveInterval::iterator LVE = li->end(); 258 unsigned Count = 0; 259 260 // Loop over basic blocks where li is live. 261 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 262 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 263 for (;;) { 264 ++Count; 265 LVI = li->advanceTo(LVI, Stop); 266 if (LVI == LVE) 267 return Count; 268 do { 269 ++MFI; 270 Stop = LIS.getMBBEndIdx(MFI); 271 } while (Stop <= LVI->start); 272 } 273} 274 275bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 276 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 277 const LiveInterval &Orig = LIS.getInterval(OrigReg); 278 assert(!Orig.empty() && "Splitting empty interval?"); 279 LiveInterval::const_iterator I = Orig.find(Idx); 280 281 // Range containing Idx should begin at Idx. 282 if (I != Orig.end() && I->start <= Idx) 283 return I->start == Idx; 284 285 // Range does not contain Idx, previous must end at Idx. 286 return I != Orig.begin() && (--I)->end == Idx; 287} 288 289void SplitAnalysis::analyze(const LiveInterval *li) { 290 clear(); 291 CurLI = li; 292 analyzeUses(); 293} 294 295 296//===----------------------------------------------------------------------===// 297// Split Editor 298//===----------------------------------------------------------------------===// 299 300/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 301SplitEditor::SplitEditor(SplitAnalysis &sa, 302 LiveIntervals &lis, 303 VirtRegMap &vrm, 304 MachineDominatorTree &mdt) 305 : SA(sa), LIS(lis), VRM(vrm), 306 MRI(vrm.getMachineFunction().getRegInfo()), 307 MDT(mdt), 308 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 309 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 310 Edit(0), 311 OpenIdx(0), 312 SpillMode(SM_Partition), 313 RegAssign(Allocator) 314{} 315 316void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 317 Edit = &LRE; 318 SpillMode = SM; 319 OpenIdx = 0; 320 OverlappedComplement.clear(); 321 RegAssign.clear(); 322 Values.clear(); 323 324 // Reset the LiveRangeCalc instances needed for this spill mode. 325 LRCalc[0].reset(&VRM.getMachineFunction()); 326 if (SpillMode) 327 LRCalc[1].reset(&VRM.getMachineFunction()); 328 329 // We don't need an AliasAnalysis since we will only be performing 330 // cheap-as-a-copy remats anyway. 331 Edit->anyRematerializable(LIS, TII, 0); 332} 333 334void SplitEditor::dump() const { 335 if (RegAssign.empty()) { 336 dbgs() << " empty\n"; 337 return; 338 } 339 340 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 341 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 342 dbgs() << '\n'; 343} 344 345VNInfo *SplitEditor::defValue(unsigned RegIdx, 346 const VNInfo *ParentVNI, 347 SlotIndex Idx) { 348 assert(ParentVNI && "Mapping NULL value"); 349 assert(Idx.isValid() && "Invalid SlotIndex"); 350 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 351 LiveInterval *LI = Edit->get(RegIdx); 352 353 // Create a new value. 354 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 355 356 // Use insert for lookup, so we can add missing values with a second lookup. 357 std::pair<ValueMap::iterator, bool> InsP = 358 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 359 360 // This was the first time (RegIdx, ParentVNI) was mapped. 361 // Keep it as a simple def without any liveness. 362 if (InsP.second) 363 return VNI; 364 365 // If the previous value was a simple mapping, add liveness for it now. 366 if (VNInfo *OldVNI = InsP.first->second) { 367 SlotIndex Def = OldVNI->def; 368 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 369 // No longer a simple mapping. 370 InsP.first->second = 0; 371 } 372 373 // This is a complex mapping, add liveness for VNI 374 SlotIndex Def = VNI->def; 375 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 376 377 return VNI; 378} 379 380void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 381 assert(ParentVNI && "Mapping NULL value"); 382 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 383 384 // ParentVNI was either unmapped or already complex mapped. Either way. 385 if (!VNI) 386 return; 387 388 // This was previously a single mapping. Make sure the old def is represented 389 // by a trivial live range. 390 SlotIndex Def = VNI->def; 391 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 392 VNI = 0; 393} 394 395void SplitEditor::markOverlappedComplement(const VNInfo *ParentVNI) { 396 if (OverlappedComplement.insert(ParentVNI)) 397 markComplexMapped(0, ParentVNI); 398} 399 400bool SplitEditor::needsRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 401 return (RegIdx == 0 && OverlappedComplement.count(ParentVNI)) || 402 Edit->didRematerialize(ParentVNI); 403} 404 405VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 406 VNInfo *ParentVNI, 407 SlotIndex UseIdx, 408 MachineBasicBlock &MBB, 409 MachineBasicBlock::iterator I) { 410 MachineInstr *CopyMI = 0; 411 SlotIndex Def; 412 LiveInterval *LI = Edit->get(RegIdx); 413 414 // We may be trying to avoid interference that ends at a deleted instruction, 415 // so always begin RegIdx 0 early and all others late. 416 bool Late = RegIdx != 0; 417 418 // Attempt cheap-as-a-copy rematerialization. 419 LiveRangeEdit::Remat RM(ParentVNI); 420 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 421 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 422 ++NumRemats; 423 } else { 424 // Can't remat, just insert a copy from parent. 425 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 426 .addReg(Edit->getReg()); 427 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 428 .getDefIndex(); 429 ++NumCopies; 430 } 431 432 // Define the value in Reg. 433 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 434 VNI->setCopy(CopyMI); 435 return VNI; 436} 437 438/// Create a new virtual register and live interval. 439unsigned SplitEditor::openIntv() { 440 // Create the complement as index 0. 441 if (Edit->empty()) 442 Edit->create(LIS, VRM); 443 444 // Create the open interval. 445 OpenIdx = Edit->size(); 446 Edit->create(LIS, VRM); 447 return OpenIdx; 448} 449 450void SplitEditor::selectIntv(unsigned Idx) { 451 assert(Idx != 0 && "Cannot select the complement interval"); 452 assert(Idx < Edit->size() && "Can only select previously opened interval"); 453 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 454 OpenIdx = Idx; 455} 456 457SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 458 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 459 DEBUG(dbgs() << " enterIntvBefore " << Idx); 460 Idx = Idx.getBaseIndex(); 461 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 462 if (!ParentVNI) { 463 DEBUG(dbgs() << ": not live\n"); 464 return Idx; 465 } 466 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 467 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 468 assert(MI && "enterIntvBefore called with invalid index"); 469 470 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 471 return VNI->def; 472} 473 474SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 475 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 476 DEBUG(dbgs() << " enterIntvAfter " << Idx); 477 Idx = Idx.getBoundaryIndex(); 478 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 479 if (!ParentVNI) { 480 DEBUG(dbgs() << ": not live\n"); 481 return Idx; 482 } 483 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 484 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 485 assert(MI && "enterIntvAfter called with invalid index"); 486 487 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 488 llvm::next(MachineBasicBlock::iterator(MI))); 489 return VNI->def; 490} 491 492SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 493 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 494 SlotIndex End = LIS.getMBBEndIdx(&MBB); 495 SlotIndex Last = End.getPrevSlot(); 496 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 497 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 498 if (!ParentVNI) { 499 DEBUG(dbgs() << ": not live\n"); 500 return End; 501 } 502 DEBUG(dbgs() << ": valno " << ParentVNI->id); 503 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 504 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 505 RegAssign.insert(VNI->def, End, OpenIdx); 506 DEBUG(dump()); 507 return VNI->def; 508} 509 510/// useIntv - indicate that all instructions in MBB should use OpenLI. 511void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 512 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 513} 514 515void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 516 assert(OpenIdx && "openIntv not called before useIntv"); 517 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 518 RegAssign.insert(Start, End, OpenIdx); 519 DEBUG(dump()); 520} 521 522SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 523 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 524 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 525 526 // The interval must be live beyond the instruction at Idx. 527 Idx = Idx.getBoundaryIndex(); 528 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 529 if (!ParentVNI) { 530 DEBUG(dbgs() << ": not live\n"); 531 return Idx.getNextSlot(); 532 } 533 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 534 535 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 536 assert(MI && "No instruction at index"); 537 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 538 llvm::next(MachineBasicBlock::iterator(MI))); 539 return VNI->def; 540} 541 542SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 543 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 544 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 545 546 // The interval must be live into the instruction at Idx. 547 Idx = Idx.getBaseIndex(); 548 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 549 if (!ParentVNI) { 550 DEBUG(dbgs() << ": not live\n"); 551 return Idx.getNextSlot(); 552 } 553 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 554 555 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 556 assert(MI && "No instruction at index"); 557 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 558 return VNI->def; 559} 560 561SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 562 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 563 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 564 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 565 566 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 567 if (!ParentVNI) { 568 DEBUG(dbgs() << ": not live\n"); 569 return Start; 570 } 571 572 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 573 MBB.SkipPHIsAndLabels(MBB.begin())); 574 RegAssign.insert(Start, VNI->def, OpenIdx); 575 DEBUG(dump()); 576 return VNI->def; 577} 578 579void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 580 assert(OpenIdx && "openIntv not called before overlapIntv"); 581 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 582 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 583 "Parent changes value in extended range"); 584 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 585 "Range cannot span basic blocks"); 586 587 // The complement interval will be extended as needed by LRCalc.extend(). 588 if (ParentVNI) 589 markOverlappedComplement(ParentVNI); 590 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 591 RegAssign.insert(Start, End, OpenIdx); 592 DEBUG(dump()); 593} 594 595/// transferValues - Transfer all possible values to the new live ranges. 596/// Values that were rematerialized are left alone, they need LRCalc.extend(). 597bool SplitEditor::transferValues() { 598 bool Skipped = false; 599 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 600 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 601 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 602 DEBUG(dbgs() << " blit " << *ParentI << ':'); 603 VNInfo *ParentVNI = ParentI->valno; 604 // RegAssign has holes where RegIdx 0 should be used. 605 SlotIndex Start = ParentI->start; 606 AssignI.advanceTo(Start); 607 do { 608 unsigned RegIdx; 609 SlotIndex End = ParentI->end; 610 if (!AssignI.valid()) { 611 RegIdx = 0; 612 } else if (AssignI.start() <= Start) { 613 RegIdx = AssignI.value(); 614 if (AssignI.stop() < End) { 615 End = AssignI.stop(); 616 ++AssignI; 617 } 618 } else { 619 RegIdx = 0; 620 End = std::min(End, AssignI.start()); 621 } 622 623 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 624 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 625 LiveInterval *LI = Edit->get(RegIdx); 626 627 // Check for a simply defined value that can be blitted directly. 628 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 629 DEBUG(dbgs() << ':' << VNI->id); 630 LI->addRange(LiveRange(Start, End, VNI)); 631 Start = End; 632 continue; 633 } 634 635 // Skip rematerialized values, we need to use LRCalc.extend() and 636 // extendPHIKillRanges() to completely recompute the live ranges. 637 if (needsRecompute(RegIdx, ParentVNI)) { 638 DEBUG(dbgs() << "(remat)"); 639 Skipped = true; 640 Start = End; 641 continue; 642 } 643 644 LiveRangeCalc &LRC = getLRCalc(RegIdx); 645 646 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 647 // so the live range is accurate. Add live-in blocks in [Start;End) to the 648 // LiveInBlocks. 649 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 650 SlotIndex BlockStart, BlockEnd; 651 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 652 653 // The first block may be live-in, or it may have its own def. 654 if (Start != BlockStart) { 655 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 656 assert(VNI && "Missing def for complex mapped value"); 657 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 658 // MBB has its own def. Is it also live-out? 659 if (BlockEnd <= End) 660 LRC.setLiveOutValue(MBB, VNI); 661 662 // Skip to the next block for live-in. 663 ++MBB; 664 BlockStart = BlockEnd; 665 } 666 667 // Handle the live-in blocks covered by [Start;End). 668 assert(Start <= BlockStart && "Expected live-in block"); 669 while (BlockStart < End) { 670 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 671 BlockEnd = LIS.getMBBEndIdx(MBB); 672 if (BlockStart == ParentVNI->def) { 673 // This block has the def of a parent PHI, so it isn't live-in. 674 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 675 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 676 assert(VNI && "Missing def for complex mapped parent PHI"); 677 if (End >= BlockEnd) 678 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 679 } else { 680 // This block needs a live-in value. The last block covered may not 681 // be live-out. 682 if (End < BlockEnd) 683 LRC.addLiveInBlock(LI, MDT[MBB], End); 684 else { 685 // Live-through, and we don't know the value. 686 LRC.addLiveInBlock(LI, MDT[MBB]); 687 LRC.setLiveOutValue(MBB, 0); 688 } 689 } 690 BlockStart = BlockEnd; 691 ++MBB; 692 } 693 Start = End; 694 } while (Start != ParentI->end); 695 DEBUG(dbgs() << '\n'); 696 } 697 698 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 699 &LIS.getVNInfoAllocator()); 700 if (SpillMode) 701 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 702 &LIS.getVNInfoAllocator()); 703 704 return Skipped; 705} 706 707void SplitEditor::extendPHIKillRanges() { 708 // Extend live ranges to be live-out for successor PHI values. 709 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 710 E = Edit->getParent().vni_end(); I != E; ++I) { 711 const VNInfo *PHIVNI = *I; 712 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 713 continue; 714 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 715 LiveInterval *LI = Edit->get(RegIdx); 716 LiveRangeCalc &LRC = getLRCalc(RegIdx); 717 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 718 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 719 PE = MBB->pred_end(); PI != PE; ++PI) { 720 SlotIndex End = LIS.getMBBEndIdx(*PI); 721 SlotIndex LastUse = End.getPrevSlot(); 722 // The predecessor may not have a live-out value. That is OK, like an 723 // undef PHI operand. 724 if (Edit->getParent().liveAt(LastUse)) { 725 assert(RegAssign.lookup(LastUse) == RegIdx && 726 "Different register assignment in phi predecessor"); 727 LRC.extend(LI, End, 728 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 729 } 730 } 731 } 732} 733 734/// rewriteAssigned - Rewrite all uses of Edit->getReg(). 735void SplitEditor::rewriteAssigned(bool ExtendRanges) { 736 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 737 RE = MRI.reg_end(); RI != RE;) { 738 MachineOperand &MO = RI.getOperand(); 739 MachineInstr *MI = MO.getParent(); 740 ++RI; 741 // LiveDebugVariables should have handled all DBG_VALUE instructions. 742 if (MI->isDebugValue()) { 743 DEBUG(dbgs() << "Zapping " << *MI); 744 MO.setReg(0); 745 continue; 746 } 747 748 // <undef> operands don't really read the register, so it doesn't matter 749 // which register we choose. When the use operand is tied to a def, we must 750 // use the same register as the def, so just do that always. 751 SlotIndex Idx = LIS.getInstructionIndex(MI); 752 if (MO.isDef() || MO.isUndef()) 753 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 754 755 // Rewrite to the mapped register at Idx. 756 unsigned RegIdx = RegAssign.lookup(Idx); 757 LiveInterval *LI = Edit->get(RegIdx); 758 MO.setReg(LI->reg); 759 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 760 << Idx << ':' << RegIdx << '\t' << *MI); 761 762 // Extend liveness to Idx if the instruction reads reg. 763 if (!ExtendRanges || MO.isUndef()) 764 continue; 765 766 // Skip instructions that don't read Reg. 767 if (MO.isDef()) { 768 if (!MO.getSubReg() && !MO.isEarlyClobber()) 769 continue; 770 // We may wan't to extend a live range for a partial redef, or for a use 771 // tied to an early clobber. 772 Idx = Idx.getPrevSlot(); 773 if (!Edit->getParent().liveAt(Idx)) 774 continue; 775 } else 776 Idx = Idx.getUseIndex(); 777 778 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 779 &MDT, &LIS.getVNInfoAllocator()); 780 } 781} 782 783void SplitEditor::deleteRematVictims() { 784 SmallVector<MachineInstr*, 8> Dead; 785 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 786 LiveInterval *LI = *I; 787 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 788 LII != LIE; ++LII) { 789 // Dead defs end at the store slot. 790 if (LII->end != LII->valno->def.getNextSlot()) 791 continue; 792 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 793 assert(MI && "Missing instruction for dead def"); 794 MI->addRegisterDead(LI->reg, &TRI); 795 796 if (!MI->allDefsAreDead()) 797 continue; 798 799 DEBUG(dbgs() << "All defs dead: " << *MI); 800 Dead.push_back(MI); 801 } 802 } 803 804 if (Dead.empty()) 805 return; 806 807 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 808} 809 810void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 811 ++NumFinished; 812 813 // At this point, the live intervals in Edit contain VNInfos corresponding to 814 // the inserted copies. 815 816 // Add the original defs from the parent interval. 817 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 818 E = Edit->getParent().vni_end(); I != E; ++I) { 819 const VNInfo *ParentVNI = *I; 820 if (ParentVNI->isUnused()) 821 continue; 822 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 823 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 824 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 825 VNI->setCopy(ParentVNI->getCopy()); 826 827 // Mark rematted values as complex everywhere to force liveness computation. 828 // The new live ranges may be truncated. 829 if (Edit->didRematerialize(ParentVNI)) 830 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 831 markComplexMapped(i, ParentVNI); 832 } 833 834 // Transfer the simply mapped values, check if any are skipped. 835 bool Skipped = transferValues(); 836 if (Skipped) 837 extendPHIKillRanges(); 838 else 839 ++NumSimple; 840 841 // Rewrite virtual registers, possibly extending ranges. 842 rewriteAssigned(Skipped); 843 844 // Delete defs that were rematted everywhere. 845 if (Skipped) 846 deleteRematVictims(); 847 848 // Get rid of unused values and set phi-kill flags. 849 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 850 (*I)->RenumberValues(LIS); 851 852 // Provide a reverse mapping from original indices to Edit ranges. 853 if (LRMap) { 854 LRMap->clear(); 855 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 856 LRMap->push_back(i); 857 } 858 859 // Now check if any registers were separated into multiple components. 860 ConnectedVNInfoEqClasses ConEQ(LIS); 861 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 862 // Don't use iterators, they are invalidated by create() below. 863 LiveInterval *li = Edit->get(i); 864 unsigned NumComp = ConEQ.Classify(li); 865 if (NumComp <= 1) 866 continue; 867 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 868 SmallVector<LiveInterval*, 8> dups; 869 dups.push_back(li); 870 for (unsigned j = 1; j != NumComp; ++j) 871 dups.push_back(&Edit->create(LIS, VRM)); 872 ConEQ.Distribute(&dups[0], MRI); 873 // The new intervals all map back to i. 874 if (LRMap) 875 LRMap->resize(Edit->size(), i); 876 } 877 878 // Calculate spill weight and allocation hints for new intervals. 879 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 880 881 assert(!LRMap || LRMap->size() == Edit->size()); 882} 883 884 885//===----------------------------------------------------------------------===// 886// Single Block Splitting 887//===----------------------------------------------------------------------===// 888 889bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 890 bool SingleInstrs) const { 891 // Always split for multiple instructions. 892 if (!BI.isOneInstr()) 893 return true; 894 // Don't split for single instructions unless explicitly requested. 895 if (!SingleInstrs) 896 return false; 897 // Splitting a live-through range always makes progress. 898 if (BI.LiveIn && BI.LiveOut) 899 return true; 900 // No point in isolating a copy. It has no register class constraints. 901 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 902 return false; 903 // Finally, don't isolate an end point that was created by earlier splits. 904 return isOriginalEndpoint(BI.FirstInstr); 905} 906 907void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 908 openIntv(); 909 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 910 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 911 LastSplitPoint)); 912 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 913 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 914 } else { 915 // The last use is after the last valid split point. 916 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 917 useIntv(SegStart, SegStop); 918 overlapIntv(SegStop, BI.LastInstr); 919 } 920} 921 922 923//===----------------------------------------------------------------------===// 924// Global Live Range Splitting Support 925//===----------------------------------------------------------------------===// 926 927// These methods support a method of global live range splitting that uses a 928// global algorithm to decide intervals for CFG edges. They will insert split 929// points and color intervals in basic blocks while avoiding interference. 930// 931// Note that splitSingleBlock is also useful for blocks where both CFG edges 932// are on the stack. 933 934void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 935 unsigned IntvIn, SlotIndex LeaveBefore, 936 unsigned IntvOut, SlotIndex EnterAfter){ 937 SlotIndex Start, Stop; 938 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 939 940 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 941 << ") intf " << LeaveBefore << '-' << EnterAfter 942 << ", live-through " << IntvIn << " -> " << IntvOut); 943 944 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 945 946 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 947 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 948 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 949 950 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 951 952 if (!IntvOut) { 953 DEBUG(dbgs() << ", spill on entry.\n"); 954 // 955 // <<<<<<<<< Possible LeaveBefore interference. 956 // |-----------| Live through. 957 // -____________ Spill on entry. 958 // 959 selectIntv(IntvIn); 960 SlotIndex Idx = leaveIntvAtTop(*MBB); 961 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 962 (void)Idx; 963 return; 964 } 965 966 if (!IntvIn) { 967 DEBUG(dbgs() << ", reload on exit.\n"); 968 // 969 // >>>>>>> Possible EnterAfter interference. 970 // |-----------| Live through. 971 // ___________-- Reload on exit. 972 // 973 selectIntv(IntvOut); 974 SlotIndex Idx = enterIntvAtEnd(*MBB); 975 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 976 (void)Idx; 977 return; 978 } 979 980 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 981 DEBUG(dbgs() << ", straight through.\n"); 982 // 983 // |-----------| Live through. 984 // ------------- Straight through, same intv, no interference. 985 // 986 selectIntv(IntvOut); 987 useIntv(Start, Stop); 988 return; 989 } 990 991 // We cannot legally insert splits after LSP. 992 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 993 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 994 995 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 996 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 997 DEBUG(dbgs() << ", switch avoiding interference.\n"); 998 // 999 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1000 // |-----------| Live through. 1001 // ------======= Switch intervals between interference. 1002 // 1003 selectIntv(IntvOut); 1004 SlotIndex Idx; 1005 if (LeaveBefore && LeaveBefore < LSP) { 1006 Idx = enterIntvBefore(LeaveBefore); 1007 useIntv(Idx, Stop); 1008 } else { 1009 Idx = enterIntvAtEnd(*MBB); 1010 } 1011 selectIntv(IntvIn); 1012 useIntv(Start, Idx); 1013 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1014 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1015 return; 1016 } 1017 1018 DEBUG(dbgs() << ", create local intv for interference.\n"); 1019 // 1020 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1021 // |-----------| Live through. 1022 // ==---------== Switch intervals before/after interference. 1023 // 1024 assert(LeaveBefore <= EnterAfter && "Missed case"); 1025 1026 selectIntv(IntvOut); 1027 SlotIndex Idx = enterIntvAfter(EnterAfter); 1028 useIntv(Idx, Stop); 1029 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1030 1031 selectIntv(IntvIn); 1032 Idx = leaveIntvBefore(LeaveBefore); 1033 useIntv(Start, Idx); 1034 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1035} 1036 1037 1038void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1039 unsigned IntvIn, SlotIndex LeaveBefore) { 1040 SlotIndex Start, Stop; 1041 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1042 1043 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1044 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1045 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1046 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1047 1048 assert(IntvIn && "Must have register in"); 1049 assert(BI.LiveIn && "Must be live-in"); 1050 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1051 1052 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1053 DEBUG(dbgs() << " before interference.\n"); 1054 // 1055 // <<< Interference after kill. 1056 // |---o---x | Killed in block. 1057 // ========= Use IntvIn everywhere. 1058 // 1059 selectIntv(IntvIn); 1060 useIntv(Start, BI.LastInstr); 1061 return; 1062 } 1063 1064 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1065 1066 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1067 // 1068 // <<< Possible interference after last use. 1069 // |---o---o---| Live-out on stack. 1070 // =========____ Leave IntvIn after last use. 1071 // 1072 // < Interference after last use. 1073 // |---o---o--o| Live-out on stack, late last use. 1074 // ============ Copy to stack after LSP, overlap IntvIn. 1075 // \_____ Stack interval is live-out. 1076 // 1077 if (BI.LastInstr < LSP) { 1078 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1079 selectIntv(IntvIn); 1080 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1081 useIntv(Start, Idx); 1082 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1083 } else { 1084 DEBUG(dbgs() << ", spill before last split point.\n"); 1085 selectIntv(IntvIn); 1086 SlotIndex Idx = leaveIntvBefore(LSP); 1087 overlapIntv(Idx, BI.LastInstr); 1088 useIntv(Start, Idx); 1089 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1090 } 1091 return; 1092 } 1093 1094 // The interference is overlapping somewhere we wanted to use IntvIn. That 1095 // means we need to create a local interval that can be allocated a 1096 // different register. 1097 unsigned LocalIntv = openIntv(); 1098 (void)LocalIntv; 1099 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1100 1101 if (!BI.LiveOut || BI.LastInstr < LSP) { 1102 // 1103 // <<<<<<< Interference overlapping uses. 1104 // |---o---o---| Live-out on stack. 1105 // =====----____ Leave IntvIn before interference, then spill. 1106 // 1107 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1108 SlotIndex From = enterIntvBefore(LeaveBefore); 1109 useIntv(From, To); 1110 selectIntv(IntvIn); 1111 useIntv(Start, From); 1112 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1113 return; 1114 } 1115 1116 // <<<<<<< Interference overlapping uses. 1117 // |---o---o--o| Live-out on stack, late last use. 1118 // =====------- Copy to stack before LSP, overlap LocalIntv. 1119 // \_____ Stack interval is live-out. 1120 // 1121 SlotIndex To = leaveIntvBefore(LSP); 1122 overlapIntv(To, BI.LastInstr); 1123 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1124 useIntv(From, To); 1125 selectIntv(IntvIn); 1126 useIntv(Start, From); 1127 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1128} 1129 1130void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1131 unsigned IntvOut, SlotIndex EnterAfter) { 1132 SlotIndex Start, Stop; 1133 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1134 1135 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1136 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1137 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1138 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1139 1140 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1141 1142 assert(IntvOut && "Must have register out"); 1143 assert(BI.LiveOut && "Must be live-out"); 1144 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1145 1146 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1147 DEBUG(dbgs() << " after interference.\n"); 1148 // 1149 // >>>> Interference before def. 1150 // | o---o---| Defined in block. 1151 // ========= Use IntvOut everywhere. 1152 // 1153 selectIntv(IntvOut); 1154 useIntv(BI.FirstInstr, Stop); 1155 return; 1156 } 1157 1158 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1159 DEBUG(dbgs() << ", reload after interference.\n"); 1160 // 1161 // >>>> Interference before def. 1162 // |---o---o---| Live-through, stack-in. 1163 // ____========= Enter IntvOut before first use. 1164 // 1165 selectIntv(IntvOut); 1166 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1167 useIntv(Idx, Stop); 1168 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1169 return; 1170 } 1171 1172 // The interference is overlapping somewhere we wanted to use IntvOut. That 1173 // means we need to create a local interval that can be allocated a 1174 // different register. 1175 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1176 // 1177 // >>>>>>> Interference overlapping uses. 1178 // |---o---o---| Live-through, stack-in. 1179 // ____---====== Create local interval for interference range. 1180 // 1181 selectIntv(IntvOut); 1182 SlotIndex Idx = enterIntvAfter(EnterAfter); 1183 useIntv(Idx, Stop); 1184 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1185 1186 openIntv(); 1187 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1188 useIntv(From, Idx); 1189} 1190