TwoAddressInstructionPass.cpp revision 1487cb3a5a0535b343e602e976af538fd87d0df2
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71    CodeGenOpt::Level OptLevel;
72
73    // DistanceMap - Keep track the distance of a MI from the start of the
74    // current basic block.
75    DenseMap<MachineInstr*, unsigned> DistanceMap;
76
77    // SrcRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies from physical
79    // registers to virtual registers. e.g. v1024 = move r0.
80    DenseMap<unsigned, unsigned> SrcRegMap;
81
82    // DstRegMap - A map from virtual registers to physical registers which
83    // are likely targets to be coalesced to due to copies to physical
84    // registers from virtual registers. e.g. r1 = move v1024.
85    DenseMap<unsigned, unsigned> DstRegMap;
86
87    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
88    /// during the initial walk of the machine function.
89    SmallVector<MachineInstr*, 16> RegSequences;
90
91    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
92                              unsigned Reg,
93                              MachineBasicBlock::iterator OldPos);
94
95    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
96                             MachineInstr *MI, MachineInstr *DefMI,
97                             MachineBasicBlock *MBB, unsigned Loc);
98
99    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
100                           unsigned &LastDef);
101
102    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
103                                   unsigned Dist);
104
105    bool isProfitableToCommute(unsigned regB, unsigned regC,
106                               MachineInstr *MI, MachineBasicBlock *MBB,
107                               unsigned Dist);
108
109    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
110                            MachineFunction::iterator &mbbi,
111                            unsigned RegB, unsigned RegC, unsigned Dist);
112
113    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
116                            MachineBasicBlock::iterator &nmi,
117                            MachineFunction::iterator &mbbi,
118                            unsigned RegA, unsigned RegB, unsigned Dist);
119
120    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
121    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
122                               SmallVector<NewKill, 4> &NewKills,
123                               MachineBasicBlock *MBB, unsigned Dist);
124    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
125                           MachineBasicBlock::iterator &nmi,
126                           MachineFunction::iterator &mbbi, unsigned Dist);
127
128    bool isDefTooClose(unsigned Reg, unsigned Dist,
129                       MachineInstr *MI, MachineBasicBlock *MBB);
130
131    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
132                               MachineBasicBlock::iterator &mi,
133                               MachineBasicBlock::iterator &nmi,
134                               unsigned Reg);
135    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
136                               MachineBasicBlock::iterator &mi,
137                               MachineBasicBlock::iterator &nmi,
138                               unsigned Reg);
139
140    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
141                                 MachineBasicBlock::iterator &nmi,
142                                 MachineFunction::iterator &mbbi,
143                                 unsigned SrcIdx, unsigned DstIdx,
144                                 unsigned Dist,
145                                 SmallPtrSet<MachineInstr*, 8> &Processed);
146
147    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
148                  SmallPtrSet<MachineInstr*, 8> &Processed);
149
150    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
151                     SmallPtrSet<MachineInstr*, 8> &Processed);
152
153    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
154
155    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
156    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
157    /// sub-register references of the register defined by REG_SEQUENCE.
158    bool EliminateRegSequences();
159
160  public:
161    static char ID; // Pass identification, replacement for typeid
162    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
163      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
164    }
165
166    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167      AU.setPreservesCFG();
168      AU.addRequired<AliasAnalysis>();
169      AU.addPreserved<LiveVariables>();
170      AU.addPreservedID(MachineLoopInfoID);
171      AU.addPreservedID(MachineDominatorsID);
172      MachineFunctionPass::getAnalysisUsage(AU);
173    }
174
175    /// runOnMachineFunction - Pass entry point.
176    bool runOnMachineFunction(MachineFunction&);
177  };
178}
179
180char TwoAddressInstructionPass::ID = 0;
181INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182                "Two-Address instruction pass", false, false)
183INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185                "Two-Address instruction pass", false, false)
186
187char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189/// Sink3AddrInstruction - A two-address instruction has been converted to a
190/// three-address instruction to avoid clobbering a register. Try to sink it
191/// past the instruction that would kill the above mentioned register to reduce
192/// register pressure.
193bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194                                           MachineInstr *MI, unsigned SavedReg,
195                                           MachineBasicBlock::iterator OldPos) {
196  // FIXME: Shouldn't we be trying to do this before we three-addressify the
197  // instruction?  After this transformation is done, we no longer need
198  // the instruction to be in three-address form.
199
200  // Check if it's safe to move this instruction.
201  bool SeenStore = true; // Be conservative.
202  if (!MI->isSafeToMove(TII, AA, SeenStore))
203    return false;
204
205  unsigned DefReg = 0;
206  SmallSet<unsigned, 4> UseRegs;
207
208  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209    const MachineOperand &MO = MI->getOperand(i);
210    if (!MO.isReg())
211      continue;
212    unsigned MOReg = MO.getReg();
213    if (!MOReg)
214      continue;
215    if (MO.isUse() && MOReg != SavedReg)
216      UseRegs.insert(MO.getReg());
217    if (!MO.isDef())
218      continue;
219    if (MO.isImplicit())
220      // Don't try to move it if it implicitly defines a register.
221      return false;
222    if (DefReg)
223      // For now, don't move any instructions that define multiple registers.
224      return false;
225    DefReg = MO.getReg();
226  }
227
228  // Find the instruction that kills SavedReg.
229  MachineInstr *KillMI = NULL;
230  for (MachineRegisterInfo::use_nodbg_iterator
231         UI = MRI->use_nodbg_begin(SavedReg),
232         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233    MachineOperand &UseMO = UI.getOperand();
234    if (!UseMO.isKill())
235      continue;
236    KillMI = UseMO.getParent();
237    break;
238  }
239
240  // If we find the instruction that kills SavedReg, and it is in an
241  // appropriate location, we can try to sink the current instruction
242  // past it.
243  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244      KillMI->isTerminator())
245    return false;
246
247  // If any of the definitions are used by another instruction between the
248  // position and the kill use, then it's not safe to sink it.
249  //
250  // FIXME: This can be sped up if there is an easy way to query whether an
251  // instruction is before or after another instruction. Then we can use
252  // MachineRegisterInfo def / use instead.
253  MachineOperand *KillMO = NULL;
254  MachineBasicBlock::iterator KillPos = KillMI;
255  ++KillPos;
256
257  unsigned NumVisited = 0;
258  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259    MachineInstr *OtherMI = I;
260    // DBG_VALUE cannot be counted against the limit.
261    if (OtherMI->isDebugValue())
262      continue;
263    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
264      return false;
265    ++NumVisited;
266    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267      MachineOperand &MO = OtherMI->getOperand(i);
268      if (!MO.isReg())
269        continue;
270      unsigned MOReg = MO.getReg();
271      if (!MOReg)
272        continue;
273      if (DefReg == MOReg)
274        return false;
275
276      if (MO.isKill()) {
277        if (OtherMI == KillMI && MOReg == SavedReg)
278          // Save the operand that kills the register. We want to unset the kill
279          // marker if we can sink MI past it.
280          KillMO = &MO;
281        else if (UseRegs.count(MOReg))
282          // One of the uses is killed before the destination.
283          return false;
284      }
285    }
286  }
287
288  // Update kill and LV information.
289  KillMO->setIsKill(false);
290  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291  KillMO->setIsKill(true);
292
293  if (LV)
294    LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296  // Move instruction to its destination.
297  MBB->remove(MI);
298  MBB->insert(KillPos, MI);
299
300  ++Num3AddrSunk;
301  return true;
302}
303
304/// isTwoAddrUse - Return true if the specified MI is using the specified
305/// register as a two-address operand.
306static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307  const MCInstrDesc &MCID = UseMI->getDesc();
308  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309    MachineOperand &MO = UseMI->getOperand(i);
310    if (MO.isReg() && MO.getReg() == Reg &&
311        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312      // Earlier use is a two-address one.
313      return true;
314  }
315  return false;
316}
317
318/// isProfitableToReMat - Return true if the heuristics determines it is likely
319/// to be profitable to re-materialize the definition of Reg rather than copy
320/// the register.
321bool
322TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323                                         const TargetRegisterClass *RC,
324                                         MachineInstr *MI, MachineInstr *DefMI,
325                                         MachineBasicBlock *MBB, unsigned Loc) {
326  bool OtherUse = false;
327  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329    MachineOperand &UseMO = UI.getOperand();
330    MachineInstr *UseMI = UseMO.getParent();
331    MachineBasicBlock *UseMBB = UseMI->getParent();
332    if (UseMBB == MBB) {
333      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334      if (DI != DistanceMap.end() && DI->second == Loc)
335        continue;  // Current use.
336      OtherUse = true;
337      // There is at least one other use in the MBB that will clobber the
338      // register.
339      if (isTwoAddrUse(UseMI, Reg))
340        return true;
341    }
342  }
343
344  // If other uses in MBB are not two-address uses, then don't remat.
345  if (OtherUse)
346    return false;
347
348  // No other uses in the same block, remat if it's defined in the same
349  // block so it does not unnecessarily extend the live range.
350  return MBB == DefMI->getParent();
351}
352
353/// NoUseAfterLastDef - Return true if there are no intervening uses between the
354/// last instruction in the MBB that defines the specified register and the
355/// two-address instruction which is being processed. It also returns the last
356/// def location by reference
357bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358                                           MachineBasicBlock *MBB, unsigned Dist,
359                                           unsigned &LastDef) {
360  LastDef = 0;
361  unsigned LastUse = Dist;
362  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363         E = MRI->reg_end(); I != E; ++I) {
364    MachineOperand &MO = I.getOperand();
365    MachineInstr *MI = MO.getParent();
366    if (MI->getParent() != MBB || MI->isDebugValue())
367      continue;
368    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369    if (DI == DistanceMap.end())
370      continue;
371    if (MO.isUse() && DI->second < LastUse)
372      LastUse = DI->second;
373    if (MO.isDef() && DI->second > LastDef)
374      LastDef = DI->second;
375  }
376
377  return !(LastUse > LastDef && LastUse < Dist);
378}
379
380MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381                                                         MachineBasicBlock *MBB,
382                                                         unsigned Dist) {
383  unsigned LastUseDist = 0;
384  MachineInstr *LastUse = 0;
385  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386         E = MRI->reg_end(); I != E; ++I) {
387    MachineOperand &MO = I.getOperand();
388    MachineInstr *MI = MO.getParent();
389    if (MI->getParent() != MBB || MI->isDebugValue())
390      continue;
391    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392    if (DI == DistanceMap.end())
393      continue;
394    if (DI->second >= Dist)
395      continue;
396
397    if (MO.isUse() && DI->second > LastUseDist) {
398      LastUse = DI->first;
399      LastUseDist = DI->second;
400    }
401  }
402  return LastUse;
403}
404
405/// isCopyToReg - Return true if the specified MI is a copy instruction or
406/// a extract_subreg instruction. It also returns the source and destination
407/// registers and whether they are physical registers by reference.
408static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409                        unsigned &SrcReg, unsigned &DstReg,
410                        bool &IsSrcPhys, bool &IsDstPhys) {
411  SrcReg = 0;
412  DstReg = 0;
413  if (MI.isCopy()) {
414    DstReg = MI.getOperand(0).getReg();
415    SrcReg = MI.getOperand(1).getReg();
416  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417    DstReg = MI.getOperand(0).getReg();
418    SrcReg = MI.getOperand(2).getReg();
419  } else
420    return false;
421
422  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424  return true;
425}
426
427/// isKilled - Test if the given register value, which is used by the given
428/// instruction, is killed by the given instruction. This looks through
429/// coalescable copies to see if the original value is potentially not killed.
430///
431/// For example, in this code:
432///
433///   %reg1034 = copy %reg1024
434///   %reg1035 = copy %reg1025<kill>
435///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436///
437/// %reg1034 is not considered to be killed, since it is copied from a
438/// register which is not killed. Treating it as not killed lets the
439/// normal heuristics commute the (two-address) add, which lets
440/// coalescing eliminate the extra copy.
441///
442static bool isKilled(MachineInstr &MI, unsigned Reg,
443                     const MachineRegisterInfo *MRI,
444                     const TargetInstrInfo *TII) {
445  MachineInstr *DefMI = &MI;
446  for (;;) {
447    if (!DefMI->killsRegister(Reg))
448      return false;
449    if (TargetRegisterInfo::isPhysicalRegister(Reg))
450      return true;
451    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452    // If there are multiple defs, we can't do a simple analysis, so just
453    // go with what the kill flag says.
454    if (llvm::next(Begin) != MRI->def_end())
455      return true;
456    DefMI = &*Begin;
457    bool IsSrcPhys, IsDstPhys;
458    unsigned SrcReg,  DstReg;
459    // If the def is something other than a copy, then it isn't going to
460    // be coalesced, so follow the kill flag.
461    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462      return true;
463    Reg = SrcReg;
464  }
465}
466
467/// isTwoAddrUse - Return true if the specified MI uses the specified register
468/// as a two-address use. If so, return the destination register by reference.
469static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470  const MCInstrDesc &MCID = MI.getDesc();
471  unsigned NumOps = MI.isInlineAsm()
472    ? MI.getNumOperands() : MCID.getNumOperands();
473  for (unsigned i = 0; i != NumOps; ++i) {
474    const MachineOperand &MO = MI.getOperand(i);
475    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476      continue;
477    unsigned ti;
478    if (MI.isRegTiedToDefOperand(i, &ti)) {
479      DstReg = MI.getOperand(ti).getReg();
480      return true;
481    }
482  }
483  return false;
484}
485
486/// findLocalKill - Look for an instruction below MI in the MBB that kills the
487/// specified register. Returns null if there are any other Reg use between the
488/// instructions.
489static
490MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491                            MachineInstr *MI, MachineRegisterInfo *MRI,
492                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493  MachineInstr *KillMI = 0;
494  for (MachineRegisterInfo::use_nodbg_iterator
495         UI = MRI->use_nodbg_begin(Reg),
496         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497    MachineInstr *UseMI = &*UI;
498    if (UseMI == MI || UseMI->getParent() != MBB)
499      continue;
500    if (DistanceMap.count(UseMI))
501      continue;
502    if (!UI.getOperand().isKill())
503      return 0;
504    if (KillMI)
505      return 0;  // -O0 kill markers cannot be trusted?
506    KillMI = UseMI;
507  }
508
509  return KillMI;
510}
511
512/// findOnlyInterestingUse - Given a register, if has a single in-basic block
513/// use, return the use instruction if it's a copy or a two-address use.
514static
515MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
516                                     MachineRegisterInfo *MRI,
517                                     const TargetInstrInfo *TII,
518                                     bool &IsCopy,
519                                     unsigned &DstReg, bool &IsDstPhys) {
520  if (!MRI->hasOneNonDBGUse(Reg))
521    // None or more than one use.
522    return 0;
523  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
524  if (UseMI.getParent() != MBB)
525    return 0;
526  unsigned SrcReg;
527  bool IsSrcPhys;
528  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
529    IsCopy = true;
530    return &UseMI;
531  }
532  IsDstPhys = false;
533  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
534    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
535    return &UseMI;
536  }
537  return 0;
538}
539
540/// getMappedReg - Return the physical register the specified virtual register
541/// might be mapped to.
542static unsigned
543getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
544  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
545    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
546    if (SI == RegMap.end())
547      return 0;
548    Reg = SI->second;
549  }
550  if (TargetRegisterInfo::isPhysicalRegister(Reg))
551    return Reg;
552  return 0;
553}
554
555/// regsAreCompatible - Return true if the two registers are equal or aliased.
556///
557static bool
558regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
559  if (RegA == RegB)
560    return true;
561  if (!RegA || !RegB)
562    return false;
563  return TRI->regsOverlap(RegA, RegB);
564}
565
566
567/// isProfitableToReMat - Return true if it's potentially profitable to commute
568/// the two-address instruction that's being processed.
569bool
570TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
571                                       MachineInstr *MI, MachineBasicBlock *MBB,
572                                       unsigned Dist) {
573  if (OptLevel == CodeGenOpt::None)
574    return false;
575
576  // Determine if it's profitable to commute this two address instruction. In
577  // general, we want no uses between this instruction and the definition of
578  // the two-address register.
579  // e.g.
580  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
581  // %reg1029<def> = MOV8rr %reg1028
582  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
583  // insert => %reg1030<def> = MOV8rr %reg1028
584  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
585  // In this case, it might not be possible to coalesce the second MOV8rr
586  // instruction if the first one is coalesced. So it would be profitable to
587  // commute it:
588  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
589  // %reg1029<def> = MOV8rr %reg1028
590  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
591  // insert => %reg1030<def> = MOV8rr %reg1029
592  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
593
594  if (!MI->killsRegister(regC))
595    return false;
596
597  // Ok, we have something like:
598  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
599  // let's see if it's worth commuting it.
600
601  // Look for situations like this:
602  // %reg1024<def> = MOV r1
603  // %reg1025<def> = MOV r0
604  // %reg1026<def> = ADD %reg1024, %reg1025
605  // r0            = MOV %reg1026
606  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
607  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
608  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
609  unsigned ToRegB = getMappedReg(regB, DstRegMap);
610  unsigned ToRegC = getMappedReg(regC, DstRegMap);
611  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
612      ((!FromRegC && !ToRegC) ||
613       regsAreCompatible(FromRegB, ToRegC, TRI) ||
614       regsAreCompatible(FromRegC, ToRegB, TRI)))
615    return true;
616
617  // If there is a use of regC between its last def (could be livein) and this
618  // instruction, then bail.
619  unsigned LastDefC = 0;
620  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
621    return false;
622
623  // If there is a use of regB between its last def (could be livein) and this
624  // instruction, then go ahead and make this transformation.
625  unsigned LastDefB = 0;
626  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
627    return true;
628
629  // Since there are no intervening uses for both registers, then commute
630  // if the def of regC is closer. Its live interval is shorter.
631  return LastDefB && LastDefC && LastDefC > LastDefB;
632}
633
634/// CommuteInstruction - Commute a two-address instruction and update the basic
635/// block, distance map, and live variables if needed. Return true if it is
636/// successful.
637bool
638TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
639                               MachineFunction::iterator &mbbi,
640                               unsigned RegB, unsigned RegC, unsigned Dist) {
641  MachineInstr *MI = mi;
642  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
643  MachineInstr *NewMI = TII->commuteInstruction(MI);
644
645  if (NewMI == 0) {
646    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
647    return false;
648  }
649
650  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
651  // If the instruction changed to commute it, update livevar.
652  if (NewMI != MI) {
653    if (LV)
654      // Update live variables
655      LV->replaceKillInstruction(RegC, MI, NewMI);
656
657    mbbi->insert(mi, NewMI);           // Insert the new inst
658    mbbi->erase(mi);                   // Nuke the old inst.
659    mi = NewMI;
660    DistanceMap.insert(std::make_pair(NewMI, Dist));
661  }
662
663  // Update source register map.
664  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
665  if (FromRegC) {
666    unsigned RegA = MI->getOperand(0).getReg();
667    SrcRegMap[RegA] = FromRegC;
668  }
669
670  return true;
671}
672
673/// isProfitableToConv3Addr - Return true if it is profitable to convert the
674/// given 2-address instruction to a 3-address one.
675bool
676TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
677  // Look for situations like this:
678  // %reg1024<def> = MOV r1
679  // %reg1025<def> = MOV r0
680  // %reg1026<def> = ADD %reg1024, %reg1025
681  // r2            = MOV %reg1026
682  // Turn ADD into a 3-address instruction to avoid a copy.
683  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
684  if (!FromRegB)
685    return false;
686  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
687  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
688}
689
690/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
691/// three address one. Return true if this transformation was successful.
692bool
693TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
694                                              MachineBasicBlock::iterator &nmi,
695                                              MachineFunction::iterator &mbbi,
696                                              unsigned RegA, unsigned RegB,
697                                              unsigned Dist) {
698  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
699  if (NewMI) {
700    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
701    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
702    bool Sunk = false;
703
704    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
705      // FIXME: Temporary workaround. If the new instruction doesn't
706      // uses RegB, convertToThreeAddress must have created more
707      // then one instruction.
708      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
709
710    mbbi->erase(mi); // Nuke the old inst.
711
712    if (!Sunk) {
713      DistanceMap.insert(std::make_pair(NewMI, Dist));
714      mi = NewMI;
715      nmi = llvm::next(mi);
716    }
717
718    // Update source and destination register maps.
719    SrcRegMap.erase(RegA);
720    DstRegMap.erase(RegB);
721    return true;
722  }
723
724  return false;
725}
726
727/// ScanUses - Scan forward recursively for only uses, update maps if the use
728/// is a copy or a two-address instruction.
729void
730TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
731                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
732  SmallVector<unsigned, 4> VirtRegPairs;
733  bool IsDstPhys;
734  bool IsCopy = false;
735  unsigned NewReg = 0;
736  unsigned Reg = DstReg;
737  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
738                                                      NewReg, IsDstPhys)) {
739    if (IsCopy && !Processed.insert(UseMI))
740      break;
741
742    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
743    if (DI != DistanceMap.end())
744      // Earlier in the same MBB.Reached via a back edge.
745      break;
746
747    if (IsDstPhys) {
748      VirtRegPairs.push_back(NewReg);
749      break;
750    }
751    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
752    if (!isNew)
753      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
754    VirtRegPairs.push_back(NewReg);
755    Reg = NewReg;
756  }
757
758  if (!VirtRegPairs.empty()) {
759    unsigned ToReg = VirtRegPairs.back();
760    VirtRegPairs.pop_back();
761    while (!VirtRegPairs.empty()) {
762      unsigned FromReg = VirtRegPairs.back();
763      VirtRegPairs.pop_back();
764      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
765      if (!isNew)
766        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
767      ToReg = FromReg;
768    }
769    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
770    if (!isNew)
771      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
772  }
773}
774
775/// ProcessCopy - If the specified instruction is not yet processed, process it
776/// if it's a copy. For a copy instruction, we find the physical registers the
777/// source and destination registers might be mapped to. These are kept in
778/// point-to maps used to determine future optimizations. e.g.
779/// v1024 = mov r0
780/// v1025 = mov r1
781/// v1026 = add v1024, v1025
782/// r1    = mov r1026
783/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
784/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
785/// potentially joined with r1 on the output side. It's worthwhile to commute
786/// 'add' to eliminate a copy.
787void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
788                                     MachineBasicBlock *MBB,
789                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
790  if (Processed.count(MI))
791    return;
792
793  bool IsSrcPhys, IsDstPhys;
794  unsigned SrcReg, DstReg;
795  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
796    return;
797
798  if (IsDstPhys && !IsSrcPhys)
799    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
800  else if (!IsDstPhys && IsSrcPhys) {
801    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
802    if (!isNew)
803      assert(SrcRegMap[DstReg] == SrcReg &&
804             "Can't map to two src physical registers!");
805
806    ScanUses(DstReg, MBB, Processed);
807  }
808
809  Processed.insert(MI);
810  return;
811}
812
813/// isSafeToDelete - If the specified instruction does not produce any side
814/// effects and all of its defs are dead, then it's safe to delete.
815static bool isSafeToDelete(MachineInstr *MI,
816                           const TargetInstrInfo *TII,
817                           SmallVector<unsigned, 4> &Kills) {
818  if (MI->mayStore() || MI->isCall())
819    return false;
820  if (MI->isTerminator() || MI->hasUnmodeledSideEffects())
821    return false;
822
823  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
824    MachineOperand &MO = MI->getOperand(i);
825    if (!MO.isReg())
826      continue;
827    if (MO.isDef() && !MO.isDead())
828      return false;
829    if (MO.isUse() && MO.isKill())
830      Kills.push_back(MO.getReg());
831  }
832  return true;
833}
834
835/// canUpdateDeletedKills - Check if all the registers listed in Kills are
836/// killed by instructions in MBB preceding the current instruction at
837/// position Dist.  If so, return true and record information about the
838/// preceding kills in NewKills.
839bool TwoAddressInstructionPass::
840canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
841                      SmallVector<NewKill, 4> &NewKills,
842                      MachineBasicBlock *MBB, unsigned Dist) {
843  while (!Kills.empty()) {
844    unsigned Kill = Kills.back();
845    Kills.pop_back();
846    if (TargetRegisterInfo::isPhysicalRegister(Kill))
847      return false;
848
849    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
850    if (!LastKill)
851      return false;
852
853    bool isModRef = LastKill->definesRegister(Kill);
854    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
855                                      LastKill));
856  }
857  return true;
858}
859
860/// DeleteUnusedInstr - If an instruction with a tied register operand can
861/// be safely deleted, just delete it.
862bool
863TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
864                                             MachineBasicBlock::iterator &nmi,
865                                             MachineFunction::iterator &mbbi,
866                                             unsigned Dist) {
867  // Check if the instruction has no side effects and if all its defs are dead.
868  SmallVector<unsigned, 4> Kills;
869  if (!isSafeToDelete(mi, TII, Kills))
870    return false;
871
872  // If this instruction kills some virtual registers, we need to
873  // update the kill information. If it's not possible to do so,
874  // then bail out.
875  SmallVector<NewKill, 4> NewKills;
876  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
877    return false;
878
879  if (LV) {
880    while (!NewKills.empty()) {
881      MachineInstr *NewKill = NewKills.back().second;
882      unsigned Kill = NewKills.back().first.first;
883      bool isDead = NewKills.back().first.second;
884      NewKills.pop_back();
885      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
886        if (isDead)
887          LV->addVirtualRegisterDead(Kill, NewKill);
888        else
889          LV->addVirtualRegisterKilled(Kill, NewKill);
890      }
891    }
892  }
893
894  mbbi->erase(mi); // Nuke the old inst.
895  mi = nmi;
896  return true;
897}
898
899/// RescheduleMIBelowKill - If there is one more local instruction that reads
900/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
901/// instruction in order to eliminate the need for the copy.
902bool
903TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
904                                     MachineBasicBlock::iterator &mi,
905                                     MachineBasicBlock::iterator &nmi,
906                                     unsigned Reg) {
907  MachineInstr *MI = &*mi;
908  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
909  if (DI == DistanceMap.end())
910    // Must be created from unfolded load. Don't waste time trying this.
911    return false;
912
913  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
914  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
915    // Don't mess with copies, they may be coalesced later.
916    return false;
917
918  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
919      KillMI->isBranch() || KillMI->isTerminator())
920    // Don't move pass calls, etc.
921    return false;
922
923  unsigned DstReg;
924  if (isTwoAddrUse(*KillMI, Reg, DstReg))
925    return false;
926
927  bool SeenStore = true;
928  if (!MI->isSafeToMove(TII, AA, SeenStore))
929    return false;
930
931  if (TII->getInstrLatency(InstrItins, MI) > 1)
932    // FIXME: Needs more sophisticated heuristics.
933    return false;
934
935  SmallSet<unsigned, 2> Uses;
936  SmallSet<unsigned, 2> Kills;
937  SmallSet<unsigned, 2> Defs;
938  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
939    const MachineOperand &MO = MI->getOperand(i);
940    if (!MO.isReg())
941      continue;
942    unsigned MOReg = MO.getReg();
943    if (!MOReg)
944      continue;
945    if (MO.isDef())
946      Defs.insert(MOReg);
947    else {
948      Uses.insert(MOReg);
949      if (MO.isKill() && MOReg != Reg)
950        Kills.insert(MOReg);
951    }
952  }
953
954  // Move the copies connected to MI down as well.
955  MachineBasicBlock::iterator From = MI;
956  MachineBasicBlock::iterator To = llvm::next(From);
957  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
958    Defs.insert(To->getOperand(0).getReg());
959    ++To;
960  }
961
962  // Check if the reschedule will not break depedencies.
963  unsigned NumVisited = 0;
964  MachineBasicBlock::iterator KillPos = KillMI;
965  ++KillPos;
966  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
967    MachineInstr *OtherMI = I;
968    // DBG_VALUE cannot be counted against the limit.
969    if (OtherMI->isDebugValue())
970      continue;
971    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
972      return false;
973    ++NumVisited;
974    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
975        OtherMI->isBranch() || OtherMI->isTerminator())
976      // Don't move pass calls, etc.
977      return false;
978    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
979      const MachineOperand &MO = OtherMI->getOperand(i);
980      if (!MO.isReg())
981        continue;
982      unsigned MOReg = MO.getReg();
983      if (!MOReg)
984        continue;
985      if (MO.isDef()) {
986        if (Uses.count(MOReg))
987          // Physical register use would be clobbered.
988          return false;
989        if (!MO.isDead() && Defs.count(MOReg))
990          // May clobber a physical register def.
991          // FIXME: This may be too conservative. It's ok if the instruction
992          // is sunken completely below the use.
993          return false;
994      } else {
995        if (Defs.count(MOReg))
996          return false;
997        if (MOReg != Reg &&
998            ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
999          // Don't want to extend other live ranges and update kills.
1000          return false;
1001      }
1002    }
1003  }
1004
1005  // Move debug info as well.
1006  while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1007    --From;
1008
1009  // Copies following MI may have been moved as well.
1010  nmi = To;
1011  MBB->splice(KillPos, MBB, From, To);
1012  DistanceMap.erase(DI);
1013
1014  if (LV) {
1015    // Update live variables
1016    LV->removeVirtualRegisterKilled(Reg, KillMI);
1017    LV->addVirtualRegisterKilled(Reg, MI);
1018  } else {
1019    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1020      MachineOperand &MO = KillMI->getOperand(i);
1021      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1022        continue;
1023      MO.setIsKill(false);
1024    }
1025    MI->addRegisterKilled(Reg, 0);
1026  }
1027
1028  return true;
1029}
1030
1031/// isDefTooClose - Return true if the re-scheduling will put the given
1032/// instruction too close to the defs of its register dependencies.
1033bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1034                                              MachineInstr *MI,
1035                                              MachineBasicBlock *MBB) {
1036  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1037         DE = MRI->def_end(); DI != DE; ++DI) {
1038    MachineInstr *DefMI = &*DI;
1039    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1040      continue;
1041    if (DefMI == MI)
1042      return true; // MI is defining something KillMI uses
1043    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1044    if (DDI == DistanceMap.end())
1045      return true;  // Below MI
1046    unsigned DefDist = DDI->second;
1047    assert(Dist > DefDist && "Visited def already?");
1048    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1049      return true;
1050  }
1051  return false;
1052}
1053
1054/// RescheduleKillAboveMI - If there is one more local instruction that reads
1055/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1056/// current two-address instruction in order to eliminate the need for the
1057/// copy.
1058bool
1059TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1060                                     MachineBasicBlock::iterator &mi,
1061                                     MachineBasicBlock::iterator &nmi,
1062                                     unsigned Reg) {
1063  MachineInstr *MI = &*mi;
1064  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1065  if (DI == DistanceMap.end())
1066    // Must be created from unfolded load. Don't waste time trying this.
1067    return false;
1068
1069  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1070  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1071    // Don't mess with copies, they may be coalesced later.
1072    return false;
1073
1074  unsigned DstReg;
1075  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1076    return false;
1077
1078  bool SeenStore = true;
1079  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1080    return false;
1081
1082  SmallSet<unsigned, 2> Uses;
1083  SmallSet<unsigned, 2> Kills;
1084  SmallSet<unsigned, 2> Defs;
1085  SmallSet<unsigned, 2> LiveDefs;
1086  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1087    const MachineOperand &MO = KillMI->getOperand(i);
1088    if (!MO.isReg())
1089      continue;
1090    unsigned MOReg = MO.getReg();
1091    if (MO.isUse()) {
1092      if (!MOReg)
1093        continue;
1094      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1095        return false;
1096      Uses.insert(MOReg);
1097      if (MO.isKill() && MOReg != Reg)
1098        Kills.insert(MOReg);
1099    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1100      Defs.insert(MOReg);
1101      if (!MO.isDead())
1102        LiveDefs.insert(MOReg);
1103    }
1104  }
1105
1106  // Check if the reschedule will not break depedencies.
1107  unsigned NumVisited = 0;
1108  MachineBasicBlock::iterator KillPos = KillMI;
1109  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1110    MachineInstr *OtherMI = I;
1111    // DBG_VALUE cannot be counted against the limit.
1112    if (OtherMI->isDebugValue())
1113      continue;
1114    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1115      return false;
1116    ++NumVisited;
1117    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1118        OtherMI->isBranch() || OtherMI->isTerminator())
1119      // Don't move pass calls, etc.
1120      return false;
1121    SmallVector<unsigned, 2> OtherDefs;
1122    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1123      const MachineOperand &MO = OtherMI->getOperand(i);
1124      if (!MO.isReg())
1125        continue;
1126      unsigned MOReg = MO.getReg();
1127      if (!MOReg)
1128        continue;
1129      if (MO.isUse()) {
1130        if (Defs.count(MOReg))
1131          // Moving KillMI can clobber the physical register if the def has
1132          // not been seen.
1133          return false;
1134        if (Kills.count(MOReg))
1135          // Don't want to extend other live ranges and update kills.
1136          return false;
1137      } else {
1138        OtherDefs.push_back(MOReg);
1139      }
1140    }
1141
1142    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1143      unsigned MOReg = OtherDefs[i];
1144      if (Uses.count(MOReg))
1145        return false;
1146      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1147          LiveDefs.count(MOReg))
1148        return false;
1149      // Physical register def is seen.
1150      Defs.erase(MOReg);
1151    }
1152  }
1153
1154  // Move the old kill above MI, don't forget to move debug info as well.
1155  MachineBasicBlock::iterator InsertPos = mi;
1156  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1157    --InsertPos;
1158  MachineBasicBlock::iterator From = KillMI;
1159  MachineBasicBlock::iterator To = llvm::next(From);
1160  while (llvm::prior(From)->isDebugValue())
1161    --From;
1162  MBB->splice(InsertPos, MBB, From, To);
1163
1164  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1165  DistanceMap.erase(DI);
1166
1167  if (LV) {
1168    // Update live variables
1169    LV->removeVirtualRegisterKilled(Reg, KillMI);
1170    LV->addVirtualRegisterKilled(Reg, MI);
1171  } else {
1172    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1173      MachineOperand &MO = KillMI->getOperand(i);
1174      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1175        continue;
1176      MO.setIsKill(false);
1177    }
1178    MI->addRegisterKilled(Reg, 0);
1179  }
1180  return true;
1181}
1182
1183/// TryInstructionTransform - For the case where an instruction has a single
1184/// pair of tied register operands, attempt some transformations that may
1185/// either eliminate the tied operands or improve the opportunities for
1186/// coalescing away the register copy.  Returns true if the tied operands
1187/// are eliminated altogether.
1188bool TwoAddressInstructionPass::
1189TryInstructionTransform(MachineBasicBlock::iterator &mi,
1190                        MachineBasicBlock::iterator &nmi,
1191                        MachineFunction::iterator &mbbi,
1192                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1193                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1194  if (OptLevel == CodeGenOpt::None)
1195    return false;
1196
1197  MachineInstr &MI = *mi;
1198  unsigned regA = MI.getOperand(DstIdx).getReg();
1199  unsigned regB = MI.getOperand(SrcIdx).getReg();
1200
1201  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1202         "cannot make instruction into two-address form");
1203
1204  // If regA is dead and the instruction can be deleted, just delete
1205  // it so it doesn't clobber regB.
1206  bool regBKilled = isKilled(MI, regB, MRI, TII);
1207  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1208      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1209    ++NumDeletes;
1210    return true; // Done with this instruction.
1211  }
1212
1213  // Check if it is profitable to commute the operands.
1214  unsigned SrcOp1, SrcOp2;
1215  unsigned regC = 0;
1216  unsigned regCIdx = ~0U;
1217  bool TryCommute = false;
1218  bool AggressiveCommute = false;
1219  if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1220      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1221    if (SrcIdx == SrcOp1)
1222      regCIdx = SrcOp2;
1223    else if (SrcIdx == SrcOp2)
1224      regCIdx = SrcOp1;
1225
1226    if (regCIdx != ~0U) {
1227      regC = MI.getOperand(regCIdx).getReg();
1228      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1229        // If C dies but B does not, swap the B and C operands.
1230        // This makes the live ranges of A and C joinable.
1231        TryCommute = true;
1232      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1233        TryCommute = true;
1234        AggressiveCommute = true;
1235      }
1236    }
1237  }
1238
1239  // If it's profitable to commute, try to do so.
1240  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1241    ++NumCommuted;
1242    if (AggressiveCommute)
1243      ++NumAggrCommuted;
1244    return false;
1245  }
1246
1247  // If there is one more use of regB later in the same MBB, consider
1248  // re-schedule this MI below it.
1249  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1250    ++NumReSchedDowns;
1251    return false;
1252  }
1253
1254  if (TargetRegisterInfo::isVirtualRegister(regA))
1255    ScanUses(regA, &*mbbi, Processed);
1256
1257  if (MI.isConvertibleTo3Addr()) {
1258    // This instruction is potentially convertible to a true
1259    // three-address instruction.  Check if it is profitable.
1260    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1261      // Try to convert it.
1262      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1263        ++NumConvertedTo3Addr;
1264        return true; // Done with this instruction.
1265      }
1266    }
1267  }
1268
1269  // If there is one more use of regB later in the same MBB, consider
1270  // re-schedule it before this MI if it's legal.
1271  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1272    ++NumReSchedUps;
1273    return false;
1274  }
1275
1276  // If this is an instruction with a load folded into it, try unfolding
1277  // the load, e.g. avoid this:
1278  //   movq %rdx, %rcx
1279  //   addq (%rax), %rcx
1280  // in favor of this:
1281  //   movq (%rax), %rcx
1282  //   addq %rdx, %rcx
1283  // because it's preferable to schedule a load than a register copy.
1284  if (MI.mayLoad() && !regBKilled) {
1285    // Determine if a load can be unfolded.
1286    unsigned LoadRegIndex;
1287    unsigned NewOpc =
1288      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1289                                      /*UnfoldLoad=*/true,
1290                                      /*UnfoldStore=*/false,
1291                                      &LoadRegIndex);
1292    if (NewOpc != 0) {
1293      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1294      if (UnfoldMCID.getNumDefs() == 1) {
1295        MachineFunction &MF = *mbbi->getParent();
1296
1297        // Unfold the load.
1298        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1299        const TargetRegisterClass *RC =
1300          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1301        unsigned Reg = MRI->createVirtualRegister(RC);
1302        SmallVector<MachineInstr *, 2> NewMIs;
1303        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1304                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1305                                      NewMIs)) {
1306          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1307          return false;
1308        }
1309        assert(NewMIs.size() == 2 &&
1310               "Unfolded a load into multiple instructions!");
1311        // The load was previously folded, so this is the only use.
1312        NewMIs[1]->addRegisterKilled(Reg, TRI);
1313
1314        // Tentatively insert the instructions into the block so that they
1315        // look "normal" to the transformation logic.
1316        mbbi->insert(mi, NewMIs[0]);
1317        mbbi->insert(mi, NewMIs[1]);
1318
1319        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1320                     << "2addr:    NEW INST: " << *NewMIs[1]);
1321
1322        // Transform the instruction, now that it no longer has a load.
1323        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1324        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1325        MachineBasicBlock::iterator NewMI = NewMIs[1];
1326        bool TransformSuccess =
1327          TryInstructionTransform(NewMI, mi, mbbi,
1328                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1329        if (TransformSuccess ||
1330            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1331          // Success, or at least we made an improvement. Keep the unfolded
1332          // instructions and discard the original.
1333          if (LV) {
1334            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1335              MachineOperand &MO = MI.getOperand(i);
1336              if (MO.isReg() &&
1337                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1338                if (MO.isUse()) {
1339                  if (MO.isKill()) {
1340                    if (NewMIs[0]->killsRegister(MO.getReg()))
1341                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1342                    else {
1343                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1344                             "Kill missing after load unfold!");
1345                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1346                    }
1347                  }
1348                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1349                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1350                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1351                  else {
1352                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1353                           "Dead flag missing after load unfold!");
1354                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1355                  }
1356                }
1357              }
1358            }
1359            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1360          }
1361          MI.eraseFromParent();
1362          mi = NewMIs[1];
1363          if (TransformSuccess)
1364            return true;
1365        } else {
1366          // Transforming didn't eliminate the tie and didn't lead to an
1367          // improvement. Clean up the unfolded instructions and keep the
1368          // original.
1369          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1370          NewMIs[0]->eraseFromParent();
1371          NewMIs[1]->eraseFromParent();
1372        }
1373      }
1374    }
1375  }
1376
1377  return false;
1378}
1379
1380/// runOnMachineFunction - Reduce two-address instructions to two operands.
1381///
1382bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1383  const TargetMachine &TM = MF.getTarget();
1384  MRI = &MF.getRegInfo();
1385  TII = TM.getInstrInfo();
1386  TRI = TM.getRegisterInfo();
1387  InstrItins = TM.getInstrItineraryData();
1388  LV = getAnalysisIfAvailable<LiveVariables>();
1389  AA = &getAnalysis<AliasAnalysis>();
1390  OptLevel = TM.getOptLevel();
1391
1392  bool MadeChange = false;
1393
1394  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1395  DEBUG(dbgs() << "********** Function: "
1396        << MF.getFunction()->getName() << '\n');
1397
1398  // This pass takes the function out of SSA form.
1399  MRI->leaveSSA();
1400
1401  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1402  BitVector ReMatRegs(MRI->getNumVirtRegs());
1403
1404  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1405    TiedOperandMap;
1406  TiedOperandMap TiedOperands(4);
1407
1408  SmallPtrSet<MachineInstr*, 8> Processed;
1409  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1410       mbbi != mbbe; ++mbbi) {
1411    unsigned Dist = 0;
1412    DistanceMap.clear();
1413    SrcRegMap.clear();
1414    DstRegMap.clear();
1415    Processed.clear();
1416    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1417         mi != me; ) {
1418      MachineBasicBlock::iterator nmi = llvm::next(mi);
1419      if (mi->isDebugValue()) {
1420        mi = nmi;
1421        continue;
1422      }
1423
1424      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1425      if (mi->isRegSequence())
1426        RegSequences.push_back(&*mi);
1427
1428      const MCInstrDesc &MCID = mi->getDesc();
1429      bool FirstTied = true;
1430
1431      DistanceMap.insert(std::make_pair(mi, ++Dist));
1432
1433      ProcessCopy(&*mi, &*mbbi, Processed);
1434
1435      // First scan through all the tied register uses in this instruction
1436      // and record a list of pairs of tied operands for each register.
1437      unsigned NumOps = mi->isInlineAsm()
1438        ? mi->getNumOperands() : MCID.getNumOperands();
1439      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1440        unsigned DstIdx = 0;
1441        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1442          continue;
1443
1444        if (FirstTied) {
1445          FirstTied = false;
1446          ++NumTwoAddressInstrs;
1447          DEBUG(dbgs() << '\t' << *mi);
1448        }
1449
1450        assert(mi->getOperand(SrcIdx).isReg() &&
1451               mi->getOperand(SrcIdx).getReg() &&
1452               mi->getOperand(SrcIdx).isUse() &&
1453               "two address instruction invalid");
1454
1455        unsigned regB = mi->getOperand(SrcIdx).getReg();
1456        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1457      }
1458
1459      // Now iterate over the information collected above.
1460      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1461             OE = TiedOperands.end(); OI != OE; ++OI) {
1462        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1463
1464        // If the instruction has a single pair of tied operands, try some
1465        // transformations that may either eliminate the tied operands or
1466        // improve the opportunities for coalescing away the register copy.
1467        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1468          unsigned SrcIdx = TiedPairs[0].first;
1469          unsigned DstIdx = TiedPairs[0].second;
1470
1471          // If the registers are already equal, nothing needs to be done.
1472          if (mi->getOperand(SrcIdx).getReg() ==
1473              mi->getOperand(DstIdx).getReg())
1474            break; // Done with this instruction.
1475
1476          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1477                                      Processed))
1478            break; // The tied operands have been eliminated.
1479        }
1480
1481        bool IsEarlyClobber = false;
1482        bool RemovedKillFlag = false;
1483        bool AllUsesCopied = true;
1484        unsigned LastCopiedReg = 0;
1485        unsigned regB = OI->first;
1486        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1487          unsigned SrcIdx = TiedPairs[tpi].first;
1488          unsigned DstIdx = TiedPairs[tpi].second;
1489
1490          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1491          unsigned regA = DstMO.getReg();
1492          IsEarlyClobber |= DstMO.isEarlyClobber();
1493
1494          // Grab regB from the instruction because it may have changed if the
1495          // instruction was commuted.
1496          regB = mi->getOperand(SrcIdx).getReg();
1497
1498          if (regA == regB) {
1499            // The register is tied to multiple destinations (or else we would
1500            // not have continued this far), but this use of the register
1501            // already matches the tied destination.  Leave it.
1502            AllUsesCopied = false;
1503            continue;
1504          }
1505          LastCopiedReg = regA;
1506
1507          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1508                 "cannot make instruction into two-address form");
1509
1510#ifndef NDEBUG
1511          // First, verify that we don't have a use of "a" in the instruction
1512          // (a = b + a for example) because our transformation will not
1513          // work. This should never occur because we are in SSA form.
1514          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1515            assert(i == DstIdx ||
1516                   !mi->getOperand(i).isReg() ||
1517                   mi->getOperand(i).getReg() != regA);
1518#endif
1519
1520          // Emit a copy or rematerialize the definition.
1521          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1522          MachineInstr *DefMI = MRI->getVRegDef(regB);
1523          // If it's safe and profitable, remat the definition instead of
1524          // copying it.
1525          if (DefMI &&
1526              DefMI->isAsCheapAsAMove() &&
1527              DefMI->isSafeToReMat(TII, AA, regB) &&
1528              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1529            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1530            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1531            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1532            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1533            ++NumReMats;
1534          } else {
1535            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1536                    regA).addReg(regB);
1537          }
1538
1539          MachineBasicBlock::iterator prevMI = prior(mi);
1540          // Update DistanceMap.
1541          DistanceMap.insert(std::make_pair(prevMI, Dist));
1542          DistanceMap[mi] = ++Dist;
1543
1544          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1545
1546          MachineOperand &MO = mi->getOperand(SrcIdx);
1547          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1548                 "inconsistent operand info for 2-reg pass");
1549          if (MO.isKill()) {
1550            MO.setIsKill(false);
1551            RemovedKillFlag = true;
1552          }
1553          MO.setReg(regA);
1554        }
1555
1556        if (AllUsesCopied) {
1557          if (!IsEarlyClobber) {
1558            // Replace other (un-tied) uses of regB with LastCopiedReg.
1559            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1560              MachineOperand &MO = mi->getOperand(i);
1561              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1562                if (MO.isKill()) {
1563                  MO.setIsKill(false);
1564                  RemovedKillFlag = true;
1565                }
1566                MO.setReg(LastCopiedReg);
1567              }
1568            }
1569          }
1570
1571          // Update live variables for regB.
1572          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1573            LV->addVirtualRegisterKilled(regB, prior(mi));
1574
1575        } else if (RemovedKillFlag) {
1576          // Some tied uses of regB matched their destination registers, so
1577          // regB is still used in this instruction, but a kill flag was
1578          // removed from a different tied use of regB, so now we need to add
1579          // a kill flag to one of the remaining uses of regB.
1580          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1581            MachineOperand &MO = mi->getOperand(i);
1582            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1583              MO.setIsKill(true);
1584              break;
1585            }
1586          }
1587        }
1588
1589        // Schedule the source copy / remat inserted to form two-address
1590        // instruction. FIXME: Does it matter the distance map may not be
1591        // accurate after it's scheduled?
1592        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1593
1594        MadeChange = true;
1595
1596        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1597      }
1598
1599      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1600      if (mi->isInsertSubreg()) {
1601        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1602        // To   %reg:subidx = COPY %subreg
1603        unsigned SubIdx = mi->getOperand(3).getImm();
1604        mi->RemoveOperand(3);
1605        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1606        mi->getOperand(0).setSubReg(SubIdx);
1607        mi->RemoveOperand(1);
1608        mi->setDesc(TII->get(TargetOpcode::COPY));
1609        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1610      }
1611
1612      // Clear TiedOperands here instead of at the top of the loop
1613      // since most instructions do not have tied operands.
1614      TiedOperands.clear();
1615      mi = nmi;
1616    }
1617  }
1618
1619  // Some remat'ed instructions are dead.
1620  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1621    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1622    if (MRI->use_nodbg_empty(VReg)) {
1623      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1624      DefMI->eraseFromParent();
1625    }
1626  }
1627
1628  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1629  // SSA form. It's now safe to de-SSA.
1630  MadeChange |= EliminateRegSequences();
1631
1632  return MadeChange;
1633}
1634
1635static void UpdateRegSequenceSrcs(unsigned SrcReg,
1636                                  unsigned DstReg, unsigned SubIdx,
1637                                  MachineRegisterInfo *MRI,
1638                                  const TargetRegisterInfo &TRI) {
1639  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1640         RE = MRI->reg_end(); RI != RE; ) {
1641    MachineOperand &MO = RI.getOperand();
1642    ++RI;
1643    MO.substVirtReg(DstReg, SubIdx, TRI);
1644  }
1645}
1646
1647// Find the first def of Reg, assuming they are all in the same basic block.
1648static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) {
1649  SmallPtrSet<MachineInstr*, 8> Defs;
1650  MachineInstr *First = 0;
1651  for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg);
1652       MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI))
1653    First = MI;
1654  if (!First)
1655    return 0;
1656
1657  MachineBasicBlock *MBB = First->getParent();
1658  MachineBasicBlock::iterator A = First, B = First;
1659  bool Moving;
1660  do {
1661    Moving = false;
1662    if (A != MBB->begin()) {
1663      Moving = true;
1664      --A;
1665      if (Defs.erase(A)) First = A;
1666    }
1667    if (B != MBB->end()) {
1668      Defs.erase(B);
1669      ++B;
1670      Moving = true;
1671    }
1672  } while (Moving && !Defs.empty());
1673  assert(Defs.empty() && "Instructions outside basic block!");
1674  return First;
1675}
1676
1677/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1678/// EXTRACT_SUBREG from the same register and to the same virtual register
1679/// with different sub-register indices, attempt to combine the
1680/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1681/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1682/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1683/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1684/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1685/// reg1026 to reg1029.
1686void
1687TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1688                                              unsigned DstReg) {
1689  SmallSet<unsigned, 4> Seen;
1690  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1691    unsigned SrcReg = Srcs[i];
1692    if (!Seen.insert(SrcReg))
1693      continue;
1694
1695    // Check that the instructions are all in the same basic block.
1696    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1697    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1698    if (SrcDefMI->getParent() != DstDefMI->getParent())
1699      continue;
1700
1701    // If there are no other uses than copies which feed into
1702    // the reg_sequence, then we might be able to coalesce them.
1703    bool CanCoalesce = true;
1704    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1705    for (MachineRegisterInfo::use_nodbg_iterator
1706           UI = MRI->use_nodbg_begin(SrcReg),
1707           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1708      MachineInstr *UseMI = &*UI;
1709      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1710        CanCoalesce = false;
1711        break;
1712      }
1713      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1714      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1715    }
1716
1717    if (!CanCoalesce || SrcSubIndices.size() < 2)
1718      continue;
1719
1720    // Check that the source subregisters can be combined.
1721    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1722    unsigned NewSrcSubIdx = 0;
1723    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1724                                      NewSrcSubIdx))
1725      continue;
1726
1727    // Check that the destination subregisters can also be combined.
1728    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1729    unsigned NewDstSubIdx = 0;
1730    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1731                                      NewDstSubIdx))
1732      continue;
1733
1734    // If neither source nor destination can be combined to the full register,
1735    // just give up.  This could be improved if it ever matters.
1736    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1737      continue;
1738
1739    // Now that we know that all the uses are extract_subregs and that those
1740    // subregs can somehow be combined, scan all the extract_subregs again to
1741    // make sure the subregs are in the right order and can be composed.
1742    MachineInstr *SomeMI = 0;
1743    CanCoalesce = true;
1744    for (MachineRegisterInfo::use_nodbg_iterator
1745           UI = MRI->use_nodbg_begin(SrcReg),
1746           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1747      MachineInstr *UseMI = &*UI;
1748      assert(UseMI->isCopy());
1749      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1750      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1751      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1752      if ((NewDstSubIdx == 0 &&
1753           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1754          (NewSrcSubIdx == 0 &&
1755           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1756        CanCoalesce = false;
1757        break;
1758      }
1759      // Keep track of one of the uses.  Preferably the first one which has a
1760      // <def,undef> flag.
1761      if (!SomeMI || UseMI->getOperand(0).isUndef())
1762        SomeMI = UseMI;
1763    }
1764    if (!CanCoalesce)
1765      continue;
1766
1767    // Insert a copy to replace the original.
1768    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1769                                   SomeMI->getDebugLoc(),
1770                                   TII->get(TargetOpcode::COPY))
1771      .addReg(DstReg, RegState::Define |
1772                      getUndefRegState(SomeMI->getOperand(0).isUndef()),
1773              NewDstSubIdx)
1774      .addReg(SrcReg, 0, NewSrcSubIdx);
1775
1776    // Remove all the old extract instructions.
1777    for (MachineRegisterInfo::use_nodbg_iterator
1778           UI = MRI->use_nodbg_begin(SrcReg),
1779           UE = MRI->use_nodbg_end(); UI != UE; ) {
1780      MachineInstr *UseMI = &*UI;
1781      ++UI;
1782      if (UseMI == CopyMI)
1783        continue;
1784      assert(UseMI->isCopy());
1785      // Move any kills to the new copy or extract instruction.
1786      if (UseMI->getOperand(1).isKill()) {
1787        CopyMI->getOperand(1).setIsKill();
1788        if (LV)
1789          // Update live variables
1790          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1791      }
1792      UseMI->eraseFromParent();
1793    }
1794  }
1795}
1796
1797static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1798                                    MachineRegisterInfo *MRI) {
1799  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1800         UE = MRI->use_end(); UI != UE; ++UI) {
1801    MachineInstr *UseMI = &*UI;
1802    if (UseMI != RegSeq && UseMI->isRegSequence())
1803      return true;
1804  }
1805  return false;
1806}
1807
1808/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1809/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1810/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1811///
1812/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1813/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1814/// =>
1815/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1816bool TwoAddressInstructionPass::EliminateRegSequences() {
1817  if (RegSequences.empty())
1818    return false;
1819
1820  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1821    MachineInstr *MI = RegSequences[i];
1822    unsigned DstReg = MI->getOperand(0).getReg();
1823    if (MI->getOperand(0).getSubReg() ||
1824        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1825        !(MI->getNumOperands() & 1)) {
1826      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1827      llvm_unreachable(0);
1828    }
1829
1830    bool IsImpDef = true;
1831    SmallVector<unsigned, 4> RealSrcs;
1832    SmallSet<unsigned, 4> Seen;
1833    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1834      unsigned SrcReg = MI->getOperand(i).getReg();
1835      unsigned SubIdx = MI->getOperand(i+1).getImm();
1836      // DefMI of NULL means the value does not have a vreg in this block
1837      // i.e., its a physical register or a subreg.
1838      // In either case we force a copy to be generated.
1839      MachineInstr *DefMI = NULL;
1840      if (!MI->getOperand(i).getSubReg() &&
1841          !TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1842        DefMI = MRI->getVRegDef(SrcReg);
1843      }
1844
1845      if (DefMI && DefMI->isImplicitDef()) {
1846        DefMI->eraseFromParent();
1847        continue;
1848      }
1849      IsImpDef = false;
1850
1851      // Remember COPY sources. These might be candidate for coalescing.
1852      if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1853        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1854
1855      bool isKill = MI->getOperand(i).isKill();
1856      if (!DefMI || !Seen.insert(SrcReg) ||
1857          MI->getParent() != DefMI->getParent() ||
1858          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1859          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1860                                         MRI->getRegClass(SrcReg), SubIdx)) {
1861        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1862        // Also add an copy if the source is live-in the block. We don't want
1863        // to end up with a partial-redef of a livein, e.g.
1864        // BB0:
1865        // reg1051:10<def> =
1866        // ...
1867        // BB1:
1868        // ... = reg1051:10
1869        // BB2:
1870        // reg1051:9<def> =
1871        // LiveIntervalAnalysis won't like it.
1872        //
1873        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1874        // correctly up to date becomes very difficult. Insert a copy.
1875
1876        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1877        // might insert a COPY that uses SrcReg after is was killed.
1878        if (isKill)
1879          for (unsigned j = i + 2; j < e; j += 2)
1880            if (MI->getOperand(j).getReg() == SrcReg) {
1881              MI->getOperand(j).setIsKill();
1882              isKill = false;
1883              break;
1884            }
1885
1886        MachineBasicBlock::iterator InsertLoc = MI;
1887        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1888                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1889            .addReg(DstReg, RegState::Define, SubIdx)
1890            .addReg(SrcReg, getKillRegState(isKill));
1891        MI->getOperand(i).setReg(0);
1892        if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1893          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1894        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1895      }
1896    }
1897
1898    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1899      unsigned SrcReg = MI->getOperand(i).getReg();
1900      if (!SrcReg) continue;
1901      unsigned SubIdx = MI->getOperand(i+1).getImm();
1902      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1903    }
1904
1905    // Set <def,undef> flags on the first DstReg def in the basic block.
1906    // It marks the beginning of the live range. All the other defs are
1907    // read-modify-write.
1908    if (MachineInstr *Def = findFirstDef(DstReg, MRI)) {
1909      for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
1910        MachineOperand &MO = Def->getOperand(i);
1911        if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1912          MO.setIsUndef();
1913      }
1914      // Make sure there is a full non-subreg imp-def operand on the
1915      // instruction.  This shouldn't be necessary, but it seems that at least
1916      // RAFast requires it.
1917      Def->addRegisterDefined(DstReg, TRI);
1918      DEBUG(dbgs() << "First def: " << *Def);
1919    }
1920
1921    if (IsImpDef) {
1922      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1923      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1924      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1925        MI->RemoveOperand(j);
1926    } else {
1927      DEBUG(dbgs() << "Eliminated: " << *MI);
1928      MI->eraseFromParent();
1929    }
1930
1931    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1932    // INSERT_SUBREG instructions that must have <undef> flags added by
1933    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1934    if (LV)
1935      CoalesceExtSubRegs(RealSrcs, DstReg);
1936  }
1937
1938  RegSequences.clear();
1939  return true;
1940}
1941