TwoAddressInstructionPass.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist);
128
129    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
130                     SmallPtrSet<MachineInstr*, 8> &Processed);
131
132    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
133
134    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136    /// sub-register references of the register defined by REG_SEQUENCE.
137    bool EliminateRegSequences();
138
139  public:
140    static char ID; // Pass identification, replacement for typeid
141    TwoAddressInstructionPass() : MachineFunctionPass(ID) {}
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144      AU.setPreservesCFG();
145      AU.addRequired<AliasAnalysis>();
146      AU.addPreserved<LiveVariables>();
147      AU.addPreservedID(MachineLoopInfoID);
148      AU.addPreservedID(MachineDominatorsID);
149      if (StrongPHIElim)
150        AU.addPreservedID(StrongPHIEliminationID);
151      else
152        AU.addPreservedID(PHIEliminationID);
153      MachineFunctionPass::getAnalysisUsage(AU);
154    }
155
156    /// runOnMachineFunction - Pass entry point.
157    bool runOnMachineFunction(MachineFunction&);
158  };
159}
160
161char TwoAddressInstructionPass::ID = 0;
162INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
163                "Two-Address instruction pass", false, false)
164INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
165INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
166                "Two-Address instruction pass", false, false)
167
168char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
169
170/// Sink3AddrInstruction - A two-address instruction has been converted to a
171/// three-address instruction to avoid clobbering a register. Try to sink it
172/// past the instruction that would kill the above mentioned register to reduce
173/// register pressure.
174bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
175                                           MachineInstr *MI, unsigned SavedReg,
176                                           MachineBasicBlock::iterator OldPos) {
177  // Check if it's safe to move this instruction.
178  bool SeenStore = true; // Be conservative.
179  if (!MI->isSafeToMove(TII, AA, SeenStore))
180    return false;
181
182  unsigned DefReg = 0;
183  SmallSet<unsigned, 4> UseRegs;
184
185  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
186    const MachineOperand &MO = MI->getOperand(i);
187    if (!MO.isReg())
188      continue;
189    unsigned MOReg = MO.getReg();
190    if (!MOReg)
191      continue;
192    if (MO.isUse() && MOReg != SavedReg)
193      UseRegs.insert(MO.getReg());
194    if (!MO.isDef())
195      continue;
196    if (MO.isImplicit())
197      // Don't try to move it if it implicitly defines a register.
198      return false;
199    if (DefReg)
200      // For now, don't move any instructions that define multiple registers.
201      return false;
202    DefReg = MO.getReg();
203  }
204
205  // Find the instruction that kills SavedReg.
206  MachineInstr *KillMI = NULL;
207  for (MachineRegisterInfo::use_nodbg_iterator
208         UI = MRI->use_nodbg_begin(SavedReg),
209         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
210    MachineOperand &UseMO = UI.getOperand();
211    if (!UseMO.isKill())
212      continue;
213    KillMI = UseMO.getParent();
214    break;
215  }
216
217  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
218    return false;
219
220  // If any of the definitions are used by another instruction between the
221  // position and the kill use, then it's not safe to sink it.
222  //
223  // FIXME: This can be sped up if there is an easy way to query whether an
224  // instruction is before or after another instruction. Then we can use
225  // MachineRegisterInfo def / use instead.
226  MachineOperand *KillMO = NULL;
227  MachineBasicBlock::iterator KillPos = KillMI;
228  ++KillPos;
229
230  unsigned NumVisited = 0;
231  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
232    MachineInstr *OtherMI = I;
233    // DBG_VALUE cannot be counted against the limit.
234    if (OtherMI->isDebugValue())
235      continue;
236    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
237      return false;
238    ++NumVisited;
239    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
240      MachineOperand &MO = OtherMI->getOperand(i);
241      if (!MO.isReg())
242        continue;
243      unsigned MOReg = MO.getReg();
244      if (!MOReg)
245        continue;
246      if (DefReg == MOReg)
247        return false;
248
249      if (MO.isKill()) {
250        if (OtherMI == KillMI && MOReg == SavedReg)
251          // Save the operand that kills the register. We want to unset the kill
252          // marker if we can sink MI past it.
253          KillMO = &MO;
254        else if (UseRegs.count(MOReg))
255          // One of the uses is killed before the destination.
256          return false;
257      }
258    }
259  }
260
261  // Update kill and LV information.
262  KillMO->setIsKill(false);
263  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
264  KillMO->setIsKill(true);
265
266  if (LV)
267    LV->replaceKillInstruction(SavedReg, KillMI, MI);
268
269  // Move instruction to its destination.
270  MBB->remove(MI);
271  MBB->insert(KillPos, MI);
272
273  ++Num3AddrSunk;
274  return true;
275}
276
277/// isTwoAddrUse - Return true if the specified MI is using the specified
278/// register as a two-address operand.
279static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
280  const TargetInstrDesc &TID = UseMI->getDesc();
281  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
282    MachineOperand &MO = UseMI->getOperand(i);
283    if (MO.isReg() && MO.getReg() == Reg &&
284        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
285      // Earlier use is a two-address one.
286      return true;
287  }
288  return false;
289}
290
291/// isProfitableToReMat - Return true if the heuristics determines it is likely
292/// to be profitable to re-materialize the definition of Reg rather than copy
293/// the register.
294bool
295TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
296                                         const TargetRegisterClass *RC,
297                                         MachineInstr *MI, MachineInstr *DefMI,
298                                         MachineBasicBlock *MBB, unsigned Loc) {
299  bool OtherUse = false;
300  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
301         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
302    MachineOperand &UseMO = UI.getOperand();
303    MachineInstr *UseMI = UseMO.getParent();
304    MachineBasicBlock *UseMBB = UseMI->getParent();
305    if (UseMBB == MBB) {
306      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
307      if (DI != DistanceMap.end() && DI->second == Loc)
308        continue;  // Current use.
309      OtherUse = true;
310      // There is at least one other use in the MBB that will clobber the
311      // register.
312      if (isTwoAddrUse(UseMI, Reg))
313        return true;
314    }
315  }
316
317  // If other uses in MBB are not two-address uses, then don't remat.
318  if (OtherUse)
319    return false;
320
321  // No other uses in the same block, remat if it's defined in the same
322  // block so it does not unnecessarily extend the live range.
323  return MBB == DefMI->getParent();
324}
325
326/// NoUseAfterLastDef - Return true if there are no intervening uses between the
327/// last instruction in the MBB that defines the specified register and the
328/// two-address instruction which is being processed. It also returns the last
329/// def location by reference
330bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
331                                           MachineBasicBlock *MBB, unsigned Dist,
332                                           unsigned &LastDef) {
333  LastDef = 0;
334  unsigned LastUse = Dist;
335  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
336         E = MRI->reg_end(); I != E; ++I) {
337    MachineOperand &MO = I.getOperand();
338    MachineInstr *MI = MO.getParent();
339    if (MI->getParent() != MBB || MI->isDebugValue())
340      continue;
341    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
342    if (DI == DistanceMap.end())
343      continue;
344    if (MO.isUse() && DI->second < LastUse)
345      LastUse = DI->second;
346    if (MO.isDef() && DI->second > LastDef)
347      LastDef = DI->second;
348  }
349
350  return !(LastUse > LastDef && LastUse < Dist);
351}
352
353MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
354                                                         MachineBasicBlock *MBB,
355                                                         unsigned Dist) {
356  unsigned LastUseDist = 0;
357  MachineInstr *LastUse = 0;
358  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
359         E = MRI->reg_end(); I != E; ++I) {
360    MachineOperand &MO = I.getOperand();
361    MachineInstr *MI = MO.getParent();
362    if (MI->getParent() != MBB || MI->isDebugValue())
363      continue;
364    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
365    if (DI == DistanceMap.end())
366      continue;
367    if (DI->second >= Dist)
368      continue;
369
370    if (MO.isUse() && DI->second > LastUseDist) {
371      LastUse = DI->first;
372      LastUseDist = DI->second;
373    }
374  }
375  return LastUse;
376}
377
378/// isCopyToReg - Return true if the specified MI is a copy instruction or
379/// a extract_subreg instruction. It also returns the source and destination
380/// registers and whether they are physical registers by reference.
381static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
382                        unsigned &SrcReg, unsigned &DstReg,
383                        bool &IsSrcPhys, bool &IsDstPhys) {
384  SrcReg = 0;
385  DstReg = 0;
386  if (MI.isCopy()) {
387    DstReg = MI.getOperand(0).getReg();
388    SrcReg = MI.getOperand(1).getReg();
389  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
390    DstReg = MI.getOperand(0).getReg();
391    SrcReg = MI.getOperand(2).getReg();
392  } else
393    return false;
394
395  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
396  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
397  return true;
398}
399
400/// isKilled - Test if the given register value, which is used by the given
401/// instruction, is killed by the given instruction. This looks through
402/// coalescable copies to see if the original value is potentially not killed.
403///
404/// For example, in this code:
405///
406///   %reg1034 = copy %reg1024
407///   %reg1035 = copy %reg1025<kill>
408///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
409///
410/// %reg1034 is not considered to be killed, since it is copied from a
411/// register which is not killed. Treating it as not killed lets the
412/// normal heuristics commute the (two-address) add, which lets
413/// coalescing eliminate the extra copy.
414///
415static bool isKilled(MachineInstr &MI, unsigned Reg,
416                     const MachineRegisterInfo *MRI,
417                     const TargetInstrInfo *TII) {
418  MachineInstr *DefMI = &MI;
419  for (;;) {
420    if (!DefMI->killsRegister(Reg))
421      return false;
422    if (TargetRegisterInfo::isPhysicalRegister(Reg))
423      return true;
424    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
425    // If there are multiple defs, we can't do a simple analysis, so just
426    // go with what the kill flag says.
427    if (llvm::next(Begin) != MRI->def_end())
428      return true;
429    DefMI = &*Begin;
430    bool IsSrcPhys, IsDstPhys;
431    unsigned SrcReg,  DstReg;
432    // If the def is something other than a copy, then it isn't going to
433    // be coalesced, so follow the kill flag.
434    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
435      return true;
436    Reg = SrcReg;
437  }
438}
439
440/// isTwoAddrUse - Return true if the specified MI uses the specified register
441/// as a two-address use. If so, return the destination register by reference.
442static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
443  const TargetInstrDesc &TID = MI.getDesc();
444  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
445  for (unsigned i = 0; i != NumOps; ++i) {
446    const MachineOperand &MO = MI.getOperand(i);
447    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
448      continue;
449    unsigned ti;
450    if (MI.isRegTiedToDefOperand(i, &ti)) {
451      DstReg = MI.getOperand(ti).getReg();
452      return true;
453    }
454  }
455  return false;
456}
457
458/// findOnlyInterestingUse - Given a register, if has a single in-basic block
459/// use, return the use instruction if it's a copy or a two-address use.
460static
461MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
462                                     MachineRegisterInfo *MRI,
463                                     const TargetInstrInfo *TII,
464                                     bool &IsCopy,
465                                     unsigned &DstReg, bool &IsDstPhys) {
466  if (!MRI->hasOneNonDBGUse(Reg))
467    // None or more than one use.
468    return 0;
469  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
470  if (UseMI.getParent() != MBB)
471    return 0;
472  unsigned SrcReg;
473  bool IsSrcPhys;
474  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
475    IsCopy = true;
476    return &UseMI;
477  }
478  IsDstPhys = false;
479  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
480    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
481    return &UseMI;
482  }
483  return 0;
484}
485
486/// getMappedReg - Return the physical register the specified virtual register
487/// might be mapped to.
488static unsigned
489getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
490  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
491    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
492    if (SI == RegMap.end())
493      return 0;
494    Reg = SI->second;
495  }
496  if (TargetRegisterInfo::isPhysicalRegister(Reg))
497    return Reg;
498  return 0;
499}
500
501/// regsAreCompatible - Return true if the two registers are equal or aliased.
502///
503static bool
504regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
505  if (RegA == RegB)
506    return true;
507  if (!RegA || !RegB)
508    return false;
509  return TRI->regsOverlap(RegA, RegB);
510}
511
512
513/// isProfitableToReMat - Return true if it's potentially profitable to commute
514/// the two-address instruction that's being processed.
515bool
516TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
517                                       MachineInstr *MI, MachineBasicBlock *MBB,
518                                       unsigned Dist) {
519  // Determine if it's profitable to commute this two address instruction. In
520  // general, we want no uses between this instruction and the definition of
521  // the two-address register.
522  // e.g.
523  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
524  // %reg1029<def> = MOV8rr %reg1028
525  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
526  // insert => %reg1030<def> = MOV8rr %reg1028
527  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
528  // In this case, it might not be possible to coalesce the second MOV8rr
529  // instruction if the first one is coalesced. So it would be profitable to
530  // commute it:
531  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
532  // %reg1029<def> = MOV8rr %reg1028
533  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
534  // insert => %reg1030<def> = MOV8rr %reg1029
535  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
536
537  if (!MI->killsRegister(regC))
538    return false;
539
540  // Ok, we have something like:
541  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
542  // let's see if it's worth commuting it.
543
544  // Look for situations like this:
545  // %reg1024<def> = MOV r1
546  // %reg1025<def> = MOV r0
547  // %reg1026<def> = ADD %reg1024, %reg1025
548  // r0            = MOV %reg1026
549  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
550  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
551  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
552  unsigned ToRegB = getMappedReg(regB, DstRegMap);
553  unsigned ToRegC = getMappedReg(regC, DstRegMap);
554  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
555      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
556       regsAreCompatible(FromRegC, ToRegB, TRI)))
557    return true;
558
559  // If there is a use of regC between its last def (could be livein) and this
560  // instruction, then bail.
561  unsigned LastDefC = 0;
562  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
563    return false;
564
565  // If there is a use of regB between its last def (could be livein) and this
566  // instruction, then go ahead and make this transformation.
567  unsigned LastDefB = 0;
568  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
569    return true;
570
571  // Since there are no intervening uses for both registers, then commute
572  // if the def of regC is closer. Its live interval is shorter.
573  return LastDefB && LastDefC && LastDefC > LastDefB;
574}
575
576/// CommuteInstruction - Commute a two-address instruction and update the basic
577/// block, distance map, and live variables if needed. Return true if it is
578/// successful.
579bool
580TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
581                               MachineFunction::iterator &mbbi,
582                               unsigned RegB, unsigned RegC, unsigned Dist) {
583  MachineInstr *MI = mi;
584  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
585  MachineInstr *NewMI = TII->commuteInstruction(MI);
586
587  if (NewMI == 0) {
588    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
589    return false;
590  }
591
592  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
593  // If the instruction changed to commute it, update livevar.
594  if (NewMI != MI) {
595    if (LV)
596      // Update live variables
597      LV->replaceKillInstruction(RegC, MI, NewMI);
598
599    mbbi->insert(mi, NewMI);           // Insert the new inst
600    mbbi->erase(mi);                   // Nuke the old inst.
601    mi = NewMI;
602    DistanceMap.insert(std::make_pair(NewMI, Dist));
603  }
604
605  // Update source register map.
606  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
607  if (FromRegC) {
608    unsigned RegA = MI->getOperand(0).getReg();
609    SrcRegMap[RegA] = FromRegC;
610  }
611
612  return true;
613}
614
615/// isProfitableToConv3Addr - Return true if it is profitable to convert the
616/// given 2-address instruction to a 3-address one.
617bool
618TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
619  // Look for situations like this:
620  // %reg1024<def> = MOV r1
621  // %reg1025<def> = MOV r0
622  // %reg1026<def> = ADD %reg1024, %reg1025
623  // r2            = MOV %reg1026
624  // Turn ADD into a 3-address instruction to avoid a copy.
625  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
626  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
627  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
628}
629
630/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
631/// three address one. Return true if this transformation was successful.
632bool
633TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
634                                              MachineBasicBlock::iterator &nmi,
635                                              MachineFunction::iterator &mbbi,
636                                              unsigned RegB, unsigned Dist) {
637  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
638  if (NewMI) {
639    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
640    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
641    bool Sunk = false;
642
643    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
644      // FIXME: Temporary workaround. If the new instruction doesn't
645      // uses RegB, convertToThreeAddress must have created more
646      // then one instruction.
647      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
648
649    mbbi->erase(mi); // Nuke the old inst.
650
651    if (!Sunk) {
652      DistanceMap.insert(std::make_pair(NewMI, Dist));
653      mi = NewMI;
654      nmi = llvm::next(mi);
655    }
656    return true;
657  }
658
659  return false;
660}
661
662/// ProcessCopy - If the specified instruction is not yet processed, process it
663/// if it's a copy. For a copy instruction, we find the physical registers the
664/// source and destination registers might be mapped to. These are kept in
665/// point-to maps used to determine future optimizations. e.g.
666/// v1024 = mov r0
667/// v1025 = mov r1
668/// v1026 = add v1024, v1025
669/// r1    = mov r1026
670/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
671/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
672/// potentially joined with r1 on the output side. It's worthwhile to commute
673/// 'add' to eliminate a copy.
674void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
675                                     MachineBasicBlock *MBB,
676                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
677  if (Processed.count(MI))
678    return;
679
680  bool IsSrcPhys, IsDstPhys;
681  unsigned SrcReg, DstReg;
682  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
683    return;
684
685  if (IsDstPhys && !IsSrcPhys)
686    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
687  else if (!IsDstPhys && IsSrcPhys) {
688    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
689    if (!isNew)
690      assert(SrcRegMap[DstReg] == SrcReg &&
691             "Can't map to two src physical registers!");
692
693    SmallVector<unsigned, 4> VirtRegPairs;
694    bool IsCopy = false;
695    unsigned NewReg = 0;
696    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
697                                                   IsCopy, NewReg, IsDstPhys)) {
698      if (IsCopy) {
699        if (!Processed.insert(UseMI))
700          break;
701      }
702
703      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
704      if (DI != DistanceMap.end())
705        // Earlier in the same MBB.Reached via a back edge.
706        break;
707
708      if (IsDstPhys) {
709        VirtRegPairs.push_back(NewReg);
710        break;
711      }
712      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
713      if (!isNew)
714        assert(SrcRegMap[NewReg] == DstReg &&
715               "Can't map to two src physical registers!");
716      VirtRegPairs.push_back(NewReg);
717      DstReg = NewReg;
718    }
719
720    if (!VirtRegPairs.empty()) {
721      unsigned ToReg = VirtRegPairs.back();
722      VirtRegPairs.pop_back();
723      while (!VirtRegPairs.empty()) {
724        unsigned FromReg = VirtRegPairs.back();
725        VirtRegPairs.pop_back();
726        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
727        if (!isNew)
728          assert(DstRegMap[FromReg] == ToReg &&
729                 "Can't map to two dst physical registers!");
730        ToReg = FromReg;
731      }
732    }
733  }
734
735  Processed.insert(MI);
736}
737
738/// isSafeToDelete - If the specified instruction does not produce any side
739/// effects and all of its defs are dead, then it's safe to delete.
740static bool isSafeToDelete(MachineInstr *MI,
741                           const TargetInstrInfo *TII,
742                           SmallVector<unsigned, 4> &Kills) {
743  const TargetInstrDesc &TID = MI->getDesc();
744  if (TID.mayStore() || TID.isCall())
745    return false;
746  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
747    return false;
748
749  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
750    MachineOperand &MO = MI->getOperand(i);
751    if (!MO.isReg())
752      continue;
753    if (MO.isDef() && !MO.isDead())
754      return false;
755    if (MO.isUse() && MO.isKill())
756      Kills.push_back(MO.getReg());
757  }
758  return true;
759}
760
761/// canUpdateDeletedKills - Check if all the registers listed in Kills are
762/// killed by instructions in MBB preceding the current instruction at
763/// position Dist.  If so, return true and record information about the
764/// preceding kills in NewKills.
765bool TwoAddressInstructionPass::
766canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
767                      SmallVector<NewKill, 4> &NewKills,
768                      MachineBasicBlock *MBB, unsigned Dist) {
769  while (!Kills.empty()) {
770    unsigned Kill = Kills.back();
771    Kills.pop_back();
772    if (TargetRegisterInfo::isPhysicalRegister(Kill))
773      return false;
774
775    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
776    if (!LastKill)
777      return false;
778
779    bool isModRef = LastKill->definesRegister(Kill);
780    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
781                                      LastKill));
782  }
783  return true;
784}
785
786/// DeleteUnusedInstr - If an instruction with a tied register operand can
787/// be safely deleted, just delete it.
788bool
789TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
790                                             MachineBasicBlock::iterator &nmi,
791                                             MachineFunction::iterator &mbbi,
792                                             unsigned Dist) {
793  // Check if the instruction has no side effects and if all its defs are dead.
794  SmallVector<unsigned, 4> Kills;
795  if (!isSafeToDelete(mi, TII, Kills))
796    return false;
797
798  // If this instruction kills some virtual registers, we need to
799  // update the kill information. If it's not possible to do so,
800  // then bail out.
801  SmallVector<NewKill, 4> NewKills;
802  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
803    return false;
804
805  if (LV) {
806    while (!NewKills.empty()) {
807      MachineInstr *NewKill = NewKills.back().second;
808      unsigned Kill = NewKills.back().first.first;
809      bool isDead = NewKills.back().first.second;
810      NewKills.pop_back();
811      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
812        if (isDead)
813          LV->addVirtualRegisterDead(Kill, NewKill);
814        else
815          LV->addVirtualRegisterKilled(Kill, NewKill);
816      }
817    }
818  }
819
820  mbbi->erase(mi); // Nuke the old inst.
821  mi = nmi;
822  return true;
823}
824
825/// TryInstructionTransform - For the case where an instruction has a single
826/// pair of tied register operands, attempt some transformations that may
827/// either eliminate the tied operands or improve the opportunities for
828/// coalescing away the register copy.  Returns true if the tied operands
829/// are eliminated altogether.
830bool TwoAddressInstructionPass::
831TryInstructionTransform(MachineBasicBlock::iterator &mi,
832                        MachineBasicBlock::iterator &nmi,
833                        MachineFunction::iterator &mbbi,
834                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
835  const TargetInstrDesc &TID = mi->getDesc();
836  unsigned regA = mi->getOperand(DstIdx).getReg();
837  unsigned regB = mi->getOperand(SrcIdx).getReg();
838
839  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
840         "cannot make instruction into two-address form");
841
842  // If regA is dead and the instruction can be deleted, just delete
843  // it so it doesn't clobber regB.
844  bool regBKilled = isKilled(*mi, regB, MRI, TII);
845  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
846      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
847    ++NumDeletes;
848    return true; // Done with this instruction.
849  }
850
851  // Check if it is profitable to commute the operands.
852  unsigned SrcOp1, SrcOp2;
853  unsigned regC = 0;
854  unsigned regCIdx = ~0U;
855  bool TryCommute = false;
856  bool AggressiveCommute = false;
857  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
858      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
859    if (SrcIdx == SrcOp1)
860      regCIdx = SrcOp2;
861    else if (SrcIdx == SrcOp2)
862      regCIdx = SrcOp1;
863
864    if (regCIdx != ~0U) {
865      regC = mi->getOperand(regCIdx).getReg();
866      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
867        // If C dies but B does not, swap the B and C operands.
868        // This makes the live ranges of A and C joinable.
869        TryCommute = true;
870      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
871        TryCommute = true;
872        AggressiveCommute = true;
873      }
874    }
875  }
876
877  // If it's profitable to commute, try to do so.
878  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
879    ++NumCommuted;
880    if (AggressiveCommute)
881      ++NumAggrCommuted;
882    return false;
883  }
884
885  if (TID.isConvertibleTo3Addr()) {
886    // This instruction is potentially convertible to a true
887    // three-address instruction.  Check if it is profitable.
888    if (!regBKilled || isProfitableToConv3Addr(regA)) {
889      // Try to convert it.
890      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
891        ++NumConvertedTo3Addr;
892        return true; // Done with this instruction.
893      }
894    }
895  }
896
897  // If this is an instruction with a load folded into it, try unfolding
898  // the load, e.g. avoid this:
899  //   movq %rdx, %rcx
900  //   addq (%rax), %rcx
901  // in favor of this:
902  //   movq (%rax), %rcx
903  //   addq %rdx, %rcx
904  // because it's preferable to schedule a load than a register copy.
905  if (TID.mayLoad() && !regBKilled) {
906    // Determine if a load can be unfolded.
907    unsigned LoadRegIndex;
908    unsigned NewOpc =
909      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
910                                      /*UnfoldLoad=*/true,
911                                      /*UnfoldStore=*/false,
912                                      &LoadRegIndex);
913    if (NewOpc != 0) {
914      const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
915      if (UnfoldTID.getNumDefs() == 1) {
916        MachineFunction &MF = *mbbi->getParent();
917
918        // Unfold the load.
919        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
920        const TargetRegisterClass *RC =
921          UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
922        unsigned Reg = MRI->createVirtualRegister(RC);
923        SmallVector<MachineInstr *, 2> NewMIs;
924        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
925                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
926                                      NewMIs)) {
927          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
928          return false;
929        }
930        assert(NewMIs.size() == 2 &&
931               "Unfolded a load into multiple instructions!");
932        // The load was previously folded, so this is the only use.
933        NewMIs[1]->addRegisterKilled(Reg, TRI);
934
935        // Tentatively insert the instructions into the block so that they
936        // look "normal" to the transformation logic.
937        mbbi->insert(mi, NewMIs[0]);
938        mbbi->insert(mi, NewMIs[1]);
939
940        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
941                     << "2addr:    NEW INST: " << *NewMIs[1]);
942
943        // Transform the instruction, now that it no longer has a load.
944        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
945        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
946        MachineBasicBlock::iterator NewMI = NewMIs[1];
947        bool TransformSuccess =
948          TryInstructionTransform(NewMI, mi, mbbi,
949                                  NewSrcIdx, NewDstIdx, Dist);
950        if (TransformSuccess ||
951            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
952          // Success, or at least we made an improvement. Keep the unfolded
953          // instructions and discard the original.
954          if (LV) {
955            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
956              MachineOperand &MO = mi->getOperand(i);
957              if (MO.isReg() && MO.getReg() != 0 &&
958                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
959                if (MO.isUse()) {
960                  if (MO.isKill()) {
961                    if (NewMIs[0]->killsRegister(MO.getReg()))
962                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
963                    else {
964                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
965                             "Kill missing after load unfold!");
966                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
967                    }
968                  }
969                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
970                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
971                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
972                  else {
973                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
974                           "Dead flag missing after load unfold!");
975                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
976                  }
977                }
978              }
979            }
980            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
981          }
982          mi->eraseFromParent();
983          mi = NewMIs[1];
984          if (TransformSuccess)
985            return true;
986        } else {
987          // Transforming didn't eliminate the tie and didn't lead to an
988          // improvement. Clean up the unfolded instructions and keep the
989          // original.
990          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
991          NewMIs[0]->eraseFromParent();
992          NewMIs[1]->eraseFromParent();
993        }
994      }
995    }
996  }
997
998  return false;
999}
1000
1001/// runOnMachineFunction - Reduce two-address instructions to two operands.
1002///
1003bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1004  DEBUG(dbgs() << "Machine Function\n");
1005  const TargetMachine &TM = MF.getTarget();
1006  MRI = &MF.getRegInfo();
1007  TII = TM.getInstrInfo();
1008  TRI = TM.getRegisterInfo();
1009  LV = getAnalysisIfAvailable<LiveVariables>();
1010  AA = &getAnalysis<AliasAnalysis>();
1011
1012  bool MadeChange = false;
1013
1014  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1015  DEBUG(dbgs() << "********** Function: "
1016        << MF.getFunction()->getName() << '\n');
1017
1018  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1019  BitVector ReMatRegs;
1020  ReMatRegs.resize(MRI->getLastVirtReg()+1);
1021
1022  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1023    TiedOperandMap;
1024  TiedOperandMap TiedOperands(4);
1025
1026  SmallPtrSet<MachineInstr*, 8> Processed;
1027  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1028       mbbi != mbbe; ++mbbi) {
1029    unsigned Dist = 0;
1030    DistanceMap.clear();
1031    SrcRegMap.clear();
1032    DstRegMap.clear();
1033    Processed.clear();
1034    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1035         mi != me; ) {
1036      MachineBasicBlock::iterator nmi = llvm::next(mi);
1037      if (mi->isDebugValue()) {
1038        mi = nmi;
1039        continue;
1040      }
1041
1042      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1043      if (mi->isRegSequence())
1044        RegSequences.push_back(&*mi);
1045
1046      const TargetInstrDesc &TID = mi->getDesc();
1047      bool FirstTied = true;
1048
1049      DistanceMap.insert(std::make_pair(mi, ++Dist));
1050
1051      ProcessCopy(&*mi, &*mbbi, Processed);
1052
1053      // First scan through all the tied register uses in this instruction
1054      // and record a list of pairs of tied operands for each register.
1055      unsigned NumOps = mi->isInlineAsm()
1056        ? mi->getNumOperands() : TID.getNumOperands();
1057      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1058        unsigned DstIdx = 0;
1059        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1060          continue;
1061
1062        if (FirstTied) {
1063          FirstTied = false;
1064          ++NumTwoAddressInstrs;
1065          DEBUG(dbgs() << '\t' << *mi);
1066        }
1067
1068        assert(mi->getOperand(SrcIdx).isReg() &&
1069               mi->getOperand(SrcIdx).getReg() &&
1070               mi->getOperand(SrcIdx).isUse() &&
1071               "two address instruction invalid");
1072
1073        unsigned regB = mi->getOperand(SrcIdx).getReg();
1074        TiedOperandMap::iterator OI = TiedOperands.find(regB);
1075        if (OI == TiedOperands.end()) {
1076          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1077          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1078        }
1079        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1080      }
1081
1082      // Now iterate over the information collected above.
1083      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1084             OE = TiedOperands.end(); OI != OE; ++OI) {
1085        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1086
1087        // If the instruction has a single pair of tied operands, try some
1088        // transformations that may either eliminate the tied operands or
1089        // improve the opportunities for coalescing away the register copy.
1090        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1091          unsigned SrcIdx = TiedPairs[0].first;
1092          unsigned DstIdx = TiedPairs[0].second;
1093
1094          // If the registers are already equal, nothing needs to be done.
1095          if (mi->getOperand(SrcIdx).getReg() ==
1096              mi->getOperand(DstIdx).getReg())
1097            break; // Done with this instruction.
1098
1099          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
1100            break; // The tied operands have been eliminated.
1101        }
1102
1103        bool RemovedKillFlag = false;
1104        bool AllUsesCopied = true;
1105        unsigned LastCopiedReg = 0;
1106        unsigned regB = OI->first;
1107        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1108          unsigned SrcIdx = TiedPairs[tpi].first;
1109          unsigned DstIdx = TiedPairs[tpi].second;
1110          unsigned regA = mi->getOperand(DstIdx).getReg();
1111          // Grab regB from the instruction because it may have changed if the
1112          // instruction was commuted.
1113          regB = mi->getOperand(SrcIdx).getReg();
1114
1115          if (regA == regB) {
1116            // The register is tied to multiple destinations (or else we would
1117            // not have continued this far), but this use of the register
1118            // already matches the tied destination.  Leave it.
1119            AllUsesCopied = false;
1120            continue;
1121          }
1122          LastCopiedReg = regA;
1123
1124          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1125                 "cannot make instruction into two-address form");
1126
1127#ifndef NDEBUG
1128          // First, verify that we don't have a use of "a" in the instruction
1129          // (a = b + a for example) because our transformation will not
1130          // work. This should never occur because we are in SSA form.
1131          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1132            assert(i == DstIdx ||
1133                   !mi->getOperand(i).isReg() ||
1134                   mi->getOperand(i).getReg() != regA);
1135#endif
1136
1137          // Emit a copy or rematerialize the definition.
1138          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1139          MachineInstr *DefMI = MRI->getVRegDef(regB);
1140          // If it's safe and profitable, remat the definition instead of
1141          // copying it.
1142          if (DefMI &&
1143              DefMI->getDesc().isAsCheapAsAMove() &&
1144              DefMI->isSafeToReMat(TII, AA, regB) &&
1145              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1146            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1147            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1148            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1149            ReMatRegs.set(regB);
1150            ++NumReMats;
1151          } else {
1152            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1153                    regA).addReg(regB);
1154          }
1155
1156          MachineBasicBlock::iterator prevMI = prior(mi);
1157          // Update DistanceMap.
1158          DistanceMap.insert(std::make_pair(prevMI, Dist));
1159          DistanceMap[mi] = ++Dist;
1160
1161          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1162
1163          MachineOperand &MO = mi->getOperand(SrcIdx);
1164          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1165                 "inconsistent operand info for 2-reg pass");
1166          if (MO.isKill()) {
1167            MO.setIsKill(false);
1168            RemovedKillFlag = true;
1169          }
1170          MO.setReg(regA);
1171        }
1172
1173        if (AllUsesCopied) {
1174          // Replace other (un-tied) uses of regB with LastCopiedReg.
1175          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1176            MachineOperand &MO = mi->getOperand(i);
1177            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1178              if (MO.isKill()) {
1179                MO.setIsKill(false);
1180                RemovedKillFlag = true;
1181              }
1182              MO.setReg(LastCopiedReg);
1183            }
1184          }
1185
1186          // Update live variables for regB.
1187          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1188            LV->addVirtualRegisterKilled(regB, prior(mi));
1189
1190        } else if (RemovedKillFlag) {
1191          // Some tied uses of regB matched their destination registers, so
1192          // regB is still used in this instruction, but a kill flag was
1193          // removed from a different tied use of regB, so now we need to add
1194          // a kill flag to one of the remaining uses of regB.
1195          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1196            MachineOperand &MO = mi->getOperand(i);
1197            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1198              MO.setIsKill(true);
1199              break;
1200            }
1201          }
1202        }
1203
1204        // Schedule the source copy / remat inserted to form two-address
1205        // instruction. FIXME: Does it matter the distance map may not be
1206        // accurate after it's scheduled?
1207        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1208
1209        MadeChange = true;
1210
1211        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1212      }
1213
1214      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1215      if (mi->isInsertSubreg()) {
1216        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1217        // To   %reg:subidx = COPY %subreg
1218        unsigned SubIdx = mi->getOperand(3).getImm();
1219        mi->RemoveOperand(3);
1220        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1221        mi->getOperand(0).setSubReg(SubIdx);
1222        mi->RemoveOperand(1);
1223        mi->setDesc(TII->get(TargetOpcode::COPY));
1224        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1225      }
1226
1227      // Clear TiedOperands here instead of at the top of the loop
1228      // since most instructions do not have tied operands.
1229      TiedOperands.clear();
1230      mi = nmi;
1231    }
1232  }
1233
1234  // Some remat'ed instructions are dead.
1235  int VReg = ReMatRegs.find_first();
1236  while (VReg != -1) {
1237    if (MRI->use_nodbg_empty(VReg)) {
1238      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1239      DefMI->eraseFromParent();
1240    }
1241    VReg = ReMatRegs.find_next(VReg);
1242  }
1243
1244  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1245  // SSA form. It's now safe to de-SSA.
1246  MadeChange |= EliminateRegSequences();
1247
1248  return MadeChange;
1249}
1250
1251static void UpdateRegSequenceSrcs(unsigned SrcReg,
1252                                  unsigned DstReg, unsigned SubIdx,
1253                                  MachineRegisterInfo *MRI,
1254                                  const TargetRegisterInfo &TRI) {
1255  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1256         RE = MRI->reg_end(); RI != RE; ) {
1257    MachineOperand &MO = RI.getOperand();
1258    ++RI;
1259    MO.substVirtReg(DstReg, SubIdx, TRI);
1260  }
1261}
1262
1263/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1264/// EXTRACT_SUBREG from the same register and to the same virtual register
1265/// with different sub-register indices, attempt to combine the
1266/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1267/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1268/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1269/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1270/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1271/// reg1026 to reg1029.
1272void
1273TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1274                                              unsigned DstReg) {
1275  SmallSet<unsigned, 4> Seen;
1276  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1277    unsigned SrcReg = Srcs[i];
1278    if (!Seen.insert(SrcReg))
1279      continue;
1280
1281    // Check that the instructions are all in the same basic block.
1282    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1283    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1284    if (SrcDefMI->getParent() != DstDefMI->getParent())
1285      continue;
1286
1287    // If there are no other uses than copies which feed into
1288    // the reg_sequence, then we might be able to coalesce them.
1289    bool CanCoalesce = true;
1290    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1291    for (MachineRegisterInfo::use_nodbg_iterator
1292           UI = MRI->use_nodbg_begin(SrcReg),
1293           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1294      MachineInstr *UseMI = &*UI;
1295      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1296        CanCoalesce = false;
1297        break;
1298      }
1299      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1300      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1301    }
1302
1303    if (!CanCoalesce || SrcSubIndices.size() < 2)
1304      continue;
1305
1306    // Check that the source subregisters can be combined.
1307    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1308    unsigned NewSrcSubIdx = 0;
1309    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1310                                      NewSrcSubIdx))
1311      continue;
1312
1313    // Check that the destination subregisters can also be combined.
1314    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1315    unsigned NewDstSubIdx = 0;
1316    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1317                                      NewDstSubIdx))
1318      continue;
1319
1320    // If neither source nor destination can be combined to the full register,
1321    // just give up.  This could be improved if it ever matters.
1322    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1323      continue;
1324
1325    // Now that we know that all the uses are extract_subregs and that those
1326    // subregs can somehow be combined, scan all the extract_subregs again to
1327    // make sure the subregs are in the right order and can be composed.
1328    MachineInstr *SomeMI = 0;
1329    CanCoalesce = true;
1330    for (MachineRegisterInfo::use_nodbg_iterator
1331           UI = MRI->use_nodbg_begin(SrcReg),
1332           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1333      MachineInstr *UseMI = &*UI;
1334      assert(UseMI->isCopy());
1335      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1336      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1337      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1338      if ((NewDstSubIdx == 0 &&
1339           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1340          (NewSrcSubIdx == 0 &&
1341           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1342        CanCoalesce = false;
1343        break;
1344      }
1345      // Keep track of one of the uses.
1346      SomeMI = UseMI;
1347    }
1348    if (!CanCoalesce)
1349      continue;
1350
1351    // Insert a copy to replace the original.
1352    MachineBasicBlock::iterator InsertLoc = SomeMI;
1353    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1354                                   SomeMI->getDebugLoc(),
1355                                   TII->get(TargetOpcode::COPY))
1356      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1357      .addReg(SrcReg, 0, NewSrcSubIdx);
1358
1359    // Remove all the old extract instructions.
1360    for (MachineRegisterInfo::use_nodbg_iterator
1361           UI = MRI->use_nodbg_begin(SrcReg),
1362           UE = MRI->use_nodbg_end(); UI != UE; ) {
1363      MachineInstr *UseMI = &*UI;
1364      ++UI;
1365      if (UseMI == CopyMI)
1366        continue;
1367      assert(UseMI->isCopy());
1368      // Move any kills to the new copy or extract instruction.
1369      if (UseMI->getOperand(1).isKill()) {
1370        CopyMI->getOperand(1).setIsKill();
1371        if (LV)
1372          // Update live variables
1373          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1374      }
1375      UseMI->eraseFromParent();
1376    }
1377  }
1378}
1379
1380static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1381                                    MachineRegisterInfo *MRI) {
1382  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1383         UE = MRI->use_end(); UI != UE; ++UI) {
1384    MachineInstr *UseMI = &*UI;
1385    if (UseMI != RegSeq && UseMI->isRegSequence())
1386      return true;
1387  }
1388  return false;
1389}
1390
1391/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1392/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1393/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1394///
1395/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1396/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1397/// =>
1398/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1399bool TwoAddressInstructionPass::EliminateRegSequences() {
1400  if (RegSequences.empty())
1401    return false;
1402
1403  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1404    MachineInstr *MI = RegSequences[i];
1405    unsigned DstReg = MI->getOperand(0).getReg();
1406    if (MI->getOperand(0).getSubReg() ||
1407        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1408        !(MI->getNumOperands() & 1)) {
1409      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1410      llvm_unreachable(0);
1411    }
1412
1413    bool IsImpDef = true;
1414    SmallVector<unsigned, 4> RealSrcs;
1415    SmallSet<unsigned, 4> Seen;
1416    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1417      unsigned SrcReg = MI->getOperand(i).getReg();
1418      if (MI->getOperand(i).getSubReg() ||
1419          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1420        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1421        llvm_unreachable(0);
1422      }
1423
1424      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1425      if (DefMI->isImplicitDef()) {
1426        DefMI->eraseFromParent();
1427        continue;
1428      }
1429      IsImpDef = false;
1430
1431      // Remember COPY sources. These might be candidate for coalescing.
1432      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1433        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1434
1435      bool isKill = MI->getOperand(i).isKill();
1436      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1437          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI)) {
1438        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1439        // Also add an copy if the source is live-in the block. We don't want
1440        // to end up with a partial-redef of a livein, e.g.
1441        // BB0:
1442        // reg1051:10<def> =
1443        // ...
1444        // BB1:
1445        // ... = reg1051:10
1446        // BB2:
1447        // reg1051:9<def> =
1448        // LiveIntervalAnalysis won't like it.
1449        //
1450        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1451        // correctly up to date becomes very difficult. Insert a copy.
1452
1453        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1454        // might insert a COPY that uses SrcReg after is was killed.
1455        if (isKill)
1456          for (unsigned j = i + 2; j < e; j += 2)
1457            if (MI->getOperand(j).getReg() == SrcReg) {
1458              MI->getOperand(j).setIsKill();
1459              isKill = false;
1460              break;
1461            }
1462
1463        MachineBasicBlock::iterator InsertLoc = MI;
1464        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1465                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1466            .addReg(DstReg, RegState::Define, MI->getOperand(i+1).getImm())
1467            .addReg(SrcReg, getKillRegState(isKill));
1468        MI->getOperand(i).setReg(0);
1469        if (LV && isKill)
1470          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1471        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1472      }
1473    }
1474
1475    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1476      unsigned SrcReg = MI->getOperand(i).getReg();
1477      if (!SrcReg) continue;
1478      unsigned SubIdx = MI->getOperand(i+1).getImm();
1479      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1480    }
1481
1482    if (IsImpDef) {
1483      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1484      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1485      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1486        MI->RemoveOperand(j);
1487    } else {
1488      DEBUG(dbgs() << "Eliminated: " << *MI);
1489      MI->eraseFromParent();
1490    }
1491
1492    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1493    // INSERT_SUBREG instructions that must have <undef> flags added by
1494    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1495    if (LV)
1496      CoalesceExtSubRegs(RealSrcs, DstReg);
1497  }
1498
1499  RegSequences.clear();
1500  return true;
1501}
1502