VirtRegMap.cpp revision ed41f1bb1981a98eea63f00c5988cf62bbdd7c59
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Visibility.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33#include <iostream>
34using namespace llvm;
35
36namespace {
37  static Statistic<> NumSpills("spiller", "Number of register spills");
38  static Statistic<> NumStores("spiller", "Number of stores added");
39  static Statistic<> NumLoads ("spiller", "Number of loads added");
40  static Statistic<> NumReused("spiller", "Number of values reused");
41  static Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
42  static Statistic<> NumDCE   ("spiller", "Number of copies elided");
43
44  enum SpillerName { simple, local };
45
46  static cl::opt<SpillerName>
47  SpillerOpt("spiller",
48             cl::desc("Spiller to use: (default: local)"),
49             cl::Prefix,
50             cl::values(clEnumVal(simple, "  simple spiller"),
51                        clEnumVal(local,  "  local spiller"),
52                        clEnumValEnd),
53             cl::init(local));
54}
55
56//===----------------------------------------------------------------------===//
57//  VirtRegMap implementation
58//===----------------------------------------------------------------------===//
59
60void VirtRegMap::grow() {
61  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
62  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
63}
64
65int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
66  assert(MRegisterInfo::isVirtualRegister(virtReg));
67  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
68         "attempt to assign stack slot to already spilled register");
69  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
70  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
71                                                        RC->getAlignment());
72  Virt2StackSlotMap[virtReg] = frameIndex;
73  ++NumSpills;
74  return frameIndex;
75}
76
77void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
78  assert(MRegisterInfo::isVirtualRegister(virtReg));
79  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
80         "attempt to assign stack slot to already spilled register");
81  Virt2StackSlotMap[virtReg] = frameIndex;
82}
83
84void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
85                            unsigned OpNo, MachineInstr *NewMI) {
86  // Move previous memory references folded to new instruction.
87  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
88  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
89         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
90    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
91    MI2VirtMap.erase(I++);
92  }
93
94  ModRef MRInfo;
95  if (!OldMI->getOperand(OpNo).isDef()) {
96    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
97    MRInfo = isRef;
98  } else {
99    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
100  }
101
102  // add new memory reference
103  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
104}
105
106void VirtRegMap::print(std::ostream &OS) const {
107  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
108
109  OS << "********** REGISTER MAP **********\n";
110  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
111         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
112    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
113      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
114
115  }
116
117  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
118         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
119    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
120      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
121  OS << '\n';
122}
123
124void VirtRegMap::dump() const { print(std::cerr); }
125
126
127//===----------------------------------------------------------------------===//
128// Simple Spiller Implementation
129//===----------------------------------------------------------------------===//
130
131Spiller::~Spiller() {}
132
133namespace {
134  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
135    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
136  };
137}
138
139bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
140  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
141  DEBUG(std::cerr << "********** Function: "
142                  << MF.getFunction()->getName() << '\n');
143  const TargetMachine &TM = MF.getTarget();
144  const MRegisterInfo &MRI = *TM.getRegisterInfo();
145  bool *PhysRegsUsed = MF.getUsedPhysregs();
146
147  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
148  // each vreg once (in the case where a spilled vreg is used by multiple
149  // operands).  This is always smaller than the number of operands to the
150  // current machine instr, so it should be small.
151  std::vector<unsigned> LoadedRegs;
152
153  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
154       MBBI != E; ++MBBI) {
155    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
156    MachineBasicBlock &MBB = *MBBI;
157    for (MachineBasicBlock::iterator MII = MBB.begin(),
158           E = MBB.end(); MII != E; ++MII) {
159      MachineInstr &MI = *MII;
160      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161        MachineOperand &MO = MI.getOperand(i);
162        if (MO.isRegister() && MO.getReg())
163          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
164            unsigned VirtReg = MO.getReg();
165            unsigned PhysReg = VRM.getPhys(VirtReg);
166            if (VRM.hasStackSlot(VirtReg)) {
167              int StackSlot = VRM.getStackSlot(VirtReg);
168              const TargetRegisterClass* RC =
169                MF.getSSARegMap()->getRegClass(VirtReg);
170
171              if (MO.isUse() &&
172                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
173                  == LoadedRegs.end()) {
174                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
175                LoadedRegs.push_back(VirtReg);
176                ++NumLoads;
177                DEBUG(std::cerr << '\t' << *prior(MII));
178              }
179
180              if (MO.isDef()) {
181                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
182                ++NumStores;
183              }
184            }
185            PhysRegsUsed[PhysReg] = true;
186            MI.getOperand(i).setReg(PhysReg);
187          } else {
188            PhysRegsUsed[MO.getReg()] = true;
189          }
190      }
191
192      DEBUG(std::cerr << '\t' << MI);
193      LoadedRegs.clear();
194    }
195  }
196  return true;
197}
198
199//===----------------------------------------------------------------------===//
200//  Local Spiller Implementation
201//===----------------------------------------------------------------------===//
202
203namespace {
204  /// LocalSpiller - This spiller does a simple pass over the machine basic
205  /// block to attempt to keep spills in registers as much as possible for
206  /// blocks that have low register pressure (the vreg may be spilled due to
207  /// register pressure in other blocks).
208  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
209    const MRegisterInfo *MRI;
210    const TargetInstrInfo *TII;
211  public:
212    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
213      MRI = MF.getTarget().getRegisterInfo();
214      TII = MF.getTarget().getInstrInfo();
215      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
216                      << MF.getFunction()->getName() << "':\n");
217
218      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
219           MBB != E; ++MBB)
220        RewriteMBB(*MBB, VRM);
221      return true;
222    }
223  private:
224    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
225    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
226                        std::multimap<unsigned, int> &PhysRegs);
227    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
228                            std::multimap<unsigned, int> &PhysRegs);
229    void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
230                         std::multimap<unsigned, int> &PhysRegs);
231  };
232}
233
234/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
235/// top down, keep track of which spills slots are available in each register.
236///
237/// Note that not all physregs are created equal here.  In particular, some
238/// physregs are reloads that we are allowed to clobber or ignore at any time.
239/// Other physregs are values that the register allocated program is using that
240/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
241/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
242/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
243/// addAvailable sets it if.
244namespace {
245class VISIBILITY_HIDDEN AvailableSpills {
246  const MRegisterInfo *MRI;
247  const TargetInstrInfo *TII;
248
249  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
250  // register values that are still available, due to being loaded or stored to,
251  // but not invalidated yet.
252  std::map<int, unsigned> SpillSlotsAvailable;
253
254  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
255  // which stack slot values are currently held by a physreg.  This is used to
256  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
257  std::multimap<unsigned, int> PhysRegsAvailable;
258
259  void ClobberPhysRegOnly(unsigned PhysReg);
260public:
261  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
262    : MRI(mri), TII(tii) {
263  }
264
265  /// getSpillSlotPhysReg - If the specified stack slot is available in a
266  /// physical register, return that PhysReg, otherwise return 0.
267  unsigned getSpillSlotPhysReg(int Slot) const {
268    std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
269    if (I != SpillSlotsAvailable.end())
270      return I->second >> 1;  // Remove the CanClobber bit.
271    return 0;
272  }
273
274  const MRegisterInfo *getRegInfo() const { return MRI; }
275
276  /// addAvailable - Mark that the specified stack slot is available in the
277  /// specified physreg.  If CanClobber is true, the physreg can be modified at
278  /// any time without changing the semantics of the program.
279  void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
280    // If this stack slot is thought to be available in some other physreg,
281    // remove its record.
282    ModifyStackSlot(Slot);
283
284    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
285    SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
286
287    DEBUG(std::cerr << "Remembering SS#" << Slot << " in physreg "
288                    << MRI->getName(Reg) << "\n");
289  }
290
291  /// canClobberPhysReg - Return true if the spiller is allowed to change the
292  /// value of the specified stackslot register if it desires.  The specified
293  /// stack slot must be available in a physreg for this query to make sense.
294  bool canClobberPhysReg(int Slot) const {
295    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
296    return SpillSlotsAvailable.find(Slot)->second & 1;
297  }
298
299  /// ClobberPhysReg - This is called when the specified physreg changes
300  /// value.  We use this to invalidate any info about stuff we thing lives in
301  /// it and any of its aliases.
302  void ClobberPhysReg(unsigned PhysReg);
303
304  /// ModifyStackSlot - This method is called when the value in a stack slot
305  /// changes.  This removes information about which register the previous value
306  /// for this slot lives in (as the previous value is dead now).
307  void ModifyStackSlot(int Slot);
308};
309}
310
311/// ClobberPhysRegOnly - This is called when the specified physreg changes
312/// value.  We use this to invalidate any info about stuff we thing lives in it.
313void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
314  std::multimap<unsigned, int>::iterator I =
315    PhysRegsAvailable.lower_bound(PhysReg);
316  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
317    int Slot = I->second;
318    PhysRegsAvailable.erase(I++);
319    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
320           "Bidirectional map mismatch!");
321    SpillSlotsAvailable.erase(Slot);
322    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
323                    << " clobbered, invalidating SS#" << Slot << "\n");
324  }
325}
326
327/// ClobberPhysReg - This is called when the specified physreg changes
328/// value.  We use this to invalidate any info about stuff we thing lives in
329/// it and any of its aliases.
330void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
331  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
332    ClobberPhysRegOnly(*AS);
333  ClobberPhysRegOnly(PhysReg);
334}
335
336/// ModifyStackSlot - This method is called when the value in a stack slot
337/// changes.  This removes information about which register the previous value
338/// for this slot lives in (as the previous value is dead now).
339void AvailableSpills::ModifyStackSlot(int Slot) {
340  std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
341  if (It == SpillSlotsAvailable.end()) return;
342  unsigned Reg = It->second >> 1;
343  SpillSlotsAvailable.erase(It);
344
345  // This register may hold the value of multiple stack slots, only remove this
346  // stack slot from the set of values the register contains.
347  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
348  for (; ; ++I) {
349    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
350           "Map inverse broken!");
351    if (I->second == Slot) break;
352  }
353  PhysRegsAvailable.erase(I);
354}
355
356
357
358// ReusedOp - For each reused operand, we keep track of a bit of information, in
359// case we need to rollback upon processing a new operand.  See comments below.
360namespace {
361  struct ReusedOp {
362    // The MachineInstr operand that reused an available value.
363    unsigned Operand;
364
365    // StackSlot - The spill slot of the value being reused.
366    unsigned StackSlot;
367
368    // PhysRegReused - The physical register the value was available in.
369    unsigned PhysRegReused;
370
371    // AssignedPhysReg - The physreg that was assigned for use by the reload.
372    unsigned AssignedPhysReg;
373
374    // VirtReg - The virtual register itself.
375    unsigned VirtReg;
376
377    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
378             unsigned vreg)
379      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
380      VirtReg(vreg) {}
381  };
382
383  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
384  /// is reused instead of reloaded.
385  class VISIBILITY_HIDDEN ReuseInfo {
386    MachineInstr &MI;
387    std::vector<ReusedOp> Reuses;
388  public:
389    ReuseInfo(MachineInstr &mi) : MI(mi) {}
390
391    bool hasReuses() const {
392      return !Reuses.empty();
393    }
394
395    /// addReuse - If we choose to reuse a virtual register that is already
396    /// available instead of reloading it, remember that we did so.
397    void addReuse(unsigned OpNo, unsigned StackSlot,
398                  unsigned PhysRegReused, unsigned AssignedPhysReg,
399                  unsigned VirtReg) {
400      // If the reload is to the assigned register anyway, no undo will be
401      // required.
402      if (PhysRegReused == AssignedPhysReg) return;
403
404      // Otherwise, remember this.
405      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
406                                AssignedPhysReg, VirtReg));
407    }
408
409    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
410    /// is some other operand that is using the specified register, either pick
411    /// a new register to use, or evict the previous reload and use this reg.
412    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
413                             AvailableSpills &Spills,
414                             std::map<int, MachineInstr*> &MaybeDeadStores) {
415      if (Reuses.empty()) return PhysReg;  // This is most often empty.
416
417      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
418        ReusedOp &Op = Reuses[ro];
419        // If we find some other reuse that was supposed to use this register
420        // exactly for its reload, we can change this reload to use ITS reload
421        // register.
422        if (Op.PhysRegReused == PhysReg) {
423          // Yup, use the reload register that we didn't use before.
424          unsigned NewReg = Op.AssignedPhysReg;
425
426          // Remove the record for the previous reuse.  We know it can never be
427          // invalidated now.
428          Reuses.erase(Reuses.begin()+ro);
429          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
430        } else {
431          // Otherwise, we might also have a problem if a previously reused
432          // value aliases the new register.  If so, codegen the previous reload
433          // and use this one.
434          unsigned PRRU = Op.PhysRegReused;
435          const MRegisterInfo *MRI = Spills.getRegInfo();
436          if (MRI->areAliases(PRRU, PhysReg)) {
437            // Okay, we found out that an alias of a reused register
438            // was used.  This isn't good because it means we have
439            // to undo a previous reuse.
440            MachineBasicBlock *MBB = MI->getParent();
441            const TargetRegisterClass *AliasRC =
442              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
443
444            // Copy Op out of the vector and remove it, we're going to insert an
445            // explicit load for it.
446            ReusedOp NewOp = Op;
447            Reuses.erase(Reuses.begin()+ro);
448
449            // Ok, we're going to try to reload the assigned physreg into the
450            // slot that we were supposed to in the first place.  However, that
451            // register could hold a reuse.  Check to see if it conflicts or
452            // would prefer us to use a different register.
453            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
454                                                  MI, Spills, MaybeDeadStores);
455
456            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
457                                      NewOp.StackSlot, AliasRC);
458            Spills.ClobberPhysReg(NewPhysReg);
459            Spills.ClobberPhysReg(NewOp.PhysRegReused);
460
461            // Any stores to this stack slot are not dead anymore.
462            MaybeDeadStores.erase(NewOp.StackSlot);
463
464            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
465
466            Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
467            ++NumLoads;
468            DEBUG(MachineBasicBlock::iterator MII = MI;
469                  std::cerr << '\t' << *prior(MII));
470
471            DEBUG(std::cerr << "Reuse undone!\n");
472            --NumReused;
473
474            // Finally, PhysReg is now available, go ahead and use it.
475            return PhysReg;
476          }
477        }
478      }
479      return PhysReg;
480    }
481  };
482}
483
484
485/// rewriteMBB - Keep track of which spills are available even after the
486/// register allocator is done with them.  If possible, avoid reloading vregs.
487void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
488
489  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
490
491  // Spills - Keep track of which spilled values are available in physregs so
492  // that we can choose to reuse the physregs instead of emitting reloads.
493  AvailableSpills Spills(MRI, TII);
494
495  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
496  // of it.  ".first" is the machine operand index (should always be 0 for now),
497  // and ".second" is the virtual register that is spilled.
498  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
499
500  // MaybeDeadStores - When we need to write a value back into a stack slot,
501  // keep track of the inserted store.  If the stack slot value is never read
502  // (because the value was used from some available register, for example), and
503  // subsequently stored to, the original store is dead.  This map keeps track
504  // of inserted stores that are not used.  If we see a subsequent store to the
505  // same stack slot, the original store is deleted.
506  std::map<int, MachineInstr*> MaybeDeadStores;
507
508  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
509
510  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
511       MII != E; ) {
512    MachineInstr &MI = *MII;
513    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
514
515    /// ReusedOperands - Keep track of operand reuse in case we need to undo
516    /// reuse.
517    ReuseInfo ReusedOperands(MI);
518
519    DefAndUseVReg.clear();
520
521    // Process all of the spilled uses and all non spilled reg references.
522    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
523      MachineOperand &MO = MI.getOperand(i);
524      if (!MO.isRegister() || MO.getReg() == 0)
525        continue;   // Ignore non-register operands.
526
527      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
528        // Ignore physregs for spilling, but remember that it is used by this
529        // function.
530        PhysRegsUsed[MO.getReg()] = true;
531        continue;
532      }
533
534      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
535             "Not a virtual or a physical register?");
536
537      unsigned VirtReg = MO.getReg();
538      if (!VRM.hasStackSlot(VirtReg)) {
539        // This virtual register was assigned a physreg!
540        unsigned Phys = VRM.getPhys(VirtReg);
541        PhysRegsUsed[Phys] = true;
542        MI.getOperand(i).setReg(Phys);
543        continue;
544      }
545
546      // This virtual register is now known to be a spilled value.
547      if (!MO.isUse())
548        continue;  // Handle defs in the loop below (handle use&def here though)
549
550      // If this is both a def and a use, we need to emit a store to the
551      // stack slot after the instruction.  Keep track of D&U operands
552      // because we are about to change it to a physreg here.
553      if (MO.isDef()) {
554        // Remember that this was a def-and-use operand, and that the
555        // stack slot is live after this instruction executes.
556        DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
557      }
558
559      int StackSlot = VRM.getStackSlot(VirtReg);
560      unsigned PhysReg;
561
562      // Check to see if this stack slot is available.
563      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
564
565        // Don't reuse it for a def&use operand if we aren't allowed to change
566        // the physreg!
567        if (!MO.isDef() || Spills.canClobberPhysReg(StackSlot)) {
568          // If this stack slot value is already available, reuse it!
569          DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
570                          << MRI->getName(PhysReg) << " for vreg"
571                          << VirtReg <<" instead of reloading into physreg "
572                          << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
573          MI.getOperand(i).setReg(PhysReg);
574
575          // The only technical detail we have is that we don't know that
576          // PhysReg won't be clobbered by a reloaded stack slot that occurs
577          // later in the instruction.  In particular, consider 'op V1, V2'.
578          // If V1 is available in physreg R0, we would choose to reuse it
579          // here, instead of reloading it into the register the allocator
580          // indicated (say R1).  However, V2 might have to be reloaded
581          // later, and it might indicate that it needs to live in R0.  When
582          // this occurs, we need to have information available that
583          // indicates it is safe to use R1 for the reload instead of R0.
584          //
585          // To further complicate matters, we might conflict with an alias,
586          // or R0 and R1 might not be compatible with each other.  In this
587          // case, we actually insert a reload for V1 in R1, ensuring that
588          // we can get at R0 or its alias.
589          ReusedOperands.addReuse(i, StackSlot, PhysReg,
590                                  VRM.getPhys(VirtReg), VirtReg);
591          ++NumReused;
592          continue;
593        }
594
595        // Otherwise we have a situation where we have a two-address instruction
596        // whose mod/ref operand needs to be reloaded.  This reload is already
597        // available in some register "PhysReg", but if we used PhysReg as the
598        // operand to our 2-addr instruction, the instruction would modify
599        // PhysReg.  This isn't cool if something later uses PhysReg and expects
600        // to get its initial value.
601        //
602        // To avoid this problem, and to avoid doing a load right after a store,
603        // we emit a copy from PhysReg into the designated register for this
604        // operand.
605        unsigned DesignatedReg = VRM.getPhys(VirtReg);
606        assert(DesignatedReg && "Must map virtreg to physreg!");
607
608        // Note that, if we reused a register for a previous operand, the
609        // register we want to reload into might not actually be
610        // available.  If this occurs, use the register indicated by the
611        // reuser.
612        if (ReusedOperands.hasReuses())
613          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
614                                                      Spills, MaybeDeadStores);
615
616        // If the mapped designated register is actually the physreg we have
617        // incoming, we don't need to inserted a dead copy.
618        if (DesignatedReg == PhysReg) {
619          // If this stack slot value is already available, reuse it!
620          DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
621                          << MRI->getName(PhysReg) << " for vreg"
622                          << VirtReg
623                          << " instead of reloading into same physreg.\n");
624          MI.getOperand(i).setReg(PhysReg);
625          ++NumReused;
626          continue;
627        }
628
629        const TargetRegisterClass* RC =
630          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
631
632        PhysRegsUsed[DesignatedReg] = true;
633        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
634
635        // This invalidates DesignatedReg.
636        Spills.ClobberPhysReg(DesignatedReg);
637
638        Spills.addAvailable(StackSlot, DesignatedReg);
639        MI.getOperand(i).setReg(DesignatedReg);
640        DEBUG(std::cerr << '\t' << *prior(MII));
641        ++NumReused;
642        continue;
643      }
644
645      // Otherwise, reload it and remember that we have it.
646      PhysReg = VRM.getPhys(VirtReg);
647      assert(PhysReg && "Must map virtreg to physreg!");
648      const TargetRegisterClass* RC =
649        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
650
651      // Note that, if we reused a register for a previous operand, the
652      // register we want to reload into might not actually be
653      // available.  If this occurs, use the register indicated by the
654      // reuser.
655      if (ReusedOperands.hasReuses())
656        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
657                                                 Spills, MaybeDeadStores);
658
659      PhysRegsUsed[PhysReg] = true;
660      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
661      // This invalidates PhysReg.
662      Spills.ClobberPhysReg(PhysReg);
663
664      // Any stores to this stack slot are not dead anymore.
665      MaybeDeadStores.erase(StackSlot);
666      Spills.addAvailable(StackSlot, PhysReg);
667      ++NumLoads;
668      MI.getOperand(i).setReg(PhysReg);
669      DEBUG(std::cerr << '\t' << *prior(MII));
670    }
671
672    // Loop over all of the implicit defs, clearing them from our available
673    // sets.
674    for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
675         *ImpDef; ++ImpDef) {
676      PhysRegsUsed[*ImpDef] = true;
677      Spills.ClobberPhysReg(*ImpDef);
678    }
679
680    DEBUG(std::cerr << '\t' << MI);
681
682    // If we have folded references to memory operands, make sure we clear all
683    // physical registers that may contain the value of the spilled virtual
684    // register
685    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
686    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
687      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
688                      << I->second.second);
689      unsigned VirtReg = I->second.first;
690      VirtRegMap::ModRef MR = I->second.second;
691      if (!VRM.hasStackSlot(VirtReg)) {
692        DEBUG(std::cerr << ": No stack slot!\n");
693        continue;
694      }
695      int SS = VRM.getStackSlot(VirtReg);
696      DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
697
698      // If this folded instruction is just a use, check to see if it's a
699      // straight load from the virt reg slot.
700      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
701        int FrameIdx;
702        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
703          // If this spill slot is available, turn it into a copy (or nothing)
704          // instead of leaving it as a load!
705          unsigned InReg;
706          if (FrameIdx == SS && (InReg = Spills.getSpillSlotPhysReg(SS))) {
707            DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
708            MachineFunction &MF = *MBB.getParent();
709            if (DestReg != InReg) {
710              MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
711                                MF.getSSARegMap()->getRegClass(VirtReg));
712              // Revisit the copy so we make sure to notice the effects of the
713              // operation on the destreg (either needing to RA it if it's
714              // virtual or needing to clobber any values if it's physical).
715              NextMII = &MI;
716              --NextMII;  // backtrack to the copy.
717            }
718            VRM.RemoveFromFoldedVirtMap(&MI);
719            MBB.erase(&MI);
720            goto ProcessNextInst;
721          }
722        }
723      }
724
725      // If this reference is not a use, any previous store is now dead.
726      // Otherwise, the store to this stack slot is not dead anymore.
727      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
728      if (MDSI != MaybeDeadStores.end()) {
729        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
730          MaybeDeadStores.erase(MDSI);
731        else {
732          // If we get here, the store is dead, nuke it now.
733          assert(VirtRegMap::isMod && "Can't be modref!");
734          DEBUG(std::cerr << "Removed dead store:\t" << *MDSI->second);
735          MBB.erase(MDSI->second);
736          VRM.RemoveFromFoldedVirtMap(MDSI->second);
737          MaybeDeadStores.erase(MDSI);
738          ++NumDSE;
739        }
740      }
741
742      // If the spill slot value is available, and this is a new definition of
743      // the value, the value is not available anymore.
744      if (MR & VirtRegMap::isMod) {
745        // Notice that the value in this stack slot has been modified.
746        Spills.ModifyStackSlot(SS);
747
748        // If this is *just* a mod of the value, check to see if this is just a
749        // store to the spill slot (i.e. the spill got merged into the copy). If
750        // so, realize that the vreg is available now, and add the store to the
751        // MaybeDeadStore info.
752        int StackSlot;
753        if (!(MR & VirtRegMap::isRef)) {
754          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
755            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
756                   "Src hasn't been allocated yet?");
757            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
758            // this as a potentially dead store in case there is a subsequent
759            // store into the stack slot without a read from it.
760            MaybeDeadStores[StackSlot] = &MI;
761
762            // If the stack slot value was previously available in some other
763            // register, change it now.  Otherwise, make the register available,
764            // in PhysReg.
765            Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
766          }
767        }
768      }
769    }
770
771    // Process all of the spilled defs.
772    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
773      MachineOperand &MO = MI.getOperand(i);
774      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
775        unsigned VirtReg = MO.getReg();
776
777        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
778          // Check to see if this is a def-and-use vreg operand that we do need
779          // to insert a store for.
780          bool OpTakenCareOf = false;
781          if (MO.isUse() && !DefAndUseVReg.empty()) {
782            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
783              if (DefAndUseVReg[dau].first == i) {
784                VirtReg = DefAndUseVReg[dau].second;
785                OpTakenCareOf = true;
786                break;
787              }
788          }
789
790          if (!OpTakenCareOf) {
791            // Check to see if this is a noop copy.  If so, eliminate the
792            // instruction before considering the dest reg to be changed.
793            unsigned Src, Dst;
794            if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
795              ++NumDCE;
796              DEBUG(std::cerr << "Removing now-noop copy: " << MI);
797              MBB.erase(&MI);
798              VRM.RemoveFromFoldedVirtMap(&MI);
799              goto ProcessNextInst;
800            }
801            Spills.ClobberPhysReg(VirtReg);
802            continue;
803          }
804        }
805
806        // The only vregs left are stack slot definitions.
807        int StackSlot = VRM.getStackSlot(VirtReg);
808        const TargetRegisterClass *RC =
809          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
810        unsigned PhysReg;
811
812        // If this is a def&use operand, and we used a different physreg for
813        // it than the one assigned, make sure to execute the store from the
814        // correct physical register.
815        if (MO.getReg() == VirtReg)
816          PhysReg = VRM.getPhys(VirtReg);
817        else
818          PhysReg = MO.getReg();
819
820        PhysRegsUsed[PhysReg] = true;
821        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
822        DEBUG(std::cerr << "Store:\t" << *next(MII));
823        MI.getOperand(i).setReg(PhysReg);
824
825        // Check to see if this is a noop copy.  If so, eliminate the
826        // instruction before considering the dest reg to be changed.
827        {
828          unsigned Src, Dst;
829          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
830            ++NumDCE;
831            DEBUG(std::cerr << "Removing now-noop copy: " << MI);
832            MBB.erase(&MI);
833            VRM.RemoveFromFoldedVirtMap(&MI);
834            goto ProcessNextInst;
835          }
836        }
837
838        // If there is a dead store to this stack slot, nuke it now.
839        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
840        if (LastStore) {
841          DEBUG(std::cerr << "Removed dead store:\t" << *LastStore);
842          ++NumDSE;
843          MBB.erase(LastStore);
844          VRM.RemoveFromFoldedVirtMap(LastStore);
845        }
846        LastStore = next(MII);
847
848        // If the stack slot value was previously available in some other
849        // register, change it now.  Otherwise, make the register available,
850        // in PhysReg.
851        Spills.ModifyStackSlot(StackSlot);
852        Spills.ClobberPhysReg(PhysReg);
853        Spills.addAvailable(StackSlot, PhysReg);
854        ++NumStores;
855      }
856    }
857  ProcessNextInst:
858    MII = NextMII;
859  }
860}
861
862
863
864llvm::Spiller* llvm::createSpiller() {
865  switch (SpillerOpt) {
866  default: assert(0 && "Unreachable!");
867  case local:
868    return new LocalSpiller();
869  case simple:
870    return new SimpleSpiller();
871  }
872}
873