ARMJITInfo.cpp revision c84d4d3a2e752a4ba621587c066c1177cb8d5f40
1//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the JIT interfaces for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "ARMJITInfo.h"
16#include "ARMInstrInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMRelocations.h"
19#include "ARMSubtarget.h"
20#include "llvm/Function.h"
21#include "llvm/CodeGen/JITCodeEmitter.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/System/Memory.h"
26#include <cstdlib>
27using namespace llvm;
28
29void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
30  llvm_report_error("ARMJITInfo::replaceMachineCodeForFunction");
31}
32
33/// JITCompilerFunction - This contains the address of the JIT function used to
34/// compile a function lazily.
35static TargetJITInfo::JITCompilerFn JITCompilerFunction;
36
37// Get the ASMPREFIX for the current host.  This is often '_'.
38#ifndef __USER_LABEL_PREFIX__
39#define __USER_LABEL_PREFIX__
40#endif
41#define GETASMPREFIX2(X) #X
42#define GETASMPREFIX(X) GETASMPREFIX2(X)
43#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
44
45// CompilationCallback stub - We can't use a C function with inline assembly in
46// it, because we the prolog/epilog inserted by GCC won't work for us (we need
47// to preserve more context and manipulate the stack directly).  Instead,
48// write our own wrapper, which does things our way, so we have complete
49// control over register saving and restoring.
50extern "C" {
51#if defined(__arm__)
52  void ARMCompilationCallback();
53  asm(
54    ".text\n"
55    ".align 2\n"
56    ".globl " ASMPREFIX "ARMCompilationCallback\n"
57    ASMPREFIX "ARMCompilationCallback:\n"
58    // Save caller saved registers since they may contain stuff
59    // for the real target function right now. We have to act as if this
60    // whole compilation callback doesn't exist as far as the caller is
61    // concerned, so we can't just preserve the callee saved regs.
62    "stmdb sp!, {r0, r1, r2, r3, lr}\n"
63#ifndef __SOFTFP__
64    "fstmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
65#endif
66    // The LR contains the address of the stub function on entry.
67    // pass it as the argument to the C part of the callback
68    "mov  r0, lr\n"
69    "sub  sp, sp, #4\n"
70    // Call the C portion of the callback
71    "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
72    "add  sp, sp, #4\n"
73    // Restoring the LR to the return address of the function that invoked
74    // the stub and de-allocating the stack space for it requires us to
75    // swap the two saved LR values on the stack, as they're backwards
76    // for what we need since the pop instruction has a pre-determined
77    // order for the registers.
78    //      +--------+
79    //   0  | LR     | Original return address
80    //      +--------+
81    //   1  | LR     | Stub address (start of stub)
82    // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
83    // 6-20 | D0..D7 | Saved VFP registers
84    //      +--------+
85    //
86#ifndef __SOFTFP__
87    // Restore VFP caller-saved registers.
88    "fldmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
89#endif
90    //
91    //      We need to exchange the values in slots 0 and 1 so we can
92    //      return to the address in slot 1 with the address in slot 0
93    //      restored to the LR.
94    "ldr  r0, [sp,#20]\n"
95    "ldr  r1, [sp,#16]\n"
96    "str  r1, [sp,#20]\n"
97    "str  r0, [sp,#16]\n"
98    // Return to the (newly modified) stub to invoke the real function.
99    // The above twiddling of the saved return addresses allows us to
100    // deallocate everything, including the LR the stub saved, all in one
101    // pop instruction.
102    "ldmia  sp!, {r0, r1, r2, r3, lr, pc}\n"
103      );
104#else  // Not an ARM host
105  void ARMCompilationCallback() {
106    llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
107  }
108#endif
109}
110
111/// ARMCompilationCallbackC - This is the target-specific function invoked
112/// by the function stub when we did not know the real target of a call.
113/// This function must locate the start of the stub or call site and pass
114/// it into the JIT compiler function.
115extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
116  // Get the address of the compiled code for this function.
117  intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
118
119  // Rewrite the call target... so that we don't end up here every time we
120  // execute the call. We're replacing the first two instructions of the
121  // stub with:
122  //   ldr pc, [pc,#-4]
123  //   <addr>
124  if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
125    llvm_unreachable("ERROR: Unable to mark stub writable");
126  }
127  *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
128  *(intptr_t *)(StubAddr+4) = NewVal;
129  if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
130    llvm_unreachable("ERROR: Unable to mark stub executable");
131  }
132}
133
134TargetJITInfo::LazyResolverFn
135ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
136  JITCompilerFunction = F;
137  return ARMCompilationCallback;
138}
139
140void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
141                                             JITCodeEmitter &JCE) {
142  JCE.startGVStub(GV, 4, 4);
143  intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
144  if (!sys::Memory::setRangeWritable((void*)Addr, 4)) {
145    llvm_unreachable("ERROR: Unable to mark indirect symbol writable");
146  }
147  JCE.emitWordLE((intptr_t)Ptr);
148  void *PtrAddr = JCE.finishGVStub(GV);
149  addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
150  return PtrAddr;
151}
152
153void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
154                                   JITCodeEmitter &JCE) {
155  // If this is just a call to an external function, emit a branch instead of a
156  // call.  The code is the same except for one bit of the last instruction.
157  if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
158    // Branch to the corresponding function addr.
159    if (IsPIC) {
160      // The stub is 8-byte size and 4-aligned.
161      intptr_t LazyPtr = getIndirectSymAddr(Fn);
162      if (!LazyPtr) {
163        // In PIC mode, the function stub is loading a lazy-ptr.
164        LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE);
165        DEBUG(if (F)
166                errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
167                       << "] for GV '" << F->getName() << "'\n";
168              else
169                errs() << "JIT: Stub emitted at [" << LazyPtr
170                       << "] for external function at '" << Fn << "'\n");
171      }
172      JCE.startGVStub(F, 16, 4);
173      intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
174      if (!sys::Memory::setRangeWritable((void*)Addr, 16)) {
175        llvm_unreachable("ERROR: Unable to mark stub writable");
176      }
177      JCE.emitWordLE(0xe59fc004);            // ldr pc, [pc, #+4]
178      JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
179      JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
180      JCE.emitWordLE(LazyPtr - (Addr+4+8));  // func - (L_func$scv+8)
181      sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
182      if (!sys::Memory::setRangeExecutable((void*)Addr, 16)) {
183        llvm_unreachable("ERROR: Unable to mark stub executable");
184      }
185    } else {
186      // The stub is 8-byte size and 4-aligned.
187      JCE.startGVStub(F, 8, 4);
188      intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
189      if (!sys::Memory::setRangeWritable((void*)Addr, 8)) {
190        llvm_unreachable("ERROR: Unable to mark stub writable");
191      }
192      JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
193      JCE.emitWordLE((intptr_t)Fn);  // addr of function
194      sys::Memory::InvalidateInstructionCache((void*)Addr, 8);
195      if (!sys::Memory::setRangeExecutable((void*)Addr, 8)) {
196        llvm_unreachable("ERROR: Unable to mark stub executable");
197      }
198    }
199  } else {
200    // The compilation callback will overwrite the first two words of this
201    // stub with indirect branch instructions targeting the compiled code.
202    // This stub sets the return address to restart the stub, so that
203    // the new branch will be invoked when we come back.
204    //
205    // Branch and link to the compilation callback.
206    // The stub is 16-byte size and 4-byte aligned.
207    JCE.startGVStub(F, 16, 4);
208    intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
209    if (!sys::Memory::setRangeWritable((void*)Addr, 16)) {
210      llvm_unreachable("ERROR: Unable to mark stub writable");
211    }
212    // Save LR so the callback can determine which stub called it.
213    // The compilation callback is responsible for popping this prior
214    // to returning.
215    JCE.emitWordLE(0xe92d4000); // push {lr}
216    // Set the return address to go back to the start of this stub.
217    JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
218    // Invoke the compilation callback.
219    JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
220    // The address of the compilation callback.
221    JCE.emitWordLE((intptr_t)ARMCompilationCallback);
222    sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
223    if (!sys::Memory::setRangeExecutable((void*)Addr, 16)) {
224      llvm_unreachable("ERROR: Unable to mark stub executable");
225    }
226  }
227
228  return JCE.finishGVStub(F);
229}
230
231intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
232  ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
233  switch (RT) {
234  default:
235    return (intptr_t)(MR->getResultPointer());
236  case ARM::reloc_arm_pic_jt:
237    // Destination address - jump table base.
238    return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
239  case ARM::reloc_arm_jt_base:
240    // Jump table base address.
241    return getJumpTableBaseAddr(MR->getJumpTableIndex());
242  case ARM::reloc_arm_cp_entry:
243  case ARM::reloc_arm_vfp_cp_entry:
244    // Constant pool entry address.
245    return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
246  case ARM::reloc_arm_machine_cp_entry: {
247    ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
248    assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
249           "Can't handle this machine constant pool entry yet!");
250    intptr_t Addr = (intptr_t)(MR->getResultPointer());
251    Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
252    return Addr;
253  }
254  }
255}
256
257/// relocate - Before the JIT can run a block of code that has been emitted,
258/// it must rewrite the code to contain the actual addresses of any
259/// referenced global symbols.
260void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
261                          unsigned NumRelocs, unsigned char* GOTBase) {
262  for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
263    void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
264    intptr_t ResultPtr = resolveRelocDestAddr(MR);
265    switch ((ARM::RelocationType)MR->getRelocationType()) {
266    case ARM::reloc_arm_cp_entry:
267    case ARM::reloc_arm_vfp_cp_entry:
268    case ARM::reloc_arm_relative: {
269      // It is necessary to calculate the correct PC relative value. We
270      // subtract the base addr from the target addr to form a byte offset.
271      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
272      // If the result is positive, set bit U(23) to 1.
273      if (ResultPtr >= 0)
274        *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
275      else {
276        // Otherwise, obtain the absolute value and set bit U(23) to 0.
277        *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
278        ResultPtr = - ResultPtr;
279      }
280      // Set the immed value calculated.
281      // VFP immediate offset is multiplied by 4.
282      if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
283        ResultPtr = ResultPtr >> 2;
284      *((intptr_t*)RelocPos) |= ResultPtr;
285      // Set register Rn to PC.
286      *((intptr_t*)RelocPos) |=
287        ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
288      break;
289    }
290    case ARM::reloc_arm_pic_jt:
291    case ARM::reloc_arm_machine_cp_entry:
292    case ARM::reloc_arm_absolute: {
293      // These addresses have already been resolved.
294      *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
295      break;
296    }
297    case ARM::reloc_arm_branch: {
298      // It is necessary to calculate the correct value of signed_immed_24
299      // field. We subtract the base addr from the target addr to form a
300      // byte offset, which must be inside the range -33554432 and +33554428.
301      // Then, we set the signed_immed_24 field of the instruction to bits
302      // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
303      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
304      ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
305      assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
306      *((intptr_t*)RelocPos) |= ResultPtr;
307      break;
308    }
309    case ARM::reloc_arm_jt_base: {
310      // JT base - (instruction addr + 8)
311      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
312      *((intptr_t*)RelocPos) |= ResultPtr;
313      break;
314    }
315    }
316  }
317}
318