X86TargetTransformInfo.cpp revision 83be7b0dd3ae9a3cb22d36ae4c1775972553b94b
1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23using namespace llvm;
24
25// Declare the pass initialization routine locally as target-specific passes
26// don't havve a target-wide initialization entry point, and so we rely on the
27// pass constructor initialization.
28namespace llvm {
29void initializeX86TTIPass(PassRegistry &);
30}
31
32namespace {
33
34class X86TTI : public ImmutablePass, public TargetTransformInfo {
35  const X86TargetMachine *TM;
36  const X86Subtarget *ST;
37  const X86TargetLowering *TLI;
38
39  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40  /// are set if the result needs to be inserted and/or extracted from vectors.
41  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
44  X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
45    llvm_unreachable("This pass cannot be directly constructed");
46  }
47
48  X86TTI(const X86TargetMachine *TM)
49      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
50        TLI(TM->getTargetLowering()) {
51    initializeX86TTIPass(*PassRegistry::getPassRegistry());
52  }
53
54  virtual void initializePass() {
55    pushTTIStack(this);
56  }
57
58  virtual void finalizePass() {
59    popTTIStack();
60  }
61
62  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63    TargetTransformInfo::getAnalysisUsage(AU);
64  }
65
66  /// Pass identification.
67  static char ID;
68
69  /// Provide necessary pointer adjustments for the two base classes.
70  virtual void *getAdjustedAnalysisPointer(const void *ID) {
71    if (ID == &TargetTransformInfo::ID)
72      return (TargetTransformInfo*)this;
73    return this;
74  }
75
76  /// \name Scalar TTI Implementations
77  /// @{
78  virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
79
80  /// @}
81
82  /// \name Vector TTI Implementations
83  /// @{
84
85  virtual unsigned getNumberOfRegisters(bool Vector) const;
86  virtual unsigned getMaximumUnrollFactor() const;
87  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
88  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
89                                  int Index, Type *SubTp) const;
90  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
91                                    Type *Src) const;
92  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
93                                      Type *CondTy) const;
94  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
95                                      unsigned Index) const;
96  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
97                                   unsigned Alignment,
98                                   unsigned AddressSpace) const;
99
100  /// @}
101};
102
103} // end anonymous namespace
104
105INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
106                   "X86 Target Transform Info", true, true, false)
107char X86TTI::ID = 0;
108
109ImmutablePass *
110llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
111  return new X86TTI(TM);
112}
113
114
115//===----------------------------------------------------------------------===//
116//
117// X86 cost model.
118//
119//===----------------------------------------------------------------------===//
120
121namespace {
122struct X86CostTblEntry {
123  int ISD;
124  MVT Type;
125  unsigned Cost;
126};
127}
128
129static int
130FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
131  for (unsigned int i = 0; i < len; ++i)
132    if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
133      return i;
134
135  // Could not find an entry.
136  return -1;
137}
138
139namespace {
140struct X86TypeConversionCostTblEntry {
141  int ISD;
142  MVT Dst;
143  MVT Src;
144  unsigned Cost;
145};
146}
147
148static int
149FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
150                   int ISD, MVT Dst, MVT Src) {
151  for (unsigned int i = 0; i < len; ++i)
152    if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
153      return i;
154
155  // Could not find an entry.
156  return -1;
157}
158
159X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
160  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
161  // TODO: Currently the __builtin_popcount() implementation using SSE3
162  //   instructions is inefficient. Once the problem is fixed, we should
163  //   call ST->hasSSE3() instead of ST->hasSSE4().
164  return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
165}
166
167unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
168  if (ST->is64Bit())
169    return 16;
170  return 8;
171}
172
173unsigned X86TTI::getMaximumUnrollFactor() const {
174  if (ST->isAtom())
175    return 1;
176
177  // Sandybridge and Haswell have multiple execution ports and pipelined
178  // vector units.
179  if (ST->hasAVX())
180    return 4;
181
182  return 2;
183}
184
185unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
186  // Legalize the type.
187  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
188
189  int ISD = TLI->InstructionOpcodeToISD(Opcode);
190  assert(ISD && "Invalid opcode");
191
192  static const X86CostTblEntry AVX1CostTable[] = {
193    // We don't have to scalarize unsupported ops. We can issue two half-sized
194    // operations and we only need to extract the upper YMM half.
195    // Two ops + 1 extract + 1 insert = 4.
196    { ISD::MUL,     MVT::v8i32,    4 },
197    { ISD::SUB,     MVT::v8i32,    4 },
198    { ISD::ADD,     MVT::v8i32,    4 },
199    { ISD::MUL,     MVT::v4i64,    4 },
200    { ISD::SUB,     MVT::v4i64,    4 },
201    { ISD::ADD,     MVT::v4i64,    4 },
202    };
203
204  // Look for AVX1 lowering tricks.
205  if (ST->hasAVX()) {
206    int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
207                          LT.second);
208    if (Idx != -1)
209      return LT.first * AVX1CostTable[Idx].Cost;
210  }
211  // Fallback to the default implementation.
212  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
213}
214
215unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
216                                Type *SubTp) const {
217  // We only estimate the cost of reverse shuffles.
218  if (Kind != SK_Reverse)
219    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
220
221  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
222  unsigned Cost = 1;
223  if (LT.second.getSizeInBits() > 128)
224    Cost = 3; // Extract + insert + copy.
225
226  // Multiple by the number of parts.
227  return Cost * LT.first;
228}
229
230unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
231  int ISD = TLI->InstructionOpcodeToISD(Opcode);
232  assert(ISD && "Invalid opcode");
233
234  EVT SrcTy = TLI->getValueType(Src);
235  EVT DstTy = TLI->getValueType(Dst);
236
237  if (!SrcTy.isSimple() || !DstTy.isSimple())
238    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
239
240  static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
241    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
242    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
243    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
244    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
245    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
246    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
247    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
248    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
249    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
250    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
251    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
252    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
253    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
254    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
255    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
256  };
257
258  if (ST->hasAVX()) {
259    int Idx = FindInConvertTable(AVXConversionTbl,
260                                 array_lengthof(AVXConversionTbl),
261                                 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
262    if (Idx != -1)
263      return AVXConversionTbl[Idx].Cost;
264  }
265
266  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
267}
268
269unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
270                                    Type *CondTy) const {
271  // Legalize the type.
272  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
273
274  MVT MTy = LT.second;
275
276  int ISD = TLI->InstructionOpcodeToISD(Opcode);
277  assert(ISD && "Invalid opcode");
278
279  static const X86CostTblEntry SSE42CostTbl[] = {
280    { ISD::SETCC,   MVT::v2f64,   1 },
281    { ISD::SETCC,   MVT::v4f32,   1 },
282    { ISD::SETCC,   MVT::v2i64,   1 },
283    { ISD::SETCC,   MVT::v4i32,   1 },
284    { ISD::SETCC,   MVT::v8i16,   1 },
285    { ISD::SETCC,   MVT::v16i8,   1 },
286  };
287
288  static const X86CostTblEntry AVX1CostTbl[] = {
289    { ISD::SETCC,   MVT::v4f64,   1 },
290    { ISD::SETCC,   MVT::v8f32,   1 },
291    // AVX1 does not support 8-wide integer compare.
292    { ISD::SETCC,   MVT::v4i64,   4 },
293    { ISD::SETCC,   MVT::v8i32,   4 },
294    { ISD::SETCC,   MVT::v16i16,  4 },
295    { ISD::SETCC,   MVT::v32i8,   4 },
296  };
297
298  static const X86CostTblEntry AVX2CostTbl[] = {
299    { ISD::SETCC,   MVT::v4i64,   1 },
300    { ISD::SETCC,   MVT::v8i32,   1 },
301    { ISD::SETCC,   MVT::v16i16,  1 },
302    { ISD::SETCC,   MVT::v32i8,   1 },
303  };
304
305  if (ST->hasAVX2()) {
306    int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
307    if (Idx != -1)
308      return LT.first * AVX2CostTbl[Idx].Cost;
309  }
310
311  if (ST->hasAVX()) {
312    int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
313    if (Idx != -1)
314      return LT.first * AVX1CostTbl[Idx].Cost;
315  }
316
317  if (ST->hasSSE42()) {
318    int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
319    if (Idx != -1)
320      return LT.first * SSE42CostTbl[Idx].Cost;
321  }
322
323  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
324}
325
326unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
327                                    unsigned Index) const {
328  assert(Val->isVectorTy() && "This must be a vector type");
329
330  if (Index != -1U) {
331    // Legalize the type.
332    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
333
334    // This type is legalized to a scalar type.
335    if (!LT.second.isVector())
336      return 0;
337
338    // The type may be split. Normalize the index to the new type.
339    unsigned Width = LT.second.getVectorNumElements();
340    Index = Index % Width;
341
342    // Floating point scalars are already located in index #0.
343    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
344      return 0;
345  }
346
347  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
348}
349
350unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
351                                 unsigned AddressSpace) const {
352  // Legalize the type.
353  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
354  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
355         "Invalid Opcode");
356
357  // Each load/store unit costs 1.
358  unsigned Cost = LT.first * 1;
359
360  // On Sandybridge 256bit load/stores are double pumped
361  // (but not on Haswell).
362  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
363    Cost*=2;
364
365  return Cost;
366}
367