X86TargetTransformInfo.cpp revision bb00800ff46e7a2a628d0a6741a7f0422c74c198
1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23using namespace llvm;
24
25// Declare the pass initialization routine locally as target-specific passes
26// don't havve a target-wide initialization entry point, and so we rely on the
27// pass constructor initialization.
28namespace llvm {
29void initializeX86TTIPass(PassRegistry &);
30}
31
32namespace {
33
34class X86TTI : public ImmutablePass, public TargetTransformInfo {
35  const X86TargetMachine *TM;
36  const X86Subtarget *ST;
37  const X86TargetLowering *TLI;
38
39  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40  /// are set if the result needs to be inserted and/or extracted from vectors.
41  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
44  X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
45    llvm_unreachable("This pass cannot be directly constructed");
46  }
47
48  X86TTI(const X86TargetMachine *TM)
49      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
50        TLI(TM->getTargetLowering()) {
51    initializeX86TTIPass(*PassRegistry::getPassRegistry());
52  }
53
54  virtual void initializePass() {
55    pushTTIStack(this);
56  }
57
58  virtual void finalizePass() {
59    popTTIStack();
60  }
61
62  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63    TargetTransformInfo::getAnalysisUsage(AU);
64  }
65
66  /// Pass identification.
67  static char ID;
68
69  /// Provide necessary pointer adjustments for the two base classes.
70  virtual void *getAdjustedAnalysisPointer(const void *ID) {
71    if (ID == &TargetTransformInfo::ID)
72      return (TargetTransformInfo*)this;
73    return this;
74  }
75
76  /// \name Scalar TTI Implementations
77  /// @{
78
79  virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
80
81  /// @}
82
83  /// \name Vector TTI Implementations
84  /// @{
85
86  virtual unsigned getNumberOfRegisters(bool Vector) const;
87  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
88  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
89                                  int Index, Type *SubTp) const;
90  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
91                                    Type *Src) const;
92  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
93                                      Type *CondTy) const;
94  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
95                                      unsigned Index) const;
96  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
97                                   unsigned Alignment,
98                                   unsigned AddressSpace) const;
99
100  /// @}
101};
102
103} // end anonymous namespace
104
105INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
106                   "X86 Target Transform Info", true, true, false)
107char X86TTI::ID = 0;
108
109ImmutablePass *
110llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
111  return new X86TTI(TM);
112}
113
114
115//===----------------------------------------------------------------------===//
116//
117// X86 cost model.
118//
119//===----------------------------------------------------------------------===//
120
121namespace {
122struct X86CostTblEntry {
123  int ISD;
124  MVT Type;
125  unsigned Cost;
126};
127}
128
129static int
130FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
131  for (unsigned int i = 0; i < len; ++i)
132    if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
133      return i;
134
135  // Could not find an entry.
136  return -1;
137}
138
139namespace {
140struct X86TypeConversionCostTblEntry {
141  int ISD;
142  MVT Dst;
143  MVT Src;
144  unsigned Cost;
145};
146}
147
148static int
149FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
150                   int ISD, MVT Dst, MVT Src) {
151  for (unsigned int i = 0; i < len; ++i)
152    if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
153      return i;
154
155  // Could not find an entry.
156  return -1;
157}
158
159
160X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
161  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
162  // TODO: Currently the __builtin_popcount() implementation using SSE3
163  //   instructions is inefficient. Once the problem is fixed, we should
164  //   call ST->hasSSE3() instead of ST->hasSSE4().
165  return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
166}
167
168unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
169  if (ST->is64Bit())
170    return 16;
171  return 8;
172}
173
174unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
175  // Legalize the type.
176  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
177
178  int ISD = TLI->InstructionOpcodeToISD(Opcode);
179  assert(ISD && "Invalid opcode");
180
181  static const X86CostTblEntry AVX1CostTable[] = {
182    // We don't have to scalarize unsupported ops. We can issue two half-sized
183    // operations and we only need to extract the upper YMM half.
184    // Two ops + 1 extract + 1 insert = 4.
185    { ISD::MUL,     MVT::v8i32,    4 },
186    { ISD::SUB,     MVT::v8i32,    4 },
187    { ISD::ADD,     MVT::v8i32,    4 },
188    { ISD::MUL,     MVT::v4i64,    4 },
189    { ISD::SUB,     MVT::v4i64,    4 },
190    { ISD::ADD,     MVT::v4i64,    4 },
191    };
192
193  // Look for AVX1 lowering tricks.
194  if (ST->hasAVX()) {
195    int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
196                          LT.second);
197    if (Idx != -1)
198      return LT.first * AVX1CostTable[Idx].Cost;
199  }
200  // Fallback to the default implementation.
201  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
202}
203
204unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
205                                Type *SubTp) const {
206  // We only estimate the cost of reverse shuffles.
207  if (Kind != SK_Reverse)
208    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
209
210  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
211  unsigned Cost = 1;
212  if (LT.second.getSizeInBits() > 128)
213    Cost = 3; // Extract + insert + copy.
214
215  // Multiple by the number of parts.
216  return Cost * LT.first;
217}
218
219unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
220  int ISD = TLI->InstructionOpcodeToISD(Opcode);
221  assert(ISD && "Invalid opcode");
222
223  EVT SrcTy = TLI->getValueType(Src);
224  EVT DstTy = TLI->getValueType(Dst);
225
226  if (!SrcTy.isSimple() || !DstTy.isSimple())
227    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
228
229  static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
230    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
231    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
232    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
233    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
234    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
235    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
236    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
237    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
238    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
239    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
240    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
241    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
242    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
243    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
244    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
245  };
246
247  if (ST->hasAVX()) {
248    int Idx = FindInConvertTable(AVXConversionTbl,
249                                 array_lengthof(AVXConversionTbl),
250                                 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
251    if (Idx != -1)
252      return AVXConversionTbl[Idx].Cost;
253  }
254
255  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
256}
257
258unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
259                                    Type *CondTy) const {
260  // Legalize the type.
261  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
262
263  MVT MTy = LT.second;
264
265  int ISD = TLI->InstructionOpcodeToISD(Opcode);
266  assert(ISD && "Invalid opcode");
267
268  static const X86CostTblEntry SSE42CostTbl[] = {
269    { ISD::SETCC,   MVT::v2f64,   1 },
270    { ISD::SETCC,   MVT::v4f32,   1 },
271    { ISD::SETCC,   MVT::v2i64,   1 },
272    { ISD::SETCC,   MVT::v4i32,   1 },
273    { ISD::SETCC,   MVT::v8i16,   1 },
274    { ISD::SETCC,   MVT::v16i8,   1 },
275  };
276
277  static const X86CostTblEntry AVX1CostTbl[] = {
278    { ISD::SETCC,   MVT::v4f64,   1 },
279    { ISD::SETCC,   MVT::v8f32,   1 },
280    // AVX1 does not support 8-wide integer compare.
281    { ISD::SETCC,   MVT::v4i64,   4 },
282    { ISD::SETCC,   MVT::v8i32,   4 },
283    { ISD::SETCC,   MVT::v16i16,  4 },
284    { ISD::SETCC,   MVT::v32i8,   4 },
285  };
286
287  static const X86CostTblEntry AVX2CostTbl[] = {
288    { ISD::SETCC,   MVT::v4i64,   1 },
289    { ISD::SETCC,   MVT::v8i32,   1 },
290    { ISD::SETCC,   MVT::v16i16,  1 },
291    { ISD::SETCC,   MVT::v32i8,   1 },
292  };
293
294  if (ST->hasAVX2()) {
295    int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
296    if (Idx != -1)
297      return LT.first * AVX2CostTbl[Idx].Cost;
298  }
299
300  if (ST->hasAVX()) {
301    int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
302    if (Idx != -1)
303      return LT.first * AVX1CostTbl[Idx].Cost;
304  }
305
306  if (ST->hasSSE42()) {
307    int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
308    if (Idx != -1)
309      return LT.first * SSE42CostTbl[Idx].Cost;
310  }
311
312  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
313}
314
315unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
316                                    unsigned Index) const {
317  assert(Val->isVectorTy() && "This must be a vector type");
318
319  if (Index != -1U) {
320    // Legalize the type.
321    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
322
323    // This type is legalized to a scalar type.
324    if (!LT.second.isVector())
325      return 0;
326
327    // The type may be split. Normalize the index to the new type.
328    unsigned Width = LT.second.getVectorNumElements();
329    Index = Index % Width;
330
331    // Floating point scalars are already located in index #0.
332    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
333      return 0;
334  }
335
336  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
337}
338
339unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
340                                 unsigned AddressSpace) const {
341  // Legalize the type.
342  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
343  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
344         "Invalid Opcode");
345
346  // Each load/store unit costs 1.
347  unsigned Cost = LT.first * 1;
348
349  // On Sandybridge 256bit load/stores are double pumped
350  // (but not on Haswell).
351  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
352    Cost*=2;
353
354  return Cost;
355}
356