X86TargetTransformInfo.cpp revision d3c965d6251e6d939f7797f8704d4e3a82f7e274
1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23using namespace llvm;
24
25// Declare the pass initialization routine locally as target-specific passes
26// don't havve a target-wide initialization entry point, and so we rely on the
27// pass constructor initialization.
28namespace llvm {
29void initializeX86TTIPass(PassRegistry &);
30}
31
32namespace {
33
34class X86TTI : public ImmutablePass, public TargetTransformInfo {
35  const X86TargetMachine *TM;
36  const X86Subtarget *ST;
37  const X86TargetLowering *TLI;
38
39  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40  /// are set if the result needs to be inserted and/or extracted from vectors.
41  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
44  X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
45    llvm_unreachable("This pass cannot be directly constructed");
46  }
47
48  X86TTI(const X86TargetMachine *TM)
49      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
50        TLI(TM->getTargetLowering()) {
51    initializeX86TTIPass(*PassRegistry::getPassRegistry());
52  }
53
54  virtual void initializePass() {
55    pushTTIStack(this);
56  }
57
58  virtual void finalizePass() {
59    popTTIStack();
60  }
61
62  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63    TargetTransformInfo::getAnalysisUsage(AU);
64  }
65
66  /// Pass identification.
67  static char ID;
68
69  /// Provide necessary pointer adjustments for the two base classes.
70  virtual void *getAdjustedAnalysisPointer(const void *ID) {
71    if (ID == &TargetTransformInfo::ID)
72      return (TargetTransformInfo*)this;
73    return this;
74  }
75
76  /// \name Scalar TTI Implementations
77  /// @{
78  virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
79
80  /// @}
81
82  /// \name Vector TTI Implementations
83  /// @{
84
85  virtual unsigned getNumberOfRegisters(bool Vector) const;
86  virtual unsigned getRegisterBitWidth(bool Vector) const;
87  virtual unsigned getMaximumUnrollFactor() const;
88  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
89  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
90                                  int Index, Type *SubTp) const;
91  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
92                                    Type *Src) const;
93  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
94                                      Type *CondTy) const;
95  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
96                                      unsigned Index) const;
97  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
98                                   unsigned Alignment,
99                                   unsigned AddressSpace) const;
100
101  /// @}
102};
103
104} // end anonymous namespace
105
106INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
107                   "X86 Target Transform Info", true, true, false)
108char X86TTI::ID = 0;
109
110ImmutablePass *
111llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
112  return new X86TTI(TM);
113}
114
115
116//===----------------------------------------------------------------------===//
117//
118// X86 cost model.
119//
120//===----------------------------------------------------------------------===//
121
122X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
123  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
124  // TODO: Currently the __builtin_popcount() implementation using SSE3
125  //   instructions is inefficient. Once the problem is fixed, we should
126  //   call ST->hasSSE3() instead of ST->hasSSE4().
127  return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
128}
129
130unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
131  if (Vector && !ST->hasSSE1())
132    return 0;
133
134  if (ST->is64Bit())
135    return 16;
136  return 8;
137}
138
139unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
140  if (Vector) {
141    if (ST->hasAVX()) return 256;
142    if (ST->hasSSE1()) return 128;
143    return 0;
144  }
145
146  if (ST->is64Bit())
147    return 64;
148  return 32;
149
150}
151
152unsigned X86TTI::getMaximumUnrollFactor() const {
153  if (ST->isAtom())
154    return 1;
155
156  // Sandybridge and Haswell have multiple execution ports and pipelined
157  // vector units.
158  if (ST->hasAVX())
159    return 4;
160
161  return 2;
162}
163
164unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
165  // Legalize the type.
166  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
167
168  int ISD = TLI->InstructionOpcodeToISD(Opcode);
169  assert(ISD && "Invalid opcode");
170
171  // We don't have to scalarize unsupported ops. We can issue two half-sized
172  // operations and we only need to extract the upper YMM half.
173  // Two ops + 1 extract + 1 insert = 4.
174  static const CostTableEntry AVX1CostTable[] = {
175    { ISD::MUL,    { MVT::v8i32 },    4 },
176    { ISD::SUB,    { MVT::v8i32 },    4 },
177    { ISD::ADD,    { MVT::v8i32 },    4 },
178    { ISD::MUL,    { MVT::v4i64 },    4 },
179    { ISD::SUB,    { MVT::v4i64 },    4 },
180    { ISD::ADD,    { MVT::v4i64 },    4 },
181  };
182  UnaryCostTable costTable (AVX1CostTable, array_lengthof(AVX1CostTable));
183
184  // Look for AVX1 lowering tricks.
185  if (ST->hasAVX()) {
186    unsigned cost = costTable.findCost(ISD, LT.second);
187    if (cost != BinaryCostTable::COST_NOT_FOUND)
188      return LT.first * cost;
189  }
190  // Fallback to the default implementation.
191  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
192}
193
194unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
195                                Type *SubTp) const {
196  // We only estimate the cost of reverse shuffles.
197  if (Kind != SK_Reverse)
198    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
199
200  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
201  unsigned Cost = 1;
202  if (LT.second.getSizeInBits() > 128)
203    Cost = 3; // Extract + insert + copy.
204
205  // Multiple by the number of parts.
206  return Cost * LT.first;
207}
208
209unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
210  int ISD = TLI->InstructionOpcodeToISD(Opcode);
211  assert(ISD && "Invalid opcode");
212
213  EVT SrcTy = TLI->getValueType(Src);
214  EVT DstTy = TLI->getValueType(Dst);
215
216  if (!SrcTy.isSimple() || !DstTy.isSimple())
217    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
218
219  static const CostTableEntry AVXConversionTbl[] = {
220    { ISD::SIGN_EXTEND, { MVT::v8i32, MVT::v8i16 }, 1 },
221    { ISD::ZERO_EXTEND, { MVT::v8i32, MVT::v8i16 }, 1 },
222    { ISD::SIGN_EXTEND, { MVT::v4i64, MVT::v4i32 }, 1 },
223    { ISD::ZERO_EXTEND, { MVT::v4i64, MVT::v4i32 }, 1 },
224    { ISD::TRUNCATE,    { MVT::v4i32, MVT::v4i64 }, 1 },
225    { ISD::TRUNCATE,    { MVT::v8i16, MVT::v8i32 }, 1 },
226    { ISD::SINT_TO_FP,  { MVT::v8f32, MVT::v8i8  }, 1 },
227    { ISD::SINT_TO_FP,  { MVT::v4f32, MVT::v4i8  }, 1 },
228    { ISD::UINT_TO_FP,  { MVT::v8f32, MVT::v8i8  }, 1 },
229    { ISD::UINT_TO_FP,  { MVT::v4f32, MVT::v4i8  }, 1 },
230    { ISD::FP_TO_SINT,  { MVT::v8i8,  MVT::v8f32 }, 1 },
231    { ISD::FP_TO_SINT,  { MVT::v4i8,  MVT::v4f32 }, 1 },
232    { ISD::ZERO_EXTEND, { MVT::v8i32, MVT::v8i1  }, 6 },
233    { ISD::SIGN_EXTEND, { MVT::v8i32, MVT::v8i1  }, 9 },
234    { ISD::TRUNCATE,    { MVT::v8i32, MVT::v8i64 }, 3 }
235  };
236  BinaryCostTable costTable (AVXConversionTbl, array_lengthof(AVXConversionTbl));
237
238  if (ST->hasAVX()) {
239    unsigned cost = costTable.findCost(ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
240    if (cost != BinaryCostTable::COST_NOT_FOUND)
241      return cost;
242  }
243
244  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
245}
246
247unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
248                                    Type *CondTy) const {
249  // Legalize the type.
250  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
251
252  MVT MTy = LT.second;
253
254  int ISD = TLI->InstructionOpcodeToISD(Opcode);
255  assert(ISD && "Invalid opcode");
256
257  static const CostTableEntry SSE42CostTbl[] = {
258    { ISD::SETCC,  { MVT::v2f64 },  1 },
259    { ISD::SETCC,  { MVT::v4f32 },  1 },
260    { ISD::SETCC,  { MVT::v2i64 },  1 },
261    { ISD::SETCC,  { MVT::v4i32 },  1 },
262    { ISD::SETCC,  { MVT::v8i16 },  1 },
263    { ISD::SETCC,  { MVT::v16i8 },  1 },
264  };
265  UnaryCostTable costTableSSE4 (SSE42CostTbl, array_lengthof(SSE42CostTbl));
266
267  static const CostTableEntry AVX1CostTbl[] = {
268    { ISD::SETCC,  { MVT::v4f64  },  1 },
269    { ISD::SETCC,  { MVT::v8f32  },  1 },
270    // AVX1 does not support 8-wide integer compare.
271    { ISD::SETCC,  { MVT::v4i64  },  4 },
272    { ISD::SETCC,  { MVT::v8i32  },  4 },
273    { ISD::SETCC,  { MVT::v16i16 },  4 },
274    { ISD::SETCC,  { MVT::v32i8  },  4 },
275  };
276  UnaryCostTable costTableAVX1 (AVX1CostTbl, array_lengthof(AVX1CostTbl));
277
278  static const CostTableEntry AVX2CostTbl[] = {
279    { ISD::SETCC,  { MVT::v4i64  }, 1 },
280    { ISD::SETCC,  { MVT::v8i32  }, 1 },
281    { ISD::SETCC,  { MVT::v16i16 }, 1 },
282    { ISD::SETCC,  { MVT::v32i8  }, 1 },
283  };
284  UnaryCostTable costTableAVX2 (AVX2CostTbl, array_lengthof(AVX2CostTbl));
285
286  if (ST->hasAVX2()) {
287    unsigned cost = costTableAVX2.findCost(ISD, MTy);
288    if (cost != BinaryCostTable::COST_NOT_FOUND)
289      return LT.first * cost;
290  }
291
292  if (ST->hasAVX()) {
293    unsigned cost = costTableAVX1.findCost(ISD, MTy);
294    if (cost != BinaryCostTable::COST_NOT_FOUND)
295      return LT.first * cost;
296  }
297
298  if (ST->hasSSE42()) {
299    unsigned cost = costTableSSE4.findCost(ISD, MTy);
300    if (cost != BinaryCostTable::COST_NOT_FOUND)
301      return LT.first * cost;
302  }
303
304  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
305}
306
307unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
308                                    unsigned Index) const {
309  assert(Val->isVectorTy() && "This must be a vector type");
310
311  if (Index != -1U) {
312    // Legalize the type.
313    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
314
315    // This type is legalized to a scalar type.
316    if (!LT.second.isVector())
317      return 0;
318
319    // The type may be split. Normalize the index to the new type.
320    unsigned Width = LT.second.getVectorNumElements();
321    Index = Index % Width;
322
323    // Floating point scalars are already located in index #0.
324    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
325      return 0;
326  }
327
328  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
329}
330
331unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
332                                 unsigned AddressSpace) const {
333  // Legalize the type.
334  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
335  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
336         "Invalid Opcode");
337
338  // Each load/store unit costs 1.
339  unsigned Cost = LT.first * 1;
340
341  // On Sandybridge 256bit load/stores are double pumped
342  // (but not on Haswell).
343  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
344    Cost*=2;
345
346  return Cost;
347}
348