GVN.cpp revision 5dde20bfacdad9bc3ddc99eff93d52ed54312ed9
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/SSAUpdater.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DepthFirstIterator.h"
39#include "llvm/ADT/Hashing.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Support/Allocator.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/PatternMatch.h"
47using namespace llvm;
48using namespace PatternMatch;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
55STATISTIC(NumGVNEqProp, "Number of equalities propagated");
56STATISTIC(NumPRELoad,   "Number of loads PRE'd");
57
58static cl::opt<bool> EnablePRE("enable-pre",
59                               cl::init(true), cl::Hidden);
60static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
61
62// Maximum allowed recursion depth.
63static cl::opt<int>
64MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
65                cl::desc("Max recurse depth (default = 1000)"));
66
67//===----------------------------------------------------------------------===//
68//                         ValueTable Class
69//===----------------------------------------------------------------------===//
70
71/// This class holds the mapping between values and value numbers.  It is used
72/// as an efficient mechanism to determine the expression-wise equivalence of
73/// two values.
74namespace {
75  struct Expression {
76    uint32_t opcode;
77    Type *type;
78    SmallVector<uint32_t, 4> varargs;
79
80    Expression(uint32_t o = ~2U) : opcode(o) { }
81
82    bool operator==(const Expression &other) const {
83      if (opcode != other.opcode)
84        return false;
85      if (opcode == ~0U || opcode == ~1U)
86        return true;
87      if (type != other.type)
88        return false;
89      if (varargs != other.varargs)
90        return false;
91      return true;
92    }
93
94    friend hash_code hash_value(const Expression &Value) {
95      return hash_combine(Value.opcode, Value.type,
96                          hash_combine_range(Value.varargs.begin(),
97                                             Value.varargs.end()));
98    }
99  };
100
101  class ValueTable {
102    DenseMap<Value*, uint32_t> valueNumbering;
103    DenseMap<Expression, uint32_t> expressionNumbering;
104    AliasAnalysis *AA;
105    MemoryDependenceAnalysis *MD;
106    DominatorTree *DT;
107
108    uint32_t nextValueNumber;
109
110    Expression create_expression(Instruction* I);
111    Expression create_cmp_expression(unsigned Opcode,
112                                     CmpInst::Predicate Predicate,
113                                     Value *LHS, Value *RHS);
114    Expression create_extractvalue_expression(ExtractValueInst* EI);
115    uint32_t lookup_or_add_call(CallInst* C);
116  public:
117    ValueTable() : nextValueNumber(1) { }
118    uint32_t lookup_or_add(Value *V);
119    uint32_t lookup(Value *V) const;
120    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
121                               Value *LHS, Value *RHS);
122    void add(Value *V, uint32_t num);
123    void clear();
124    void erase(Value *v);
125    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
126    AliasAnalysis *getAliasAnalysis() const { return AA; }
127    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
128    void setDomTree(DominatorTree* D) { DT = D; }
129    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
130    void verifyRemoved(const Value *) const;
131  };
132}
133
134namespace llvm {
135template <> struct DenseMapInfo<Expression> {
136  static inline Expression getEmptyKey() {
137    return ~0U;
138  }
139
140  static inline Expression getTombstoneKey() {
141    return ~1U;
142  }
143
144  static unsigned getHashValue(const Expression e) {
145    using llvm::hash_value;
146    return static_cast<unsigned>(hash_value(e));
147  }
148  static bool isEqual(const Expression &LHS, const Expression &RHS) {
149    return LHS == RHS;
150  }
151};
152
153}
154
155//===----------------------------------------------------------------------===//
156//                     ValueTable Internal Functions
157//===----------------------------------------------------------------------===//
158
159Expression ValueTable::create_expression(Instruction *I) {
160  Expression e;
161  e.type = I->getType();
162  e.opcode = I->getOpcode();
163  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
164       OI != OE; ++OI)
165    e.varargs.push_back(lookup_or_add(*OI));
166  if (I->isCommutative()) {
167    // Ensure that commutative instructions that only differ by a permutation
168    // of their operands get the same value number by sorting the operand value
169    // numbers.  Since all commutative instructions have two operands it is more
170    // efficient to sort by hand rather than using, say, std::sort.
171    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
172    if (e.varargs[0] > e.varargs[1])
173      std::swap(e.varargs[0], e.varargs[1]);
174  }
175
176  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
177    // Sort the operand value numbers so x<y and y>x get the same value number.
178    CmpInst::Predicate Predicate = C->getPredicate();
179    if (e.varargs[0] > e.varargs[1]) {
180      std::swap(e.varargs[0], e.varargs[1]);
181      Predicate = CmpInst::getSwappedPredicate(Predicate);
182    }
183    e.opcode = (C->getOpcode() << 8) | Predicate;
184  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
185    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
186         II != IE; ++II)
187      e.varargs.push_back(*II);
188  }
189
190  return e;
191}
192
193Expression ValueTable::create_cmp_expression(unsigned Opcode,
194                                             CmpInst::Predicate Predicate,
195                                             Value *LHS, Value *RHS) {
196  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
197         "Not a comparison!");
198  Expression e;
199  e.type = CmpInst::makeCmpResultType(LHS->getType());
200  e.varargs.push_back(lookup_or_add(LHS));
201  e.varargs.push_back(lookup_or_add(RHS));
202
203  // Sort the operand value numbers so x<y and y>x get the same value number.
204  if (e.varargs[0] > e.varargs[1]) {
205    std::swap(e.varargs[0], e.varargs[1]);
206    Predicate = CmpInst::getSwappedPredicate(Predicate);
207  }
208  e.opcode = (Opcode << 8) | Predicate;
209  return e;
210}
211
212Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
213  assert(EI != 0 && "Not an ExtractValueInst?");
214  Expression e;
215  e.type = EI->getType();
216  e.opcode = 0;
217
218  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
219  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
220    // EI might be an extract from one of our recognised intrinsics. If it
221    // is we'll synthesize a semantically equivalent expression instead on
222    // an extract value expression.
223    switch (I->getIntrinsicID()) {
224      case Intrinsic::sadd_with_overflow:
225      case Intrinsic::uadd_with_overflow:
226        e.opcode = Instruction::Add;
227        break;
228      case Intrinsic::ssub_with_overflow:
229      case Intrinsic::usub_with_overflow:
230        e.opcode = Instruction::Sub;
231        break;
232      case Intrinsic::smul_with_overflow:
233      case Intrinsic::umul_with_overflow:
234        e.opcode = Instruction::Mul;
235        break;
236      default:
237        break;
238    }
239
240    if (e.opcode != 0) {
241      // Intrinsic recognized. Grab its args to finish building the expression.
242      assert(I->getNumArgOperands() == 2 &&
243             "Expect two args for recognised intrinsics.");
244      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
245      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
246      return e;
247    }
248  }
249
250  // Not a recognised intrinsic. Fall back to producing an extract value
251  // expression.
252  e.opcode = EI->getOpcode();
253  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
254       OI != OE; ++OI)
255    e.varargs.push_back(lookup_or_add(*OI));
256
257  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
258         II != IE; ++II)
259    e.varargs.push_back(*II);
260
261  return e;
262}
263
264//===----------------------------------------------------------------------===//
265//                     ValueTable External Functions
266//===----------------------------------------------------------------------===//
267
268/// add - Insert a value into the table with a specified value number.
269void ValueTable::add(Value *V, uint32_t num) {
270  valueNumbering.insert(std::make_pair(V, num));
271}
272
273uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
274  if (AA->doesNotAccessMemory(C)) {
275    Expression exp = create_expression(C);
276    uint32_t& e = expressionNumbering[exp];
277    if (!e) e = nextValueNumber++;
278    valueNumbering[C] = e;
279    return e;
280  } else if (AA->onlyReadsMemory(C)) {
281    Expression exp = create_expression(C);
282    uint32_t& e = expressionNumbering[exp];
283    if (!e) {
284      e = nextValueNumber++;
285      valueNumbering[C] = e;
286      return e;
287    }
288    if (!MD) {
289      e = nextValueNumber++;
290      valueNumbering[C] = e;
291      return e;
292    }
293
294    MemDepResult local_dep = MD->getDependency(C);
295
296    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
297      valueNumbering[C] =  nextValueNumber;
298      return nextValueNumber++;
299    }
300
301    if (local_dep.isDef()) {
302      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
303
304      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
305        valueNumbering[C] = nextValueNumber;
306        return nextValueNumber++;
307      }
308
309      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
310        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
311        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
312        if (c_vn != cd_vn) {
313          valueNumbering[C] = nextValueNumber;
314          return nextValueNumber++;
315        }
316      }
317
318      uint32_t v = lookup_or_add(local_cdep);
319      valueNumbering[C] = v;
320      return v;
321    }
322
323    // Non-local case.
324    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
325      MD->getNonLocalCallDependency(CallSite(C));
326    // FIXME: Move the checking logic to MemDep!
327    CallInst* cdep = 0;
328
329    // Check to see if we have a single dominating call instruction that is
330    // identical to C.
331    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
332      const NonLocalDepEntry *I = &deps[i];
333      if (I->getResult().isNonLocal())
334        continue;
335
336      // We don't handle non-definitions.  If we already have a call, reject
337      // instruction dependencies.
338      if (!I->getResult().isDef() || cdep != 0) {
339        cdep = 0;
340        break;
341      }
342
343      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
344      // FIXME: All duplicated with non-local case.
345      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
346        cdep = NonLocalDepCall;
347        continue;
348      }
349
350      cdep = 0;
351      break;
352    }
353
354    if (!cdep) {
355      valueNumbering[C] = nextValueNumber;
356      return nextValueNumber++;
357    }
358
359    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
360      valueNumbering[C] = nextValueNumber;
361      return nextValueNumber++;
362    }
363    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
364      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
365      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
366      if (c_vn != cd_vn) {
367        valueNumbering[C] = nextValueNumber;
368        return nextValueNumber++;
369      }
370    }
371
372    uint32_t v = lookup_or_add(cdep);
373    valueNumbering[C] = v;
374    return v;
375
376  } else {
377    valueNumbering[C] = nextValueNumber;
378    return nextValueNumber++;
379  }
380}
381
382/// lookup_or_add - Returns the value number for the specified value, assigning
383/// it a new number if it did not have one before.
384uint32_t ValueTable::lookup_or_add(Value *V) {
385  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
386  if (VI != valueNumbering.end())
387    return VI->second;
388
389  if (!isa<Instruction>(V)) {
390    valueNumbering[V] = nextValueNumber;
391    return nextValueNumber++;
392  }
393
394  Instruction* I = cast<Instruction>(V);
395  Expression exp;
396  switch (I->getOpcode()) {
397    case Instruction::Call:
398      return lookup_or_add_call(cast<CallInst>(I));
399    case Instruction::Add:
400    case Instruction::FAdd:
401    case Instruction::Sub:
402    case Instruction::FSub:
403    case Instruction::Mul:
404    case Instruction::FMul:
405    case Instruction::UDiv:
406    case Instruction::SDiv:
407    case Instruction::FDiv:
408    case Instruction::URem:
409    case Instruction::SRem:
410    case Instruction::FRem:
411    case Instruction::Shl:
412    case Instruction::LShr:
413    case Instruction::AShr:
414    case Instruction::And:
415    case Instruction::Or :
416    case Instruction::Xor:
417    case Instruction::ICmp:
418    case Instruction::FCmp:
419    case Instruction::Trunc:
420    case Instruction::ZExt:
421    case Instruction::SExt:
422    case Instruction::FPToUI:
423    case Instruction::FPToSI:
424    case Instruction::UIToFP:
425    case Instruction::SIToFP:
426    case Instruction::FPTrunc:
427    case Instruction::FPExt:
428    case Instruction::PtrToInt:
429    case Instruction::IntToPtr:
430    case Instruction::BitCast:
431    case Instruction::Select:
432    case Instruction::ExtractElement:
433    case Instruction::InsertElement:
434    case Instruction::ShuffleVector:
435    case Instruction::InsertValue:
436    case Instruction::GetElementPtr:
437      exp = create_expression(I);
438      break;
439    case Instruction::ExtractValue:
440      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
441      break;
442    default:
443      valueNumbering[V] = nextValueNumber;
444      return nextValueNumber++;
445  }
446
447  uint32_t& e = expressionNumbering[exp];
448  if (!e) e = nextValueNumber++;
449  valueNumbering[V] = e;
450  return e;
451}
452
453/// lookup - Returns the value number of the specified value. Fails if
454/// the value has not yet been numbered.
455uint32_t ValueTable::lookup(Value *V) const {
456  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
457  assert(VI != valueNumbering.end() && "Value not numbered?");
458  return VI->second;
459}
460
461/// lookup_or_add_cmp - Returns the value number of the given comparison,
462/// assigning it a new number if it did not have one before.  Useful when
463/// we deduced the result of a comparison, but don't immediately have an
464/// instruction realizing that comparison to hand.
465uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
466                                       CmpInst::Predicate Predicate,
467                                       Value *LHS, Value *RHS) {
468  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
469  uint32_t& e = expressionNumbering[exp];
470  if (!e) e = nextValueNumber++;
471  return e;
472}
473
474/// clear - Remove all entries from the ValueTable.
475void ValueTable::clear() {
476  valueNumbering.clear();
477  expressionNumbering.clear();
478  nextValueNumber = 1;
479}
480
481/// erase - Remove a value from the value numbering.
482void ValueTable::erase(Value *V) {
483  valueNumbering.erase(V);
484}
485
486/// verifyRemoved - Verify that the value is removed from all internal data
487/// structures.
488void ValueTable::verifyRemoved(const Value *V) const {
489  for (DenseMap<Value*, uint32_t>::const_iterator
490         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
491    assert(I->first != V && "Inst still occurs in value numbering map!");
492  }
493}
494
495//===----------------------------------------------------------------------===//
496//                                GVN Pass
497//===----------------------------------------------------------------------===//
498
499namespace {
500
501  class GVN : public FunctionPass {
502    bool NoLoads;
503    MemoryDependenceAnalysis *MD;
504    DominatorTree *DT;
505    const TargetData *TD;
506    const TargetLibraryInfo *TLI;
507
508    ValueTable VN;
509
510    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
511    /// have that value number.  Use findLeader to query it.
512    struct LeaderTableEntry {
513      Value *Val;
514      BasicBlock *BB;
515      LeaderTableEntry *Next;
516    };
517    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
518    BumpPtrAllocator TableAllocator;
519
520    SmallVector<Instruction*, 8> InstrsToErase;
521  public:
522    static char ID; // Pass identification, replacement for typeid
523    explicit GVN(bool noloads = false)
524        : FunctionPass(ID), NoLoads(noloads), MD(0) {
525      initializeGVNPass(*PassRegistry::getPassRegistry());
526    }
527
528    bool runOnFunction(Function &F);
529
530    /// markInstructionForDeletion - This removes the specified instruction from
531    /// our various maps and marks it for deletion.
532    void markInstructionForDeletion(Instruction *I) {
533      VN.erase(I);
534      InstrsToErase.push_back(I);
535    }
536
537    const TargetData *getTargetData() const { return TD; }
538    DominatorTree &getDominatorTree() const { return *DT; }
539    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
540    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
541  private:
542    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
543    /// its value number.
544    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
545      LeaderTableEntry &Curr = LeaderTable[N];
546      if (!Curr.Val) {
547        Curr.Val = V;
548        Curr.BB = BB;
549        return;
550      }
551
552      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
553      Node->Val = V;
554      Node->BB = BB;
555      Node->Next = Curr.Next;
556      Curr.Next = Node;
557    }
558
559    /// removeFromLeaderTable - Scan the list of values corresponding to a given
560    /// value number, and remove the given value if encountered.
561    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
562      LeaderTableEntry* Prev = 0;
563      LeaderTableEntry* Curr = &LeaderTable[N];
564
565      while (Curr->Val != V || Curr->BB != BB) {
566        Prev = Curr;
567        Curr = Curr->Next;
568      }
569
570      if (Prev) {
571        Prev->Next = Curr->Next;
572      } else {
573        if (!Curr->Next) {
574          Curr->Val = 0;
575          Curr->BB = 0;
576        } else {
577          LeaderTableEntry* Next = Curr->Next;
578          Curr->Val = Next->Val;
579          Curr->BB = Next->BB;
580          Curr->Next = Next->Next;
581        }
582      }
583    }
584
585    // List of critical edges to be split between iterations.
586    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
587
588    // This transformation requires dominator postdominator info
589    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
590      AU.addRequired<DominatorTree>();
591      AU.addRequired<TargetLibraryInfo>();
592      if (!NoLoads)
593        AU.addRequired<MemoryDependenceAnalysis>();
594      AU.addRequired<AliasAnalysis>();
595
596      AU.addPreserved<DominatorTree>();
597      AU.addPreserved<AliasAnalysis>();
598    }
599
600
601    // Helper fuctions
602    // FIXME: eliminate or document these better
603    bool processLoad(LoadInst *L);
604    bool processInstruction(Instruction *I);
605    bool processNonLocalLoad(LoadInst *L);
606    bool processBlock(BasicBlock *BB);
607    void dump(DenseMap<uint32_t, Value*> &d);
608    bool iterateOnFunction(Function &F);
609    bool performPRE(Function &F);
610    Value *findLeader(BasicBlock *BB, uint32_t num);
611    void cleanupGlobalSets();
612    void verifyRemoved(const Instruction *I) const;
613    bool splitCriticalEdges();
614    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
615                                         BasicBlock *Root);
616    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
617  };
618
619  char GVN::ID = 0;
620}
621
622// createGVNPass - The public interface to this file...
623FunctionPass *llvm::createGVNPass(bool NoLoads) {
624  return new GVN(NoLoads);
625}
626
627INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
628INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
629INITIALIZE_PASS_DEPENDENCY(DominatorTree)
630INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
631INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
632INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
633
634void GVN::dump(DenseMap<uint32_t, Value*>& d) {
635  errs() << "{\n";
636  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
637       E = d.end(); I != E; ++I) {
638      errs() << I->first << "\n";
639      I->second->dump();
640  }
641  errs() << "}\n";
642}
643
644/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
645/// we're analyzing is fully available in the specified block.  As we go, keep
646/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
647/// map is actually a tri-state map with the following values:
648///   0) we know the block *is not* fully available.
649///   1) we know the block *is* fully available.
650///   2) we do not know whether the block is fully available or not, but we are
651///      currently speculating that it will be.
652///   3) we are speculating for this block and have used that to speculate for
653///      other blocks.
654static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
655                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
656                            uint32_t RecurseDepth) {
657  if (RecurseDepth > MaxRecurseDepth)
658    return false;
659
660  // Optimistically assume that the block is fully available and check to see
661  // if we already know about this block in one lookup.
662  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
663    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
664
665  // If the entry already existed for this block, return the precomputed value.
666  if (!IV.second) {
667    // If this is a speculative "available" value, mark it as being used for
668    // speculation of other blocks.
669    if (IV.first->second == 2)
670      IV.first->second = 3;
671    return IV.first->second != 0;
672  }
673
674  // Otherwise, see if it is fully available in all predecessors.
675  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
676
677  // If this block has no predecessors, it isn't live-in here.
678  if (PI == PE)
679    goto SpeculationFailure;
680
681  for (; PI != PE; ++PI)
682    // If the value isn't fully available in one of our predecessors, then it
683    // isn't fully available in this block either.  Undo our previous
684    // optimistic assumption and bail out.
685    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
686      goto SpeculationFailure;
687
688  return true;
689
690// SpeculationFailure - If we get here, we found out that this is not, after
691// all, a fully-available block.  We have a problem if we speculated on this and
692// used the speculation to mark other blocks as available.
693SpeculationFailure:
694  char &BBVal = FullyAvailableBlocks[BB];
695
696  // If we didn't speculate on this, just return with it set to false.
697  if (BBVal == 2) {
698    BBVal = 0;
699    return false;
700  }
701
702  // If we did speculate on this value, we could have blocks set to 1 that are
703  // incorrect.  Walk the (transitive) successors of this block and mark them as
704  // 0 if set to one.
705  SmallVector<BasicBlock*, 32> BBWorklist;
706  BBWorklist.push_back(BB);
707
708  do {
709    BasicBlock *Entry = BBWorklist.pop_back_val();
710    // Note that this sets blocks to 0 (unavailable) if they happen to not
711    // already be in FullyAvailableBlocks.  This is safe.
712    char &EntryVal = FullyAvailableBlocks[Entry];
713    if (EntryVal == 0) continue;  // Already unavailable.
714
715    // Mark as unavailable.
716    EntryVal = 0;
717
718    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
719      BBWorklist.push_back(*I);
720  } while (!BBWorklist.empty());
721
722  return false;
723}
724
725
726/// CanCoerceMustAliasedValueToLoad - Return true if
727/// CoerceAvailableValueToLoadType will succeed.
728static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
729                                            Type *LoadTy,
730                                            const TargetData &TD) {
731  // If the loaded or stored value is an first class array or struct, don't try
732  // to transform them.  We need to be able to bitcast to integer.
733  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
734      StoredVal->getType()->isStructTy() ||
735      StoredVal->getType()->isArrayTy())
736    return false;
737
738  // The store has to be at least as big as the load.
739  if (TD.getTypeSizeInBits(StoredVal->getType()) <
740        TD.getTypeSizeInBits(LoadTy))
741    return false;
742
743  return true;
744}
745
746
747/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
748/// then a load from a must-aliased pointer of a different type, try to coerce
749/// the stored value.  LoadedTy is the type of the load we want to replace and
750/// InsertPt is the place to insert new instructions.
751///
752/// If we can't do it, return null.
753static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
754                                             Type *LoadedTy,
755                                             Instruction *InsertPt,
756                                             const TargetData &TD) {
757  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
758    return 0;
759
760  // If this is already the right type, just return it.
761  Type *StoredValTy = StoredVal->getType();
762
763  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
764  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
765
766  // If the store and reload are the same size, we can always reuse it.
767  if (StoreSize == LoadSize) {
768    // Pointer to Pointer -> use bitcast.
769    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
770      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
771
772    // Convert source pointers to integers, which can be bitcast.
773    if (StoredValTy->isPointerTy()) {
774      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
775      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
776    }
777
778    Type *TypeToCastTo = LoadedTy;
779    if (TypeToCastTo->isPointerTy())
780      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
781
782    if (StoredValTy != TypeToCastTo)
783      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
784
785    // Cast to pointer if the load needs a pointer type.
786    if (LoadedTy->isPointerTy())
787      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
788
789    return StoredVal;
790  }
791
792  // If the loaded value is smaller than the available value, then we can
793  // extract out a piece from it.  If the available value is too small, then we
794  // can't do anything.
795  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
796
797  // Convert source pointers to integers, which can be manipulated.
798  if (StoredValTy->isPointerTy()) {
799    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
800    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
801  }
802
803  // Convert vectors and fp to integer, which can be manipulated.
804  if (!StoredValTy->isIntegerTy()) {
805    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
806    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
807  }
808
809  // If this is a big-endian system, we need to shift the value down to the low
810  // bits so that a truncate will work.
811  if (TD.isBigEndian()) {
812    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
813    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
814  }
815
816  // Truncate the integer to the right size now.
817  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
818  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
819
820  if (LoadedTy == NewIntTy)
821    return StoredVal;
822
823  // If the result is a pointer, inttoptr.
824  if (LoadedTy->isPointerTy())
825    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
826
827  // Otherwise, bitcast.
828  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
829}
830
831/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
832/// memdep query of a load that ends up being a clobbering memory write (store,
833/// memset, memcpy, memmove).  This means that the write *may* provide bits used
834/// by the load but we can't be sure because the pointers don't mustalias.
835///
836/// Check this case to see if there is anything more we can do before we give
837/// up.  This returns -1 if we have to give up, or a byte number in the stored
838/// value of the piece that feeds the load.
839static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
840                                          Value *WritePtr,
841                                          uint64_t WriteSizeInBits,
842                                          const TargetData &TD) {
843  // If the loaded or stored value is a first class array or struct, don't try
844  // to transform them.  We need to be able to bitcast to integer.
845  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
846    return -1;
847
848  int64_t StoreOffset = 0, LoadOffset = 0;
849  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
850  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
851  if (StoreBase != LoadBase)
852    return -1;
853
854  // If the load and store are to the exact same address, they should have been
855  // a must alias.  AA must have gotten confused.
856  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
857  // to a load from the base of the memset.
858#if 0
859  if (LoadOffset == StoreOffset) {
860    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
861    << "Base       = " << *StoreBase << "\n"
862    << "Store Ptr  = " << *WritePtr << "\n"
863    << "Store Offs = " << StoreOffset << "\n"
864    << "Load Ptr   = " << *LoadPtr << "\n";
865    abort();
866  }
867#endif
868
869  // If the load and store don't overlap at all, the store doesn't provide
870  // anything to the load.  In this case, they really don't alias at all, AA
871  // must have gotten confused.
872  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
873
874  if ((WriteSizeInBits & 7) | (LoadSize & 7))
875    return -1;
876  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
877  LoadSize >>= 3;
878
879
880  bool isAAFailure = false;
881  if (StoreOffset < LoadOffset)
882    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
883  else
884    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
885
886  if (isAAFailure) {
887#if 0
888    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
889    << "Base       = " << *StoreBase << "\n"
890    << "Store Ptr  = " << *WritePtr << "\n"
891    << "Store Offs = " << StoreOffset << "\n"
892    << "Load Ptr   = " << *LoadPtr << "\n";
893    abort();
894#endif
895    return -1;
896  }
897
898  // If the Load isn't completely contained within the stored bits, we don't
899  // have all the bits to feed it.  We could do something crazy in the future
900  // (issue a smaller load then merge the bits in) but this seems unlikely to be
901  // valuable.
902  if (StoreOffset > LoadOffset ||
903      StoreOffset+StoreSize < LoadOffset+LoadSize)
904    return -1;
905
906  // Okay, we can do this transformation.  Return the number of bytes into the
907  // store that the load is.
908  return LoadOffset-StoreOffset;
909}
910
911/// AnalyzeLoadFromClobberingStore - This function is called when we have a
912/// memdep query of a load that ends up being a clobbering store.
913static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
914                                          StoreInst *DepSI,
915                                          const TargetData &TD) {
916  // Cannot handle reading from store of first-class aggregate yet.
917  if (DepSI->getValueOperand()->getType()->isStructTy() ||
918      DepSI->getValueOperand()->getType()->isArrayTy())
919    return -1;
920
921  Value *StorePtr = DepSI->getPointerOperand();
922  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
923  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
924                                        StorePtr, StoreSize, TD);
925}
926
927/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
928/// memdep query of a load that ends up being clobbered by another load.  See if
929/// the other load can feed into the second load.
930static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
931                                         LoadInst *DepLI, const TargetData &TD){
932  // Cannot handle reading from store of first-class aggregate yet.
933  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
934    return -1;
935
936  Value *DepPtr = DepLI->getPointerOperand();
937  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
938  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
939  if (R != -1) return R;
940
941  // If we have a load/load clobber an DepLI can be widened to cover this load,
942  // then we should widen it!
943  int64_t LoadOffs = 0;
944  const Value *LoadBase =
945    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
946  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
947
948  unsigned Size = MemoryDependenceAnalysis::
949    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
950  if (Size == 0) return -1;
951
952  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
953}
954
955
956
957static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
958                                            MemIntrinsic *MI,
959                                            const TargetData &TD) {
960  // If the mem operation is a non-constant size, we can't handle it.
961  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
962  if (SizeCst == 0) return -1;
963  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
964
965  // If this is memset, we just need to see if the offset is valid in the size
966  // of the memset..
967  if (MI->getIntrinsicID() == Intrinsic::memset)
968    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
969                                          MemSizeInBits, TD);
970
971  // If we have a memcpy/memmove, the only case we can handle is if this is a
972  // copy from constant memory.  In that case, we can read directly from the
973  // constant memory.
974  MemTransferInst *MTI = cast<MemTransferInst>(MI);
975
976  Constant *Src = dyn_cast<Constant>(MTI->getSource());
977  if (Src == 0) return -1;
978
979  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
980  if (GV == 0 || !GV->isConstant()) return -1;
981
982  // See if the access is within the bounds of the transfer.
983  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
984                                              MI->getDest(), MemSizeInBits, TD);
985  if (Offset == -1)
986    return Offset;
987
988  // Otherwise, see if we can constant fold a load from the constant with the
989  // offset applied as appropriate.
990  Src = ConstantExpr::getBitCast(Src,
991                                 llvm::Type::getInt8PtrTy(Src->getContext()));
992  Constant *OffsetCst =
993    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
994  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
995  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
996  if (ConstantFoldLoadFromConstPtr(Src, &TD))
997    return Offset;
998  return -1;
999}
1000
1001
1002/// GetStoreValueForLoad - This function is called when we have a
1003/// memdep query of a load that ends up being a clobbering store.  This means
1004/// that the store provides bits used by the load but we the pointers don't
1005/// mustalias.  Check this case to see if there is anything more we can do
1006/// before we give up.
1007static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1008                                   Type *LoadTy,
1009                                   Instruction *InsertPt, const TargetData &TD){
1010  LLVMContext &Ctx = SrcVal->getType()->getContext();
1011
1012  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1013  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1014
1015  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1016
1017  // Compute which bits of the stored value are being used by the load.  Convert
1018  // to an integer type to start with.
1019  if (SrcVal->getType()->isPointerTy())
1020    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
1021  if (!SrcVal->getType()->isIntegerTy())
1022    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1023
1024  // Shift the bits to the least significant depending on endianness.
1025  unsigned ShiftAmt;
1026  if (TD.isLittleEndian())
1027    ShiftAmt = Offset*8;
1028  else
1029    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1030
1031  if (ShiftAmt)
1032    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1033
1034  if (LoadSize != StoreSize)
1035    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1036
1037  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1038}
1039
1040/// GetLoadValueForLoad - This function is called when we have a
1041/// memdep query of a load that ends up being a clobbering load.  This means
1042/// that the load *may* provide bits used by the load but we can't be sure
1043/// because the pointers don't mustalias.  Check this case to see if there is
1044/// anything more we can do before we give up.
1045static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1046                                  Type *LoadTy, Instruction *InsertPt,
1047                                  GVN &gvn) {
1048  const TargetData &TD = *gvn.getTargetData();
1049  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1050  // widen SrcVal out to a larger load.
1051  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1052  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1053  if (Offset+LoadSize > SrcValSize) {
1054    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1055    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1056    // If we have a load/load clobber an DepLI can be widened to cover this
1057    // load, then we should widen it to the next power of 2 size big enough!
1058    unsigned NewLoadSize = Offset+LoadSize;
1059    if (!isPowerOf2_32(NewLoadSize))
1060      NewLoadSize = NextPowerOf2(NewLoadSize);
1061
1062    Value *PtrVal = SrcVal->getPointerOperand();
1063
1064    // Insert the new load after the old load.  This ensures that subsequent
1065    // memdep queries will find the new load.  We can't easily remove the old
1066    // load completely because it is already in the value numbering table.
1067    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1068    Type *DestPTy =
1069      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1070    DestPTy = PointerType::get(DestPTy,
1071                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1072    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1073    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1074    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1075    NewLoad->takeName(SrcVal);
1076    NewLoad->setAlignment(SrcVal->getAlignment());
1077
1078    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1079    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1080
1081    // Replace uses of the original load with the wider load.  On a big endian
1082    // system, we need to shift down to get the relevant bits.
1083    Value *RV = NewLoad;
1084    if (TD.isBigEndian())
1085      RV = Builder.CreateLShr(RV,
1086                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1087    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1088    SrcVal->replaceAllUsesWith(RV);
1089
1090    // We would like to use gvn.markInstructionForDeletion here, but we can't
1091    // because the load is already memoized into the leader map table that GVN
1092    // tracks.  It is potentially possible to remove the load from the table,
1093    // but then there all of the operations based on it would need to be
1094    // rehashed.  Just leave the dead load around.
1095    gvn.getMemDep().removeInstruction(SrcVal);
1096    SrcVal = NewLoad;
1097  }
1098
1099  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1100}
1101
1102
1103/// GetMemInstValueForLoad - This function is called when we have a
1104/// memdep query of a load that ends up being a clobbering mem intrinsic.
1105static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1106                                     Type *LoadTy, Instruction *InsertPt,
1107                                     const TargetData &TD){
1108  LLVMContext &Ctx = LoadTy->getContext();
1109  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1110
1111  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1112
1113  // We know that this method is only called when the mem transfer fully
1114  // provides the bits for the load.
1115  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1116    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1117    // independently of what the offset is.
1118    Value *Val = MSI->getValue();
1119    if (LoadSize != 1)
1120      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1121
1122    Value *OneElt = Val;
1123
1124    // Splat the value out to the right number of bits.
1125    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1126      // If we can double the number of bytes set, do it.
1127      if (NumBytesSet*2 <= LoadSize) {
1128        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1129        Val = Builder.CreateOr(Val, ShVal);
1130        NumBytesSet <<= 1;
1131        continue;
1132      }
1133
1134      // Otherwise insert one byte at a time.
1135      Value *ShVal = Builder.CreateShl(Val, 1*8);
1136      Val = Builder.CreateOr(OneElt, ShVal);
1137      ++NumBytesSet;
1138    }
1139
1140    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1141  }
1142
1143  // Otherwise, this is a memcpy/memmove from a constant global.
1144  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1145  Constant *Src = cast<Constant>(MTI->getSource());
1146
1147  // Otherwise, see if we can constant fold a load from the constant with the
1148  // offset applied as appropriate.
1149  Src = ConstantExpr::getBitCast(Src,
1150                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1151  Constant *OffsetCst =
1152  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1153  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1154  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1155  return ConstantFoldLoadFromConstPtr(Src, &TD);
1156}
1157
1158namespace {
1159
1160struct AvailableValueInBlock {
1161  /// BB - The basic block in question.
1162  BasicBlock *BB;
1163  enum ValType {
1164    SimpleVal,  // A simple offsetted value that is accessed.
1165    LoadVal,    // A value produced by a load.
1166    MemIntrin   // A memory intrinsic which is loaded from.
1167  };
1168
1169  /// V - The value that is live out of the block.
1170  PointerIntPair<Value *, 2, ValType> Val;
1171
1172  /// Offset - The byte offset in Val that is interesting for the load query.
1173  unsigned Offset;
1174
1175  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1176                                   unsigned Offset = 0) {
1177    AvailableValueInBlock Res;
1178    Res.BB = BB;
1179    Res.Val.setPointer(V);
1180    Res.Val.setInt(SimpleVal);
1181    Res.Offset = Offset;
1182    return Res;
1183  }
1184
1185  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1186                                     unsigned Offset = 0) {
1187    AvailableValueInBlock Res;
1188    Res.BB = BB;
1189    Res.Val.setPointer(MI);
1190    Res.Val.setInt(MemIntrin);
1191    Res.Offset = Offset;
1192    return Res;
1193  }
1194
1195  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1196                                       unsigned Offset = 0) {
1197    AvailableValueInBlock Res;
1198    Res.BB = BB;
1199    Res.Val.setPointer(LI);
1200    Res.Val.setInt(LoadVal);
1201    Res.Offset = Offset;
1202    return Res;
1203  }
1204
1205  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1206  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1207  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1208
1209  Value *getSimpleValue() const {
1210    assert(isSimpleValue() && "Wrong accessor");
1211    return Val.getPointer();
1212  }
1213
1214  LoadInst *getCoercedLoadValue() const {
1215    assert(isCoercedLoadValue() && "Wrong accessor");
1216    return cast<LoadInst>(Val.getPointer());
1217  }
1218
1219  MemIntrinsic *getMemIntrinValue() const {
1220    assert(isMemIntrinValue() && "Wrong accessor");
1221    return cast<MemIntrinsic>(Val.getPointer());
1222  }
1223
1224  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1225  /// defined here to the specified type.  This handles various coercion cases.
1226  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1227    Value *Res;
1228    if (isSimpleValue()) {
1229      Res = getSimpleValue();
1230      if (Res->getType() != LoadTy) {
1231        const TargetData *TD = gvn.getTargetData();
1232        assert(TD && "Need target data to handle type mismatch case");
1233        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1234                                   *TD);
1235
1236        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1237                     << *getSimpleValue() << '\n'
1238                     << *Res << '\n' << "\n\n\n");
1239      }
1240    } else if (isCoercedLoadValue()) {
1241      LoadInst *Load = getCoercedLoadValue();
1242      if (Load->getType() == LoadTy && Offset == 0) {
1243        Res = Load;
1244      } else {
1245        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1246                                  gvn);
1247
1248        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1249                     << *getCoercedLoadValue() << '\n'
1250                     << *Res << '\n' << "\n\n\n");
1251      }
1252    } else {
1253      const TargetData *TD = gvn.getTargetData();
1254      assert(TD && "Need target data to handle type mismatch case");
1255      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1256                                   LoadTy, BB->getTerminator(), *TD);
1257      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1258                   << "  " << *getMemIntrinValue() << '\n'
1259                   << *Res << '\n' << "\n\n\n");
1260    }
1261    return Res;
1262  }
1263};
1264
1265} // end anonymous namespace
1266
1267/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1268/// construct SSA form, allowing us to eliminate LI.  This returns the value
1269/// that should be used at LI's definition site.
1270static Value *ConstructSSAForLoadSet(LoadInst *LI,
1271                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1272                                     GVN &gvn) {
1273  // Check for the fully redundant, dominating load case.  In this case, we can
1274  // just use the dominating value directly.
1275  if (ValuesPerBlock.size() == 1 &&
1276      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1277                                               LI->getParent()))
1278    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1279
1280  // Otherwise, we have to construct SSA form.
1281  SmallVector<PHINode*, 8> NewPHIs;
1282  SSAUpdater SSAUpdate(&NewPHIs);
1283  SSAUpdate.Initialize(LI->getType(), LI->getName());
1284
1285  Type *LoadTy = LI->getType();
1286
1287  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1288    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1289    BasicBlock *BB = AV.BB;
1290
1291    if (SSAUpdate.HasValueForBlock(BB))
1292      continue;
1293
1294    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1295  }
1296
1297  // Perform PHI construction.
1298  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1299
1300  // If new PHI nodes were created, notify alias analysis.
1301  if (V->getType()->isPointerTy()) {
1302    AliasAnalysis *AA = gvn.getAliasAnalysis();
1303
1304    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1305      AA->copyValue(LI, NewPHIs[i]);
1306
1307    // Now that we've copied information to the new PHIs, scan through
1308    // them again and inform alias analysis that we've added potentially
1309    // escaping uses to any values that are operands to these PHIs.
1310    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1311      PHINode *P = NewPHIs[i];
1312      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1313        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1314        AA->addEscapingUse(P->getOperandUse(jj));
1315      }
1316    }
1317  }
1318
1319  return V;
1320}
1321
1322static bool isLifetimeStart(const Instruction *Inst) {
1323  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1324    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1325  return false;
1326}
1327
1328/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1329/// non-local by performing PHI construction.
1330bool GVN::processNonLocalLoad(LoadInst *LI) {
1331  // Find the non-local dependencies of the load.
1332  SmallVector<NonLocalDepResult, 64> Deps;
1333  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1334  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1335  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1336  //             << Deps.size() << *LI << '\n');
1337
1338  // If we had to process more than one hundred blocks to find the
1339  // dependencies, this load isn't worth worrying about.  Optimizing
1340  // it will be too expensive.
1341  unsigned NumDeps = Deps.size();
1342  if (NumDeps > 100)
1343    return false;
1344
1345  // If we had a phi translation failure, we'll have a single entry which is a
1346  // clobber in the current block.  Reject this early.
1347  if (NumDeps == 1 &&
1348      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1349    DEBUG(
1350      dbgs() << "GVN: non-local load ";
1351      WriteAsOperand(dbgs(), LI);
1352      dbgs() << " has unknown dependencies\n";
1353    );
1354    return false;
1355  }
1356
1357  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1358  // where we have a value available in repl, also keep track of whether we see
1359  // dependencies that produce an unknown value for the load (such as a call
1360  // that could potentially clobber the load).
1361  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1362  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1363
1364  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1365    BasicBlock *DepBB = Deps[i].getBB();
1366    MemDepResult DepInfo = Deps[i].getResult();
1367
1368    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1369      UnavailableBlocks.push_back(DepBB);
1370      continue;
1371    }
1372
1373    if (DepInfo.isClobber()) {
1374      // The address being loaded in this non-local block may not be the same as
1375      // the pointer operand of the load if PHI translation occurs.  Make sure
1376      // to consider the right address.
1377      Value *Address = Deps[i].getAddress();
1378
1379      // If the dependence is to a store that writes to a superset of the bits
1380      // read by the load, we can extract the bits we need for the load from the
1381      // stored value.
1382      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1383        if (TD && Address) {
1384          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1385                                                      DepSI, *TD);
1386          if (Offset != -1) {
1387            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1388                                                       DepSI->getValueOperand(),
1389                                                                Offset));
1390            continue;
1391          }
1392        }
1393      }
1394
1395      // Check to see if we have something like this:
1396      //    load i32* P
1397      //    load i8* (P+1)
1398      // if we have this, replace the later with an extraction from the former.
1399      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1400        // If this is a clobber and L is the first instruction in its block, then
1401        // we have the first instruction in the entry block.
1402        if (DepLI != LI && Address && TD) {
1403          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1404                                                     LI->getPointerOperand(),
1405                                                     DepLI, *TD);
1406
1407          if (Offset != -1) {
1408            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1409                                                                    Offset));
1410            continue;
1411          }
1412        }
1413      }
1414
1415      // If the clobbering value is a memset/memcpy/memmove, see if we can
1416      // forward a value on from it.
1417      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1418        if (TD && Address) {
1419          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1420                                                        DepMI, *TD);
1421          if (Offset != -1) {
1422            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1423                                                                  Offset));
1424            continue;
1425          }
1426        }
1427      }
1428
1429      UnavailableBlocks.push_back(DepBB);
1430      continue;
1431    }
1432
1433    // DepInfo.isDef() here
1434
1435    Instruction *DepInst = DepInfo.getInst();
1436
1437    // Loading the allocation -> undef.
1438    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1439        // Loading immediately after lifetime begin -> undef.
1440        isLifetimeStart(DepInst)) {
1441      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1442                                             UndefValue::get(LI->getType())));
1443      continue;
1444    }
1445
1446    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1447      // Reject loads and stores that are to the same address but are of
1448      // different types if we have to.
1449      if (S->getValueOperand()->getType() != LI->getType()) {
1450        // If the stored value is larger or equal to the loaded value, we can
1451        // reuse it.
1452        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1453                                                        LI->getType(), *TD)) {
1454          UnavailableBlocks.push_back(DepBB);
1455          continue;
1456        }
1457      }
1458
1459      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1460                                                         S->getValueOperand()));
1461      continue;
1462    }
1463
1464    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1465      // If the types mismatch and we can't handle it, reject reuse of the load.
1466      if (LD->getType() != LI->getType()) {
1467        // If the stored value is larger or equal to the loaded value, we can
1468        // reuse it.
1469        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1470          UnavailableBlocks.push_back(DepBB);
1471          continue;
1472        }
1473      }
1474      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1475      continue;
1476    }
1477
1478    UnavailableBlocks.push_back(DepBB);
1479    continue;
1480  }
1481
1482  // If we have no predecessors that produce a known value for this load, exit
1483  // early.
1484  if (ValuesPerBlock.empty()) return false;
1485
1486  // If all of the instructions we depend on produce a known value for this
1487  // load, then it is fully redundant and we can use PHI insertion to compute
1488  // its value.  Insert PHIs and remove the fully redundant value now.
1489  if (UnavailableBlocks.empty()) {
1490    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1491
1492    // Perform PHI construction.
1493    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1494    LI->replaceAllUsesWith(V);
1495
1496    if (isa<PHINode>(V))
1497      V->takeName(LI);
1498    if (V->getType()->isPointerTy())
1499      MD->invalidateCachedPointerInfo(V);
1500    markInstructionForDeletion(LI);
1501    ++NumGVNLoad;
1502    return true;
1503  }
1504
1505  if (!EnablePRE || !EnableLoadPRE)
1506    return false;
1507
1508  // Okay, we have *some* definitions of the value.  This means that the value
1509  // is available in some of our (transitive) predecessors.  Lets think about
1510  // doing PRE of this load.  This will involve inserting a new load into the
1511  // predecessor when it's not available.  We could do this in general, but
1512  // prefer to not increase code size.  As such, we only do this when we know
1513  // that we only have to insert *one* load (which means we're basically moving
1514  // the load, not inserting a new one).
1515
1516  SmallPtrSet<BasicBlock *, 4> Blockers;
1517  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1518    Blockers.insert(UnavailableBlocks[i]);
1519
1520  // Let's find the first basic block with more than one predecessor.  Walk
1521  // backwards through predecessors if needed.
1522  BasicBlock *LoadBB = LI->getParent();
1523  BasicBlock *TmpBB = LoadBB;
1524
1525  bool isSinglePred = false;
1526  bool allSingleSucc = true;
1527  while (TmpBB->getSinglePredecessor()) {
1528    isSinglePred = true;
1529    TmpBB = TmpBB->getSinglePredecessor();
1530    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1531      return false;
1532    if (Blockers.count(TmpBB))
1533      return false;
1534
1535    // If any of these blocks has more than one successor (i.e. if the edge we
1536    // just traversed was critical), then there are other paths through this
1537    // block along which the load may not be anticipated.  Hoisting the load
1538    // above this block would be adding the load to execution paths along
1539    // which it was not previously executed.
1540    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1541      return false;
1542  }
1543
1544  assert(TmpBB);
1545  LoadBB = TmpBB;
1546
1547  // FIXME: It is extremely unclear what this loop is doing, other than
1548  // artificially restricting loadpre.
1549  if (isSinglePred) {
1550    bool isHot = false;
1551    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1552      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1553      if (AV.isSimpleValue())
1554        // "Hot" Instruction is in some loop (because it dominates its dep.
1555        // instruction).
1556        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1557          if (DT->dominates(LI, I)) {
1558            isHot = true;
1559            break;
1560          }
1561    }
1562
1563    // We are interested only in "hot" instructions. We don't want to do any
1564    // mis-optimizations here.
1565    if (!isHot)
1566      return false;
1567  }
1568
1569  // Check to see how many predecessors have the loaded value fully
1570  // available.
1571  DenseMap<BasicBlock*, Value*> PredLoads;
1572  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1573  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1574    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1575  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1576    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1577
1578  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1579  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1580       PI != E; ++PI) {
1581    BasicBlock *Pred = *PI;
1582    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1583      continue;
1584    }
1585    PredLoads[Pred] = 0;
1586
1587    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1588      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1589        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1590              << Pred->getName() << "': " << *LI << '\n');
1591        return false;
1592      }
1593
1594      if (LoadBB->isLandingPad()) {
1595        DEBUG(dbgs()
1596              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1597              << Pred->getName() << "': " << *LI << '\n');
1598        return false;
1599      }
1600
1601      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1602      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1603    }
1604  }
1605
1606  if (!NeedToSplit.empty()) {
1607    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1608    return false;
1609  }
1610
1611  // Decide whether PRE is profitable for this load.
1612  unsigned NumUnavailablePreds = PredLoads.size();
1613  assert(NumUnavailablePreds != 0 &&
1614         "Fully available value should be eliminated above!");
1615
1616  // If this load is unavailable in multiple predecessors, reject it.
1617  // FIXME: If we could restructure the CFG, we could make a common pred with
1618  // all the preds that don't have an available LI and insert a new load into
1619  // that one block.
1620  if (NumUnavailablePreds != 1)
1621      return false;
1622
1623  // Check if the load can safely be moved to all the unavailable predecessors.
1624  bool CanDoPRE = true;
1625  SmallVector<Instruction*, 8> NewInsts;
1626  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1627         E = PredLoads.end(); I != E; ++I) {
1628    BasicBlock *UnavailablePred = I->first;
1629
1630    // Do PHI translation to get its value in the predecessor if necessary.  The
1631    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1632
1633    // If all preds have a single successor, then we know it is safe to insert
1634    // the load on the pred (?!?), so we can insert code to materialize the
1635    // pointer if it is not available.
1636    PHITransAddr Address(LI->getPointerOperand(), TD);
1637    Value *LoadPtr = 0;
1638    if (allSingleSucc) {
1639      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1640                                                  *DT, NewInsts);
1641    } else {
1642      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1643      LoadPtr = Address.getAddr();
1644    }
1645
1646    // If we couldn't find or insert a computation of this phi translated value,
1647    // we fail PRE.
1648    if (LoadPtr == 0) {
1649      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1650            << *LI->getPointerOperand() << "\n");
1651      CanDoPRE = false;
1652      break;
1653    }
1654
1655    // Make sure it is valid to move this load here.  We have to watch out for:
1656    //  @1 = getelementptr (i8* p, ...
1657    //  test p and branch if == 0
1658    //  load @1
1659    // It is valid to have the getelementptr before the test, even if p can
1660    // be 0, as getelementptr only does address arithmetic.
1661    // If we are not pushing the value through any multiple-successor blocks
1662    // we do not have this case.  Otherwise, check that the load is safe to
1663    // put anywhere; this can be improved, but should be conservatively safe.
1664    if (!allSingleSucc &&
1665        // FIXME: REEVALUTE THIS.
1666        !isSafeToLoadUnconditionally(LoadPtr,
1667                                     UnavailablePred->getTerminator(),
1668                                     LI->getAlignment(), TD)) {
1669      CanDoPRE = false;
1670      break;
1671    }
1672
1673    I->second = LoadPtr;
1674  }
1675
1676  if (!CanDoPRE) {
1677    while (!NewInsts.empty()) {
1678      Instruction *I = NewInsts.pop_back_val();
1679      if (MD) MD->removeInstruction(I);
1680      I->eraseFromParent();
1681    }
1682    return false;
1683  }
1684
1685  // Okay, we can eliminate this load by inserting a reload in the predecessor
1686  // and using PHI construction to get the value in the other predecessors, do
1687  // it.
1688  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1689  DEBUG(if (!NewInsts.empty())
1690          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1691                 << *NewInsts.back() << '\n');
1692
1693  // Assign value numbers to the new instructions.
1694  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1695    // FIXME: We really _ought_ to insert these value numbers into their
1696    // parent's availability map.  However, in doing so, we risk getting into
1697    // ordering issues.  If a block hasn't been processed yet, we would be
1698    // marking a value as AVAIL-IN, which isn't what we intend.
1699    VN.lookup_or_add(NewInsts[i]);
1700  }
1701
1702  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1703         E = PredLoads.end(); I != E; ++I) {
1704    BasicBlock *UnavailablePred = I->first;
1705    Value *LoadPtr = I->second;
1706
1707    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1708                                        LI->getAlignment(),
1709                                        UnavailablePred->getTerminator());
1710
1711    // Transfer the old load's TBAA tag to the new load.
1712    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1713      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1714
1715    // Transfer DebugLoc.
1716    NewLoad->setDebugLoc(LI->getDebugLoc());
1717
1718    // Add the newly created load.
1719    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1720                                                        NewLoad));
1721    MD->invalidateCachedPointerInfo(LoadPtr);
1722    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1723  }
1724
1725  // Perform PHI construction.
1726  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1727  LI->replaceAllUsesWith(V);
1728  if (isa<PHINode>(V))
1729    V->takeName(LI);
1730  if (V->getType()->isPointerTy())
1731    MD->invalidateCachedPointerInfo(V);
1732  markInstructionForDeletion(LI);
1733  ++NumPRELoad;
1734  return true;
1735}
1736
1737/// processLoad - Attempt to eliminate a load, first by eliminating it
1738/// locally, and then attempting non-local elimination if that fails.
1739bool GVN::processLoad(LoadInst *L) {
1740  if (!MD)
1741    return false;
1742
1743  if (!L->isSimple())
1744    return false;
1745
1746  if (L->use_empty()) {
1747    markInstructionForDeletion(L);
1748    return true;
1749  }
1750
1751  // ... to a pointer that has been loaded from before...
1752  MemDepResult Dep = MD->getDependency(L);
1753
1754  // If we have a clobber and target data is around, see if this is a clobber
1755  // that we can fix up through code synthesis.
1756  if (Dep.isClobber() && TD) {
1757    // Check to see if we have something like this:
1758    //   store i32 123, i32* %P
1759    //   %A = bitcast i32* %P to i8*
1760    //   %B = gep i8* %A, i32 1
1761    //   %C = load i8* %B
1762    //
1763    // We could do that by recognizing if the clobber instructions are obviously
1764    // a common base + constant offset, and if the previous store (or memset)
1765    // completely covers this load.  This sort of thing can happen in bitfield
1766    // access code.
1767    Value *AvailVal = 0;
1768    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1769      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1770                                                  L->getPointerOperand(),
1771                                                  DepSI, *TD);
1772      if (Offset != -1)
1773        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1774                                        L->getType(), L, *TD);
1775    }
1776
1777    // Check to see if we have something like this:
1778    //    load i32* P
1779    //    load i8* (P+1)
1780    // if we have this, replace the later with an extraction from the former.
1781    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1782      // If this is a clobber and L is the first instruction in its block, then
1783      // we have the first instruction in the entry block.
1784      if (DepLI == L)
1785        return false;
1786
1787      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1788                                                 L->getPointerOperand(),
1789                                                 DepLI, *TD);
1790      if (Offset != -1)
1791        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1792    }
1793
1794    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1795    // a value on from it.
1796    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1797      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1798                                                    L->getPointerOperand(),
1799                                                    DepMI, *TD);
1800      if (Offset != -1)
1801        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1802    }
1803
1804    if (AvailVal) {
1805      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1806            << *AvailVal << '\n' << *L << "\n\n\n");
1807
1808      // Replace the load!
1809      L->replaceAllUsesWith(AvailVal);
1810      if (AvailVal->getType()->isPointerTy())
1811        MD->invalidateCachedPointerInfo(AvailVal);
1812      markInstructionForDeletion(L);
1813      ++NumGVNLoad;
1814      return true;
1815    }
1816  }
1817
1818  // If the value isn't available, don't do anything!
1819  if (Dep.isClobber()) {
1820    DEBUG(
1821      // fast print dep, using operator<< on instruction is too slow.
1822      dbgs() << "GVN: load ";
1823      WriteAsOperand(dbgs(), L);
1824      Instruction *I = Dep.getInst();
1825      dbgs() << " is clobbered by " << *I << '\n';
1826    );
1827    return false;
1828  }
1829
1830  // If it is defined in another block, try harder.
1831  if (Dep.isNonLocal())
1832    return processNonLocalLoad(L);
1833
1834  if (!Dep.isDef()) {
1835    DEBUG(
1836      // fast print dep, using operator<< on instruction is too slow.
1837      dbgs() << "GVN: load ";
1838      WriteAsOperand(dbgs(), L);
1839      dbgs() << " has unknown dependence\n";
1840    );
1841    return false;
1842  }
1843
1844  Instruction *DepInst = Dep.getInst();
1845  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1846    Value *StoredVal = DepSI->getValueOperand();
1847
1848    // The store and load are to a must-aliased pointer, but they may not
1849    // actually have the same type.  See if we know how to reuse the stored
1850    // value (depending on its type).
1851    if (StoredVal->getType() != L->getType()) {
1852      if (TD) {
1853        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1854                                                   L, *TD);
1855        if (StoredVal == 0)
1856          return false;
1857
1858        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1859                     << '\n' << *L << "\n\n\n");
1860      }
1861      else
1862        return false;
1863    }
1864
1865    // Remove it!
1866    L->replaceAllUsesWith(StoredVal);
1867    if (StoredVal->getType()->isPointerTy())
1868      MD->invalidateCachedPointerInfo(StoredVal);
1869    markInstructionForDeletion(L);
1870    ++NumGVNLoad;
1871    return true;
1872  }
1873
1874  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1875    Value *AvailableVal = DepLI;
1876
1877    // The loads are of a must-aliased pointer, but they may not actually have
1878    // the same type.  See if we know how to reuse the previously loaded value
1879    // (depending on its type).
1880    if (DepLI->getType() != L->getType()) {
1881      if (TD) {
1882        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1883                                                      L, *TD);
1884        if (AvailableVal == 0)
1885          return false;
1886
1887        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1888                     << "\n" << *L << "\n\n\n");
1889      }
1890      else
1891        return false;
1892    }
1893
1894    // Remove it!
1895    L->replaceAllUsesWith(AvailableVal);
1896    if (DepLI->getType()->isPointerTy())
1897      MD->invalidateCachedPointerInfo(DepLI);
1898    markInstructionForDeletion(L);
1899    ++NumGVNLoad;
1900    return true;
1901  }
1902
1903  // If this load really doesn't depend on anything, then we must be loading an
1904  // undef value.  This can happen when loading for a fresh allocation with no
1905  // intervening stores, for example.
1906  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1907    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1908    markInstructionForDeletion(L);
1909    ++NumGVNLoad;
1910    return true;
1911  }
1912
1913  // If this load occurs either right after a lifetime begin,
1914  // then the loaded value is undefined.
1915  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1916    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1917      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1918      markInstructionForDeletion(L);
1919      ++NumGVNLoad;
1920      return true;
1921    }
1922  }
1923
1924  return false;
1925}
1926
1927// findLeader - In order to find a leader for a given value number at a
1928// specific basic block, we first obtain the list of all Values for that number,
1929// and then scan the list to find one whose block dominates the block in
1930// question.  This is fast because dominator tree queries consist of only
1931// a few comparisons of DFS numbers.
1932Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1933  LeaderTableEntry Vals = LeaderTable[num];
1934  if (!Vals.Val) return 0;
1935
1936  Value *Val = 0;
1937  if (DT->dominates(Vals.BB, BB)) {
1938    Val = Vals.Val;
1939    if (isa<Constant>(Val)) return Val;
1940  }
1941
1942  LeaderTableEntry* Next = Vals.Next;
1943  while (Next) {
1944    if (DT->dominates(Next->BB, BB)) {
1945      if (isa<Constant>(Next->Val)) return Next->Val;
1946      if (!Val) Val = Next->Val;
1947    }
1948
1949    Next = Next->Next;
1950  }
1951
1952  return Val;
1953}
1954
1955/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1956/// use is dominated by the given basic block.  Returns the number of uses that
1957/// were replaced.
1958unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1959                                          BasicBlock *Root) {
1960  unsigned Count = 0;
1961  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1962       UI != UE; ) {
1963    Use &U = (UI++).getUse();
1964
1965    // If From occurs as a phi node operand then the use implicitly lives in the
1966    // corresponding incoming block.  Otherwise it is the block containing the
1967    // user that must be dominated by Root.
1968    BasicBlock *UsingBlock;
1969    if (PHINode *PN = dyn_cast<PHINode>(U.getUser()))
1970      UsingBlock = PN->getIncomingBlock(U);
1971    else
1972      UsingBlock = cast<Instruction>(U.getUser())->getParent();
1973
1974    if (DT->dominates(Root, UsingBlock)) {
1975      U.set(To);
1976      ++Count;
1977    }
1978  }
1979  return Count;
1980}
1981
1982/// propagateEquality - The given values are known to be equal in every block
1983/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1984/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1985bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1986  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1987  Worklist.push_back(std::make_pair(LHS, RHS));
1988  bool Changed = false;
1989
1990  while (!Worklist.empty()) {
1991    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1992    LHS = Item.first; RHS = Item.second;
1993
1994    if (LHS == RHS) continue;
1995    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1996
1997    // Don't try to propagate equalities between constants.
1998    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
1999
2000    // Prefer a constant on the right-hand side, or an Argument if no constants.
2001    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2002      std::swap(LHS, RHS);
2003    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2004
2005    // If there is no obvious reason to prefer the left-hand side over the right-
2006    // hand side, ensure the longest lived term is on the right-hand side, so the
2007    // shortest lived term will be replaced by the longest lived.  This tends to
2008    // expose more simplifications.
2009    uint32_t LVN = VN.lookup_or_add(LHS);
2010    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2011        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2012      // Move the 'oldest' value to the right-hand side, using the value number as
2013      // a proxy for age.
2014      uint32_t RVN = VN.lookup_or_add(RHS);
2015      if (LVN < RVN) {
2016        std::swap(LHS, RHS);
2017        LVN = RVN;
2018      }
2019    }
2020    assert((!isa<Instruction>(RHS) ||
2021            DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) &&
2022           "Instruction doesn't dominate scope!");
2023
2024    // If value numbering later deduces that an instruction in the scope is equal
2025    // to 'LHS' then ensure it will be turned into 'RHS'.
2026    addToLeaderTable(LVN, RHS, Root);
2027
2028    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2029    // LHS always has at least one use that is not dominated by Root, this will
2030    // never do anything if LHS has only one use.
2031    if (!LHS->hasOneUse()) {
2032      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2033      Changed |= NumReplacements > 0;
2034      NumGVNEqProp += NumReplacements;
2035    }
2036
2037    // Now try to deduce additional equalities from this one.  For example, if the
2038    // known equality was "(A != B)" == "false" then it follows that A and B are
2039    // equal in the scope.  Only boolean equalities with an explicit true or false
2040    // RHS are currently supported.
2041    if (!RHS->getType()->isIntegerTy(1))
2042      // Not a boolean equality - bail out.
2043      continue;
2044    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2045    if (!CI)
2046      // RHS neither 'true' nor 'false' - bail out.
2047      continue;
2048    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2049    bool isKnownTrue = CI->isAllOnesValue();
2050    bool isKnownFalse = !isKnownTrue;
2051
2052    // If "A && B" is known true then both A and B are known true.  If "A || B"
2053    // is known false then both A and B are known false.
2054    Value *A, *B;
2055    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2056        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2057      Worklist.push_back(std::make_pair(A, RHS));
2058      Worklist.push_back(std::make_pair(B, RHS));
2059      continue;
2060    }
2061
2062    // If we are propagating an equality like "(A == B)" == "true" then also
2063    // propagate the equality A == B.  When propagating a comparison such as
2064    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2065    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2066      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2067
2068      // If "A == B" is known true, or "A != B" is known false, then replace
2069      // A with B everywhere in the scope.
2070      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2071          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2072        Worklist.push_back(std::make_pair(Op0, Op1));
2073
2074      // If "A >= B" is known true, replace "A < B" with false everywhere.
2075      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2076      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2077      // Since we don't have the instruction "A < B" immediately to hand, work out
2078      // the value number that it would have and use that to find an appropriate
2079      // instruction (if any).
2080      uint32_t NextNum = VN.getNextUnusedValueNumber();
2081      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2082      // If the number we were assigned was brand new then there is no point in
2083      // looking for an instruction realizing it: there cannot be one!
2084      if (Num < NextNum) {
2085        Value *NotCmp = findLeader(Root, Num);
2086        if (NotCmp && isa<Instruction>(NotCmp)) {
2087          unsigned NumReplacements =
2088            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2089          Changed |= NumReplacements > 0;
2090          NumGVNEqProp += NumReplacements;
2091        }
2092      }
2093      // Ensure that any instruction in scope that gets the "A < B" value number
2094      // is replaced with false.
2095      addToLeaderTable(Num, NotVal, Root);
2096
2097      continue;
2098    }
2099  }
2100
2101  return Changed;
2102}
2103
2104/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2105/// true if every path from the entry block to 'Dst' passes via this edge.  In
2106/// particular 'Dst' must not be reachable via another edge from 'Src'.
2107static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2108                                       DominatorTree *DT) {
2109  // While in theory it is interesting to consider the case in which Dst has
2110  // more than one predecessor, because Dst might be part of a loop which is
2111  // only reachable from Src, in practice it is pointless since at the time
2112  // GVN runs all such loops have preheaders, which means that Dst will have
2113  // been changed to have only one predecessor, namely Src.
2114  BasicBlock *Pred = Dst->getSinglePredecessor();
2115  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2116  (void)Src;
2117  return Pred != 0;
2118}
2119
2120/// processInstruction - When calculating availability, handle an instruction
2121/// by inserting it into the appropriate sets
2122bool GVN::processInstruction(Instruction *I) {
2123  // Ignore dbg info intrinsics.
2124  if (isa<DbgInfoIntrinsic>(I))
2125    return false;
2126
2127  // If the instruction can be easily simplified then do so now in preference
2128  // to value numbering it.  Value numbering often exposes redundancies, for
2129  // example if it determines that %y is equal to %x then the instruction
2130  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2131  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2132    I->replaceAllUsesWith(V);
2133    if (MD && V->getType()->isPointerTy())
2134      MD->invalidateCachedPointerInfo(V);
2135    markInstructionForDeletion(I);
2136    ++NumGVNSimpl;
2137    return true;
2138  }
2139
2140  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2141    if (processLoad(LI))
2142      return true;
2143
2144    unsigned Num = VN.lookup_or_add(LI);
2145    addToLeaderTable(Num, LI, LI->getParent());
2146    return false;
2147  }
2148
2149  // For conditional branches, we can perform simple conditional propagation on
2150  // the condition value itself.
2151  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2152    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2153      return false;
2154
2155    Value *BranchCond = BI->getCondition();
2156
2157    BasicBlock *TrueSucc = BI->getSuccessor(0);
2158    BasicBlock *FalseSucc = BI->getSuccessor(1);
2159    BasicBlock *Parent = BI->getParent();
2160    bool Changed = false;
2161
2162    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2163      Changed |= propagateEquality(BranchCond,
2164                                   ConstantInt::getTrue(TrueSucc->getContext()),
2165                                   TrueSucc);
2166
2167    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2168      Changed |= propagateEquality(BranchCond,
2169                                   ConstantInt::getFalse(FalseSucc->getContext()),
2170                                   FalseSucc);
2171
2172    return Changed;
2173  }
2174
2175  // For switches, propagate the case values into the case destinations.
2176  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2177    Value *SwitchCond = SI->getCondition();
2178    BasicBlock *Parent = SI->getParent();
2179    bool Changed = false;
2180    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2181         i != e; ++i) {
2182      BasicBlock *Dst = i.getCaseSuccessor();
2183      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2184        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst);
2185    }
2186    return Changed;
2187  }
2188
2189  // Instructions with void type don't return a value, so there's
2190  // no point in trying to find redundancies in them.
2191  if (I->getType()->isVoidTy()) return false;
2192
2193  uint32_t NextNum = VN.getNextUnusedValueNumber();
2194  unsigned Num = VN.lookup_or_add(I);
2195
2196  // Allocations are always uniquely numbered, so we can save time and memory
2197  // by fast failing them.
2198  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2199    addToLeaderTable(Num, I, I->getParent());
2200    return false;
2201  }
2202
2203  // If the number we were assigned was a brand new VN, then we don't
2204  // need to do a lookup to see if the number already exists
2205  // somewhere in the domtree: it can't!
2206  if (Num >= NextNum) {
2207    addToLeaderTable(Num, I, I->getParent());
2208    return false;
2209  }
2210
2211  // Perform fast-path value-number based elimination of values inherited from
2212  // dominators.
2213  Value *repl = findLeader(I->getParent(), Num);
2214  if (repl == 0) {
2215    // Failure, just remember this instance for future use.
2216    addToLeaderTable(Num, I, I->getParent());
2217    return false;
2218  }
2219
2220  // Remove it!
2221  I->replaceAllUsesWith(repl);
2222  if (MD && repl->getType()->isPointerTy())
2223    MD->invalidateCachedPointerInfo(repl);
2224  markInstructionForDeletion(I);
2225  return true;
2226}
2227
2228/// runOnFunction - This is the main transformation entry point for a function.
2229bool GVN::runOnFunction(Function& F) {
2230  if (!NoLoads)
2231    MD = &getAnalysis<MemoryDependenceAnalysis>();
2232  DT = &getAnalysis<DominatorTree>();
2233  TD = getAnalysisIfAvailable<TargetData>();
2234  TLI = &getAnalysis<TargetLibraryInfo>();
2235  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2236  VN.setMemDep(MD);
2237  VN.setDomTree(DT);
2238
2239  bool Changed = false;
2240  bool ShouldContinue = true;
2241
2242  // Merge unconditional branches, allowing PRE to catch more
2243  // optimization opportunities.
2244  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2245    BasicBlock *BB = FI++;
2246
2247    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2248    if (removedBlock) ++NumGVNBlocks;
2249
2250    Changed |= removedBlock;
2251  }
2252
2253  unsigned Iteration = 0;
2254  while (ShouldContinue) {
2255    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2256    ShouldContinue = iterateOnFunction(F);
2257    if (splitCriticalEdges())
2258      ShouldContinue = true;
2259    Changed |= ShouldContinue;
2260    ++Iteration;
2261  }
2262
2263  if (EnablePRE) {
2264    bool PREChanged = true;
2265    while (PREChanged) {
2266      PREChanged = performPRE(F);
2267      Changed |= PREChanged;
2268    }
2269  }
2270  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2271  // computations into blocks where they become fully redundant.  Note that
2272  // we can't do this until PRE's critical edge splitting updates memdep.
2273  // Actually, when this happens, we should just fully integrate PRE into GVN.
2274
2275  cleanupGlobalSets();
2276
2277  return Changed;
2278}
2279
2280
2281bool GVN::processBlock(BasicBlock *BB) {
2282  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2283  // (and incrementing BI before processing an instruction).
2284  assert(InstrsToErase.empty() &&
2285         "We expect InstrsToErase to be empty across iterations");
2286  bool ChangedFunction = false;
2287
2288  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2289       BI != BE;) {
2290    ChangedFunction |= processInstruction(BI);
2291    if (InstrsToErase.empty()) {
2292      ++BI;
2293      continue;
2294    }
2295
2296    // If we need some instructions deleted, do it now.
2297    NumGVNInstr += InstrsToErase.size();
2298
2299    // Avoid iterator invalidation.
2300    bool AtStart = BI == BB->begin();
2301    if (!AtStart)
2302      --BI;
2303
2304    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2305         E = InstrsToErase.end(); I != E; ++I) {
2306      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2307      if (MD) MD->removeInstruction(*I);
2308      (*I)->eraseFromParent();
2309      DEBUG(verifyRemoved(*I));
2310    }
2311    InstrsToErase.clear();
2312
2313    if (AtStart)
2314      BI = BB->begin();
2315    else
2316      ++BI;
2317  }
2318
2319  return ChangedFunction;
2320}
2321
2322/// performPRE - Perform a purely local form of PRE that looks for diamond
2323/// control flow patterns and attempts to perform simple PRE at the join point.
2324bool GVN::performPRE(Function &F) {
2325  bool Changed = false;
2326  DenseMap<BasicBlock*, Value*> predMap;
2327  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2328       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2329    BasicBlock *CurrentBlock = *DI;
2330
2331    // Nothing to PRE in the entry block.
2332    if (CurrentBlock == &F.getEntryBlock()) continue;
2333
2334    // Don't perform PRE on a landing pad.
2335    if (CurrentBlock->isLandingPad()) continue;
2336
2337    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2338         BE = CurrentBlock->end(); BI != BE; ) {
2339      Instruction *CurInst = BI++;
2340
2341      if (isa<AllocaInst>(CurInst) ||
2342          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2343          CurInst->getType()->isVoidTy() ||
2344          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2345          isa<DbgInfoIntrinsic>(CurInst))
2346        continue;
2347
2348      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2349      // sinking the compare again, and it would force the code generator to
2350      // move the i1 from processor flags or predicate registers into a general
2351      // purpose register.
2352      if (isa<CmpInst>(CurInst))
2353        continue;
2354
2355      // We don't currently value number ANY inline asm calls.
2356      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2357        if (CallI->isInlineAsm())
2358          continue;
2359
2360      uint32_t ValNo = VN.lookup(CurInst);
2361
2362      // Look for the predecessors for PRE opportunities.  We're
2363      // only trying to solve the basic diamond case, where
2364      // a value is computed in the successor and one predecessor,
2365      // but not the other.  We also explicitly disallow cases
2366      // where the successor is its own predecessor, because they're
2367      // more complicated to get right.
2368      unsigned NumWith = 0;
2369      unsigned NumWithout = 0;
2370      BasicBlock *PREPred = 0;
2371      predMap.clear();
2372
2373      for (pred_iterator PI = pred_begin(CurrentBlock),
2374           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2375        BasicBlock *P = *PI;
2376        // We're not interested in PRE where the block is its
2377        // own predecessor, or in blocks with predecessors
2378        // that are not reachable.
2379        if (P == CurrentBlock) {
2380          NumWithout = 2;
2381          break;
2382        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2383          NumWithout = 2;
2384          break;
2385        }
2386
2387        Value* predV = findLeader(P, ValNo);
2388        if (predV == 0) {
2389          PREPred = P;
2390          ++NumWithout;
2391        } else if (predV == CurInst) {
2392          NumWithout = 2;
2393        } else {
2394          predMap[P] = predV;
2395          ++NumWith;
2396        }
2397      }
2398
2399      // Don't do PRE when it might increase code size, i.e. when
2400      // we would need to insert instructions in more than one pred.
2401      if (NumWithout != 1 || NumWith == 0)
2402        continue;
2403
2404      // Don't do PRE across indirect branch.
2405      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2406        continue;
2407
2408      // We can't do PRE safely on a critical edge, so instead we schedule
2409      // the edge to be split and perform the PRE the next time we iterate
2410      // on the function.
2411      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2412      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2413        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2414        continue;
2415      }
2416
2417      // Instantiate the expression in the predecessor that lacked it.
2418      // Because we are going top-down through the block, all value numbers
2419      // will be available in the predecessor by the time we need them.  Any
2420      // that weren't originally present will have been instantiated earlier
2421      // in this loop.
2422      Instruction *PREInstr = CurInst->clone();
2423      bool success = true;
2424      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2425        Value *Op = PREInstr->getOperand(i);
2426        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2427          continue;
2428
2429        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2430          PREInstr->setOperand(i, V);
2431        } else {
2432          success = false;
2433          break;
2434        }
2435      }
2436
2437      // Fail out if we encounter an operand that is not available in
2438      // the PRE predecessor.  This is typically because of loads which
2439      // are not value numbered precisely.
2440      if (!success) {
2441        delete PREInstr;
2442        DEBUG(verifyRemoved(PREInstr));
2443        continue;
2444      }
2445
2446      PREInstr->insertBefore(PREPred->getTerminator());
2447      PREInstr->setName(CurInst->getName() + ".pre");
2448      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2449      predMap[PREPred] = PREInstr;
2450      VN.add(PREInstr, ValNo);
2451      ++NumGVNPRE;
2452
2453      // Update the availability map to include the new instruction.
2454      addToLeaderTable(ValNo, PREInstr, PREPred);
2455
2456      // Create a PHI to make the value available in this block.
2457      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2458      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2459                                     CurInst->getName() + ".pre-phi",
2460                                     CurrentBlock->begin());
2461      for (pred_iterator PI = PB; PI != PE; ++PI) {
2462        BasicBlock *P = *PI;
2463        Phi->addIncoming(predMap[P], P);
2464      }
2465
2466      VN.add(Phi, ValNo);
2467      addToLeaderTable(ValNo, Phi, CurrentBlock);
2468      Phi->setDebugLoc(CurInst->getDebugLoc());
2469      CurInst->replaceAllUsesWith(Phi);
2470      if (Phi->getType()->isPointerTy()) {
2471        // Because we have added a PHI-use of the pointer value, it has now
2472        // "escaped" from alias analysis' perspective.  We need to inform
2473        // AA of this.
2474        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2475             ++ii) {
2476          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2477          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2478        }
2479
2480        if (MD)
2481          MD->invalidateCachedPointerInfo(Phi);
2482      }
2483      VN.erase(CurInst);
2484      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2485
2486      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2487      if (MD) MD->removeInstruction(CurInst);
2488      CurInst->eraseFromParent();
2489      DEBUG(verifyRemoved(CurInst));
2490      Changed = true;
2491    }
2492  }
2493
2494  if (splitCriticalEdges())
2495    Changed = true;
2496
2497  return Changed;
2498}
2499
2500/// splitCriticalEdges - Split critical edges found during the previous
2501/// iteration that may enable further optimization.
2502bool GVN::splitCriticalEdges() {
2503  if (toSplit.empty())
2504    return false;
2505  do {
2506    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2507    SplitCriticalEdge(Edge.first, Edge.second, this);
2508  } while (!toSplit.empty());
2509  if (MD) MD->invalidateCachedPredecessors();
2510  return true;
2511}
2512
2513/// iterateOnFunction - Executes one iteration of GVN
2514bool GVN::iterateOnFunction(Function &F) {
2515  cleanupGlobalSets();
2516
2517  // Top-down walk of the dominator tree
2518  bool Changed = false;
2519#if 0
2520  // Needed for value numbering with phi construction to work.
2521  ReversePostOrderTraversal<Function*> RPOT(&F);
2522  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2523       RE = RPOT.end(); RI != RE; ++RI)
2524    Changed |= processBlock(*RI);
2525#else
2526  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2527       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2528    Changed |= processBlock(DI->getBlock());
2529#endif
2530
2531  return Changed;
2532}
2533
2534void GVN::cleanupGlobalSets() {
2535  VN.clear();
2536  LeaderTable.clear();
2537  TableAllocator.Reset();
2538}
2539
2540/// verifyRemoved - Verify that the specified instruction does not occur in our
2541/// internal data structures.
2542void GVN::verifyRemoved(const Instruction *Inst) const {
2543  VN.verifyRemoved(Inst);
2544
2545  // Walk through the value number scope to make sure the instruction isn't
2546  // ferreted away in it.
2547  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2548       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2549    const LeaderTableEntry *Node = &I->second;
2550    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2551
2552    while (Node->Next) {
2553      Node = Node->Next;
2554      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2555    }
2556  }
2557}
2558