BasicBlockUtils.cpp revision db6fa2964176c34f0e878e101427c28782c93419
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Constant.h"
20#include "llvm/Type.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Support/ValueHandle.h"
27#include <algorithm>
28using namespace llvm;
29
30/// DeleteDeadBlock - Delete the specified block, which must have no
31/// predecessors.
32void llvm::DeleteDeadBlock(BasicBlock *BB) {
33  assert((pred_begin(BB) == pred_end(BB) ||
34         // Can delete self loop.
35         BB->getSinglePredecessor() == BB) && "Block is not dead!");
36  TerminatorInst *BBTerm = BB->getTerminator();
37
38  // Loop through all of our successors and make sure they know that one
39  // of their predecessors is going away.
40  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
41    BBTerm->getSuccessor(i)->removePredecessor(BB);
42
43  // Zap all the instructions in the block.
44  while (!BB->empty()) {
45    Instruction &I = BB->back();
46    // If this instruction is used, replace uses with an arbitrary value.
47    // Because control flow can't get here, we don't care what we replace the
48    // value with.  Note that since this block is unreachable, and all values
49    // contained within it must dominate their uses, that all uses will
50    // eventually be removed (they are themselves dead).
51    if (!I.use_empty())
52      I.replaceAllUsesWith(UndefValue::get(I.getType()));
53    BB->getInstList().pop_back();
54  }
55
56  // Zap the block!
57  BB->eraseFromParent();
58}
59
60/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
61/// any single-entry PHI nodes in it, fold them away.  This handles the case
62/// when all entries to the PHI nodes in a block are guaranteed equal, such as
63/// when the block has exactly one predecessor.
64void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
65  if (!isa<PHINode>(BB->begin()))
66    return;
67
68  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
69    if (PN->getIncomingValue(0) != PN)
70      PN->replaceAllUsesWith(PN->getIncomingValue(0));
71    else
72      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
73    PN->eraseFromParent();
74  }
75}
76
77
78/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
79/// is dead. Also recursively delete any operands that become dead as
80/// a result. This includes tracing the def-use list from the PHI to see if
81/// it is ultimately unused or if it reaches an unused cycle.
82void llvm::DeleteDeadPHIs(BasicBlock *BB) {
83  // Recursively deleting a PHI may cause multiple PHIs to be deleted
84  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
85  SmallVector<WeakVH, 8> PHIs;
86  for (BasicBlock::iterator I = BB->begin();
87       PHINode *PN = dyn_cast<PHINode>(I); ++I)
88    PHIs.push_back(PN);
89
90  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
91    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
92      RecursivelyDeleteDeadPHINode(PN);
93}
94
95/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
96/// if possible.  The return value indicates success or failure.
97bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
98  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
99  // Can't merge the entry block.
100  if (pred_begin(BB) == pred_end(BB)) return false;
101
102  BasicBlock *PredBB = *PI++;
103  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
104    if (*PI != PredBB) {
105      PredBB = 0;       // There are multiple different predecessors...
106      break;
107    }
108
109  // Can't merge if there are multiple predecessors.
110  if (!PredBB) return false;
111  // Don't break self-loops.
112  if (PredBB == BB) return false;
113  // Don't break invokes.
114  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
115
116  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
117  BasicBlock* OnlySucc = BB;
118  for (; SI != SE; ++SI)
119    if (*SI != OnlySucc) {
120      OnlySucc = 0;     // There are multiple distinct successors!
121      break;
122    }
123
124  // Can't merge if there are multiple successors.
125  if (!OnlySucc) return false;
126
127  // Can't merge if there is PHI loop.
128  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
129    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
130      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
131        if (PN->getIncomingValue(i) == PN)
132          return false;
133    } else
134      break;
135  }
136
137  // Begin by getting rid of unneeded PHIs.
138  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
139    PN->replaceAllUsesWith(PN->getIncomingValue(0));
140    BB->getInstList().pop_front();  // Delete the phi node...
141  }
142
143  // Delete the unconditional branch from the predecessor...
144  PredBB->getInstList().pop_back();
145
146  // Move all definitions in the successor to the predecessor...
147  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
148
149  // Make all PHI nodes that referred to BB now refer to Pred as their
150  // source...
151  BB->replaceAllUsesWith(PredBB);
152
153  // Inherit predecessors name if it exists.
154  if (!PredBB->hasName())
155    PredBB->takeName(BB);
156
157  // Finally, erase the old block and update dominator info.
158  if (P) {
159    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
160      DomTreeNode* DTN = DT->getNode(BB);
161      DomTreeNode* PredDTN = DT->getNode(PredBB);
162
163      if (DTN) {
164        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
165        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
166             DE = Children.end(); DI != DE; ++DI)
167          DT->changeImmediateDominator(*DI, PredDTN);
168
169        DT->eraseNode(BB);
170      }
171    }
172  }
173
174  BB->eraseFromParent();
175
176
177  return true;
178}
179
180/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
181/// with a value, then remove and delete the original instruction.
182///
183void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
184                                BasicBlock::iterator &BI, Value *V) {
185  Instruction &I = *BI;
186  // Replaces all of the uses of the instruction with uses of the value
187  I.replaceAllUsesWith(V);
188
189  // Make sure to propagate a name if there is one already.
190  if (I.hasName() && !V->hasName())
191    V->takeName(&I);
192
193  // Delete the unnecessary instruction now...
194  BI = BIL.erase(BI);
195}
196
197
198/// ReplaceInstWithInst - Replace the instruction specified by BI with the
199/// instruction specified by I.  The original instruction is deleted and BI is
200/// updated to point to the new instruction.
201///
202void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
203                               BasicBlock::iterator &BI, Instruction *I) {
204  assert(I->getParent() == 0 &&
205         "ReplaceInstWithInst: Instruction already inserted into basic block!");
206
207  // Insert the new instruction into the basic block...
208  BasicBlock::iterator New = BIL.insert(BI, I);
209
210  // Replace all uses of the old instruction, and delete it.
211  ReplaceInstWithValue(BIL, BI, I);
212
213  // Move BI back to point to the newly inserted instruction
214  BI = New;
215}
216
217/// ReplaceInstWithInst - Replace the instruction specified by From with the
218/// instruction specified by To.
219///
220void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
221  BasicBlock::iterator BI(From);
222  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
223}
224
225/// RemoveSuccessor - Change the specified terminator instruction such that its
226/// successor SuccNum no longer exists.  Because this reduces the outgoing
227/// degree of the current basic block, the actual terminator instruction itself
228/// may have to be changed.  In the case where the last successor of the block
229/// is deleted, a return instruction is inserted in its place which can cause a
230/// surprising change in program behavior if it is not expected.
231///
232void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
233  assert(SuccNum < TI->getNumSuccessors() &&
234         "Trying to remove a nonexistant successor!");
235
236  // If our old successor block contains any PHI nodes, remove the entry in the
237  // PHI nodes that comes from this branch...
238  //
239  BasicBlock *BB = TI->getParent();
240  TI->getSuccessor(SuccNum)->removePredecessor(BB);
241
242  TerminatorInst *NewTI = 0;
243  switch (TI->getOpcode()) {
244  case Instruction::Br:
245    // If this is a conditional branch... convert to unconditional branch.
246    if (TI->getNumSuccessors() == 2) {
247      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
248    } else {                    // Otherwise convert to a return instruction...
249      Value *RetVal = 0;
250
251      // Create a value to return... if the function doesn't return null...
252      if (BB->getParent()->getReturnType() != Type::VoidTy)
253        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
254
255      // Create the return...
256      NewTI = ReturnInst::Create(RetVal);
257    }
258    break;
259
260  case Instruction::Invoke:    // Should convert to call
261  case Instruction::Switch:    // Should remove entry
262  default:
263  case Instruction::Ret:       // Cannot happen, has no successors!
264    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
265    abort();
266  }
267
268  if (NewTI)   // If it's a different instruction, replace.
269    ReplaceInstWithInst(TI, NewTI);
270}
271
272/// SplitEdge -  Split the edge connecting specified block. Pass P must
273/// not be NULL.
274BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
275  TerminatorInst *LatchTerm = BB->getTerminator();
276  unsigned SuccNum = 0;
277#ifndef NDEBUG
278  unsigned e = LatchTerm->getNumSuccessors();
279#endif
280  for (unsigned i = 0; ; ++i) {
281    assert(i != e && "Didn't find edge?");
282    if (LatchTerm->getSuccessor(i) == Succ) {
283      SuccNum = i;
284      break;
285    }
286  }
287
288  // If this is a critical edge, let SplitCriticalEdge do it.
289  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
290    return LatchTerm->getSuccessor(SuccNum);
291
292  // If the edge isn't critical, then BB has a single successor or Succ has a
293  // single pred.  Split the block.
294  BasicBlock::iterator SplitPoint;
295  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
296    // If the successor only has a single pred, split the top of the successor
297    // block.
298    assert(SP == BB && "CFG broken");
299    SP = NULL;
300    return SplitBlock(Succ, Succ->begin(), P);
301  } else {
302    // Otherwise, if BB has a single successor, split it at the bottom of the
303    // block.
304    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
305           "Should have a single succ!");
306    return SplitBlock(BB, BB->getTerminator(), P);
307  }
308}
309
310/// SplitBlock - Split the specified block at the specified instruction - every
311/// thing before SplitPt stays in Old and everything starting with SplitPt moves
312/// to a new block.  The two blocks are joined by an unconditional branch and
313/// the loop info is updated.
314///
315BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
316  BasicBlock::iterator SplitIt = SplitPt;
317  while (isa<PHINode>(SplitIt))
318    ++SplitIt;
319  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
320
321  // The new block lives in whichever loop the old one did.
322  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
323    if (Loop *L = LI->getLoopFor(Old))
324      L->addBasicBlockToLoop(New, LI->getBase());
325
326  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
327    {
328      // Old dominates New. New node domiantes all other nodes dominated by Old.
329      DomTreeNode *OldNode = DT->getNode(Old);
330      std::vector<DomTreeNode *> Children;
331      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
332           I != E; ++I)
333        Children.push_back(*I);
334
335      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
336
337      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
338             E = Children.end(); I != E; ++I)
339        DT->changeImmediateDominator(*I, NewNode);
340    }
341
342  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
343    DF->splitBlock(Old);
344
345  return New;
346}
347
348
349/// SplitBlockPredecessors - This method transforms BB by introducing a new
350/// basic block into the function, and moving some of the predecessors of BB to
351/// be predecessors of the new block.  The new predecessors are indicated by the
352/// Preds array, which has NumPreds elements in it.  The new block is given a
353/// suffix of 'Suffix'.
354///
355/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
356/// DominanceFrontier, but no other analyses.
357BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
358                                         BasicBlock *const *Preds,
359                                         unsigned NumPreds, const char *Suffix,
360                                         Pass *P) {
361  // Create new basic block, insert right before the original block.
362  BasicBlock *NewBB =
363    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
364
365  // The new block unconditionally branches to the old block.
366  BranchInst *BI = BranchInst::Create(BB, NewBB);
367
368  // Move the edges from Preds to point to NewBB instead of BB.
369  for (unsigned i = 0; i != NumPreds; ++i)
370    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
371
372  // Update dominator tree and dominator frontier if available.
373  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
374  if (DT)
375    DT->splitBlock(NewBB);
376  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
377    DF->splitBlock(NewBB);
378  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
379
380
381  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
382  // node becomes an incoming value for BB's phi node.  However, if the Preds
383  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
384  // account for the newly created predecessor.
385  if (NumPreds == 0) {
386    // Insert dummy values as the incoming value.
387    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
388      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
389    return NewBB;
390  }
391
392  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
393  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
394    PHINode *PN = cast<PHINode>(I++);
395
396    // Check to see if all of the values coming in are the same.  If so, we
397    // don't need to create a new PHI node.
398    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
399    for (unsigned i = 1; i != NumPreds; ++i)
400      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
401        InVal = 0;
402        break;
403      }
404
405    if (InVal) {
406      // If all incoming values for the new PHI would be the same, just don't
407      // make a new PHI.  Instead, just remove the incoming values from the old
408      // PHI.
409      for (unsigned i = 0; i != NumPreds; ++i)
410        PN->removeIncomingValue(Preds[i], false);
411    } else {
412      // If the values coming into the block are not the same, we need a PHI.
413      // Create the new PHI node, insert it into NewBB at the end of the block
414      PHINode *NewPHI =
415        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
416      if (AA) AA->copyValue(PN, NewPHI);
417
418      // Move all of the PHI values for 'Preds' to the new PHI.
419      for (unsigned i = 0; i != NumPreds; ++i) {
420        Value *V = PN->removeIncomingValue(Preds[i], false);
421        NewPHI->addIncoming(V, Preds[i]);
422      }
423      InVal = NewPHI;
424    }
425
426    // Add an incoming value to the PHI node in the loop for the preheader
427    // edge.
428    PN->addIncoming(InVal, NewBB);
429
430    // Check to see if we can eliminate this phi node.
431    if (Value *V = PN->hasConstantValue(DT != 0)) {
432      Instruction *I = dyn_cast<Instruction>(V);
433      if (!I || DT == 0 || DT->dominates(I, PN)) {
434        PN->replaceAllUsesWith(V);
435        if (AA) AA->deleteValue(PN);
436        PN->eraseFromParent();
437      }
438    }
439  }
440
441  return NewBB;
442}
443
444/// AreEquivalentAddressValues - Test if A and B will obviously have the same
445/// value. This includes recognizing that %t0 and %t1 will have the same
446/// value in code like this:
447///   %t0 = getelementptr \@a, 0, 3
448///   store i32 0, i32* %t0
449///   %t1 = getelementptr \@a, 0, 3
450///   %t2 = load i32* %t1
451///
452static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
453  // Test if the values are trivially equivalent.
454  if (A == B) return true;
455
456  // Test if the values come form identical arithmetic instructions.
457  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
458      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
459    if (const Instruction *BI = dyn_cast<Instruction>(B))
460      if (cast<Instruction>(A)->isIdenticalTo(BI))
461        return true;
462
463  // Otherwise they may not be equivalent.
464  return false;
465}
466
467/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
468/// instruction before ScanFrom) checking to see if we have the value at the
469/// memory address *Ptr locally available within a small number of instructions.
470/// If the value is available, return it.
471///
472/// If not, return the iterator for the last validated instruction that the
473/// value would be live through.  If we scanned the entire block and didn't find
474/// something that invalidates *Ptr or provides it, ScanFrom would be left at
475/// begin() and this returns null.  ScanFrom could also be left
476///
477/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
478/// it is set to 0, it will scan the whole block. You can also optionally
479/// specify an alias analysis implementation, which makes this more precise.
480Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
481                                      BasicBlock::iterator &ScanFrom,
482                                      unsigned MaxInstsToScan,
483                                      AliasAnalysis *AA) {
484  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
485
486  // If we're using alias analysis to disambiguate get the size of *Ptr.
487  unsigned AccessSize = 0;
488  if (AA) {
489    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
490    AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
491  }
492
493  while (ScanFrom != ScanBB->begin()) {
494    // We must ignore debug info directives when counting (otherwise they
495    // would affect codegen).
496    Instruction *Inst = --ScanFrom;
497    if (isa<DbgInfoIntrinsic>(Inst))
498      continue;
499    // We skip pointer-to-pointer bitcasts, which are NOPs.
500    // It is necessary for correctness to skip those that feed into a
501    // llvm.dbg.declare, as these are not present when debugging is off.
502    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
503      continue;
504
505    // Restore ScanFrom to expected value in case next test succeeds
506    ScanFrom++;
507
508    // Don't scan huge blocks.
509    if (MaxInstsToScan-- == 0) return 0;
510
511    --ScanFrom;
512    // If this is a load of Ptr, the loaded value is available.
513    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
514      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
515        return LI;
516
517    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
518      // If this is a store through Ptr, the value is available!
519      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
520        return SI->getOperand(0);
521
522      // If Ptr is an alloca and this is a store to a different alloca, ignore
523      // the store.  This is a trivial form of alias analysis that is important
524      // for reg2mem'd code.
525      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
526          (isa<AllocaInst>(SI->getOperand(1)) ||
527           isa<GlobalVariable>(SI->getOperand(1))))
528        continue;
529
530      // If we have alias analysis and it says the store won't modify the loaded
531      // value, ignore the store.
532      if (AA &&
533          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
534        continue;
535
536      // Otherwise the store that may or may not alias the pointer, bail out.
537      ++ScanFrom;
538      return 0;
539    }
540
541    // If this is some other instruction that may clobber Ptr, bail out.
542    if (Inst->mayWriteToMemory()) {
543      // If alias analysis claims that it really won't modify the load,
544      // ignore it.
545      if (AA &&
546          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
547        continue;
548
549      // May modify the pointer, bail out.
550      ++ScanFrom;
551      return 0;
552    }
553  }
554
555  // Got to the start of the block, we didn't find it, but are done for this
556  // block.
557  return 0;
558}
559
560/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
561/// make a copy of the stoppoint before InsertPos (presumably before copying
562/// or moving I).
563void llvm::CopyPrecedingStopPoint(Instruction *I,
564                                  BasicBlock::iterator InsertPos) {
565  if (I != I->getParent()->begin()) {
566    BasicBlock::iterator BBI = I;  --BBI;
567    if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
568      CallInst *newDSPI = DSPI->clone();
569      newDSPI->insertBefore(InsertPos);
570    }
571  }
572}
573