Miscompilation.cpp revision 4285d15703d4282cccb1e311b798917abd06beaf
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28#include "llvm/Config/config.h"   // for HAVE_LINK_R
29using namespace llvm;
30
31namespace llvm {
32  extern cl::list<std::string> InputArgv;
33}
34
35namespace {
36  static llvm::cl::opt<bool>
37    DisableLoopExtraction("disable-loop-extraction",
38        cl::desc("Don't extract loops when searching for miscompilations"),
39        cl::init(false));
40
41  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
42    BugDriver &BD;
43  public:
44    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
45
46    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
47                              std::vector<const PassInfo*> &Suffix);
48  };
49}
50
51/// TestResult - After passes have been split into a test group and a control
52/// group, see if they still break the program.
53///
54ReduceMiscompilingPasses::TestResult
55ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
56                                 std::vector<const PassInfo*> &Suffix) {
57  // First, run the program with just the Suffix passes.  If it is still broken
58  // with JUST the kept passes, discard the prefix passes.
59  outs() << "Checking to see if '" << getPassesString(Suffix)
60         << "' compiles correctly: ";
61
62  std::string BitcodeResult;
63  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
64    errs() << " Error running this sequence of passes"
65           << " on the input program!\n";
66    BD.setPassesToRun(Suffix);
67    BD.EmitProgressBitcode("pass-error",  false);
68    exit(BD.debugOptimizerCrash());
69  }
70
71  // Check to see if the finished program matches the reference output...
72  if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
73    outs() << " nope.\n";
74    if (Suffix.empty()) {
75      errs() << BD.getToolName() << ": I'm confused: the test fails when "
76             << "no passes are run, nondeterministic program?\n";
77      exit(1);
78    }
79    return KeepSuffix;         // Miscompilation detected!
80  }
81  outs() << " yup.\n";      // No miscompilation!
82
83  if (Prefix.empty()) return NoFailure;
84
85  // Next, see if the program is broken if we run the "prefix" passes first,
86  // then separately run the "kept" passes.
87  outs() << "Checking to see if '" << getPassesString(Prefix)
88         << "' compiles correctly: ";
89
90  // If it is not broken with the kept passes, it's possible that the prefix
91  // passes must be run before the kept passes to break it.  If the program
92  // WORKS after the prefix passes, but then fails if running the prefix AND
93  // kept passes, we can update our bitcode file to include the result of the
94  // prefix passes, then discard the prefix passes.
95  //
96  if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
97    errs() << " Error running this sequence of passes"
98           << " on the input program!\n";
99    BD.setPassesToRun(Prefix);
100    BD.EmitProgressBitcode("pass-error",  false);
101    exit(BD.debugOptimizerCrash());
102  }
103
104  // If the prefix maintains the predicate by itself, only keep the prefix!
105  if (BD.diffProgram(BitcodeResult)) {
106    outs() << " nope.\n";
107    sys::Path(BitcodeResult).eraseFromDisk();
108    return KeepPrefix;
109  }
110  outs() << " yup.\n";      // No miscompilation!
111
112  // Ok, so now we know that the prefix passes work, try running the suffix
113  // passes on the result of the prefix passes.
114  //
115  Module *PrefixOutput = ParseInputFile(BitcodeResult, BD.getContext());
116  if (PrefixOutput == 0) {
117    errs() << BD.getToolName() << ": Error reading bitcode file '"
118           << BitcodeResult << "'!\n";
119    exit(1);
120  }
121  sys::Path(BitcodeResult).eraseFromDisk();  // No longer need the file on disk
122
123  // Don't check if there are no passes in the suffix.
124  if (Suffix.empty())
125    return NoFailure;
126
127  outs() << "Checking to see if '" << getPassesString(Suffix)
128            << "' passes compile correctly after the '"
129            << getPassesString(Prefix) << "' passes: ";
130
131  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
132  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
133    errs() << " Error running this sequence of passes"
134           << " on the input program!\n";
135    BD.setPassesToRun(Suffix);
136    BD.EmitProgressBitcode("pass-error",  false);
137    exit(BD.debugOptimizerCrash());
138  }
139
140  // Run the result...
141  if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
142    outs() << " nope.\n";
143    delete OriginalInput;     // We pruned down the original input...
144    return KeepSuffix;
145  }
146
147  // Otherwise, we must not be running the bad pass anymore.
148  outs() << " yup.\n";      // No miscompilation!
149  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
150  return NoFailure;
151}
152
153namespace {
154  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
155    BugDriver &BD;
156    bool (*TestFn)(BugDriver &, Module *, Module *);
157  public:
158    ReduceMiscompilingFunctions(BugDriver &bd,
159                                bool (*F)(BugDriver &, Module *, Module *))
160      : BD(bd), TestFn(F) {}
161
162    virtual TestResult doTest(std::vector<Function*> &Prefix,
163                              std::vector<Function*> &Suffix) {
164      if (!Suffix.empty() && TestFuncs(Suffix))
165        return KeepSuffix;
166      if (!Prefix.empty() && TestFuncs(Prefix))
167        return KeepPrefix;
168      return NoFailure;
169    }
170
171    bool TestFuncs(const std::vector<Function*> &Prefix);
172  };
173}
174
175/// TestMergedProgram - Given two modules, link them together and run the
176/// program, checking to see if the program matches the diff.  If the diff
177/// matches, return false, otherwise return true.  If the DeleteInputs argument
178/// is set to true then this function deletes both input modules before it
179/// returns.
180///
181static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
182                              bool DeleteInputs) {
183  // Link the two portions of the program back to together.
184  std::string ErrorMsg;
185  if (!DeleteInputs) {
186    M1 = CloneModule(M1);
187    M2 = CloneModule(M2);
188  }
189  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
190    errs() << BD.getToolName() << ": Error linking modules together:"
191           << ErrorMsg << '\n';
192    exit(1);
193  }
194  delete M2;   // We are done with this module.
195
196  Module *OldProgram = BD.swapProgramIn(M1);
197
198  // Execute the program.  If it does not match the expected output, we must
199  // return true.
200  bool Broken = BD.diffProgram();
201
202  // Delete the linked module & restore the original
203  BD.swapProgramIn(OldProgram);
204  delete M1;
205  return Broken;
206}
207
208/// TestFuncs - split functions in a Module into two groups: those that are
209/// under consideration for miscompilation vs. those that are not, and test
210/// accordingly. Each group of functions becomes a separate Module.
211///
212bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
213  // Test to see if the function is misoptimized if we ONLY run it on the
214  // functions listed in Funcs.
215  outs() << "Checking to see if the program is misoptimized when "
216         << (Funcs.size()==1 ? "this function is" : "these functions are")
217         << " run through the pass"
218         << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
219  PrintFunctionList(Funcs);
220  outs() << '\n';
221
222  // Split the module into the two halves of the program we want.
223  DenseMap<const Value*, Value*> ValueMap;
224  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
225  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
226                                                 ValueMap);
227
228  // Run the predicate, note that the predicate will delete both input modules.
229  return TestFn(BD, ToOptimize, ToNotOptimize);
230}
231
232/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
233/// modifying predominantly internal symbols rather than external ones.
234///
235static void DisambiguateGlobalSymbols(Module *M) {
236  // Try not to cause collisions by minimizing chances of renaming an
237  // already-external symbol, so take in external globals and functions as-is.
238  // The code should work correctly without disambiguation (assuming the same
239  // mangler is used by the two code generators), but having symbols with the
240  // same name causes warnings to be emitted by the code generator.
241  Mangler Mang(*M);
242  // Agree with the CBE on symbol naming
243  Mang.markCharUnacceptable('.');
244  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
245       I != E; ++I) {
246    // Don't mangle asm names.
247    if (!I->hasName() || I->getName()[0] != 1)
248      I->setName(Mang.getMangledName(I));
249  }
250  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
251    // Don't mangle asm names or intrinsics.
252    if (!I->hasName() || I->getName()[0] != 1 || I->getIntrinsicID() != 0)
253      I->setName(Mang.getMangledName(I));
254  }
255}
256
257/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
258/// check to see if we can extract the loops in the region without obscuring the
259/// bug.  If so, it reduces the amount of code identified.
260///
261static bool ExtractLoops(BugDriver &BD,
262                         bool (*TestFn)(BugDriver &, Module *, Module *),
263                         std::vector<Function*> &MiscompiledFunctions) {
264  bool MadeChange = false;
265  while (1) {
266    if (BugpointIsInterrupted) return MadeChange;
267
268    DenseMap<const Value*, Value*> ValueMap;
269    Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
270    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
271                                                   MiscompiledFunctions,
272                                                   ValueMap);
273    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
274    if (!ToOptimizeLoopExtracted) {
275      // If the loop extractor crashed or if there were no extractible loops,
276      // then this chapter of our odyssey is over with.
277      delete ToNotOptimize;
278      delete ToOptimize;
279      return MadeChange;
280    }
281
282    errs() << "Extracted a loop from the breaking portion of the program.\n";
283
284    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
285    // particular, we're not going to assume that the loop extractor works, so
286    // we're going to test the newly loop extracted program to make sure nothing
287    // has broken.  If something broke, then we'll inform the user and stop
288    // extraction.
289    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
290    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
291      BD.switchToInterpreter(AI);
292
293      // Merged program doesn't work anymore!
294      errs() << "  *** ERROR: Loop extraction broke the program. :("
295             << " Please report a bug!\n";
296      errs() << "      Continuing on with un-loop-extracted version.\n";
297
298      BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
299      BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
300      BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
301                            ToOptimizeLoopExtracted);
302
303      errs() << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
304      delete ToOptimize;
305      delete ToNotOptimize;
306      delete ToOptimizeLoopExtracted;
307      return MadeChange;
308    }
309    delete ToOptimize;
310    BD.switchToInterpreter(AI);
311
312    outs() << "  Testing after loop extraction:\n";
313    // Clone modules, the tester function will free them.
314    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
315    Module *TNOBackup  = CloneModule(ToNotOptimize);
316    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
317      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
318      // If the program is not still broken, then loop extraction did something
319      // that masked the error.  Stop loop extraction now.
320      delete TOLEBackup;
321      delete TNOBackup;
322      return MadeChange;
323    }
324    ToOptimizeLoopExtracted = TOLEBackup;
325    ToNotOptimize = TNOBackup;
326
327    outs() << "*** Loop extraction successful!\n";
328
329    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
330    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
331           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
332      if (!I->isDeclaration())
333        MisCompFunctions.push_back(std::make_pair(I->getName(),
334                                                  I->getFunctionType()));
335
336    // Okay, great!  Now we know that we extracted a loop and that loop
337    // extraction both didn't break the program, and didn't mask the problem.
338    // Replace the current program with the loop extracted version, and try to
339    // extract another loop.
340    std::string ErrorMsg;
341    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
342      errs() << BD.getToolName() << ": Error linking modules together:"
343             << ErrorMsg << '\n';
344      exit(1);
345    }
346    delete ToOptimizeLoopExtracted;
347
348    // All of the Function*'s in the MiscompiledFunctions list are in the old
349    // module.  Update this list to include all of the functions in the
350    // optimized and loop extracted module.
351    MiscompiledFunctions.clear();
352    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
353      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
354
355      assert(NewF && "Function not found??");
356      assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
357             "found wrong function type?");
358      MiscompiledFunctions.push_back(NewF);
359    }
360
361    BD.setNewProgram(ToNotOptimize);
362    MadeChange = true;
363  }
364}
365
366namespace {
367  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
368    BugDriver &BD;
369    bool (*TestFn)(BugDriver &, Module *, Module *);
370    std::vector<Function*> FunctionsBeingTested;
371  public:
372    ReduceMiscompiledBlocks(BugDriver &bd,
373                            bool (*F)(BugDriver &, Module *, Module *),
374                            const std::vector<Function*> &Fns)
375      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
376
377    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
378                              std::vector<BasicBlock*> &Suffix) {
379      if (!Suffix.empty() && TestFuncs(Suffix))
380        return KeepSuffix;
381      if (TestFuncs(Prefix))
382        return KeepPrefix;
383      return NoFailure;
384    }
385
386    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
387  };
388}
389
390/// TestFuncs - Extract all blocks for the miscompiled functions except for the
391/// specified blocks.  If the problem still exists, return true.
392///
393bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
394  // Test to see if the function is misoptimized if we ONLY run it on the
395  // functions listed in Funcs.
396  outs() << "Checking to see if the program is misoptimized when all ";
397  if (!BBs.empty()) {
398    outs() << "but these " << BBs.size() << " blocks are extracted: ";
399    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
400      outs() << BBs[i]->getName() << " ";
401    if (BBs.size() > 10) outs() << "...";
402  } else {
403    outs() << "blocks are extracted.";
404  }
405  outs() << '\n';
406
407  // Split the module into the two halves of the program we want.
408  DenseMap<const Value*, Value*> ValueMap;
409  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
410  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
411                                                 FunctionsBeingTested,
412                                                 ValueMap);
413
414  // Try the extraction.  If it doesn't work, then the block extractor crashed
415  // or something, in which case bugpoint can't chase down this possibility.
416  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
417    delete ToOptimize;
418    // Run the predicate, not that the predicate will delete both input modules.
419    return TestFn(BD, New, ToNotOptimize);
420  }
421  delete ToOptimize;
422  delete ToNotOptimize;
423  return false;
424}
425
426
427/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
428/// extract as many basic blocks from the region as possible without obscuring
429/// the bug.
430///
431static bool ExtractBlocks(BugDriver &BD,
432                          bool (*TestFn)(BugDriver &, Module *, Module *),
433                          std::vector<Function*> &MiscompiledFunctions) {
434  if (BugpointIsInterrupted) return false;
435
436  std::vector<BasicBlock*> Blocks;
437  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
438    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
439           E = MiscompiledFunctions[i]->end(); I != E; ++I)
440      Blocks.push_back(I);
441
442  // Use the list reducer to identify blocks that can be extracted without
443  // obscuring the bug.  The Blocks list will end up containing blocks that must
444  // be retained from the original program.
445  unsigned OldSize = Blocks.size();
446
447  // Check to see if all blocks are extractible first.
448  if (ReduceMiscompiledBlocks(BD, TestFn,
449                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
450    Blocks.clear();
451  } else {
452    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
453    if (Blocks.size() == OldSize)
454      return false;
455  }
456
457  DenseMap<const Value*, Value*> ValueMap;
458  Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
459  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
460                                                MiscompiledFunctions,
461                                                ValueMap);
462  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
463  if (Extracted == 0) {
464    // Weird, extraction should have worked.
465    errs() << "Nondeterministic problem extracting blocks??\n";
466    delete ProgClone;
467    delete ToExtract;
468    return false;
469  }
470
471  // Otherwise, block extraction succeeded.  Link the two program fragments back
472  // together.
473  delete ToExtract;
474
475  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
476  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
477       I != E; ++I)
478    if (!I->isDeclaration())
479      MisCompFunctions.push_back(std::make_pair(I->getName(),
480                                                I->getFunctionType()));
481
482  std::string ErrorMsg;
483  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
484    errs() << BD.getToolName() << ": Error linking modules together:"
485           << ErrorMsg << '\n';
486    exit(1);
487  }
488  delete Extracted;
489
490  // Set the new program and delete the old one.
491  BD.setNewProgram(ProgClone);
492
493  // Update the list of miscompiled functions.
494  MiscompiledFunctions.clear();
495
496  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
497    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
498    assert(NewF && "Function not found??");
499    assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
500           "Function has wrong type??");
501    MiscompiledFunctions.push_back(NewF);
502  }
503
504  return true;
505}
506
507
508/// DebugAMiscompilation - This is a generic driver to narrow down
509/// miscompilations, either in an optimization or a code generator.
510///
511static std::vector<Function*>
512DebugAMiscompilation(BugDriver &BD,
513                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
514  // Okay, now that we have reduced the list of passes which are causing the
515  // failure, see if we can pin down which functions are being
516  // miscompiled... first build a list of all of the non-external functions in
517  // the program.
518  std::vector<Function*> MiscompiledFunctions;
519  Module *Prog = BD.getProgram();
520  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
521    if (!I->isDeclaration())
522      MiscompiledFunctions.push_back(I);
523
524  // Do the reduction...
525  if (!BugpointIsInterrupted)
526    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
527
528  outs() << "\n*** The following function"
529         << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
530         << " being miscompiled: ";
531  PrintFunctionList(MiscompiledFunctions);
532  outs() << '\n';
533
534  // See if we can rip any loops out of the miscompiled functions and still
535  // trigger the problem.
536
537  if (!BugpointIsInterrupted && !DisableLoopExtraction &&
538      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
539    // Okay, we extracted some loops and the problem still appears.  See if we
540    // can eliminate some of the created functions from being candidates.
541
542    // Loop extraction can introduce functions with the same name (foo_code).
543    // Make sure to disambiguate the symbols so that when the program is split
544    // apart that we can link it back together again.
545    DisambiguateGlobalSymbols(BD.getProgram());
546
547    // Do the reduction...
548    if (!BugpointIsInterrupted)
549      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
550
551    outs() << "\n*** The following function"
552           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
553           << " being miscompiled: ";
554    PrintFunctionList(MiscompiledFunctions);
555    outs() << '\n';
556  }
557
558  if (!BugpointIsInterrupted &&
559      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
560    // Okay, we extracted some blocks and the problem still appears.  See if we
561    // can eliminate some of the created functions from being candidates.
562
563    // Block extraction can introduce functions with the same name (foo_code).
564    // Make sure to disambiguate the symbols so that when the program is split
565    // apart that we can link it back together again.
566    DisambiguateGlobalSymbols(BD.getProgram());
567
568    // Do the reduction...
569    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
570
571    outs() << "\n*** The following function"
572           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
573           << " being miscompiled: ";
574    PrintFunctionList(MiscompiledFunctions);
575    outs() << '\n';
576  }
577
578  return MiscompiledFunctions;
579}
580
581/// TestOptimizer - This is the predicate function used to check to see if the
582/// "Test" portion of the program is misoptimized.  If so, return true.  In any
583/// case, both module arguments are deleted.
584///
585static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
586  // Run the optimization passes on ToOptimize, producing a transformed version
587  // of the functions being tested.
588  outs() << "  Optimizing functions being tested: ";
589  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
590                                     /*AutoDebugCrashes*/true);
591  outs() << "done.\n";
592  delete Test;
593
594  outs() << "  Checking to see if the merged program executes correctly: ";
595  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
596  outs() << (Broken ? " nope.\n" : " yup.\n");
597  return Broken;
598}
599
600
601/// debugMiscompilation - This method is used when the passes selected are not
602/// crashing, but the generated output is semantically different from the
603/// input.
604///
605bool BugDriver::debugMiscompilation() {
606  // Make sure something was miscompiled...
607  if (!BugpointIsInterrupted)
608    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
609      errs() << "*** Optimized program matches reference output!  No problem"
610             << " detected...\nbugpoint can't help you with your problem!\n";
611      return false;
612    }
613
614  outs() << "\n*** Found miscompiling pass"
615         << (getPassesToRun().size() == 1 ? "" : "es") << ": "
616         << getPassesString(getPassesToRun()) << '\n';
617  EmitProgressBitcode("passinput");
618
619  std::vector<Function*> MiscompiledFunctions =
620    DebugAMiscompilation(*this, TestOptimizer);
621
622  // Output a bunch of bitcode files for the user...
623  outs() << "Outputting reduced bitcode files which expose the problem:\n";
624  DenseMap<const Value*, Value*> ValueMap;
625  Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
626  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
627                                                 MiscompiledFunctions,
628                                                 ValueMap);
629
630  outs() << "  Non-optimized portion: ";
631  ToNotOptimize = swapProgramIn(ToNotOptimize);
632  EmitProgressBitcode("tonotoptimize", true);
633  setNewProgram(ToNotOptimize);   // Delete hacked module.
634
635  outs() << "  Portion that is input to optimizer: ";
636  ToOptimize = swapProgramIn(ToOptimize);
637  EmitProgressBitcode("tooptimize");
638  setNewProgram(ToOptimize);      // Delete hacked module.
639
640  return false;
641}
642
643/// CleanupAndPrepareModules - Get the specified modules ready for code
644/// generator testing.
645///
646static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
647                                     Module *Safe) {
648  LLVMContext &Context = BD.getContext();
649
650  // Clean up the modules, removing extra cruft that we don't need anymore...
651  Test = BD.performFinalCleanups(Test);
652
653  // If we are executing the JIT, we have several nasty issues to take care of.
654  if (!BD.isExecutingJIT()) return;
655
656  // First, if the main function is in the Safe module, we must add a stub to
657  // the Test module to call into it.  Thus, we create a new function `main'
658  // which just calls the old one.
659  if (Function *oldMain = Safe->getFunction("main"))
660    if (!oldMain->isDeclaration()) {
661      // Rename it
662      oldMain->setName("llvm_bugpoint_old_main");
663      // Create a NEW `main' function with same type in the test module.
664      Function *newMain = Function::Create(oldMain->getFunctionType(),
665                                           GlobalValue::ExternalLinkage,
666                                           "main", Test);
667      // Create an `oldmain' prototype in the test module, which will
668      // corresponds to the real main function in the same module.
669      Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
670                                                GlobalValue::ExternalLinkage,
671                                                oldMain->getName(), Test);
672      // Set up and remember the argument list for the main function.
673      std::vector<Value*> args;
674      for (Function::arg_iterator
675             I = newMain->arg_begin(), E = newMain->arg_end(),
676             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
677        I->setName(OI->getName());    // Copy argument names from oldMain
678        args.push_back(I);
679      }
680
681      // Call the old main function and return its result
682      BasicBlock *BB = BasicBlock::Create("entry", newMain);
683      CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
684                                        "", BB);
685
686      // If the type of old function wasn't void, return value of call
687      ReturnInst::Create(call, BB);
688    }
689
690  // The second nasty issue we must deal with in the JIT is that the Safe
691  // module cannot directly reference any functions defined in the test
692  // module.  Instead, we use a JIT API call to dynamically resolve the
693  // symbol.
694
695  // Add the resolver to the Safe module.
696  // Prototype: void *getPointerToNamedFunction(const char* Name)
697  Constant *resolverFunc =
698    Safe->getOrInsertFunction("getPointerToNamedFunction",
699                        Context.getPointerTypeUnqual(Type::Int8Ty),
700                        Context.getPointerTypeUnqual(Type::Int8Ty), (Type *)0);
701
702  // Use the function we just added to get addresses of functions we need.
703  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
704    if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
705        !F->isIntrinsic() /* ignore intrinsics */) {
706      Function *TestFn = Test->getFunction(F->getName());
707
708      // Don't forward functions which are external in the test module too.
709      if (TestFn && !TestFn->isDeclaration()) {
710        // 1. Add a string constant with its name to the global file
711        Constant *InitArray = Context.getConstantArray(F->getName());
712        GlobalVariable *funcName =
713          new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
714                             GlobalValue::InternalLinkage, InitArray,
715                             F->getName() + "_name");
716
717        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
718        // sbyte* so it matches the signature of the resolver function.
719
720        // GetElementPtr *funcName, ulong 0, ulong 0
721        std::vector<Constant*> GEPargs(2, Context.getNullValue(Type::Int32Ty));
722        Value *GEP =
723                Context.getConstantExprGetElementPtr(funcName, &GEPargs[0], 2);
724        std::vector<Value*> ResolverArgs;
725        ResolverArgs.push_back(GEP);
726
727        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
728        // function that dynamically resolves the calls to F via our JIT API
729        if (!F->use_empty()) {
730          // Create a new global to hold the cached function pointer.
731          Constant *NullPtr = Context.getConstantPointerNull(F->getType());
732          GlobalVariable *Cache =
733            new GlobalVariable(*F->getParent(), F->getType(),
734                               false, GlobalValue::InternalLinkage,
735                               NullPtr,F->getName()+".fpcache");
736
737          // Construct a new stub function that will re-route calls to F
738          const FunctionType *FuncTy = F->getFunctionType();
739          Function *FuncWrapper = Function::Create(FuncTy,
740                                                   GlobalValue::InternalLinkage,
741                                                   F->getName() + "_wrapper",
742                                                   F->getParent());
743          BasicBlock *EntryBB  = BasicBlock::Create("entry", FuncWrapper);
744          BasicBlock *DoCallBB = BasicBlock::Create("usecache", FuncWrapper);
745          BasicBlock *LookupBB = BasicBlock::Create("lookupfp", FuncWrapper);
746
747          // Check to see if we already looked up the value.
748          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
749          Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
750                                       NullPtr, "isNull");
751          BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
752
753          // Resolve the call to function F via the JIT API:
754          //
755          // call resolver(GetElementPtr...)
756          CallInst *Resolver =
757            CallInst::Create(resolverFunc, ResolverArgs.begin(),
758                             ResolverArgs.end(), "resolver", LookupBB);
759
760          // Cast the result from the resolver to correctly-typed function.
761          CastInst *CastedResolver =
762            new BitCastInst(Resolver,
763                            Context.getPointerTypeUnqual(F->getFunctionType()),
764                            "resolverCast", LookupBB);
765
766          // Save the value in our cache.
767          new StoreInst(CastedResolver, Cache, LookupBB);
768          BranchInst::Create(DoCallBB, LookupBB);
769
770          PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
771                                             "fp", DoCallBB);
772          FuncPtr->addIncoming(CastedResolver, LookupBB);
773          FuncPtr->addIncoming(CachedVal, EntryBB);
774
775          // Save the argument list.
776          std::vector<Value*> Args;
777          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
778                 e = FuncWrapper->arg_end(); i != e; ++i)
779            Args.push_back(i);
780
781          // Pass on the arguments to the real function, return its result
782          if (F->getReturnType() == Type::VoidTy) {
783            CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
784            ReturnInst::Create(DoCallBB);
785          } else {
786            CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
787                                              "retval", DoCallBB);
788            ReturnInst::Create(Call, DoCallBB);
789          }
790
791          // Use the wrapper function instead of the old function
792          F->replaceAllUsesWith(FuncWrapper);
793        }
794      }
795    }
796  }
797
798  if (verifyModule(*Test) || verifyModule(*Safe)) {
799    errs() << "Bugpoint has a bug, which corrupted a module!!\n";
800    abort();
801  }
802}
803
804
805
806/// TestCodeGenerator - This is the predicate function used to check to see if
807/// the "Test" portion of the program is miscompiled by the code generator under
808/// test.  If so, return true.  In any case, both module arguments are deleted.
809///
810static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
811  CleanupAndPrepareModules(BD, Test, Safe);
812
813  sys::Path TestModuleBC("bugpoint.test.bc");
814  std::string ErrMsg;
815  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
816    errs() << BD.getToolName() << "Error making unique filename: "
817           << ErrMsg << "\n";
818    exit(1);
819  }
820  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
821    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
822    exit(1);
823  }
824  delete Test;
825
826  // Make the shared library
827  sys::Path SafeModuleBC("bugpoint.safe.bc");
828  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
829    errs() << BD.getToolName() << "Error making unique filename: "
830           << ErrMsg << "\n";
831    exit(1);
832  }
833
834  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
835    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
836    exit(1);
837  }
838  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
839  delete Safe;
840
841  // Run the code generator on the `Test' code, loading the shared library.
842  // The function returns whether or not the new output differs from reference.
843  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
844
845  if (Result)
846    errs() << ": still failing!\n";
847  else
848    errs() << ": didn't fail.\n";
849  TestModuleBC.eraseFromDisk();
850  SafeModuleBC.eraseFromDisk();
851  sys::Path(SharedObject).eraseFromDisk();
852
853  return Result;
854}
855
856
857/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
858///
859bool BugDriver::debugCodeGenerator() {
860  if ((void*)SafeInterpreter == (void*)Interpreter) {
861    std::string Result = executeProgramSafely("bugpoint.safe.out");
862    outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
863           << "the reference diff.  This may be due to a\n    front-end "
864           << "bug or a bug in the original program, but this can also "
865           << "happen if bugpoint isn't running the program with the "
866           << "right flags or input.\n    I left the result of executing "
867           << "the program with the \"safe\" backend in this file for "
868           << "you: '"
869           << Result << "'.\n";
870    return true;
871  }
872
873  DisambiguateGlobalSymbols(Program);
874
875  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
876
877  // Split the module into the two halves of the program we want.
878  DenseMap<const Value*, Value*> ValueMap;
879  Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
880  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
881
882  // Condition the modules
883  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
884
885  sys::Path TestModuleBC("bugpoint.test.bc");
886  std::string ErrMsg;
887  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
888    errs() << getToolName() << "Error making unique filename: "
889           << ErrMsg << "\n";
890    exit(1);
891  }
892
893  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
894    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
895    exit(1);
896  }
897  delete ToCodeGen;
898
899  // Make the shared library
900  sys::Path SafeModuleBC("bugpoint.safe.bc");
901  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
902    errs() << getToolName() << "Error making unique filename: "
903           << ErrMsg << "\n";
904    exit(1);
905  }
906
907  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
908    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
909    exit(1);
910  }
911  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
912  delete ToNotCodeGen;
913
914  outs() << "You can reproduce the problem with the command line: \n";
915  if (isExecutingJIT()) {
916    outs() << "  lli -load " << SharedObject << " " << TestModuleBC;
917  } else {
918    outs() << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
919    outs() << "  gcc " << SharedObject << " " << TestModuleBC
920              << ".s -o " << TestModuleBC << ".exe";
921#if defined (HAVE_LINK_R)
922    outs() << " -Wl,-R.";
923#endif
924    outs() << "\n";
925    outs() << "  " << TestModuleBC << ".exe";
926  }
927  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
928    outs() << " " << InputArgv[i];
929  outs() << '\n';
930  outs() << "The shared object was created with:\n  llc -march=c "
931         << SafeModuleBC << " -o temporary.c\n"
932         << "  gcc -xc temporary.c -O2 -o " << SharedObject
933#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
934         << " -G"            // Compile a shared library, `-G' for Sparc
935#else
936         << " -fPIC -shared"       // `-shared' for Linux/X86, maybe others
937#endif
938         << " -fno-strict-aliasing\n";
939
940  return false;
941}
942