Miscompilation.cpp revision 518310cb0d136906ff0a99d7a24cb460794de5bf
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements optimizer and code generation miscompilation debugging 11// support. 12// 13//===----------------------------------------------------------------------===// 14 15#include "BugDriver.h" 16#include "ListReducer.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Module.h" 21#include "llvm/Pass.h" 22#include "llvm/Analysis/Verifier.h" 23#include "llvm/Support/Mangler.h" 24#include "llvm/Transforms/Utils/Cloning.h" 25#include "llvm/Support/Linker.h" 26#include "Support/CommandLine.h" 27#include "Support/FileUtilities.h" 28using namespace llvm; 29 30namespace llvm { 31 extern cl::list<std::string> InputArgv; 32} 33 34namespace { 35 class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> { 36 BugDriver &BD; 37 public: 38 ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {} 39 40 virtual TestResult doTest(std::vector<const PassInfo*> &Prefix, 41 std::vector<const PassInfo*> &Suffix); 42 }; 43} 44 45/// TestResult - After passes have been split into a test group and a control 46/// group, see if they still break the program. 47/// 48ReduceMiscompilingPasses::TestResult 49ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix, 50 std::vector<const PassInfo*> &Suffix) { 51 // First, run the program with just the Suffix passes. If it is still broken 52 // with JUST the kept passes, discard the prefix passes. 53 std::cout << "Checking to see if '" << getPassesString(Suffix) 54 << "' compile correctly: "; 55 56 std::string BytecodeResult; 57 if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 58 std::cerr << " Error running this sequence of passes" 59 << " on the input program!\n"; 60 BD.setPassesToRun(Suffix); 61 BD.EmitProgressBytecode("pass-error", false); 62 exit(BD.debugOptimizerCrash()); 63 } 64 65 // Check to see if the finished program matches the reference output... 66 if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) { 67 std::cout << " nope.\n"; 68 return KeepSuffix; // Miscompilation detected! 69 } 70 std::cout << " yup.\n"; // No miscompilation! 71 72 if (Prefix.empty()) return NoFailure; 73 74 // Next, see if the program is broken if we run the "prefix" passes first, 75 // then separately run the "kept" passes. 76 std::cout << "Checking to see if '" << getPassesString(Prefix) 77 << "' compile correctly: "; 78 79 // If it is not broken with the kept passes, it's possible that the prefix 80 // passes must be run before the kept passes to break it. If the program 81 // WORKS after the prefix passes, but then fails if running the prefix AND 82 // kept passes, we can update our bytecode file to include the result of the 83 // prefix passes, then discard the prefix passes. 84 // 85 if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 86 std::cerr << " Error running this sequence of passes" 87 << " on the input program!\n"; 88 BD.setPassesToRun(Prefix); 89 BD.EmitProgressBytecode("pass-error", false); 90 exit(BD.debugOptimizerCrash()); 91 } 92 93 // If the prefix maintains the predicate by itself, only keep the prefix! 94 if (BD.diffProgram(BytecodeResult)) { 95 std::cout << " nope.\n"; 96 removeFile(BytecodeResult); 97 return KeepPrefix; 98 } 99 std::cout << " yup.\n"; // No miscompilation! 100 101 // Ok, so now we know that the prefix passes work, try running the suffix 102 // passes on the result of the prefix passes. 103 // 104 Module *PrefixOutput = ParseInputFile(BytecodeResult); 105 if (PrefixOutput == 0) { 106 std::cerr << BD.getToolName() << ": Error reading bytecode file '" 107 << BytecodeResult << "'!\n"; 108 exit(1); 109 } 110 removeFile(BytecodeResult); // No longer need the file on disk 111 112 // Don't check if there are no passes in the suffix. 113 if (Suffix.empty()) 114 return NoFailure; 115 116 std::cout << "Checking to see if '" << getPassesString(Suffix) 117 << "' passes compile correctly after the '" 118 << getPassesString(Prefix) << "' passes: "; 119 120 Module *OriginalInput = BD.swapProgramIn(PrefixOutput); 121 if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 122 std::cerr << " Error running this sequence of passes" 123 << " on the input program!\n"; 124 BD.setPassesToRun(Suffix); 125 BD.EmitProgressBytecode("pass-error", false); 126 exit(BD.debugOptimizerCrash()); 127 } 128 129 // Run the result... 130 if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) { 131 std::cout << " nope.\n"; 132 delete OriginalInput; // We pruned down the original input... 133 return KeepSuffix; 134 } 135 136 // Otherwise, we must not be running the bad pass anymore. 137 std::cout << " yup.\n"; // No miscompilation! 138 delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test 139 return NoFailure; 140} 141 142namespace { 143 class ReduceMiscompilingFunctions : public ListReducer<Function*> { 144 BugDriver &BD; 145 bool (*TestFn)(BugDriver &, Module *, Module *); 146 public: 147 ReduceMiscompilingFunctions(BugDriver &bd, 148 bool (*F)(BugDriver &, Module *, Module *)) 149 : BD(bd), TestFn(F) {} 150 151 virtual TestResult doTest(std::vector<Function*> &Prefix, 152 std::vector<Function*> &Suffix) { 153 if (!Suffix.empty() && TestFuncs(Suffix)) 154 return KeepSuffix; 155 if (!Prefix.empty() && TestFuncs(Prefix)) 156 return KeepPrefix; 157 return NoFailure; 158 } 159 160 bool TestFuncs(const std::vector<Function*> &Prefix); 161 }; 162} 163 164/// TestMergedProgram - Given two modules, link them together and run the 165/// program, checking to see if the program matches the diff. If the diff 166/// matches, return false, otherwise return true. If the DeleteInputs argument 167/// is set to true then this function deletes both input modules before it 168/// returns. 169/// 170static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2, 171 bool DeleteInputs) { 172 // Link the two portions of the program back to together. 173 std::string ErrorMsg; 174 if (!DeleteInputs) M1 = CloneModule(M1); 175 if (LinkModules(M1, M2, &ErrorMsg)) { 176 std::cerr << BD.getToolName() << ": Error linking modules together:" 177 << ErrorMsg << "\n"; 178 exit(1); 179 } 180 if (DeleteInputs) delete M2; // We are done with this module... 181 182 Module *OldProgram = BD.swapProgramIn(M1); 183 184 // Execute the program. If it does not match the expected output, we must 185 // return true. 186 bool Broken = BD.diffProgram(); 187 188 // Delete the linked module & restore the original 189 BD.swapProgramIn(OldProgram); 190 delete M1; 191 return Broken; 192} 193 194/// TestFuncs - split functions in a Module into two groups: those that are 195/// under consideration for miscompilation vs. those that are not, and test 196/// accordingly. Each group of functions becomes a separate Module. 197/// 198bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){ 199 // Test to see if the function is misoptimized if we ONLY run it on the 200 // functions listed in Funcs. 201 std::cout << "Checking to see if the program is misoptimized when " 202 << (Funcs.size()==1 ? "this function is" : "these functions are") 203 << " run through the pass" 204 << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":"; 205 PrintFunctionList(Funcs); 206 std::cout << "\n"; 207 208 // Split the module into the two halves of the program we want. 209 Module *ToNotOptimize = CloneModule(BD.getProgram()); 210 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs); 211 212 // Run the predicate, not that the predicate will delete both input modules. 213 return TestFn(BD, ToOptimize, ToNotOptimize); 214} 215 216/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by 217/// modifying predominantly internal symbols rather than external ones. 218/// 219static void DisambiguateGlobalSymbols(Module *M) { 220 // Try not to cause collisions by minimizing chances of renaming an 221 // already-external symbol, so take in external globals and functions as-is. 222 // The code should work correctly without disambiguation (assuming the same 223 // mangler is used by the two code generators), but having symbols with the 224 // same name causes warnings to be emitted by the code generator. 225 Mangler Mang(*M); 226 for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) 227 I->setName(Mang.getValueName(I)); 228 for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) 229 I->setName(Mang.getValueName(I)); 230} 231 232/// ExtractLoops - Given a reduced list of functions that still exposed the bug, 233/// check to see if we can extract the loops in the region without obscuring the 234/// bug. If so, it reduces the amount of code identified. 235/// 236static bool ExtractLoops(BugDriver &BD, 237 bool (*TestFn)(BugDriver &, Module *, Module *), 238 std::vector<Function*> &MiscompiledFunctions) { 239 bool MadeChange = false; 240 while (1) { 241 Module *ToNotOptimize = CloneModule(BD.getProgram()); 242 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 243 MiscompiledFunctions); 244 Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize); 245 if (!ToOptimizeLoopExtracted) { 246 // If the loop extractor crashed or if there were no extractible loops, 247 // then this chapter of our odyssey is over with. 248 delete ToNotOptimize; 249 delete ToOptimize; 250 return MadeChange; 251 } 252 253 std::cerr << "Extracted a loop from the breaking portion of the program.\n"; 254 delete ToOptimize; 255 256 // Bugpoint is intentionally not very trusting of LLVM transformations. In 257 // particular, we're not going to assume that the loop extractor works, so 258 // we're going to test the newly loop extracted program to make sure nothing 259 // has broken. If something broke, then we'll inform the user and stop 260 // extraction. 261 AbstractInterpreter *AI = BD.switchToCBE(); 262 if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) { 263 BD.switchToInterpreter(AI); 264 265 // Merged program doesn't work anymore! 266 std::cerr << " *** ERROR: Loop extraction broke the program. :(" 267 << " Please report a bug!\n"; 268 std::cerr << " Continuing on with un-loop-extracted version.\n"; 269 delete ToNotOptimize; 270 delete ToOptimizeLoopExtracted; 271 return MadeChange; 272 } 273 BD.switchToInterpreter(AI); 274 275 std::cout << " Testing after loop extraction:\n"; 276 // Clone modules, the tester function will free them. 277 Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted); 278 Module *TNOBackup = CloneModule(ToNotOptimize); 279 if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) { 280 std::cout << "*** Loop extraction masked the problem. Undoing.\n"; 281 // If the program is not still broken, then loop extraction did something 282 // that masked the error. Stop loop extraction now. 283 delete TOLEBackup; 284 delete TNOBackup; 285 return MadeChange; 286 } 287 ToOptimizeLoopExtracted = TOLEBackup; 288 ToNotOptimize = TNOBackup; 289 290 std::cout << "*** Loop extraction successful!\n"; 291 292 // Okay, great! Now we know that we extracted a loop and that loop 293 // extraction both didn't break the program, and didn't mask the problem. 294 // Replace the current program with the loop extracted version, and try to 295 // extract another loop. 296 std::string ErrorMsg; 297 if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) { 298 std::cerr << BD.getToolName() << ": Error linking modules together:" 299 << ErrorMsg << "\n"; 300 exit(1); 301 } 302 303 // All of the Function*'s in the MiscompiledFunctions list are in the old 304 // module. Update this list to include all of the functions in the 305 // optimized and loop extracted module. 306 MiscompiledFunctions.clear(); 307 for (Module::iterator I = ToOptimizeLoopExtracted->begin(), 308 E = ToOptimizeLoopExtracted->end(); I != E; ++I) { 309 if (!I->isExternal()) { 310 Function *NewF = ToNotOptimize->getFunction(I->getName(), 311 I->getFunctionType()); 312 assert(NewF && "Function not found??"); 313 MiscompiledFunctions.push_back(NewF); 314 } 315 } 316 delete ToOptimizeLoopExtracted; 317 318 BD.setNewProgram(ToNotOptimize); 319 MadeChange = true; 320 } 321} 322 323namespace { 324 class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> { 325 BugDriver &BD; 326 bool (*TestFn)(BugDriver &, Module *, Module *); 327 std::vector<Function*> FunctionsBeingTested; 328 public: 329 ReduceMiscompiledBlocks(BugDriver &bd, 330 bool (*F)(BugDriver &, Module *, Module *), 331 const std::vector<Function*> &Fns) 332 : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {} 333 334 virtual TestResult doTest(std::vector<BasicBlock*> &Prefix, 335 std::vector<BasicBlock*> &Suffix) { 336 if (!Suffix.empty() && TestFuncs(Suffix)) 337 return KeepSuffix; 338 if (TestFuncs(Prefix)) 339 return KeepPrefix; 340 return NoFailure; 341 } 342 343 bool TestFuncs(const std::vector<BasicBlock*> &Prefix); 344 }; 345} 346 347/// TestFuncs - Extract all blocks for the miscompiled functions except for the 348/// specified blocks. If the problem still exists, return true. 349/// 350bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) { 351 // Test to see if the function is misoptimized if we ONLY run it on the 352 // functions listed in Funcs. 353 std::cout << "Checking to see if the program is misoptimized when all "; 354 if (!BBs.empty()) { 355 std::cout << "but these " << BBs.size() << " blocks are extracted: "; 356 for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i) 357 std::cout << BBs[i]->getName() << " "; 358 if (BBs.size() > 10) std::cout << "..."; 359 } else { 360 std::cout << "blocks are extracted."; 361 } 362 std::cout << "\n"; 363 364 // Split the module into the two halves of the program we want. 365 Module *ToNotOptimize = CloneModule(BD.getProgram()); 366 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 367 FunctionsBeingTested); 368 369 // Try the extraction. If it doesn't work, then the block extractor crashed 370 // or something, in which case bugpoint can't chase down this possibility. 371 if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) { 372 delete ToOptimize; 373 // Run the predicate, not that the predicate will delete both input modules. 374 return TestFn(BD, New, ToNotOptimize); 375 } 376 delete ToOptimize; 377 delete ToNotOptimize; 378 return false; 379} 380 381 382/// ExtractBlocks - Given a reduced list of functions that still expose the bug, 383/// extract as many basic blocks from the region as possible without obscuring 384/// the bug. 385/// 386static bool ExtractBlocks(BugDriver &BD, 387 bool (*TestFn)(BugDriver &, Module *, Module *), 388 std::vector<Function*> &MiscompiledFunctions) { 389 std::vector<BasicBlock*> Blocks; 390 for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) 391 for (Function::iterator I = MiscompiledFunctions[i]->begin(), 392 E = MiscompiledFunctions[i]->end(); I != E; ++I) 393 Blocks.push_back(I); 394 395 // Use the list reducer to identify blocks that can be extracted without 396 // obscuring the bug. The Blocks list will end up containing blocks that must 397 // be retained from the original program. 398 unsigned OldSize = Blocks.size(); 399 400 // Check to see if all blocks are extractible first. 401 if (ReduceMiscompiledBlocks(BD, TestFn, 402 MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) { 403 Blocks.clear(); 404 } else { 405 ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks); 406 if (Blocks.size() == OldSize) 407 return false; 408 } 409 410 Module *ProgClone = CloneModule(BD.getProgram()); 411 Module *ToExtract = SplitFunctionsOutOfModule(ProgClone, 412 MiscompiledFunctions); 413 Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract); 414 if (Extracted == 0) { 415 // Wierd, extraction should have worked. 416 std::cerr << "Nondeterministic problem extracting blocks??\n"; 417 delete ProgClone; 418 delete ToExtract; 419 return false; 420 } 421 422 // Otherwise, block extraction succeeded. Link the two program fragments back 423 // together. 424 delete ToExtract; 425 426 std::string ErrorMsg; 427 if (LinkModules(ProgClone, Extracted, &ErrorMsg)) { 428 std::cerr << BD.getToolName() << ": Error linking modules together:" 429 << ErrorMsg << "\n"; 430 exit(1); 431 } 432 433 // Set the new program and delete the old one. 434 BD.setNewProgram(ProgClone); 435 436 // Update the list of miscompiled functions. 437 MiscompiledFunctions.clear(); 438 439 for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E; 440 ++I) 441 if (!I->isExternal()) { 442 Function *NF = ProgClone->getFunction(I->getName(), I->getFunctionType()); 443 assert(NF && "Mapped function not found!"); 444 MiscompiledFunctions.push_back(NF); 445 } 446 447 delete Extracted; 448 449 return true; 450} 451 452 453/// DebugAMiscompilation - This is a generic driver to narrow down 454/// miscompilations, either in an optimization or a code generator. 455/// 456static std::vector<Function*> 457DebugAMiscompilation(BugDriver &BD, 458 bool (*TestFn)(BugDriver &, Module *, Module *)) { 459 // Okay, now that we have reduced the list of passes which are causing the 460 // failure, see if we can pin down which functions are being 461 // miscompiled... first build a list of all of the non-external functions in 462 // the program. 463 std::vector<Function*> MiscompiledFunctions; 464 Module *Prog = BD.getProgram(); 465 for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I) 466 if (!I->isExternal()) 467 MiscompiledFunctions.push_back(I); 468 469 // Do the reduction... 470 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 471 472 std::cout << "\n*** The following function" 473 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 474 << " being miscompiled: "; 475 PrintFunctionList(MiscompiledFunctions); 476 std::cout << "\n"; 477 478 // See if we can rip any loops out of the miscompiled functions and still 479 // trigger the problem. 480 if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) { 481 // Okay, we extracted some loops and the problem still appears. See if we 482 // can eliminate some of the created functions from being candidates. 483 484 // Loop extraction can introduce functions with the same name (foo_code). 485 // Make sure to disambiguate the symbols so that when the program is split 486 // apart that we can link it back together again. 487 DisambiguateGlobalSymbols(BD.getProgram()); 488 489 // Do the reduction... 490 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 491 492 std::cout << "\n*** The following function" 493 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 494 << " being miscompiled: "; 495 PrintFunctionList(MiscompiledFunctions); 496 std::cout << "\n"; 497 } 498 499 if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) { 500 // Okay, we extracted some blocks and the problem still appears. See if we 501 // can eliminate some of the created functions from being candidates. 502 503 // Block extraction can introduce functions with the same name (foo_code). 504 // Make sure to disambiguate the symbols so that when the program is split 505 // apart that we can link it back together again. 506 DisambiguateGlobalSymbols(BD.getProgram()); 507 508 // Do the reduction... 509 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 510 511 std::cout << "\n*** The following function" 512 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 513 << " being miscompiled: "; 514 PrintFunctionList(MiscompiledFunctions); 515 std::cout << "\n"; 516 } 517 518 return MiscompiledFunctions; 519} 520 521/// TestOptimizer - This is the predicate function used to check to see if the 522/// "Test" portion of the program is misoptimized. If so, return true. In any 523/// case, both module arguments are deleted. 524/// 525static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) { 526 // Run the optimization passes on ToOptimize, producing a transformed version 527 // of the functions being tested. 528 std::cout << " Optimizing functions being tested: "; 529 Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(), 530 /*AutoDebugCrashes*/true); 531 std::cout << "done.\n"; 532 delete Test; 533 534 std::cout << " Checking to see if the merged program executes correctly: "; 535 bool Broken = TestMergedProgram(BD, Optimized, Safe, true); 536 std::cout << (Broken ? " nope.\n" : " yup.\n"); 537 return Broken; 538} 539 540 541/// debugMiscompilation - This method is used when the passes selected are not 542/// crashing, but the generated output is semantically different from the 543/// input. 544/// 545bool BugDriver::debugMiscompilation() { 546 // Make sure something was miscompiled... 547 if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) { 548 std::cerr << "*** Optimized program matches reference output! No problem " 549 << "detected...\nbugpoint can't help you with your problem!\n"; 550 return false; 551 } 552 553 std::cout << "\n*** Found miscompiling pass" 554 << (getPassesToRun().size() == 1 ? "" : "es") << ": " 555 << getPassesString(getPassesToRun()) << "\n"; 556 EmitProgressBytecode("passinput"); 557 558 std::vector<Function*> MiscompiledFunctions = 559 DebugAMiscompilation(*this, TestOptimizer); 560 561 // Output a bunch of bytecode files for the user... 562 std::cout << "Outputting reduced bytecode files which expose the problem:\n"; 563 Module *ToNotOptimize = CloneModule(getProgram()); 564 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 565 MiscompiledFunctions); 566 567 std::cout << " Non-optimized portion: "; 568 ToNotOptimize = swapProgramIn(ToNotOptimize); 569 EmitProgressBytecode("tonotoptimize", true); 570 setNewProgram(ToNotOptimize); // Delete hacked module. 571 572 std::cout << " Portion that is input to optimizer: "; 573 ToOptimize = swapProgramIn(ToOptimize); 574 EmitProgressBytecode("tooptimize"); 575 setNewProgram(ToOptimize); // Delete hacked module. 576 577 return false; 578} 579 580/// CleanupAndPrepareModules - Get the specified modules ready for code 581/// generator testing. 582/// 583static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test, 584 Module *Safe) { 585 // Clean up the modules, removing extra cruft that we don't need anymore... 586 Test = BD.performFinalCleanups(Test); 587 588 // If we are executing the JIT, we have several nasty issues to take care of. 589 if (!BD.isExecutingJIT()) return; 590 591 // First, if the main function is in the Safe module, we must add a stub to 592 // the Test module to call into it. Thus, we create a new function `main' 593 // which just calls the old one. 594 if (Function *oldMain = Safe->getNamedFunction("main")) 595 if (!oldMain->isExternal()) { 596 // Rename it 597 oldMain->setName("llvm_bugpoint_old_main"); 598 // Create a NEW `main' function with same type in the test module. 599 Function *newMain = new Function(oldMain->getFunctionType(), 600 GlobalValue::ExternalLinkage, 601 "main", Test); 602 // Create an `oldmain' prototype in the test module, which will 603 // corresponds to the real main function in the same module. 604 Function *oldMainProto = new Function(oldMain->getFunctionType(), 605 GlobalValue::ExternalLinkage, 606 oldMain->getName(), Test); 607 // Set up and remember the argument list for the main function. 608 std::vector<Value*> args; 609 for (Function::aiterator I = newMain->abegin(), E = newMain->aend(), 610 OI = oldMain->abegin(); I != E; ++I, ++OI) { 611 I->setName(OI->getName()); // Copy argument names from oldMain 612 args.push_back(I); 613 } 614 615 // Call the old main function and return its result 616 BasicBlock *BB = new BasicBlock("entry", newMain); 617 CallInst *call = new CallInst(oldMainProto, args); 618 BB->getInstList().push_back(call); 619 620 // If the type of old function wasn't void, return value of call 621 new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB); 622 } 623 624 // The second nasty issue we must deal with in the JIT is that the Safe 625 // module cannot directly reference any functions defined in the test 626 // module. Instead, we use a JIT API call to dynamically resolve the 627 // symbol. 628 629 // Add the resolver to the Safe module. 630 // Prototype: void *getPointerToNamedFunction(const char* Name) 631 Function *resolverFunc = 632 Safe->getOrInsertFunction("getPointerToNamedFunction", 633 PointerType::get(Type::SByteTy), 634 PointerType::get(Type::SByteTy), 0); 635 636 // Use the function we just added to get addresses of functions we need. 637 for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) { 638 if (F->isExternal() && !F->use_empty() && &*F != resolverFunc && 639 F->getIntrinsicID() == 0 /* ignore intrinsics */) { 640 Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType()); 641 642 // Don't forward functions which are external in the test module too. 643 if (TestFn && !TestFn->isExternal()) { 644 // 1. Add a string constant with its name to the global file 645 Constant *InitArray = ConstantArray::get(F->getName()); 646 GlobalVariable *funcName = 647 new GlobalVariable(InitArray->getType(), true /*isConstant*/, 648 GlobalValue::InternalLinkage, InitArray, 649 F->getName() + "_name", Safe); 650 651 // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an 652 // sbyte* so it matches the signature of the resolver function. 653 654 // GetElementPtr *funcName, ulong 0, ulong 0 655 std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy)); 656 Value *GEP = 657 ConstantExpr::getGetElementPtr(funcName, GEPargs); 658 std::vector<Value*> ResolverArgs; 659 ResolverArgs.push_back(GEP); 660 661 // Rewrite uses of F in global initializers, etc. to uses of a wrapper 662 // function that dynamically resolves the calls to F via our JIT API 663 if (F->use_begin() != F->use_end()) { 664 // Construct a new stub function that will re-route calls to F 665 const FunctionType *FuncTy = F->getFunctionType(); 666 Function *FuncWrapper = new Function(FuncTy, 667 GlobalValue::InternalLinkage, 668 F->getName() + "_wrapper", 669 F->getParent()); 670 BasicBlock *Header = new BasicBlock("header", FuncWrapper); 671 672 // Resolve the call to function F via the JIT API: 673 // 674 // call resolver(GetElementPtr...) 675 CallInst *resolve = new CallInst(resolverFunc, ResolverArgs, 676 "resolver"); 677 Header->getInstList().push_back(resolve); 678 // cast the result from the resolver to correctly-typed function 679 CastInst *castResolver = 680 new CastInst(resolve, PointerType::get(F->getFunctionType()), 681 "resolverCast"); 682 Header->getInstList().push_back(castResolver); 683 684 // Save the argument list 685 std::vector<Value*> Args; 686 for (Function::aiterator i = FuncWrapper->abegin(), 687 e = FuncWrapper->aend(); i != e; ++i) 688 Args.push_back(i); 689 690 // Pass on the arguments to the real function, return its result 691 if (F->getReturnType() == Type::VoidTy) { 692 CallInst *Call = new CallInst(castResolver, Args); 693 Header->getInstList().push_back(Call); 694 ReturnInst *Ret = new ReturnInst(); 695 Header->getInstList().push_back(Ret); 696 } else { 697 CallInst *Call = new CallInst(castResolver, Args, "redir"); 698 Header->getInstList().push_back(Call); 699 ReturnInst *Ret = new ReturnInst(Call); 700 Header->getInstList().push_back(Ret); 701 } 702 703 // Use the wrapper function instead of the old function 704 F->replaceAllUsesWith(FuncWrapper); 705 } 706 } 707 } 708 } 709 710 if (verifyModule(*Test) || verifyModule(*Safe)) { 711 std::cerr << "Bugpoint has a bug, which corrupted a module!!\n"; 712 abort(); 713 } 714} 715 716 717 718/// TestCodeGenerator - This is the predicate function used to check to see if 719/// the "Test" portion of the program is miscompiled by the code generator under 720/// test. If so, return true. In any case, both module arguments are deleted. 721/// 722static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) { 723 CleanupAndPrepareModules(BD, Test, Safe); 724 725 std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc"); 726 if (BD.writeProgramToFile(TestModuleBC, Test)) { 727 std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; 728 exit(1); 729 } 730 delete Test; 731 732 // Make the shared library 733 std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc"); 734 735 if (BD.writeProgramToFile(SafeModuleBC, Safe)) { 736 std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; 737 exit(1); 738 } 739 std::string SharedObject = BD.compileSharedObject(SafeModuleBC); 740 delete Safe; 741 742 // Run the code generator on the `Test' code, loading the shared library. 743 // The function returns whether or not the new output differs from reference. 744 int Result = BD.diffProgram(TestModuleBC, SharedObject, false); 745 746 if (Result) 747 std::cerr << ": still failing!\n"; 748 else 749 std::cerr << ": didn't fail.\n"; 750 removeFile(TestModuleBC); 751 removeFile(SafeModuleBC); 752 removeFile(SharedObject); 753 754 return Result; 755} 756 757 758/// debugCodeGenerator - debug errors in LLC, LLI, or CBE. 759/// 760bool BugDriver::debugCodeGenerator() { 761 if ((void*)cbe == (void*)Interpreter) { 762 std::string Result = executeProgramWithCBE("bugpoint.cbe.out"); 763 std::cout << "\n*** The C backend cannot match the reference diff, but it " 764 << "is used as the 'known good'\n code generator, so I can't" 765 << " debug it. Perhaps you have a front-end problem?\n As a" 766 << " sanity check, I left the result of executing the program " 767 << "with the C backend\n in this file for you: '" 768 << Result << "'.\n"; 769 return true; 770 } 771 772 DisambiguateGlobalSymbols(Program); 773 774 std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator); 775 776 // Split the module into the two halves of the program we want. 777 Module *ToNotCodeGen = CloneModule(getProgram()); 778 Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs); 779 780 // Condition the modules 781 CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen); 782 783 std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc"); 784 if (writeProgramToFile(TestModuleBC, ToCodeGen)) { 785 std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; 786 exit(1); 787 } 788 delete ToCodeGen; 789 790 // Make the shared library 791 std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc"); 792 if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) { 793 std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; 794 exit(1); 795 } 796 std::string SharedObject = compileSharedObject(SafeModuleBC); 797 delete ToNotCodeGen; 798 799 std::cout << "You can reproduce the problem with the command line: \n"; 800 if (isExecutingJIT()) { 801 std::cout << " lli -load " << SharedObject << " " << TestModuleBC; 802 } else { 803 std::cout << " llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n"; 804 std::cout << " gcc " << SharedObject << " " << TestModuleBC 805 << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n"; 806 std::cout << " " << TestModuleBC << ".exe"; 807 } 808 for (unsigned i=0, e = InputArgv.size(); i != e; ++i) 809 std::cout << " " << InputArgv[i]; 810 std::cout << "\n"; 811 std::cout << "The shared object was created with:\n llc -march=c " 812 << SafeModuleBC << " -o temporary.c\n" 813 << " gcc -xc temporary.c -O2 -o " << SharedObject 814#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) 815 << " -G" // Compile a shared library, `-G' for Sparc 816#else 817 << " -shared" // `-shared' for Linux/X86, maybe others 818#endif 819 << " -fno-strict-aliasing\n"; 820 821 return false; 822} 823