Miscompilation.cpp revision afd39f0cc452026eac4a9dd4d875e571de6e0a35
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28#include "llvm/Config/config.h"   // for HAVE_LINK_R
29using namespace llvm;
30
31namespace llvm {
32  extern cl::list<std::string> InputArgv;
33}
34
35namespace {
36  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
37    BugDriver &BD;
38  public:
39    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
40
41    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
42                              std::vector<const PassInfo*> &Suffix);
43  };
44}
45
46/// TestResult - After passes have been split into a test group and a control
47/// group, see if they still break the program.
48///
49ReduceMiscompilingPasses::TestResult
50ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
51                                 std::vector<const PassInfo*> &Suffix) {
52  // First, run the program with just the Suffix passes.  If it is still broken
53  // with JUST the kept passes, discard the prefix passes.
54  std::cout << "Checking to see if '" << getPassesString(Suffix)
55            << "' compile correctly: ";
56
57  std::string BytecodeResult;
58  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
59    std::cerr << " Error running this sequence of passes"
60              << " on the input program!\n";
61    BD.setPassesToRun(Suffix);
62    BD.EmitProgressBytecode("pass-error",  false);
63    exit(BD.debugOptimizerCrash());
64  }
65
66  // Check to see if the finished program matches the reference output...
67  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
68    std::cout << " nope.\n";
69    if (Suffix.empty()) {
70      std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
71                << "no passes are run, nondeterministic program?\n";
72      exit(1);
73    }
74    return KeepSuffix;         // Miscompilation detected!
75  }
76  std::cout << " yup.\n";      // No miscompilation!
77
78  if (Prefix.empty()) return NoFailure;
79
80  // Next, see if the program is broken if we run the "prefix" passes first,
81  // then separately run the "kept" passes.
82  std::cout << "Checking to see if '" << getPassesString(Prefix)
83            << "' compile correctly: ";
84
85  // If it is not broken with the kept passes, it's possible that the prefix
86  // passes must be run before the kept passes to break it.  If the program
87  // WORKS after the prefix passes, but then fails if running the prefix AND
88  // kept passes, we can update our bytecode file to include the result of the
89  // prefix passes, then discard the prefix passes.
90  //
91  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
92    std::cerr << " Error running this sequence of passes"
93              << " on the input program!\n";
94    BD.setPassesToRun(Prefix);
95    BD.EmitProgressBytecode("pass-error",  false);
96    exit(BD.debugOptimizerCrash());
97  }
98
99  // If the prefix maintains the predicate by itself, only keep the prefix!
100  if (BD.diffProgram(BytecodeResult)) {
101    std::cout << " nope.\n";
102    sys::Path(BytecodeResult).eraseFromDisk();
103    return KeepPrefix;
104  }
105  std::cout << " yup.\n";      // No miscompilation!
106
107  // Ok, so now we know that the prefix passes work, try running the suffix
108  // passes on the result of the prefix passes.
109  //
110  Module *PrefixOutput = ParseInputFile(BytecodeResult);
111  if (PrefixOutput == 0) {
112    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
113              << BytecodeResult << "'!\n";
114    exit(1);
115  }
116  sys::Path(BytecodeResult).eraseFromDisk();  // No longer need the file on disk
117
118  // Don't check if there are no passes in the suffix.
119  if (Suffix.empty())
120    return NoFailure;
121
122  std::cout << "Checking to see if '" << getPassesString(Suffix)
123            << "' passes compile correctly after the '"
124            << getPassesString(Prefix) << "' passes: ";
125
126  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
127  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
128    std::cerr << " Error running this sequence of passes"
129              << " on the input program!\n";
130    BD.setPassesToRun(Suffix);
131    BD.EmitProgressBytecode("pass-error",  false);
132    exit(BD.debugOptimizerCrash());
133  }
134
135  // Run the result...
136  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
137    std::cout << " nope.\n";
138    delete OriginalInput;     // We pruned down the original input...
139    return KeepSuffix;
140  }
141
142  // Otherwise, we must not be running the bad pass anymore.
143  std::cout << " yup.\n";      // No miscompilation!
144  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
145  return NoFailure;
146}
147
148namespace {
149  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
150    BugDriver &BD;
151    bool (*TestFn)(BugDriver &, Module *, Module *);
152  public:
153    ReduceMiscompilingFunctions(BugDriver &bd,
154                                bool (*F)(BugDriver &, Module *, Module *))
155      : BD(bd), TestFn(F) {}
156
157    virtual TestResult doTest(std::vector<Function*> &Prefix,
158                              std::vector<Function*> &Suffix) {
159      if (!Suffix.empty() && TestFuncs(Suffix))
160        return KeepSuffix;
161      if (!Prefix.empty() && TestFuncs(Prefix))
162        return KeepPrefix;
163      return NoFailure;
164    }
165
166    bool TestFuncs(const std::vector<Function*> &Prefix);
167  };
168}
169
170/// TestMergedProgram - Given two modules, link them together and run the
171/// program, checking to see if the program matches the diff.  If the diff
172/// matches, return false, otherwise return true.  If the DeleteInputs argument
173/// is set to true then this function deletes both input modules before it
174/// returns.
175///
176static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
177                              bool DeleteInputs) {
178  // Link the two portions of the program back to together.
179  std::string ErrorMsg;
180  if (!DeleteInputs) {
181    M1 = CloneModule(M1);
182    M2 = CloneModule(M2);
183  }
184  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
185    std::cerr << BD.getToolName() << ": Error linking modules together:"
186              << ErrorMsg << '\n';
187    exit(1);
188  }
189  delete M2;   // We are done with this module.
190
191  Module *OldProgram = BD.swapProgramIn(M1);
192
193  // Execute the program.  If it does not match the expected output, we must
194  // return true.
195  bool Broken = BD.diffProgram();
196
197  // Delete the linked module & restore the original
198  BD.swapProgramIn(OldProgram);
199  delete M1;
200  return Broken;
201}
202
203/// TestFuncs - split functions in a Module into two groups: those that are
204/// under consideration for miscompilation vs. those that are not, and test
205/// accordingly. Each group of functions becomes a separate Module.
206///
207bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
208  // Test to see if the function is misoptimized if we ONLY run it on the
209  // functions listed in Funcs.
210  std::cout << "Checking to see if the program is misoptimized when "
211            << (Funcs.size()==1 ? "this function is" : "these functions are")
212            << " run through the pass"
213            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
214  PrintFunctionList(Funcs);
215  std::cout << '\n';
216
217  // Split the module into the two halves of the program we want.
218  Module *ToNotOptimize = CloneModule(BD.getProgram());
219  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
220
221  // Run the predicate, not that the predicate will delete both input modules.
222  return TestFn(BD, ToOptimize, ToNotOptimize);
223}
224
225/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
226/// modifying predominantly internal symbols rather than external ones.
227///
228static void DisambiguateGlobalSymbols(Module *M) {
229  // Try not to cause collisions by minimizing chances of renaming an
230  // already-external symbol, so take in external globals and functions as-is.
231  // The code should work correctly without disambiguation (assuming the same
232  // mangler is used by the two code generators), but having symbols with the
233  // same name causes warnings to be emitted by the code generator.
234  Mangler Mang(*M);
235  // Agree with the CBE on symbol naming
236  Mang.markCharUnacceptable('.');
237  Mang.setPreserveAsmNames(true);
238  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
239       I != E; ++I)
240    I->setName(Mang.getValueName(I));
241  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
242    I->setName(Mang.getValueName(I));
243}
244
245/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
246/// check to see if we can extract the loops in the region without obscuring the
247/// bug.  If so, it reduces the amount of code identified.
248///
249static bool ExtractLoops(BugDriver &BD,
250                         bool (*TestFn)(BugDriver &, Module *, Module *),
251                         std::vector<Function*> &MiscompiledFunctions) {
252  bool MadeChange = false;
253  while (1) {
254    if (BugpointIsInterrupted) return MadeChange;
255
256    Module *ToNotOptimize = CloneModule(BD.getProgram());
257    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
258                                                   MiscompiledFunctions);
259    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
260    if (!ToOptimizeLoopExtracted) {
261      // If the loop extractor crashed or if there were no extractible loops,
262      // then this chapter of our odyssey is over with.
263      delete ToNotOptimize;
264      delete ToOptimize;
265      return MadeChange;
266    }
267
268    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
269
270    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
271    // particular, we're not going to assume that the loop extractor works, so
272    // we're going to test the newly loop extracted program to make sure nothing
273    // has broken.  If something broke, then we'll inform the user and stop
274    // extraction.
275    AbstractInterpreter *AI = BD.switchToCBE();
276    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
277      BD.switchToInterpreter(AI);
278
279      // Merged program doesn't work anymore!
280      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
281                << " Please report a bug!\n";
282      std::cerr << "      Continuing on with un-loop-extracted version.\n";
283
284      BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
285      BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
286      BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
287                            ToOptimizeLoopExtracted);
288
289      std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
290      delete ToOptimize;
291      delete ToNotOptimize;
292      delete ToOptimizeLoopExtracted;
293      return MadeChange;
294    }
295    delete ToOptimize;
296    BD.switchToInterpreter(AI);
297
298    std::cout << "  Testing after loop extraction:\n";
299    // Clone modules, the tester function will free them.
300    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
301    Module *TNOBackup  = CloneModule(ToNotOptimize);
302    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
303      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
304      // If the program is not still broken, then loop extraction did something
305      // that masked the error.  Stop loop extraction now.
306      delete TOLEBackup;
307      delete TNOBackup;
308      return MadeChange;
309    }
310    ToOptimizeLoopExtracted = TOLEBackup;
311    ToNotOptimize = TNOBackup;
312
313    std::cout << "*** Loop extraction successful!\n";
314
315    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
316    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
317           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
318      if (!I->isExternal())
319        MisCompFunctions.push_back(std::make_pair(I->getName(),
320                                                  I->getFunctionType()));
321
322    // Okay, great!  Now we know that we extracted a loop and that loop
323    // extraction both didn't break the program, and didn't mask the problem.
324    // Replace the current program with the loop extracted version, and try to
325    // extract another loop.
326    std::string ErrorMsg;
327    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
328      std::cerr << BD.getToolName() << ": Error linking modules together:"
329                << ErrorMsg << '\n';
330      exit(1);
331    }
332    delete ToOptimizeLoopExtracted;
333
334    // All of the Function*'s in the MiscompiledFunctions list are in the old
335    // module.  Update this list to include all of the functions in the
336    // optimized and loop extracted module.
337    MiscompiledFunctions.clear();
338    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
339      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first,
340                                                  MisCompFunctions[i].second);
341      assert(NewF && "Function not found??");
342      MiscompiledFunctions.push_back(NewF);
343    }
344
345    BD.setNewProgram(ToNotOptimize);
346    MadeChange = true;
347  }
348}
349
350namespace {
351  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
352    BugDriver &BD;
353    bool (*TestFn)(BugDriver &, Module *, Module *);
354    std::vector<Function*> FunctionsBeingTested;
355  public:
356    ReduceMiscompiledBlocks(BugDriver &bd,
357                            bool (*F)(BugDriver &, Module *, Module *),
358                            const std::vector<Function*> &Fns)
359      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
360
361    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
362                              std::vector<BasicBlock*> &Suffix) {
363      if (!Suffix.empty() && TestFuncs(Suffix))
364        return KeepSuffix;
365      if (TestFuncs(Prefix))
366        return KeepPrefix;
367      return NoFailure;
368    }
369
370    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
371  };
372}
373
374/// TestFuncs - Extract all blocks for the miscompiled functions except for the
375/// specified blocks.  If the problem still exists, return true.
376///
377bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
378  // Test to see if the function is misoptimized if we ONLY run it on the
379  // functions listed in Funcs.
380  std::cout << "Checking to see if the program is misoptimized when all ";
381  if (!BBs.empty()) {
382    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
383    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
384      std::cout << BBs[i]->getName() << " ";
385    if (BBs.size() > 10) std::cout << "...";
386  } else {
387    std::cout << "blocks are extracted.";
388  }
389  std::cout << '\n';
390
391  // Split the module into the two halves of the program we want.
392  Module *ToNotOptimize = CloneModule(BD.getProgram());
393  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
394                                                 FunctionsBeingTested);
395
396  // Try the extraction.  If it doesn't work, then the block extractor crashed
397  // or something, in which case bugpoint can't chase down this possibility.
398  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
399    delete ToOptimize;
400    // Run the predicate, not that the predicate will delete both input modules.
401    return TestFn(BD, New, ToNotOptimize);
402  }
403  delete ToOptimize;
404  delete ToNotOptimize;
405  return false;
406}
407
408
409/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
410/// extract as many basic blocks from the region as possible without obscuring
411/// the bug.
412///
413static bool ExtractBlocks(BugDriver &BD,
414                          bool (*TestFn)(BugDriver &, Module *, Module *),
415                          std::vector<Function*> &MiscompiledFunctions) {
416  if (BugpointIsInterrupted) return false;
417
418  std::vector<BasicBlock*> Blocks;
419  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
420    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
421           E = MiscompiledFunctions[i]->end(); I != E; ++I)
422      Blocks.push_back(I);
423
424  // Use the list reducer to identify blocks that can be extracted without
425  // obscuring the bug.  The Blocks list will end up containing blocks that must
426  // be retained from the original program.
427  unsigned OldSize = Blocks.size();
428
429  // Check to see if all blocks are extractible first.
430  if (ReduceMiscompiledBlocks(BD, TestFn,
431                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
432    Blocks.clear();
433  } else {
434    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
435    if (Blocks.size() == OldSize)
436      return false;
437  }
438
439  Module *ProgClone = CloneModule(BD.getProgram());
440  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
441                                                MiscompiledFunctions);
442  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
443  if (Extracted == 0) {
444    // Weird, extraction should have worked.
445    std::cerr << "Nondeterministic problem extracting blocks??\n";
446    delete ProgClone;
447    delete ToExtract;
448    return false;
449  }
450
451  // Otherwise, block extraction succeeded.  Link the two program fragments back
452  // together.
453  delete ToExtract;
454
455  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
456  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
457       I != E; ++I)
458    if (!I->isExternal())
459      MisCompFunctions.push_back(std::make_pair(I->getName(),
460                                                I->getFunctionType()));
461
462  std::string ErrorMsg;
463  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
464    std::cerr << BD.getToolName() << ": Error linking modules together:"
465              << ErrorMsg << '\n';
466    exit(1);
467  }
468  delete Extracted;
469
470  // Set the new program and delete the old one.
471  BD.setNewProgram(ProgClone);
472
473  // Update the list of miscompiled functions.
474  MiscompiledFunctions.clear();
475
476  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
477    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first,
478                                            MisCompFunctions[i].second);
479    assert(NewF && "Function not found??");
480    MiscompiledFunctions.push_back(NewF);
481  }
482
483  return true;
484}
485
486
487/// DebugAMiscompilation - This is a generic driver to narrow down
488/// miscompilations, either in an optimization or a code generator.
489///
490static std::vector<Function*>
491DebugAMiscompilation(BugDriver &BD,
492                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
493  // Okay, now that we have reduced the list of passes which are causing the
494  // failure, see if we can pin down which functions are being
495  // miscompiled... first build a list of all of the non-external functions in
496  // the program.
497  std::vector<Function*> MiscompiledFunctions;
498  Module *Prog = BD.getProgram();
499  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
500    if (!I->isExternal())
501      MiscompiledFunctions.push_back(I);
502
503  // Do the reduction...
504  if (!BugpointIsInterrupted)
505    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
506
507  std::cout << "\n*** The following function"
508            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
509            << " being miscompiled: ";
510  PrintFunctionList(MiscompiledFunctions);
511  std::cout << '\n';
512
513  // See if we can rip any loops out of the miscompiled functions and still
514  // trigger the problem.
515  if (!BugpointIsInterrupted &&
516      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
517    // Okay, we extracted some loops and the problem still appears.  See if we
518    // can eliminate some of the created functions from being candidates.
519
520    // Loop extraction can introduce functions with the same name (foo_code).
521    // Make sure to disambiguate the symbols so that when the program is split
522    // apart that we can link it back together again.
523    DisambiguateGlobalSymbols(BD.getProgram());
524
525    // Do the reduction...
526    if (!BugpointIsInterrupted)
527      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
528
529    std::cout << "\n*** The following function"
530              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
531              << " being miscompiled: ";
532    PrintFunctionList(MiscompiledFunctions);
533    std::cout << '\n';
534  }
535
536  if (!BugpointIsInterrupted &&
537      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
538    // Okay, we extracted some blocks and the problem still appears.  See if we
539    // can eliminate some of the created functions from being candidates.
540
541    // Block extraction can introduce functions with the same name (foo_code).
542    // Make sure to disambiguate the symbols so that when the program is split
543    // apart that we can link it back together again.
544    DisambiguateGlobalSymbols(BD.getProgram());
545
546    // Do the reduction...
547    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
548
549    std::cout << "\n*** The following function"
550              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
551              << " being miscompiled: ";
552    PrintFunctionList(MiscompiledFunctions);
553    std::cout << '\n';
554  }
555
556  return MiscompiledFunctions;
557}
558
559/// TestOptimizer - This is the predicate function used to check to see if the
560/// "Test" portion of the program is misoptimized.  If so, return true.  In any
561/// case, both module arguments are deleted.
562///
563static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
564  // Run the optimization passes on ToOptimize, producing a transformed version
565  // of the functions being tested.
566  std::cout << "  Optimizing functions being tested: ";
567  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
568                                     /*AutoDebugCrashes*/true);
569  std::cout << "done.\n";
570  delete Test;
571
572  std::cout << "  Checking to see if the merged program executes correctly: ";
573  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
574  std::cout << (Broken ? " nope.\n" : " yup.\n");
575  return Broken;
576}
577
578
579/// debugMiscompilation - This method is used when the passes selected are not
580/// crashing, but the generated output is semantically different from the
581/// input.
582///
583bool BugDriver::debugMiscompilation() {
584  // Make sure something was miscompiled...
585  if (!BugpointIsInterrupted)
586    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
587      std::cerr << "*** Optimized program matches reference output!  No problem"
588                << " detected...\nbugpoint can't help you with your problem!\n";
589      return false;
590    }
591
592  std::cout << "\n*** Found miscompiling pass"
593            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
594            << getPassesString(getPassesToRun()) << '\n';
595  EmitProgressBytecode("passinput");
596
597  std::vector<Function*> MiscompiledFunctions =
598    DebugAMiscompilation(*this, TestOptimizer);
599
600  // Output a bunch of bytecode files for the user...
601  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
602  Module *ToNotOptimize = CloneModule(getProgram());
603  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
604                                                 MiscompiledFunctions);
605
606  std::cout << "  Non-optimized portion: ";
607  ToNotOptimize = swapProgramIn(ToNotOptimize);
608  EmitProgressBytecode("tonotoptimize", true);
609  setNewProgram(ToNotOptimize);   // Delete hacked module.
610
611  std::cout << "  Portion that is input to optimizer: ";
612  ToOptimize = swapProgramIn(ToOptimize);
613  EmitProgressBytecode("tooptimize");
614  setNewProgram(ToOptimize);      // Delete hacked module.
615
616  return false;
617}
618
619/// CleanupAndPrepareModules - Get the specified modules ready for code
620/// generator testing.
621///
622static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
623                                     Module *Safe) {
624  // Clean up the modules, removing extra cruft that we don't need anymore...
625  Test = BD.performFinalCleanups(Test);
626
627  // If we are executing the JIT, we have several nasty issues to take care of.
628  if (!BD.isExecutingJIT()) return;
629
630  // First, if the main function is in the Safe module, we must add a stub to
631  // the Test module to call into it.  Thus, we create a new function `main'
632  // which just calls the old one.
633  if (Function *oldMain = Safe->getNamedFunction("main"))
634    if (!oldMain->isExternal()) {
635      // Rename it
636      oldMain->setName("llvm_bugpoint_old_main");
637      // Create a NEW `main' function with same type in the test module.
638      Function *newMain = new Function(oldMain->getFunctionType(),
639                                       GlobalValue::ExternalLinkage,
640                                       "main", Test);
641      // Create an `oldmain' prototype in the test module, which will
642      // corresponds to the real main function in the same module.
643      Function *oldMainProto = new Function(oldMain->getFunctionType(),
644                                            GlobalValue::ExternalLinkage,
645                                            oldMain->getName(), Test);
646      // Set up and remember the argument list for the main function.
647      std::vector<Value*> args;
648      for (Function::arg_iterator
649             I = newMain->arg_begin(), E = newMain->arg_end(),
650             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
651        I->setName(OI->getName());    // Copy argument names from oldMain
652        args.push_back(I);
653      }
654
655      // Call the old main function and return its result
656      BasicBlock *BB = new BasicBlock("entry", newMain);
657      CallInst *call = new CallInst(oldMainProto, args, "", BB);
658
659      // If the type of old function wasn't void, return value of call
660      new ReturnInst(call, BB);
661    }
662
663  // The second nasty issue we must deal with in the JIT is that the Safe
664  // module cannot directly reference any functions defined in the test
665  // module.  Instead, we use a JIT API call to dynamically resolve the
666  // symbol.
667
668  // Add the resolver to the Safe module.
669  // Prototype: void *getPointerToNamedFunction(const char* Name)
670  Function *resolverFunc =
671    Safe->getOrInsertFunction("getPointerToNamedFunction",
672                              PointerType::get(Type::SByteTy),
673                              PointerType::get(Type::SByteTy), (Type *)0);
674
675  // Use the function we just added to get addresses of functions we need.
676  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
677    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
678        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
679      Function *TestFn = Test->getNamedFunction(F->getName());
680
681      // Don't forward functions which are external in the test module too.
682      if (TestFn && !TestFn->isExternal()) {
683        // 1. Add a string constant with its name to the global file
684        Constant *InitArray = ConstantArray::get(F->getName());
685        GlobalVariable *funcName =
686          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
687                             GlobalValue::InternalLinkage, InitArray,
688                             F->getName() + "_name", Safe);
689
690        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
691        // sbyte* so it matches the signature of the resolver function.
692
693        // GetElementPtr *funcName, ulong 0, ulong 0
694        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
695        Value *GEP =
696          ConstantExpr::getGetElementPtr(funcName, GEPargs);
697        std::vector<Value*> ResolverArgs;
698        ResolverArgs.push_back(GEP);
699
700        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
701        // function that dynamically resolves the calls to F via our JIT API
702        if (!F->use_empty()) {
703          // Create a new global to hold the cached function pointer.
704          Constant *NullPtr = ConstantPointerNull::get(F->getType());
705          GlobalVariable *Cache =
706            new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
707                               NullPtr,F->getName()+".fpcache", F->getParent());
708
709          // Construct a new stub function that will re-route calls to F
710          const FunctionType *FuncTy = F->getFunctionType();
711          Function *FuncWrapper = new Function(FuncTy,
712                                               GlobalValue::InternalLinkage,
713                                               F->getName() + "_wrapper",
714                                               F->getParent());
715          BasicBlock *EntryBB  = new BasicBlock("entry", FuncWrapper);
716          BasicBlock *DoCallBB = new BasicBlock("usecache", FuncWrapper);
717          BasicBlock *LookupBB = new BasicBlock("lookupfp", FuncWrapper);
718
719          // Check to see if we already looked up the value.
720          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
721          Value *IsNull = new SetCondInst(Instruction::SetEQ, CachedVal,
722                                          NullPtr, "isNull", EntryBB);
723          new BranchInst(LookupBB, DoCallBB, IsNull, EntryBB);
724
725          // Resolve the call to function F via the JIT API:
726          //
727          // call resolver(GetElementPtr...)
728          CallInst *Resolver = new CallInst(resolverFunc, ResolverArgs,
729                                            "resolver", LookupBB);
730          // cast the result from the resolver to correctly-typed function
731          CastInst *CastedResolver =
732            new CastInst(Resolver, PointerType::get(F->getFunctionType()),
733                         "resolverCast", LookupBB);
734          // Save the value in our cache.
735          new StoreInst(CastedResolver, Cache, LookupBB);
736          new BranchInst(DoCallBB, LookupBB);
737
738          PHINode *FuncPtr = new PHINode(NullPtr->getType(), "fp", DoCallBB);
739          FuncPtr->addIncoming(CastedResolver, LookupBB);
740          FuncPtr->addIncoming(CachedVal, EntryBB);
741
742          // Save the argument list.
743          std::vector<Value*> Args;
744          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
745                 e = FuncWrapper->arg_end(); i != e; ++i)
746            Args.push_back(i);
747
748          // Pass on the arguments to the real function, return its result
749          if (F->getReturnType() == Type::VoidTy) {
750            CallInst *Call = new CallInst(FuncPtr, Args, "", DoCallBB);
751            new ReturnInst(DoCallBB);
752          } else {
753            CallInst *Call = new CallInst(FuncPtr, Args, "retval", DoCallBB);
754            new ReturnInst(Call, DoCallBB);
755          }
756
757          // Use the wrapper function instead of the old function
758          F->replaceAllUsesWith(FuncWrapper);
759        }
760      }
761    }
762  }
763
764  if (verifyModule(*Test) || verifyModule(*Safe)) {
765    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
766    abort();
767  }
768}
769
770
771
772/// TestCodeGenerator - This is the predicate function used to check to see if
773/// the "Test" portion of the program is miscompiled by the code generator under
774/// test.  If so, return true.  In any case, both module arguments are deleted.
775///
776static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
777  CleanupAndPrepareModules(BD, Test, Safe);
778
779  sys::Path TestModuleBC("bugpoint.test.bc");
780  std::string ErrMsg;
781  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
782    std::cerr << BD.getToolName() << "Error making unique filename: "
783              << ErrMsg << "\n";
784    exit(1);
785  }
786  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
787    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
788    exit(1);
789  }
790  delete Test;
791
792  // Make the shared library
793  sys::Path SafeModuleBC("bugpoint.safe.bc");
794  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
795    std::cerr << BD.getToolName() << "Error making unique filename: "
796              << ErrMsg << "\n";
797    exit(1);
798  }
799
800  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
801    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
802    exit(1);
803  }
804  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
805  delete Safe;
806
807  // Run the code generator on the `Test' code, loading the shared library.
808  // The function returns whether or not the new output differs from reference.
809  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
810
811  if (Result)
812    std::cerr << ": still failing!\n";
813  else
814    std::cerr << ": didn't fail.\n";
815  TestModuleBC.eraseFromDisk();
816  SafeModuleBC.eraseFromDisk();
817  sys::Path(SharedObject).eraseFromDisk();
818
819  return Result;
820}
821
822
823/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
824///
825bool BugDriver::debugCodeGenerator() {
826  if ((void*)cbe == (void*)Interpreter) {
827    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
828    std::cout << "\n*** The C backend cannot match the reference diff, but it "
829              << "is used as the 'known good'\n    code generator, so I can't"
830              << " debug it.  Perhaps you have a front-end problem?\n    As a"
831              << " sanity check, I left the result of executing the program "
832              << "with the C backend\n    in this file for you: '"
833              << Result << "'.\n";
834    return true;
835  }
836
837  DisambiguateGlobalSymbols(Program);
838
839  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
840
841  // Split the module into the two halves of the program we want.
842  Module *ToNotCodeGen = CloneModule(getProgram());
843  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
844
845  // Condition the modules
846  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
847
848  sys::Path TestModuleBC("bugpoint.test.bc");
849  std::string ErrMsg;
850  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
851    std::cerr << getToolName() << "Error making unique filename: "
852              << ErrMsg << "\n";
853    exit(1);
854  }
855
856  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
857    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
858    exit(1);
859  }
860  delete ToCodeGen;
861
862  // Make the shared library
863  sys::Path SafeModuleBC("bugpoint.safe.bc");
864  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
865    std::cerr << getToolName() << "Error making unique filename: "
866              << ErrMsg << "\n";
867    exit(1);
868  }
869
870  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
871    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
872    exit(1);
873  }
874  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
875  delete ToNotCodeGen;
876
877  std::cout << "You can reproduce the problem with the command line: \n";
878  if (isExecutingJIT()) {
879    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
880  } else {
881    std::cout << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
882    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
883              << ".s -o " << TestModuleBC << ".exe";
884#if defined (HAVE_LINK_R)
885    std::cout << " -Wl,-R.";
886#endif
887    std::cout << "\n";
888    std::cout << "  " << TestModuleBC << ".exe";
889  }
890  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
891    std::cout << " " << InputArgv[i];
892  std::cout << '\n';
893  std::cout << "The shared object was created with:\n  llc -march=c "
894            << SafeModuleBC << " -o temporary.c\n"
895            << "  gcc -xc temporary.c -O2 -o " << SharedObject
896#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
897            << " -G"            // Compile a shared library, `-G' for Sparc
898#else
899            << " -shared"       // `-shared' for Linux/X86, maybe others
900#endif
901            << " -fno-strict-aliasing\n";
902
903  return false;
904}
905