Miscompilation.cpp revision afd39f0cc452026eac4a9dd4d875e571de6e0a35
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements optimizer and code generation miscompilation debugging 11// support. 12// 13//===----------------------------------------------------------------------===// 14 15#include "BugDriver.h" 16#include "ListReducer.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Linker.h" 21#include "llvm/Module.h" 22#include "llvm/Pass.h" 23#include "llvm/Analysis/Verifier.h" 24#include "llvm/Support/Mangler.h" 25#include "llvm/Transforms/Utils/Cloning.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/FileUtilities.h" 28#include "llvm/Config/config.h" // for HAVE_LINK_R 29using namespace llvm; 30 31namespace llvm { 32 extern cl::list<std::string> InputArgv; 33} 34 35namespace { 36 class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> { 37 BugDriver &BD; 38 public: 39 ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {} 40 41 virtual TestResult doTest(std::vector<const PassInfo*> &Prefix, 42 std::vector<const PassInfo*> &Suffix); 43 }; 44} 45 46/// TestResult - After passes have been split into a test group and a control 47/// group, see if they still break the program. 48/// 49ReduceMiscompilingPasses::TestResult 50ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix, 51 std::vector<const PassInfo*> &Suffix) { 52 // First, run the program with just the Suffix passes. If it is still broken 53 // with JUST the kept passes, discard the prefix passes. 54 std::cout << "Checking to see if '" << getPassesString(Suffix) 55 << "' compile correctly: "; 56 57 std::string BytecodeResult; 58 if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 59 std::cerr << " Error running this sequence of passes" 60 << " on the input program!\n"; 61 BD.setPassesToRun(Suffix); 62 BD.EmitProgressBytecode("pass-error", false); 63 exit(BD.debugOptimizerCrash()); 64 } 65 66 // Check to see if the finished program matches the reference output... 67 if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) { 68 std::cout << " nope.\n"; 69 if (Suffix.empty()) { 70 std::cerr << BD.getToolName() << ": I'm confused: the test fails when " 71 << "no passes are run, nondeterministic program?\n"; 72 exit(1); 73 } 74 return KeepSuffix; // Miscompilation detected! 75 } 76 std::cout << " yup.\n"; // No miscompilation! 77 78 if (Prefix.empty()) return NoFailure; 79 80 // Next, see if the program is broken if we run the "prefix" passes first, 81 // then separately run the "kept" passes. 82 std::cout << "Checking to see if '" << getPassesString(Prefix) 83 << "' compile correctly: "; 84 85 // If it is not broken with the kept passes, it's possible that the prefix 86 // passes must be run before the kept passes to break it. If the program 87 // WORKS after the prefix passes, but then fails if running the prefix AND 88 // kept passes, we can update our bytecode file to include the result of the 89 // prefix passes, then discard the prefix passes. 90 // 91 if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 92 std::cerr << " Error running this sequence of passes" 93 << " on the input program!\n"; 94 BD.setPassesToRun(Prefix); 95 BD.EmitProgressBytecode("pass-error", false); 96 exit(BD.debugOptimizerCrash()); 97 } 98 99 // If the prefix maintains the predicate by itself, only keep the prefix! 100 if (BD.diffProgram(BytecodeResult)) { 101 std::cout << " nope.\n"; 102 sys::Path(BytecodeResult).eraseFromDisk(); 103 return KeepPrefix; 104 } 105 std::cout << " yup.\n"; // No miscompilation! 106 107 // Ok, so now we know that the prefix passes work, try running the suffix 108 // passes on the result of the prefix passes. 109 // 110 Module *PrefixOutput = ParseInputFile(BytecodeResult); 111 if (PrefixOutput == 0) { 112 std::cerr << BD.getToolName() << ": Error reading bytecode file '" 113 << BytecodeResult << "'!\n"; 114 exit(1); 115 } 116 sys::Path(BytecodeResult).eraseFromDisk(); // No longer need the file on disk 117 118 // Don't check if there are no passes in the suffix. 119 if (Suffix.empty()) 120 return NoFailure; 121 122 std::cout << "Checking to see if '" << getPassesString(Suffix) 123 << "' passes compile correctly after the '" 124 << getPassesString(Prefix) << "' passes: "; 125 126 Module *OriginalInput = BD.swapProgramIn(PrefixOutput); 127 if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { 128 std::cerr << " Error running this sequence of passes" 129 << " on the input program!\n"; 130 BD.setPassesToRun(Suffix); 131 BD.EmitProgressBytecode("pass-error", false); 132 exit(BD.debugOptimizerCrash()); 133 } 134 135 // Run the result... 136 if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) { 137 std::cout << " nope.\n"; 138 delete OriginalInput; // We pruned down the original input... 139 return KeepSuffix; 140 } 141 142 // Otherwise, we must not be running the bad pass anymore. 143 std::cout << " yup.\n"; // No miscompilation! 144 delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test 145 return NoFailure; 146} 147 148namespace { 149 class ReduceMiscompilingFunctions : public ListReducer<Function*> { 150 BugDriver &BD; 151 bool (*TestFn)(BugDriver &, Module *, Module *); 152 public: 153 ReduceMiscompilingFunctions(BugDriver &bd, 154 bool (*F)(BugDriver &, Module *, Module *)) 155 : BD(bd), TestFn(F) {} 156 157 virtual TestResult doTest(std::vector<Function*> &Prefix, 158 std::vector<Function*> &Suffix) { 159 if (!Suffix.empty() && TestFuncs(Suffix)) 160 return KeepSuffix; 161 if (!Prefix.empty() && TestFuncs(Prefix)) 162 return KeepPrefix; 163 return NoFailure; 164 } 165 166 bool TestFuncs(const std::vector<Function*> &Prefix); 167 }; 168} 169 170/// TestMergedProgram - Given two modules, link them together and run the 171/// program, checking to see if the program matches the diff. If the diff 172/// matches, return false, otherwise return true. If the DeleteInputs argument 173/// is set to true then this function deletes both input modules before it 174/// returns. 175/// 176static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2, 177 bool DeleteInputs) { 178 // Link the two portions of the program back to together. 179 std::string ErrorMsg; 180 if (!DeleteInputs) { 181 M1 = CloneModule(M1); 182 M2 = CloneModule(M2); 183 } 184 if (Linker::LinkModules(M1, M2, &ErrorMsg)) { 185 std::cerr << BD.getToolName() << ": Error linking modules together:" 186 << ErrorMsg << '\n'; 187 exit(1); 188 } 189 delete M2; // We are done with this module. 190 191 Module *OldProgram = BD.swapProgramIn(M1); 192 193 // Execute the program. If it does not match the expected output, we must 194 // return true. 195 bool Broken = BD.diffProgram(); 196 197 // Delete the linked module & restore the original 198 BD.swapProgramIn(OldProgram); 199 delete M1; 200 return Broken; 201} 202 203/// TestFuncs - split functions in a Module into two groups: those that are 204/// under consideration for miscompilation vs. those that are not, and test 205/// accordingly. Each group of functions becomes a separate Module. 206/// 207bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){ 208 // Test to see if the function is misoptimized if we ONLY run it on the 209 // functions listed in Funcs. 210 std::cout << "Checking to see if the program is misoptimized when " 211 << (Funcs.size()==1 ? "this function is" : "these functions are") 212 << " run through the pass" 213 << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":"; 214 PrintFunctionList(Funcs); 215 std::cout << '\n'; 216 217 // Split the module into the two halves of the program we want. 218 Module *ToNotOptimize = CloneModule(BD.getProgram()); 219 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs); 220 221 // Run the predicate, not that the predicate will delete both input modules. 222 return TestFn(BD, ToOptimize, ToNotOptimize); 223} 224 225/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by 226/// modifying predominantly internal symbols rather than external ones. 227/// 228static void DisambiguateGlobalSymbols(Module *M) { 229 // Try not to cause collisions by minimizing chances of renaming an 230 // already-external symbol, so take in external globals and functions as-is. 231 // The code should work correctly without disambiguation (assuming the same 232 // mangler is used by the two code generators), but having symbols with the 233 // same name causes warnings to be emitted by the code generator. 234 Mangler Mang(*M); 235 // Agree with the CBE on symbol naming 236 Mang.markCharUnacceptable('.'); 237 Mang.setPreserveAsmNames(true); 238 for (Module::global_iterator I = M->global_begin(), E = M->global_end(); 239 I != E; ++I) 240 I->setName(Mang.getValueName(I)); 241 for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) 242 I->setName(Mang.getValueName(I)); 243} 244 245/// ExtractLoops - Given a reduced list of functions that still exposed the bug, 246/// check to see if we can extract the loops in the region without obscuring the 247/// bug. If so, it reduces the amount of code identified. 248/// 249static bool ExtractLoops(BugDriver &BD, 250 bool (*TestFn)(BugDriver &, Module *, Module *), 251 std::vector<Function*> &MiscompiledFunctions) { 252 bool MadeChange = false; 253 while (1) { 254 if (BugpointIsInterrupted) return MadeChange; 255 256 Module *ToNotOptimize = CloneModule(BD.getProgram()); 257 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 258 MiscompiledFunctions); 259 Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize); 260 if (!ToOptimizeLoopExtracted) { 261 // If the loop extractor crashed or if there were no extractible loops, 262 // then this chapter of our odyssey is over with. 263 delete ToNotOptimize; 264 delete ToOptimize; 265 return MadeChange; 266 } 267 268 std::cerr << "Extracted a loop from the breaking portion of the program.\n"; 269 270 // Bugpoint is intentionally not very trusting of LLVM transformations. In 271 // particular, we're not going to assume that the loop extractor works, so 272 // we're going to test the newly loop extracted program to make sure nothing 273 // has broken. If something broke, then we'll inform the user and stop 274 // extraction. 275 AbstractInterpreter *AI = BD.switchToCBE(); 276 if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) { 277 BD.switchToInterpreter(AI); 278 279 // Merged program doesn't work anymore! 280 std::cerr << " *** ERROR: Loop extraction broke the program. :(" 281 << " Please report a bug!\n"; 282 std::cerr << " Continuing on with un-loop-extracted version.\n"; 283 284 BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize); 285 BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize); 286 BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc", 287 ToOptimizeLoopExtracted); 288 289 std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n"; 290 delete ToOptimize; 291 delete ToNotOptimize; 292 delete ToOptimizeLoopExtracted; 293 return MadeChange; 294 } 295 delete ToOptimize; 296 BD.switchToInterpreter(AI); 297 298 std::cout << " Testing after loop extraction:\n"; 299 // Clone modules, the tester function will free them. 300 Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted); 301 Module *TNOBackup = CloneModule(ToNotOptimize); 302 if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) { 303 std::cout << "*** Loop extraction masked the problem. Undoing.\n"; 304 // If the program is not still broken, then loop extraction did something 305 // that masked the error. Stop loop extraction now. 306 delete TOLEBackup; 307 delete TNOBackup; 308 return MadeChange; 309 } 310 ToOptimizeLoopExtracted = TOLEBackup; 311 ToNotOptimize = TNOBackup; 312 313 std::cout << "*** Loop extraction successful!\n"; 314 315 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions; 316 for (Module::iterator I = ToOptimizeLoopExtracted->begin(), 317 E = ToOptimizeLoopExtracted->end(); I != E; ++I) 318 if (!I->isExternal()) 319 MisCompFunctions.push_back(std::make_pair(I->getName(), 320 I->getFunctionType())); 321 322 // Okay, great! Now we know that we extracted a loop and that loop 323 // extraction both didn't break the program, and didn't mask the problem. 324 // Replace the current program with the loop extracted version, and try to 325 // extract another loop. 326 std::string ErrorMsg; 327 if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){ 328 std::cerr << BD.getToolName() << ": Error linking modules together:" 329 << ErrorMsg << '\n'; 330 exit(1); 331 } 332 delete ToOptimizeLoopExtracted; 333 334 // All of the Function*'s in the MiscompiledFunctions list are in the old 335 // module. Update this list to include all of the functions in the 336 // optimized and loop extracted module. 337 MiscompiledFunctions.clear(); 338 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { 339 Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first, 340 MisCompFunctions[i].second); 341 assert(NewF && "Function not found??"); 342 MiscompiledFunctions.push_back(NewF); 343 } 344 345 BD.setNewProgram(ToNotOptimize); 346 MadeChange = true; 347 } 348} 349 350namespace { 351 class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> { 352 BugDriver &BD; 353 bool (*TestFn)(BugDriver &, Module *, Module *); 354 std::vector<Function*> FunctionsBeingTested; 355 public: 356 ReduceMiscompiledBlocks(BugDriver &bd, 357 bool (*F)(BugDriver &, Module *, Module *), 358 const std::vector<Function*> &Fns) 359 : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {} 360 361 virtual TestResult doTest(std::vector<BasicBlock*> &Prefix, 362 std::vector<BasicBlock*> &Suffix) { 363 if (!Suffix.empty() && TestFuncs(Suffix)) 364 return KeepSuffix; 365 if (TestFuncs(Prefix)) 366 return KeepPrefix; 367 return NoFailure; 368 } 369 370 bool TestFuncs(const std::vector<BasicBlock*> &Prefix); 371 }; 372} 373 374/// TestFuncs - Extract all blocks for the miscompiled functions except for the 375/// specified blocks. If the problem still exists, return true. 376/// 377bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) { 378 // Test to see if the function is misoptimized if we ONLY run it on the 379 // functions listed in Funcs. 380 std::cout << "Checking to see if the program is misoptimized when all "; 381 if (!BBs.empty()) { 382 std::cout << "but these " << BBs.size() << " blocks are extracted: "; 383 for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i) 384 std::cout << BBs[i]->getName() << " "; 385 if (BBs.size() > 10) std::cout << "..."; 386 } else { 387 std::cout << "blocks are extracted."; 388 } 389 std::cout << '\n'; 390 391 // Split the module into the two halves of the program we want. 392 Module *ToNotOptimize = CloneModule(BD.getProgram()); 393 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 394 FunctionsBeingTested); 395 396 // Try the extraction. If it doesn't work, then the block extractor crashed 397 // or something, in which case bugpoint can't chase down this possibility. 398 if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) { 399 delete ToOptimize; 400 // Run the predicate, not that the predicate will delete both input modules. 401 return TestFn(BD, New, ToNotOptimize); 402 } 403 delete ToOptimize; 404 delete ToNotOptimize; 405 return false; 406} 407 408 409/// ExtractBlocks - Given a reduced list of functions that still expose the bug, 410/// extract as many basic blocks from the region as possible without obscuring 411/// the bug. 412/// 413static bool ExtractBlocks(BugDriver &BD, 414 bool (*TestFn)(BugDriver &, Module *, Module *), 415 std::vector<Function*> &MiscompiledFunctions) { 416 if (BugpointIsInterrupted) return false; 417 418 std::vector<BasicBlock*> Blocks; 419 for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) 420 for (Function::iterator I = MiscompiledFunctions[i]->begin(), 421 E = MiscompiledFunctions[i]->end(); I != E; ++I) 422 Blocks.push_back(I); 423 424 // Use the list reducer to identify blocks that can be extracted without 425 // obscuring the bug. The Blocks list will end up containing blocks that must 426 // be retained from the original program. 427 unsigned OldSize = Blocks.size(); 428 429 // Check to see if all blocks are extractible first. 430 if (ReduceMiscompiledBlocks(BD, TestFn, 431 MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) { 432 Blocks.clear(); 433 } else { 434 ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks); 435 if (Blocks.size() == OldSize) 436 return false; 437 } 438 439 Module *ProgClone = CloneModule(BD.getProgram()); 440 Module *ToExtract = SplitFunctionsOutOfModule(ProgClone, 441 MiscompiledFunctions); 442 Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract); 443 if (Extracted == 0) { 444 // Weird, extraction should have worked. 445 std::cerr << "Nondeterministic problem extracting blocks??\n"; 446 delete ProgClone; 447 delete ToExtract; 448 return false; 449 } 450 451 // Otherwise, block extraction succeeded. Link the two program fragments back 452 // together. 453 delete ToExtract; 454 455 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions; 456 for (Module::iterator I = Extracted->begin(), E = Extracted->end(); 457 I != E; ++I) 458 if (!I->isExternal()) 459 MisCompFunctions.push_back(std::make_pair(I->getName(), 460 I->getFunctionType())); 461 462 std::string ErrorMsg; 463 if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) { 464 std::cerr << BD.getToolName() << ": Error linking modules together:" 465 << ErrorMsg << '\n'; 466 exit(1); 467 } 468 delete Extracted; 469 470 // Set the new program and delete the old one. 471 BD.setNewProgram(ProgClone); 472 473 // Update the list of miscompiled functions. 474 MiscompiledFunctions.clear(); 475 476 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { 477 Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first, 478 MisCompFunctions[i].second); 479 assert(NewF && "Function not found??"); 480 MiscompiledFunctions.push_back(NewF); 481 } 482 483 return true; 484} 485 486 487/// DebugAMiscompilation - This is a generic driver to narrow down 488/// miscompilations, either in an optimization or a code generator. 489/// 490static std::vector<Function*> 491DebugAMiscompilation(BugDriver &BD, 492 bool (*TestFn)(BugDriver &, Module *, Module *)) { 493 // Okay, now that we have reduced the list of passes which are causing the 494 // failure, see if we can pin down which functions are being 495 // miscompiled... first build a list of all of the non-external functions in 496 // the program. 497 std::vector<Function*> MiscompiledFunctions; 498 Module *Prog = BD.getProgram(); 499 for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I) 500 if (!I->isExternal()) 501 MiscompiledFunctions.push_back(I); 502 503 // Do the reduction... 504 if (!BugpointIsInterrupted) 505 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 506 507 std::cout << "\n*** The following function" 508 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 509 << " being miscompiled: "; 510 PrintFunctionList(MiscompiledFunctions); 511 std::cout << '\n'; 512 513 // See if we can rip any loops out of the miscompiled functions and still 514 // trigger the problem. 515 if (!BugpointIsInterrupted && 516 ExtractLoops(BD, TestFn, MiscompiledFunctions)) { 517 // Okay, we extracted some loops and the problem still appears. See if we 518 // can eliminate some of the created functions from being candidates. 519 520 // Loop extraction can introduce functions with the same name (foo_code). 521 // Make sure to disambiguate the symbols so that when the program is split 522 // apart that we can link it back together again. 523 DisambiguateGlobalSymbols(BD.getProgram()); 524 525 // Do the reduction... 526 if (!BugpointIsInterrupted) 527 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 528 529 std::cout << "\n*** The following function" 530 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 531 << " being miscompiled: "; 532 PrintFunctionList(MiscompiledFunctions); 533 std::cout << '\n'; 534 } 535 536 if (!BugpointIsInterrupted && 537 ExtractBlocks(BD, TestFn, MiscompiledFunctions)) { 538 // Okay, we extracted some blocks and the problem still appears. See if we 539 // can eliminate some of the created functions from being candidates. 540 541 // Block extraction can introduce functions with the same name (foo_code). 542 // Make sure to disambiguate the symbols so that when the program is split 543 // apart that we can link it back together again. 544 DisambiguateGlobalSymbols(BD.getProgram()); 545 546 // Do the reduction... 547 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); 548 549 std::cout << "\n*** The following function" 550 << (MiscompiledFunctions.size() == 1 ? " is" : "s are") 551 << " being miscompiled: "; 552 PrintFunctionList(MiscompiledFunctions); 553 std::cout << '\n'; 554 } 555 556 return MiscompiledFunctions; 557} 558 559/// TestOptimizer - This is the predicate function used to check to see if the 560/// "Test" portion of the program is misoptimized. If so, return true. In any 561/// case, both module arguments are deleted. 562/// 563static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) { 564 // Run the optimization passes on ToOptimize, producing a transformed version 565 // of the functions being tested. 566 std::cout << " Optimizing functions being tested: "; 567 Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(), 568 /*AutoDebugCrashes*/true); 569 std::cout << "done.\n"; 570 delete Test; 571 572 std::cout << " Checking to see if the merged program executes correctly: "; 573 bool Broken = TestMergedProgram(BD, Optimized, Safe, true); 574 std::cout << (Broken ? " nope.\n" : " yup.\n"); 575 return Broken; 576} 577 578 579/// debugMiscompilation - This method is used when the passes selected are not 580/// crashing, but the generated output is semantically different from the 581/// input. 582/// 583bool BugDriver::debugMiscompilation() { 584 // Make sure something was miscompiled... 585 if (!BugpointIsInterrupted) 586 if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) { 587 std::cerr << "*** Optimized program matches reference output! No problem" 588 << " detected...\nbugpoint can't help you with your problem!\n"; 589 return false; 590 } 591 592 std::cout << "\n*** Found miscompiling pass" 593 << (getPassesToRun().size() == 1 ? "" : "es") << ": " 594 << getPassesString(getPassesToRun()) << '\n'; 595 EmitProgressBytecode("passinput"); 596 597 std::vector<Function*> MiscompiledFunctions = 598 DebugAMiscompilation(*this, TestOptimizer); 599 600 // Output a bunch of bytecode files for the user... 601 std::cout << "Outputting reduced bytecode files which expose the problem:\n"; 602 Module *ToNotOptimize = CloneModule(getProgram()); 603 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, 604 MiscompiledFunctions); 605 606 std::cout << " Non-optimized portion: "; 607 ToNotOptimize = swapProgramIn(ToNotOptimize); 608 EmitProgressBytecode("tonotoptimize", true); 609 setNewProgram(ToNotOptimize); // Delete hacked module. 610 611 std::cout << " Portion that is input to optimizer: "; 612 ToOptimize = swapProgramIn(ToOptimize); 613 EmitProgressBytecode("tooptimize"); 614 setNewProgram(ToOptimize); // Delete hacked module. 615 616 return false; 617} 618 619/// CleanupAndPrepareModules - Get the specified modules ready for code 620/// generator testing. 621/// 622static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test, 623 Module *Safe) { 624 // Clean up the modules, removing extra cruft that we don't need anymore... 625 Test = BD.performFinalCleanups(Test); 626 627 // If we are executing the JIT, we have several nasty issues to take care of. 628 if (!BD.isExecutingJIT()) return; 629 630 // First, if the main function is in the Safe module, we must add a stub to 631 // the Test module to call into it. Thus, we create a new function `main' 632 // which just calls the old one. 633 if (Function *oldMain = Safe->getNamedFunction("main")) 634 if (!oldMain->isExternal()) { 635 // Rename it 636 oldMain->setName("llvm_bugpoint_old_main"); 637 // Create a NEW `main' function with same type in the test module. 638 Function *newMain = new Function(oldMain->getFunctionType(), 639 GlobalValue::ExternalLinkage, 640 "main", Test); 641 // Create an `oldmain' prototype in the test module, which will 642 // corresponds to the real main function in the same module. 643 Function *oldMainProto = new Function(oldMain->getFunctionType(), 644 GlobalValue::ExternalLinkage, 645 oldMain->getName(), Test); 646 // Set up and remember the argument list for the main function. 647 std::vector<Value*> args; 648 for (Function::arg_iterator 649 I = newMain->arg_begin(), E = newMain->arg_end(), 650 OI = oldMain->arg_begin(); I != E; ++I, ++OI) { 651 I->setName(OI->getName()); // Copy argument names from oldMain 652 args.push_back(I); 653 } 654 655 // Call the old main function and return its result 656 BasicBlock *BB = new BasicBlock("entry", newMain); 657 CallInst *call = new CallInst(oldMainProto, args, "", BB); 658 659 // If the type of old function wasn't void, return value of call 660 new ReturnInst(call, BB); 661 } 662 663 // The second nasty issue we must deal with in the JIT is that the Safe 664 // module cannot directly reference any functions defined in the test 665 // module. Instead, we use a JIT API call to dynamically resolve the 666 // symbol. 667 668 // Add the resolver to the Safe module. 669 // Prototype: void *getPointerToNamedFunction(const char* Name) 670 Function *resolverFunc = 671 Safe->getOrInsertFunction("getPointerToNamedFunction", 672 PointerType::get(Type::SByteTy), 673 PointerType::get(Type::SByteTy), (Type *)0); 674 675 // Use the function we just added to get addresses of functions we need. 676 for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) { 677 if (F->isExternal() && !F->use_empty() && &*F != resolverFunc && 678 F->getIntrinsicID() == 0 /* ignore intrinsics */) { 679 Function *TestFn = Test->getNamedFunction(F->getName()); 680 681 // Don't forward functions which are external in the test module too. 682 if (TestFn && !TestFn->isExternal()) { 683 // 1. Add a string constant with its name to the global file 684 Constant *InitArray = ConstantArray::get(F->getName()); 685 GlobalVariable *funcName = 686 new GlobalVariable(InitArray->getType(), true /*isConstant*/, 687 GlobalValue::InternalLinkage, InitArray, 688 F->getName() + "_name", Safe); 689 690 // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an 691 // sbyte* so it matches the signature of the resolver function. 692 693 // GetElementPtr *funcName, ulong 0, ulong 0 694 std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy)); 695 Value *GEP = 696 ConstantExpr::getGetElementPtr(funcName, GEPargs); 697 std::vector<Value*> ResolverArgs; 698 ResolverArgs.push_back(GEP); 699 700 // Rewrite uses of F in global initializers, etc. to uses of a wrapper 701 // function that dynamically resolves the calls to F via our JIT API 702 if (!F->use_empty()) { 703 // Create a new global to hold the cached function pointer. 704 Constant *NullPtr = ConstantPointerNull::get(F->getType()); 705 GlobalVariable *Cache = 706 new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage, 707 NullPtr,F->getName()+".fpcache", F->getParent()); 708 709 // Construct a new stub function that will re-route calls to F 710 const FunctionType *FuncTy = F->getFunctionType(); 711 Function *FuncWrapper = new Function(FuncTy, 712 GlobalValue::InternalLinkage, 713 F->getName() + "_wrapper", 714 F->getParent()); 715 BasicBlock *EntryBB = new BasicBlock("entry", FuncWrapper); 716 BasicBlock *DoCallBB = new BasicBlock("usecache", FuncWrapper); 717 BasicBlock *LookupBB = new BasicBlock("lookupfp", FuncWrapper); 718 719 // Check to see if we already looked up the value. 720 Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB); 721 Value *IsNull = new SetCondInst(Instruction::SetEQ, CachedVal, 722 NullPtr, "isNull", EntryBB); 723 new BranchInst(LookupBB, DoCallBB, IsNull, EntryBB); 724 725 // Resolve the call to function F via the JIT API: 726 // 727 // call resolver(GetElementPtr...) 728 CallInst *Resolver = new CallInst(resolverFunc, ResolverArgs, 729 "resolver", LookupBB); 730 // cast the result from the resolver to correctly-typed function 731 CastInst *CastedResolver = 732 new CastInst(Resolver, PointerType::get(F->getFunctionType()), 733 "resolverCast", LookupBB); 734 // Save the value in our cache. 735 new StoreInst(CastedResolver, Cache, LookupBB); 736 new BranchInst(DoCallBB, LookupBB); 737 738 PHINode *FuncPtr = new PHINode(NullPtr->getType(), "fp", DoCallBB); 739 FuncPtr->addIncoming(CastedResolver, LookupBB); 740 FuncPtr->addIncoming(CachedVal, EntryBB); 741 742 // Save the argument list. 743 std::vector<Value*> Args; 744 for (Function::arg_iterator i = FuncWrapper->arg_begin(), 745 e = FuncWrapper->arg_end(); i != e; ++i) 746 Args.push_back(i); 747 748 // Pass on the arguments to the real function, return its result 749 if (F->getReturnType() == Type::VoidTy) { 750 CallInst *Call = new CallInst(FuncPtr, Args, "", DoCallBB); 751 new ReturnInst(DoCallBB); 752 } else { 753 CallInst *Call = new CallInst(FuncPtr, Args, "retval", DoCallBB); 754 new ReturnInst(Call, DoCallBB); 755 } 756 757 // Use the wrapper function instead of the old function 758 F->replaceAllUsesWith(FuncWrapper); 759 } 760 } 761 } 762 } 763 764 if (verifyModule(*Test) || verifyModule(*Safe)) { 765 std::cerr << "Bugpoint has a bug, which corrupted a module!!\n"; 766 abort(); 767 } 768} 769 770 771 772/// TestCodeGenerator - This is the predicate function used to check to see if 773/// the "Test" portion of the program is miscompiled by the code generator under 774/// test. If so, return true. In any case, both module arguments are deleted. 775/// 776static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) { 777 CleanupAndPrepareModules(BD, Test, Safe); 778 779 sys::Path TestModuleBC("bugpoint.test.bc"); 780 std::string ErrMsg; 781 if (TestModuleBC.makeUnique(true, &ErrMsg)) { 782 std::cerr << BD.getToolName() << "Error making unique filename: " 783 << ErrMsg << "\n"; 784 exit(1); 785 } 786 if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) { 787 std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; 788 exit(1); 789 } 790 delete Test; 791 792 // Make the shared library 793 sys::Path SafeModuleBC("bugpoint.safe.bc"); 794 if (SafeModuleBC.makeUnique(true, &ErrMsg)) { 795 std::cerr << BD.getToolName() << "Error making unique filename: " 796 << ErrMsg << "\n"; 797 exit(1); 798 } 799 800 if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) { 801 std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; 802 exit(1); 803 } 804 std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString()); 805 delete Safe; 806 807 // Run the code generator on the `Test' code, loading the shared library. 808 // The function returns whether or not the new output differs from reference. 809 int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false); 810 811 if (Result) 812 std::cerr << ": still failing!\n"; 813 else 814 std::cerr << ": didn't fail.\n"; 815 TestModuleBC.eraseFromDisk(); 816 SafeModuleBC.eraseFromDisk(); 817 sys::Path(SharedObject).eraseFromDisk(); 818 819 return Result; 820} 821 822 823/// debugCodeGenerator - debug errors in LLC, LLI, or CBE. 824/// 825bool BugDriver::debugCodeGenerator() { 826 if ((void*)cbe == (void*)Interpreter) { 827 std::string Result = executeProgramWithCBE("bugpoint.cbe.out"); 828 std::cout << "\n*** The C backend cannot match the reference diff, but it " 829 << "is used as the 'known good'\n code generator, so I can't" 830 << " debug it. Perhaps you have a front-end problem?\n As a" 831 << " sanity check, I left the result of executing the program " 832 << "with the C backend\n in this file for you: '" 833 << Result << "'.\n"; 834 return true; 835 } 836 837 DisambiguateGlobalSymbols(Program); 838 839 std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator); 840 841 // Split the module into the two halves of the program we want. 842 Module *ToNotCodeGen = CloneModule(getProgram()); 843 Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs); 844 845 // Condition the modules 846 CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen); 847 848 sys::Path TestModuleBC("bugpoint.test.bc"); 849 std::string ErrMsg; 850 if (TestModuleBC.makeUnique(true, &ErrMsg)) { 851 std::cerr << getToolName() << "Error making unique filename: " 852 << ErrMsg << "\n"; 853 exit(1); 854 } 855 856 if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) { 857 std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; 858 exit(1); 859 } 860 delete ToCodeGen; 861 862 // Make the shared library 863 sys::Path SafeModuleBC("bugpoint.safe.bc"); 864 if (SafeModuleBC.makeUnique(true, &ErrMsg)) { 865 std::cerr << getToolName() << "Error making unique filename: " 866 << ErrMsg << "\n"; 867 exit(1); 868 } 869 870 if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) { 871 std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; 872 exit(1); 873 } 874 std::string SharedObject = compileSharedObject(SafeModuleBC.toString()); 875 delete ToNotCodeGen; 876 877 std::cout << "You can reproduce the problem with the command line: \n"; 878 if (isExecutingJIT()) { 879 std::cout << " lli -load " << SharedObject << " " << TestModuleBC; 880 } else { 881 std::cout << " llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n"; 882 std::cout << " gcc " << SharedObject << " " << TestModuleBC 883 << ".s -o " << TestModuleBC << ".exe"; 884#if defined (HAVE_LINK_R) 885 std::cout << " -Wl,-R."; 886#endif 887 std::cout << "\n"; 888 std::cout << " " << TestModuleBC << ".exe"; 889 } 890 for (unsigned i=0, e = InputArgv.size(); i != e; ++i) 891 std::cout << " " << InputArgv[i]; 892 std::cout << '\n'; 893 std::cout << "The shared object was created with:\n llc -march=c " 894 << SafeModuleBC << " -o temporary.c\n" 895 << " gcc -xc temporary.c -O2 -o " << SharedObject 896#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) 897 << " -G" // Compile a shared library, `-G' for Sparc 898#else 899 << " -shared" // `-shared' for Linux/X86, maybe others 900#endif 901 << " -fno-strict-aliasing\n"; 902 903 return false; 904} 905