ast_to_hir.cpp revision 7e2aa91507a5883e33473e0a94215ee3985baad1
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "main/imports.h"
53#include "glsl_symbol_table.h"
54#include "glsl_parser_extras.h"
55#include "ast.h"
56#include "glsl_types.h"
57#include "ir.h"
58
59void
60_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61{
62   _mesa_glsl_initialize_variables(instructions, state);
63   _mesa_glsl_initialize_functions(instructions, state);
64
65   state->current_function = NULL;
66
67   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
68      ast->hir(instructions, state);
69}
70
71
72/**
73 * If a conversion is available, convert one operand to a different type
74 *
75 * The \c from \c ir_rvalue is converted "in place".
76 *
77 * \param to     Type that the operand it to be converted to
78 * \param from   Operand that is being converted
79 * \param state  GLSL compiler state
80 *
81 * \return
82 * If a conversion is possible (or unnecessary), \c true is returned.
83 * Otherwise \c false is returned.
84 */
85static bool
86apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
87			  struct _mesa_glsl_parse_state *state)
88{
89   void *ctx = state;
90   if (to->base_type == from->type->base_type)
91      return true;
92
93   /* This conversion was added in GLSL 1.20.  If the compilation mode is
94    * GLSL 1.10, the conversion is skipped.
95    */
96   if (state->language_version < 120)
97      return false;
98
99   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
100    *
101    *    "There are no implicit array or structure conversions. For
102    *    example, an array of int cannot be implicitly converted to an
103    *    array of float. There are no implicit conversions between
104    *    signed and unsigned integers."
105    */
106   /* FINISHME: The above comment is partially a lie.  There is int/uint
107    * FINISHME: conversion for immediate constants.
108    */
109   if (!to->is_float() || !from->type->is_numeric())
110      return false;
111
112   /* Convert to a floating point type with the same number of components
113    * as the original type - i.e. int to float, not int to vec4.
114    */
115   to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
116			        from->type->matrix_columns);
117
118   switch (from->type->base_type) {
119   case GLSL_TYPE_INT:
120      from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
121      break;
122   case GLSL_TYPE_UINT:
123      from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
124      break;
125   case GLSL_TYPE_BOOL:
126      from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
127      break;
128   default:
129      assert(0);
130   }
131
132   return true;
133}
134
135
136static const struct glsl_type *
137arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
138		       bool multiply,
139		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
140{
141   const glsl_type *type_a = value_a->type;
142   const glsl_type *type_b = value_b->type;
143
144   /* From GLSL 1.50 spec, page 56:
145    *
146    *    "The arithmetic binary operators add (+), subtract (-),
147    *    multiply (*), and divide (/) operate on integer and
148    *    floating-point scalars, vectors, and matrices."
149    */
150   if (!type_a->is_numeric() || !type_b->is_numeric()) {
151      _mesa_glsl_error(loc, state,
152		       "Operands to arithmetic operators must be numeric");
153      return glsl_type::error_type;
154   }
155
156
157   /*    "If one operand is floating-point based and the other is
158    *    not, then the conversions from Section 4.1.10 "Implicit
159    *    Conversions" are applied to the non-floating-point-based operand."
160    */
161   if (!apply_implicit_conversion(type_a, value_b, state)
162       && !apply_implicit_conversion(type_b, value_a, state)) {
163      _mesa_glsl_error(loc, state,
164		       "Could not implicitly convert operands to "
165		       "arithmetic operator");
166      return glsl_type::error_type;
167   }
168   type_a = value_a->type;
169   type_b = value_b->type;
170
171   /*    "If the operands are integer types, they must both be signed or
172    *    both be unsigned."
173    *
174    * From this rule and the preceeding conversion it can be inferred that
175    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
176    * The is_numeric check above already filtered out the case where either
177    * type is not one of these, so now the base types need only be tested for
178    * equality.
179    */
180   if (type_a->base_type != type_b->base_type) {
181      _mesa_glsl_error(loc, state,
182		       "base type mismatch for arithmetic operator");
183      return glsl_type::error_type;
184   }
185
186   /*    "All arithmetic binary operators result in the same fundamental type
187    *    (signed integer, unsigned integer, or floating-point) as the
188    *    operands they operate on, after operand type conversion. After
189    *    conversion, the following cases are valid
190    *
191    *    * The two operands are scalars. In this case the operation is
192    *      applied, resulting in a scalar."
193    */
194   if (type_a->is_scalar() && type_b->is_scalar())
195      return type_a;
196
197   /*   "* One operand is a scalar, and the other is a vector or matrix.
198    *      In this case, the scalar operation is applied independently to each
199    *      component of the vector or matrix, resulting in the same size
200    *      vector or matrix."
201    */
202   if (type_a->is_scalar()) {
203      if (!type_b->is_scalar())
204	 return type_b;
205   } else if (type_b->is_scalar()) {
206      return type_a;
207   }
208
209   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
210    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
211    * handled.
212    */
213   assert(!type_a->is_scalar());
214   assert(!type_b->is_scalar());
215
216   /*   "* The two operands are vectors of the same size. In this case, the
217    *      operation is done component-wise resulting in the same size
218    *      vector."
219    */
220   if (type_a->is_vector() && type_b->is_vector()) {
221      if (type_a == type_b) {
222	 return type_a;
223      } else {
224	 _mesa_glsl_error(loc, state,
225			  "vector size mismatch for arithmetic operator");
226	 return glsl_type::error_type;
227      }
228   }
229
230   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
231    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
232    * <vector, vector> have been handled.  At least one of the operands must
233    * be matrix.  Further, since there are no integer matrix types, the base
234    * type of both operands must be float.
235    */
236   assert(type_a->is_matrix() || type_b->is_matrix());
237   assert(type_a->base_type == GLSL_TYPE_FLOAT);
238   assert(type_b->base_type == GLSL_TYPE_FLOAT);
239
240   /*   "* The operator is add (+), subtract (-), or divide (/), and the
241    *      operands are matrices with the same number of rows and the same
242    *      number of columns. In this case, the operation is done component-
243    *      wise resulting in the same size matrix."
244    *    * The operator is multiply (*), where both operands are matrices or
245    *      one operand is a vector and the other a matrix. A right vector
246    *      operand is treated as a column vector and a left vector operand as a
247    *      row vector. In all these cases, it is required that the number of
248    *      columns of the left operand is equal to the number of rows of the
249    *      right operand. Then, the multiply (*) operation does a linear
250    *      algebraic multiply, yielding an object that has the same number of
251    *      rows as the left operand and the same number of columns as the right
252    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
253    *      more detail how vectors and matrices are operated on."
254    */
255   if (! multiply) {
256      if (type_a == type_b)
257	 return type_a;
258   } else {
259      if (type_a->is_matrix() && type_b->is_matrix()) {
260	 /* Matrix multiply.  The columns of A must match the rows of B.  Given
261	  * the other previously tested constraints, this means the vector type
262	  * of a row from A must be the same as the vector type of a column from
263	  * B.
264	  */
265	 if (type_a->row_type() == type_b->column_type()) {
266	    /* The resulting matrix has the number of columns of matrix B and
267	     * the number of rows of matrix A.  We get the row count of A by
268	     * looking at the size of a vector that makes up a column.  The
269	     * transpose (size of a row) is done for B.
270	     */
271	    const glsl_type *const type =
272	       glsl_type::get_instance(type_a->base_type,
273				       type_a->column_type()->vector_elements,
274				       type_b->row_type()->vector_elements);
275	    assert(type != glsl_type::error_type);
276
277	    return type;
278	 }
279      } else if (type_a->is_matrix()) {
280	 /* A is a matrix and B is a column vector.  Columns of A must match
281	  * rows of B.  Given the other previously tested constraints, this
282	  * means the vector type of a row from A must be the same as the
283	  * vector the type of B.
284	  */
285	 if (type_a->row_type() == type_b)
286	    return type_b;
287      } else {
288	 assert(type_b->is_matrix());
289
290	 /* A is a row vector and B is a matrix.  Columns of A must match rows
291	  * of B.  Given the other previously tested constraints, this means
292	  * the type of A must be the same as the vector type of a column from
293	  * B.
294	  */
295	 if (type_a == type_b->column_type())
296	    return type_a;
297      }
298
299      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
300      return glsl_type::error_type;
301   }
302
303
304   /*    "All other cases are illegal."
305    */
306   _mesa_glsl_error(loc, state, "type mismatch");
307   return glsl_type::error_type;
308}
309
310
311static const struct glsl_type *
312unary_arithmetic_result_type(const struct glsl_type *type,
313			     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
314{
315   /* From GLSL 1.50 spec, page 57:
316    *
317    *    "The arithmetic unary operators negate (-), post- and pre-increment
318    *     and decrement (-- and ++) operate on integer or floating-point
319    *     values (including vectors and matrices). All unary operators work
320    *     component-wise on their operands. These result with the same type
321    *     they operated on."
322    */
323   if (!type->is_numeric()) {
324      _mesa_glsl_error(loc, state,
325		       "Operands to arithmetic operators must be numeric");
326      return glsl_type::error_type;
327   }
328
329   return type;
330}
331
332
333static const struct glsl_type *
334modulus_result_type(const struct glsl_type *type_a,
335		    const struct glsl_type *type_b,
336		    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
337{
338   /* From GLSL 1.50 spec, page 56:
339    *    "The operator modulus (%) operates on signed or unsigned integers or
340    *    integer vectors. The operand types must both be signed or both be
341    *    unsigned."
342    */
343   if (!type_a->is_integer() || !type_b->is_integer()
344       || (type_a->base_type != type_b->base_type)) {
345      _mesa_glsl_error(loc, state, "type mismatch");
346      return glsl_type::error_type;
347   }
348
349   /*    "The operands cannot be vectors of differing size. If one operand is
350    *    a scalar and the other vector, then the scalar is applied component-
351    *    wise to the vector, resulting in the same type as the vector. If both
352    *    are vectors of the same size, the result is computed component-wise."
353    */
354   if (type_a->is_vector()) {
355      if (!type_b->is_vector()
356	  || (type_a->vector_elements == type_b->vector_elements))
357	 return type_a;
358   } else
359      return type_b;
360
361   /*    "The operator modulus (%) is not defined for any other data types
362    *    (non-integer types)."
363    */
364   _mesa_glsl_error(loc, state, "type mismatch");
365   return glsl_type::error_type;
366}
367
368
369static const struct glsl_type *
370relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
371		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
372{
373   const glsl_type *type_a = value_a->type;
374   const glsl_type *type_b = value_b->type;
375
376   /* From GLSL 1.50 spec, page 56:
377    *    "The relational operators greater than (>), less than (<), greater
378    *    than or equal (>=), and less than or equal (<=) operate only on
379    *    scalar integer and scalar floating-point expressions."
380    */
381   if (!type_a->is_numeric()
382       || !type_b->is_numeric()
383       || !type_a->is_scalar()
384       || !type_b->is_scalar()) {
385      _mesa_glsl_error(loc, state,
386		       "Operands to relational operators must be scalar and "
387		       "numeric");
388      return glsl_type::error_type;
389   }
390
391   /*    "Either the operands' types must match, or the conversions from
392    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
393    *    operand, after which the types must match."
394    */
395   if (!apply_implicit_conversion(type_a, value_b, state)
396       && !apply_implicit_conversion(type_b, value_a, state)) {
397      _mesa_glsl_error(loc, state,
398		       "Could not implicitly convert operands to "
399		       "relational operator");
400      return glsl_type::error_type;
401   }
402   type_a = value_a->type;
403   type_b = value_b->type;
404
405   if (type_a->base_type != type_b->base_type) {
406      _mesa_glsl_error(loc, state, "base type mismatch");
407      return glsl_type::error_type;
408   }
409
410   /*    "The result is scalar Boolean."
411    */
412   return glsl_type::bool_type;
413}
414
415
416/**
417 * Validates that a value can be assigned to a location with a specified type
418 *
419 * Validates that \c rhs can be assigned to some location.  If the types are
420 * not an exact match but an automatic conversion is possible, \c rhs will be
421 * converted.
422 *
423 * \return
424 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
425 * Otherwise the actual RHS to be assigned will be returned.  This may be
426 * \c rhs, or it may be \c rhs after some type conversion.
427 *
428 * \note
429 * In addition to being used for assignments, this function is used to
430 * type-check return values.
431 */
432ir_rvalue *
433validate_assignment(struct _mesa_glsl_parse_state *state,
434		    const glsl_type *lhs_type, ir_rvalue *rhs)
435{
436   const glsl_type *rhs_type = rhs->type;
437
438   /* If there is already some error in the RHS, just return it.  Anything
439    * else will lead to an avalanche of error message back to the user.
440    */
441   if (rhs_type->is_error())
442      return rhs;
443
444   /* If the types are identical, the assignment can trivially proceed.
445    */
446   if (rhs_type == lhs_type)
447      return rhs;
448
449   /* If the array element types are the same and the size of the LHS is zero,
450    * the assignment is okay.
451    *
452    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
453    * is handled by ir_dereference::is_lvalue.
454    */
455   if (lhs_type->is_array() && rhs->type->is_array()
456       && (lhs_type->element_type() == rhs->type->element_type())
457       && (lhs_type->array_size() == 0)) {
458      return rhs;
459   }
460
461   /* Check for implicit conversion in GLSL 1.20 */
462   if (apply_implicit_conversion(lhs_type, rhs, state)) {
463      rhs_type = rhs->type;
464      if (rhs_type == lhs_type)
465	 return rhs;
466   }
467
468   return NULL;
469}
470
471ir_rvalue *
472do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
473	      ir_rvalue *lhs, ir_rvalue *rhs,
474	      YYLTYPE lhs_loc)
475{
476   void *ctx = state;
477   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
478
479   if (!error_emitted) {
480      /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
481      if (!lhs->is_lvalue()) {
482	 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
483	 error_emitted = true;
484      }
485   }
486
487   ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
488   if (new_rhs == NULL) {
489      _mesa_glsl_error(& lhs_loc, state, "type mismatch");
490   } else {
491      rhs = new_rhs;
492
493      /* If the LHS array was not declared with a size, it takes it size from
494       * the RHS.  If the LHS is an l-value and a whole array, it must be a
495       * dereference of a variable.  Any other case would require that the LHS
496       * is either not an l-value or not a whole array.
497       */
498      if (lhs->type->array_size() == 0) {
499	 ir_dereference *const d = lhs->as_dereference();
500
501	 assert(d != NULL);
502
503	 ir_variable *const var = d->variable_referenced();
504
505	 assert(var != NULL);
506
507	 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
508	    /* FINISHME: This should actually log the location of the RHS. */
509	    _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
510			     "previous access",
511			     var->max_array_access);
512	 }
513
514	 var->type = glsl_type::get_array_instance(state,
515						   lhs->type->element_type(),
516						   rhs->type->array_size());
517      }
518   }
519
520   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
521    * but not post_inc) need the converted assigned value as an rvalue
522    * to handle things like:
523    *
524    * i = j += 1;
525    *
526    * So we always just store the computed value being assigned to a
527    * temporary and return a deref of that temporary.  If the rvalue
528    * ends up not being used, the temp will get copy-propagated out.
529    */
530   ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
531					   ir_var_temporary);
532   ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
533   instructions->push_tail(var);
534   instructions->push_tail(new(ctx) ir_assignment(deref_var,
535						  rhs,
536						  NULL));
537   deref_var = new(ctx) ir_dereference_variable(var);
538
539   instructions->push_tail(new(ctx) ir_assignment(lhs,
540						  deref_var,
541						  NULL));
542
543   return new(ctx) ir_dereference_variable(var);
544}
545
546static ir_rvalue *
547get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
548{
549   void *ctx = talloc_parent(lvalue);
550   ir_variable *var;
551
552   /* FINISHME: Give unique names to the temporaries. */
553   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
554			      ir_var_temporary);
555   instructions->push_tail(var);
556   var->mode = ir_var_auto;
557
558   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
559						  lvalue, NULL));
560
561   /* Once we've created this temporary, mark it read only so it's no
562    * longer considered an lvalue.
563    */
564   var->read_only = true;
565
566   return new(ctx) ir_dereference_variable(var);
567}
568
569
570ir_rvalue *
571ast_node::hir(exec_list *instructions,
572	      struct _mesa_glsl_parse_state *state)
573{
574   (void) instructions;
575   (void) state;
576
577   return NULL;
578}
579
580
581ir_rvalue *
582ast_expression::hir(exec_list *instructions,
583		    struct _mesa_glsl_parse_state *state)
584{
585   void *ctx = state;
586   static const int operations[AST_NUM_OPERATORS] = {
587      -1,               /* ast_assign doesn't convert to ir_expression. */
588      -1,               /* ast_plus doesn't convert to ir_expression. */
589      ir_unop_neg,
590      ir_binop_add,
591      ir_binop_sub,
592      ir_binop_mul,
593      ir_binop_div,
594      ir_binop_mod,
595      ir_binop_lshift,
596      ir_binop_rshift,
597      ir_binop_less,
598      ir_binop_greater,
599      ir_binop_lequal,
600      ir_binop_gequal,
601      ir_binop_equal,
602      ir_binop_nequal,
603      ir_binop_bit_and,
604      ir_binop_bit_xor,
605      ir_binop_bit_or,
606      ir_unop_bit_not,
607      ir_binop_logic_and,
608      ir_binop_logic_xor,
609      ir_binop_logic_or,
610      ir_unop_logic_not,
611
612      /* Note: The following block of expression types actually convert
613       * to multiple IR instructions.
614       */
615      ir_binop_mul,     /* ast_mul_assign */
616      ir_binop_div,     /* ast_div_assign */
617      ir_binop_mod,     /* ast_mod_assign */
618      ir_binop_add,     /* ast_add_assign */
619      ir_binop_sub,     /* ast_sub_assign */
620      ir_binop_lshift,  /* ast_ls_assign */
621      ir_binop_rshift,  /* ast_rs_assign */
622      ir_binop_bit_and, /* ast_and_assign */
623      ir_binop_bit_xor, /* ast_xor_assign */
624      ir_binop_bit_or,  /* ast_or_assign */
625
626      -1,               /* ast_conditional doesn't convert to ir_expression. */
627      ir_binop_add,     /* ast_pre_inc. */
628      ir_binop_sub,     /* ast_pre_dec. */
629      ir_binop_add,     /* ast_post_inc. */
630      ir_binop_sub,     /* ast_post_dec. */
631      -1,               /* ast_field_selection doesn't conv to ir_expression. */
632      -1,               /* ast_array_index doesn't convert to ir_expression. */
633      -1,               /* ast_function_call doesn't conv to ir_expression. */
634      -1,               /* ast_identifier doesn't convert to ir_expression. */
635      -1,               /* ast_int_constant doesn't convert to ir_expression. */
636      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
637      -1,               /* ast_float_constant doesn't conv to ir_expression. */
638      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
639      -1,               /* ast_sequence doesn't convert to ir_expression. */
640   };
641   ir_rvalue *result = NULL;
642   ir_rvalue *op[2];
643   const struct glsl_type *type = glsl_type::error_type;
644   bool error_emitted = false;
645   YYLTYPE loc;
646
647   loc = this->get_location();
648
649   switch (this->oper) {
650   case ast_assign: {
651      op[0] = this->subexpressions[0]->hir(instructions, state);
652      op[1] = this->subexpressions[1]->hir(instructions, state);
653
654      result = do_assignment(instructions, state, op[0], op[1],
655			     this->subexpressions[0]->get_location());
656      error_emitted = result->type->is_error();
657      type = result->type;
658      break;
659   }
660
661   case ast_plus:
662      op[0] = this->subexpressions[0]->hir(instructions, state);
663
664      error_emitted = op[0]->type->is_error();
665      if (type->is_error())
666	 op[0]->type = type;
667
668      result = op[0];
669      break;
670
671   case ast_neg:
672      op[0] = this->subexpressions[0]->hir(instructions, state);
673
674      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
675
676      error_emitted = type->is_error();
677
678      result = new(ctx) ir_expression(operations[this->oper], type,
679				      op[0], NULL);
680      break;
681
682   case ast_add:
683   case ast_sub:
684   case ast_mul:
685   case ast_div:
686      op[0] = this->subexpressions[0]->hir(instructions, state);
687      op[1] = this->subexpressions[1]->hir(instructions, state);
688
689      type = arithmetic_result_type(op[0], op[1],
690				    (this->oper == ast_mul),
691				    state, & loc);
692      error_emitted = type->is_error();
693
694      result = new(ctx) ir_expression(operations[this->oper], type,
695				      op[0], op[1]);
696      break;
697
698   case ast_mod:
699      op[0] = this->subexpressions[0]->hir(instructions, state);
700      op[1] = this->subexpressions[1]->hir(instructions, state);
701
702      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
703
704      assert(operations[this->oper] == ir_binop_mod);
705
706      result = new(ctx) ir_expression(operations[this->oper], type,
707				      op[0], op[1]);
708      error_emitted = type->is_error();
709      break;
710
711   case ast_lshift:
712   case ast_rshift:
713      _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
714      error_emitted = true;
715      break;
716
717   case ast_less:
718   case ast_greater:
719   case ast_lequal:
720   case ast_gequal:
721      op[0] = this->subexpressions[0]->hir(instructions, state);
722      op[1] = this->subexpressions[1]->hir(instructions, state);
723
724      type = relational_result_type(op[0], op[1], state, & loc);
725
726      /* The relational operators must either generate an error or result
727       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
728       */
729      assert(type->is_error()
730	     || ((type->base_type == GLSL_TYPE_BOOL)
731		 && type->is_scalar()));
732
733      result = new(ctx) ir_expression(operations[this->oper], type,
734				      op[0], op[1]);
735      error_emitted = type->is_error();
736      break;
737
738   case ast_nequal:
739   case ast_equal:
740      op[0] = this->subexpressions[0]->hir(instructions, state);
741      op[1] = this->subexpressions[1]->hir(instructions, state);
742
743      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
744       *
745       *    "The equality operators equal (==), and not equal (!=)
746       *    operate on all types. They result in a scalar Boolean. If
747       *    the operand types do not match, then there must be a
748       *    conversion from Section 4.1.10 "Implicit Conversions"
749       *    applied to one operand that can make them match, in which
750       *    case this conversion is done."
751       */
752      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
753	   && !apply_implicit_conversion(op[1]->type, op[0], state))
754	  || (op[0]->type != op[1]->type)) {
755	 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
756			  "type", (this->oper == ast_equal) ? "==" : "!=");
757	 error_emitted = true;
758      } else if ((state->language_version <= 110)
759		 && (op[0]->type->is_array() || op[1]->type->is_array())) {
760	 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
761			  "GLSL 1.10");
762	 error_emitted = true;
763      }
764
765      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
766				      op[0], op[1]);
767      type = glsl_type::bool_type;
768
769      assert(result->type == glsl_type::bool_type);
770      break;
771
772   case ast_bit_and:
773   case ast_bit_xor:
774   case ast_bit_or:
775   case ast_bit_not:
776      _mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
777      error_emitted = true;
778      break;
779
780   case ast_logic_and: {
781      op[0] = this->subexpressions[0]->hir(instructions, state);
782
783      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
784	 YYLTYPE loc = this->subexpressions[0]->get_location();
785
786	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
787			  operator_string(this->oper));
788	 error_emitted = true;
789      }
790
791      ir_constant *op0_const = op[0]->constant_expression_value();
792      if (op0_const) {
793	 if (op0_const->value.b[0]) {
794	    op[1] = this->subexpressions[1]->hir(instructions, state);
795
796	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
797	       YYLTYPE loc = this->subexpressions[1]->get_location();
798
799	       _mesa_glsl_error(& loc, state,
800				"RHS of `%s' must be scalar boolean",
801				operator_string(this->oper));
802	       error_emitted = true;
803	    }
804	    result = op[1];
805	 } else {
806	    result = op0_const;
807	 }
808	 type = glsl_type::bool_type;
809      } else {
810	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
811						       "and_tmp",
812						       ir_var_temporary);
813	 instructions->push_tail(tmp);
814
815	 ir_if *const stmt = new(ctx) ir_if(op[0]);
816	 instructions->push_tail(stmt);
817
818	 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
819
820	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
821	    YYLTYPE loc = this->subexpressions[1]->get_location();
822
823	    _mesa_glsl_error(& loc, state,
824			     "RHS of `%s' must be scalar boolean",
825			     operator_string(this->oper));
826	    error_emitted = true;
827	 }
828
829	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
830	 ir_assignment *const then_assign =
831	    new(ctx) ir_assignment(then_deref, op[1], NULL);
832	 stmt->then_instructions.push_tail(then_assign);
833
834	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
835	 ir_assignment *const else_assign =
836	    new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
837	 stmt->else_instructions.push_tail(else_assign);
838
839	 result = new(ctx) ir_dereference_variable(tmp);
840	 type = tmp->type;
841      }
842      break;
843   }
844
845   case ast_logic_or: {
846      op[0] = this->subexpressions[0]->hir(instructions, state);
847
848      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
849	 YYLTYPE loc = this->subexpressions[0]->get_location();
850
851	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
852			  operator_string(this->oper));
853	 error_emitted = true;
854      }
855
856      ir_constant *op0_const = op[0]->constant_expression_value();
857      if (op0_const) {
858	 if (op0_const->value.b[0]) {
859	    result = op0_const;
860	 } else {
861	    op[1] = this->subexpressions[1]->hir(instructions, state);
862
863	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
864	       YYLTYPE loc = this->subexpressions[1]->get_location();
865
866	       _mesa_glsl_error(& loc, state,
867				"RHS of `%s' must be scalar boolean",
868				operator_string(this->oper));
869	       error_emitted = true;
870	    }
871	    result = op[1];
872	 }
873	 type = glsl_type::bool_type;
874      } else {
875	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
876						       "or_tmp",
877						       ir_var_temporary);
878	 instructions->push_tail(tmp);
879
880	 ir_if *const stmt = new(ctx) ir_if(op[0]);
881	 instructions->push_tail(stmt);
882
883	 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
884
885	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
886	    YYLTYPE loc = this->subexpressions[1]->get_location();
887
888	    _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
889			     operator_string(this->oper));
890	    error_emitted = true;
891	 }
892
893	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
894	 ir_assignment *const then_assign =
895	    new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
896	 stmt->then_instructions.push_tail(then_assign);
897
898	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
899	 ir_assignment *const else_assign =
900	    new(ctx) ir_assignment(else_deref, op[1], NULL);
901	 stmt->else_instructions.push_tail(else_assign);
902
903	 result = new(ctx) ir_dereference_variable(tmp);
904	 type = tmp->type;
905      }
906      break;
907   }
908
909   case ast_logic_xor:
910      op[0] = this->subexpressions[0]->hir(instructions, state);
911      op[1] = this->subexpressions[1]->hir(instructions, state);
912
913
914      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
915				      op[0], op[1]);
916      type = glsl_type::bool_type;
917      break;
918
919   case ast_logic_not:
920      op[0] = this->subexpressions[0]->hir(instructions, state);
921
922      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
923	 YYLTYPE loc = this->subexpressions[0]->get_location();
924
925	 _mesa_glsl_error(& loc, state,
926			  "operand of `!' must be scalar boolean");
927	 error_emitted = true;
928      }
929
930      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
931				      op[0], NULL);
932      type = glsl_type::bool_type;
933      break;
934
935   case ast_mul_assign:
936   case ast_div_assign:
937   case ast_add_assign:
938   case ast_sub_assign: {
939      op[0] = this->subexpressions[0]->hir(instructions, state);
940      op[1] = this->subexpressions[1]->hir(instructions, state);
941
942      type = arithmetic_result_type(op[0], op[1],
943				    (this->oper == ast_mul_assign),
944				    state, & loc);
945
946      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
947						   op[0], op[1]);
948
949      result = do_assignment(instructions, state,
950			     op[0]->clone(NULL), temp_rhs,
951			     this->subexpressions[0]->get_location());
952      type = result->type;
953      error_emitted = (op[0]->type->is_error());
954
955      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
956       * explicitly test for this because none of the binary expression
957       * operators allow array operands either.
958       */
959
960      break;
961   }
962
963   case ast_mod_assign: {
964      op[0] = this->subexpressions[0]->hir(instructions, state);
965      op[1] = this->subexpressions[1]->hir(instructions, state);
966
967      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
968
969      assert(operations[this->oper] == ir_binop_mod);
970
971      struct ir_rvalue *temp_rhs;
972      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
973					op[0], op[1]);
974
975      result = do_assignment(instructions, state,
976			     op[0]->clone(NULL), temp_rhs,
977			     this->subexpressions[0]->get_location());
978      type = result->type;
979      error_emitted = type->is_error();
980      break;
981   }
982
983   case ast_ls_assign:
984   case ast_rs_assign:
985      _mesa_glsl_error(& loc, state,
986		       "FINISHME: implement bit-shift assignment operators");
987      error_emitted = true;
988      break;
989
990   case ast_and_assign:
991   case ast_xor_assign:
992   case ast_or_assign:
993      _mesa_glsl_error(& loc, state,
994		       "FINISHME: implement logic assignment operators");
995      error_emitted = true;
996      break;
997
998   case ast_conditional: {
999      op[0] = this->subexpressions[0]->hir(instructions, state);
1000
1001      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1002       *
1003       *    "The ternary selection operator (?:). It operates on three
1004       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1005       *    first expression, which must result in a scalar Boolean."
1006       */
1007      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1008	 YYLTYPE loc = this->subexpressions[0]->get_location();
1009
1010	 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1011	 error_emitted = true;
1012      }
1013
1014      /* The :? operator is implemented by generating an anonymous temporary
1015       * followed by an if-statement.  The last instruction in each branch of
1016       * the if-statement assigns a value to the anonymous temporary.  This
1017       * temporary is the r-value of the expression.
1018       */
1019      exec_list then_instructions;
1020      exec_list else_instructions;
1021
1022      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1023      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1024
1025      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1026       *
1027       *     "The second and third expressions can be any type, as
1028       *     long their types match, or there is a conversion in
1029       *     Section 4.1.10 "Implicit Conversions" that can be applied
1030       *     to one of the expressions to make their types match. This
1031       *     resulting matching type is the type of the entire
1032       *     expression."
1033       */
1034      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1035	   && !apply_implicit_conversion(op[2]->type, op[1], state))
1036	  || (op[1]->type != op[2]->type)) {
1037	 YYLTYPE loc = this->subexpressions[1]->get_location();
1038
1039	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1040			  "operator must have matching types.");
1041	 error_emitted = true;
1042	 type = glsl_type::error_type;
1043      } else {
1044	 type = op[1]->type;
1045      }
1046
1047      ir_constant *cond_val = op[0]->constant_expression_value();
1048      ir_constant *then_val = op[1]->constant_expression_value();
1049      ir_constant *else_val = op[2]->constant_expression_value();
1050
1051      if (then_instructions.is_empty()
1052	  && else_instructions.is_empty()
1053	  && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1054	 result = (cond_val->value.b[0]) ? then_val : else_val;
1055      } else {
1056	 ir_variable *const tmp =
1057	    new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1058	 instructions->push_tail(tmp);
1059
1060	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1061	 instructions->push_tail(stmt);
1062
1063	 then_instructions.move_nodes_to(& stmt->then_instructions);
1064	 ir_dereference *const then_deref =
1065	    new(ctx) ir_dereference_variable(tmp);
1066	 ir_assignment *const then_assign =
1067	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1068	 stmt->then_instructions.push_tail(then_assign);
1069
1070	 else_instructions.move_nodes_to(& stmt->else_instructions);
1071	 ir_dereference *const else_deref =
1072	    new(ctx) ir_dereference_variable(tmp);
1073	 ir_assignment *const else_assign =
1074	    new(ctx) ir_assignment(else_deref, op[2], NULL);
1075	 stmt->else_instructions.push_tail(else_assign);
1076
1077	 result = new(ctx) ir_dereference_variable(tmp);
1078      }
1079      break;
1080   }
1081
1082   case ast_pre_inc:
1083   case ast_pre_dec: {
1084      op[0] = this->subexpressions[0]->hir(instructions, state);
1085      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1086	 op[1] = new(ctx) ir_constant(1.0f);
1087      else
1088	 op[1] = new(ctx) ir_constant(1);
1089
1090      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1091
1092      struct ir_rvalue *temp_rhs;
1093      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1094					op[0], op[1]);
1095
1096      result = do_assignment(instructions, state,
1097			     op[0]->clone(NULL), temp_rhs,
1098			     this->subexpressions[0]->get_location());
1099      type = result->type;
1100      error_emitted = op[0]->type->is_error();
1101      break;
1102   }
1103
1104   case ast_post_inc:
1105   case ast_post_dec: {
1106      op[0] = this->subexpressions[0]->hir(instructions, state);
1107      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1108	 op[1] = new(ctx) ir_constant(1.0f);
1109      else
1110	 op[1] = new(ctx) ir_constant(1);
1111
1112      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1113
1114      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1115
1116      struct ir_rvalue *temp_rhs;
1117      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1118					op[0], op[1]);
1119
1120      /* Get a temporary of a copy of the lvalue before it's modified.
1121       * This may get thrown away later.
1122       */
1123      result = get_lvalue_copy(instructions, op[0]->clone(NULL));
1124
1125      (void)do_assignment(instructions, state,
1126			  op[0]->clone(NULL), temp_rhs,
1127			  this->subexpressions[0]->get_location());
1128
1129      type = result->type;
1130      error_emitted = op[0]->type->is_error();
1131      break;
1132   }
1133
1134   case ast_field_selection:
1135      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1136      type = result->type;
1137      break;
1138
1139   case ast_array_index: {
1140      YYLTYPE index_loc = subexpressions[1]->get_location();
1141
1142      op[0] = subexpressions[0]->hir(instructions, state);
1143      op[1] = subexpressions[1]->hir(instructions, state);
1144
1145      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1146
1147      ir_rvalue *const array = op[0];
1148
1149      result = new(ctx) ir_dereference_array(op[0], op[1]);
1150
1151      /* Do not use op[0] after this point.  Use array.
1152       */
1153      op[0] = NULL;
1154
1155
1156      if (error_emitted)
1157	 break;
1158
1159      if (!array->type->is_array()
1160	  && !array->type->is_matrix()
1161	  && !array->type->is_vector()) {
1162	 _mesa_glsl_error(& index_loc, state,
1163			  "cannot dereference non-array / non-matrix / "
1164			  "non-vector");
1165	 error_emitted = true;
1166      }
1167
1168      if (!op[1]->type->is_integer()) {
1169	 _mesa_glsl_error(& index_loc, state,
1170			  "array index must be integer type");
1171	 error_emitted = true;
1172      } else if (!op[1]->type->is_scalar()) {
1173	 _mesa_glsl_error(& index_loc, state,
1174			  "array index must be scalar");
1175	 error_emitted = true;
1176      }
1177
1178      /* If the array index is a constant expression and the array has a
1179       * declared size, ensure that the access is in-bounds.  If the array
1180       * index is not a constant expression, ensure that the array has a
1181       * declared size.
1182       */
1183      ir_constant *const const_index = op[1]->constant_expression_value();
1184      if (const_index != NULL) {
1185	 const int idx = const_index->value.i[0];
1186	 const char *type_name;
1187	 unsigned bound = 0;
1188
1189	 if (array->type->is_matrix()) {
1190	    type_name = "matrix";
1191	 } else if (array->type->is_vector()) {
1192	    type_name = "vector";
1193	 } else {
1194	    type_name = "array";
1195	 }
1196
1197	 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1198	  *
1199	  *    "It is illegal to declare an array with a size, and then
1200	  *    later (in the same shader) index the same array with an
1201	  *    integral constant expression greater than or equal to the
1202	  *    declared size. It is also illegal to index an array with a
1203	  *    negative constant expression."
1204	  */
1205	 if (array->type->is_matrix()) {
1206	    if (array->type->row_type()->vector_elements <= idx) {
1207	       bound = array->type->row_type()->vector_elements;
1208	    }
1209	 } else if (array->type->is_vector()) {
1210	    if (array->type->vector_elements <= idx) {
1211	       bound = array->type->vector_elements;
1212	    }
1213	 } else {
1214	    if ((array->type->array_size() > 0)
1215		&& (array->type->array_size() <= idx)) {
1216	       bound = array->type->array_size();
1217	    }
1218	 }
1219
1220	 if (bound > 0) {
1221	    _mesa_glsl_error(& loc, state, "%s index must be < %u",
1222			     type_name, bound);
1223	    error_emitted = true;
1224	 } else if (idx < 0) {
1225	    _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1226			     type_name);
1227	    error_emitted = true;
1228	 }
1229
1230	 if (array->type->is_array()) {
1231	    /* If the array is a variable dereference, it dereferences the
1232	     * whole array, by definition.  Use this to get the variable.
1233	     *
1234	     * FINISHME: Should some methods for getting / setting / testing
1235	     * FINISHME: array access limits be added to ir_dereference?
1236	     */
1237	    ir_variable *const v = array->whole_variable_referenced();
1238	    if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1239	       v->max_array_access = idx;
1240	 }
1241      } else if (array->type->array_size() == 0) {
1242	 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1243      }
1244
1245      if (error_emitted)
1246	 result->type = glsl_type::error_type;
1247
1248      type = result->type;
1249      break;
1250   }
1251
1252   case ast_function_call:
1253      /* Should *NEVER* get here.  ast_function_call should always be handled
1254       * by ast_function_expression::hir.
1255       */
1256      assert(0);
1257      break;
1258
1259   case ast_identifier: {
1260      /* ast_identifier can appear several places in a full abstract syntax
1261       * tree.  This particular use must be at location specified in the grammar
1262       * as 'variable_identifier'.
1263       */
1264      ir_variable *var =
1265	 state->symbols->get_variable(this->primary_expression.identifier);
1266
1267      result = new(ctx) ir_dereference_variable(var);
1268
1269      if (var != NULL) {
1270	 type = result->type;
1271      } else {
1272	 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1273			  this->primary_expression.identifier);
1274
1275	 error_emitted = true;
1276      }
1277      break;
1278   }
1279
1280   case ast_int_constant:
1281      type = glsl_type::int_type;
1282      result = new(ctx) ir_constant(this->primary_expression.int_constant);
1283      break;
1284
1285   case ast_uint_constant:
1286      type = glsl_type::uint_type;
1287      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1288      break;
1289
1290   case ast_float_constant:
1291      type = glsl_type::float_type;
1292      result = new(ctx) ir_constant(this->primary_expression.float_constant);
1293      break;
1294
1295   case ast_bool_constant:
1296      type = glsl_type::bool_type;
1297      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1298      break;
1299
1300   case ast_sequence: {
1301      /* It should not be possible to generate a sequence in the AST without
1302       * any expressions in it.
1303       */
1304      assert(!this->expressions.is_empty());
1305
1306      /* The r-value of a sequence is the last expression in the sequence.  If
1307       * the other expressions in the sequence do not have side-effects (and
1308       * therefore add instructions to the instruction list), they get dropped
1309       * on the floor.
1310       */
1311      foreach_list_typed (ast_node, ast, link, &this->expressions)
1312	 result = ast->hir(instructions, state);
1313
1314      type = result->type;
1315
1316      /* Any errors should have already been emitted in the loop above.
1317       */
1318      error_emitted = true;
1319      break;
1320   }
1321   }
1322
1323   if (type->is_error() && !error_emitted)
1324      _mesa_glsl_error(& loc, state, "type mismatch");
1325
1326   return result;
1327}
1328
1329
1330ir_rvalue *
1331ast_expression_statement::hir(exec_list *instructions,
1332			      struct _mesa_glsl_parse_state *state)
1333{
1334   /* It is possible to have expression statements that don't have an
1335    * expression.  This is the solitary semicolon:
1336    *
1337    * for (i = 0; i < 5; i++)
1338    *     ;
1339    *
1340    * In this case the expression will be NULL.  Test for NULL and don't do
1341    * anything in that case.
1342    */
1343   if (expression != NULL)
1344      expression->hir(instructions, state);
1345
1346   /* Statements do not have r-values.
1347    */
1348   return NULL;
1349}
1350
1351
1352ir_rvalue *
1353ast_compound_statement::hir(exec_list *instructions,
1354			    struct _mesa_glsl_parse_state *state)
1355{
1356   if (new_scope)
1357      state->symbols->push_scope();
1358
1359   foreach_list_typed (ast_node, ast, link, &this->statements)
1360      ast->hir(instructions, state);
1361
1362   if (new_scope)
1363      state->symbols->pop_scope();
1364
1365   /* Compound statements do not have r-values.
1366    */
1367   return NULL;
1368}
1369
1370
1371static const glsl_type *
1372process_array_type(const glsl_type *base, ast_node *array_size,
1373		   struct _mesa_glsl_parse_state *state)
1374{
1375   unsigned length = 0;
1376
1377   /* FINISHME: Reject delcarations of multidimensional arrays. */
1378
1379   if (array_size != NULL) {
1380      exec_list dummy_instructions;
1381      ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1382      YYLTYPE loc = array_size->get_location();
1383
1384      /* FINISHME: Verify that the grammar forbids side-effects in array
1385       * FINISHME: sizes.   i.e., 'vec4 [x = 12] data'
1386       */
1387      assert(dummy_instructions.is_empty());
1388
1389      if (ir != NULL) {
1390	 if (!ir->type->is_integer()) {
1391	    _mesa_glsl_error(& loc, state, "array size must be integer type");
1392	 } else if (!ir->type->is_scalar()) {
1393	    _mesa_glsl_error(& loc, state, "array size must be scalar type");
1394	 } else {
1395	    ir_constant *const size = ir->constant_expression_value();
1396
1397	    if (size == NULL) {
1398	       _mesa_glsl_error(& loc, state, "array size must be a "
1399				"constant valued expression");
1400	    } else if (size->value.i[0] <= 0) {
1401	       _mesa_glsl_error(& loc, state, "array size must be > 0");
1402	    } else {
1403	       assert(size->type == ir->type);
1404	       length = size->value.u[0];
1405	    }
1406	 }
1407      }
1408   }
1409
1410   return glsl_type::get_array_instance(state, base, length);
1411}
1412
1413
1414const glsl_type *
1415ast_type_specifier::glsl_type(const char **name,
1416			      struct _mesa_glsl_parse_state *state) const
1417{
1418   const struct glsl_type *type;
1419
1420   if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) {
1421      /* FINISHME: Handle annonymous structures. */
1422      type = NULL;
1423   } else {
1424      type = state->symbols->get_type(this->type_name);
1425      *name = this->type_name;
1426
1427      if (this->is_array) {
1428	 type = process_array_type(type, this->array_size, state);
1429      }
1430   }
1431
1432   return type;
1433}
1434
1435
1436static void
1437apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1438				 struct ir_variable *var,
1439				 struct _mesa_glsl_parse_state *state,
1440				 YYLTYPE *loc)
1441{
1442   if (qual->invariant)
1443      var->invariant = 1;
1444
1445   /* FINISHME: Mark 'in' variables at global scope as read-only. */
1446   if (qual->constant || qual->attribute || qual->uniform
1447       || (qual->varying && (state->target == fragment_shader)))
1448      var->read_only = 1;
1449
1450   if (qual->centroid)
1451      var->centroid = 1;
1452
1453   if (qual->attribute && state->target != vertex_shader) {
1454      var->type = glsl_type::error_type;
1455      _mesa_glsl_error(loc, state,
1456		       "`attribute' variables may not be declared in the "
1457		       "%s shader",
1458		       _mesa_glsl_shader_target_name(state->target));
1459   }
1460
1461   /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1462    *
1463    *     "The varying qualifier can be used only with the data types
1464    *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1465    *     these."
1466    */
1467   if (qual->varying) {
1468      const glsl_type *non_array_type;
1469
1470      if (var->type && var->type->is_array())
1471	 non_array_type = var->type->fields.array;
1472      else
1473	 non_array_type = var->type;
1474
1475      if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1476	 var->type = glsl_type::error_type;
1477	 _mesa_glsl_error(loc, state,
1478			  "varying variables must be of base type float");
1479      }
1480   }
1481
1482   /* If there is no qualifier that changes the mode of the variable, leave
1483    * the setting alone.
1484    */
1485   if (qual->in && qual->out)
1486      var->mode = ir_var_inout;
1487   else if (qual->attribute || qual->in
1488	    || (qual->varying && (state->target == fragment_shader)))
1489      var->mode = ir_var_in;
1490   else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1491      var->mode = ir_var_out;
1492   else if (qual->uniform)
1493      var->mode = ir_var_uniform;
1494
1495   if (qual->uniform)
1496      var->shader_in = true;
1497
1498   /* Any 'in' or 'inout' variables at global scope must be marked as being
1499    * shader inputs.  Likewise, any 'out' or 'inout' variables at global scope
1500    * must be marked as being shader outputs.
1501    */
1502   if (state->current_function == NULL) {
1503      switch (var->mode) {
1504      case ir_var_in:
1505      case ir_var_uniform:
1506	 var->shader_in = true;
1507	 break;
1508      case ir_var_out:
1509	 var->shader_out = true;
1510	 break;
1511      case ir_var_inout:
1512	 var->shader_in = true;
1513	 var->shader_out = true;
1514	 break;
1515      default:
1516	 break;
1517      }
1518   }
1519
1520   if (qual->flat)
1521      var->interpolation = ir_var_flat;
1522   else if (qual->noperspective)
1523      var->interpolation = ir_var_noperspective;
1524   else
1525      var->interpolation = ir_var_smooth;
1526
1527   if (var->type->is_array() && (state->language_version >= 120)) {
1528      var->array_lvalue = true;
1529   }
1530}
1531
1532
1533ir_rvalue *
1534ast_declarator_list::hir(exec_list *instructions,
1535			 struct _mesa_glsl_parse_state *state)
1536{
1537   void *ctx = state;
1538   const struct glsl_type *decl_type;
1539   const char *type_name = NULL;
1540   ir_rvalue *result = NULL;
1541   YYLTYPE loc = this->get_location();
1542
1543   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1544    *
1545    *     "To ensure that a particular output variable is invariant, it is
1546    *     necessary to use the invariant qualifier. It can either be used to
1547    *     qualify a previously declared variable as being invariant
1548    *
1549    *         invariant gl_Position; // make existing gl_Position be invariant"
1550    *
1551    * In these cases the parser will set the 'invariant' flag in the declarator
1552    * list, and the type will be NULL.
1553    */
1554   if (this->invariant) {
1555      assert(this->type == NULL);
1556
1557      if (state->current_function != NULL) {
1558	 _mesa_glsl_error(& loc, state,
1559			  "All uses of `invariant' keyword must be at global "
1560			  "scope\n");
1561      }
1562
1563      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1564	 assert(!decl->is_array);
1565	 assert(decl->array_size == NULL);
1566	 assert(decl->initializer == NULL);
1567
1568	 ir_variable *const earlier =
1569	    state->symbols->get_variable(decl->identifier);
1570	 if (earlier == NULL) {
1571	    _mesa_glsl_error(& loc, state,
1572			     "Undeclared variable `%s' cannot be marked "
1573			     "invariant\n", decl->identifier);
1574	 } else if ((state->target == vertex_shader)
1575	       && (earlier->mode != ir_var_out)) {
1576	    _mesa_glsl_error(& loc, state,
1577			     "`%s' cannot be marked invariant, vertex shader "
1578			     "outputs only\n", decl->identifier);
1579	 } else if ((state->target == fragment_shader)
1580	       && (earlier->mode != ir_var_in)) {
1581	    _mesa_glsl_error(& loc, state,
1582			     "`%s' cannot be marked invariant, fragment shader "
1583			     "inputs only\n", decl->identifier);
1584	 } else {
1585	    earlier->invariant = true;
1586	 }
1587      }
1588
1589      /* Invariant redeclarations do not have r-values.
1590       */
1591      return NULL;
1592   }
1593
1594   assert(this->type != NULL);
1595   assert(!this->invariant);
1596
1597   /* The type specifier may contain a structure definition.  Process that
1598    * before any of the variable declarations.
1599    */
1600   (void) this->type->specifier->hir(instructions, state);
1601
1602   decl_type = this->type->specifier->glsl_type(& type_name, state);
1603   if (this->declarations.is_empty()) {
1604      /* The only valid case where the declaration list can be empty is when
1605       * the declaration is setting the default precision of a built-in type
1606       * (e.g., 'precision highp vec4;').
1607       */
1608
1609      if (decl_type != NULL) {
1610      } else {
1611	    _mesa_glsl_error(& loc, state, "incomplete declaration");
1612      }
1613   }
1614
1615   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1616      const struct glsl_type *var_type;
1617      struct ir_variable *var;
1618
1619      /* FINISHME: Emit a warning if a variable declaration shadows a
1620       * FINISHME: declaration at a higher scope.
1621       */
1622
1623      if ((decl_type == NULL) || decl_type->is_void()) {
1624	 if (type_name != NULL) {
1625	    _mesa_glsl_error(& loc, state,
1626			     "invalid type `%s' in declaration of `%s'",
1627			     type_name, decl->identifier);
1628	 } else {
1629	    _mesa_glsl_error(& loc, state,
1630			     "invalid type in declaration of `%s'",
1631			     decl->identifier);
1632	 }
1633	 continue;
1634      }
1635
1636      if (decl->is_array) {
1637	 var_type = process_array_type(decl_type, decl->array_size, state);
1638      } else {
1639	 var_type = decl_type;
1640      }
1641
1642      var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
1643
1644      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1645       *
1646       *     "Global variables can only use the qualifiers const,
1647       *     attribute, uni form, or varying. Only one may be
1648       *     specified.
1649       *
1650       *     Local variables can only use the qualifier const."
1651       *
1652       * This is relaxed in GLSL 1.30.
1653       */
1654      if (state->language_version < 120) {
1655	 if (this->type->qualifier.out) {
1656	    _mesa_glsl_error(& loc, state,
1657			     "`out' qualifier in declaration of `%s' "
1658			     "only valid for function parameters in GLSL 1.10.",
1659			     decl->identifier);
1660	 }
1661	 if (this->type->qualifier.in) {
1662	    _mesa_glsl_error(& loc, state,
1663			     "`in' qualifier in declaration of `%s' "
1664			     "only valid for function parameters in GLSL 1.10.",
1665			     decl->identifier);
1666	 }
1667	 /* FINISHME: Test for other invalid qualifiers. */
1668      }
1669
1670      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1671				       & loc);
1672
1673      if (this->type->qualifier.invariant) {
1674	 if ((state->target == vertex_shader) && !var->shader_out) {
1675	    _mesa_glsl_error(& loc, state,
1676			     "`%s' cannot be marked invariant, vertex shader "
1677			     "outputs only\n", var->name);
1678	 } else if ((state->target == fragment_shader) && !var->shader_in) {
1679	    _mesa_glsl_error(& loc, state,
1680			     "`%s' cannot be marked invariant, fragment shader "
1681			     "inputs only\n", var->name);
1682	 }
1683      }
1684
1685      if (state->current_function != NULL) {
1686	 const char *mode = NULL;
1687	 const char *extra = "";
1688
1689	 /* There is no need to check for 'inout' here because the parser will
1690	  * only allow that in function parameter lists.
1691	  */
1692	 if (this->type->qualifier.attribute) {
1693	    mode = "attribute";
1694	 } else if (this->type->qualifier.uniform) {
1695	    mode = "uniform";
1696	 } else if (this->type->qualifier.varying) {
1697	    mode = "varying";
1698	 } else if (this->type->qualifier.in) {
1699	    mode = "in";
1700	    extra = " or in function parameter list";
1701	 } else if (this->type->qualifier.out) {
1702	    mode = "out";
1703	    extra = " or in function parameter list";
1704	 }
1705
1706	 if (mode) {
1707	    _mesa_glsl_error(& loc, state,
1708			     "%s variable `%s' must be declared at "
1709			     "global scope%s",
1710			     mode, var->name, extra);
1711	 }
1712      } else if (var->mode == ir_var_in) {
1713	 if (state->target == vertex_shader) {
1714	    bool error_emitted = false;
1715
1716	    /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1717	     *
1718	     *    "Vertex shader inputs can only be float, floating-point
1719	     *    vectors, matrices, signed and unsigned integers and integer
1720	     *    vectors. Vertex shader inputs can also form arrays of these
1721	     *    types, but not structures."
1722	     *
1723	     * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1724	     *
1725	     *    "Vertex shader inputs can only be float, floating-point
1726	     *    vectors, matrices, signed and unsigned integers and integer
1727	     *    vectors. They cannot be arrays or structures."
1728	     *
1729	     * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1730	     *
1731	     *    "The attribute qualifier can be used only with float,
1732	     *    floating-point vectors, and matrices. Attribute variables
1733	     *    cannot be declared as arrays or structures."
1734	     */
1735	    const glsl_type *check_type = var->type->is_array()
1736	       ? var->type->fields.array : var->type;
1737
1738	    switch (check_type->base_type) {
1739	    case GLSL_TYPE_FLOAT:
1740	       break;
1741	    case GLSL_TYPE_UINT:
1742	    case GLSL_TYPE_INT:
1743	       if (state->language_version > 120)
1744		  break;
1745	       /* FALLTHROUGH */
1746	    default:
1747	       _mesa_glsl_error(& loc, state,
1748				"vertex shader input / attribute cannot have "
1749				"type %s`%s'",
1750				var->type->is_array() ? "array of " : "",
1751				check_type->name);
1752	       error_emitted = true;
1753	    }
1754
1755	    if (!error_emitted && (state->language_version <= 130)
1756		&& var->type->is_array()) {
1757	       _mesa_glsl_error(& loc, state,
1758				"vertex shader input / attribute cannot have "
1759				"array type");
1760	       error_emitted = true;
1761	    }
1762	 }
1763      }
1764
1765      /* Process the initializer and add its instructions to a temporary
1766       * list.  This list will be added to the instruction stream (below) after
1767       * the declaration is added.  This is done because in some cases (such as
1768       * redeclarations) the declaration may not actually be added to the
1769       * instruction stream.
1770       */
1771      exec_list intializer_instructions;
1772      if (decl->initializer != NULL) {
1773	 YYLTYPE initializer_loc = decl->initializer->get_location();
1774
1775	 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1776	  *
1777	  *    "All uniform variables are read-only and are initialized either
1778	  *    directly by an application via API commands, or indirectly by
1779	  *    OpenGL."
1780	  */
1781	 if ((state->language_version <= 110)
1782	     && (var->mode == ir_var_uniform)) {
1783	    _mesa_glsl_error(& initializer_loc, state,
1784			     "cannot initialize uniforms in GLSL 1.10");
1785	 }
1786
1787	 if (var->type->is_sampler()) {
1788	    _mesa_glsl_error(& initializer_loc, state,
1789			     "cannot initialize samplers");
1790	 }
1791
1792	 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1793	    _mesa_glsl_error(& initializer_loc, state,
1794			     "cannot initialize %s shader input / %s",
1795			     _mesa_glsl_shader_target_name(state->target),
1796			     (state->target == vertex_shader)
1797			     ? "attribute" : "varying");
1798	 }
1799
1800	 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
1801	 ir_rvalue *rhs = decl->initializer->hir(&intializer_instructions,
1802						 state);
1803
1804	 /* Calculate the constant value if this is a const or uniform
1805	  * declaration.
1806	  */
1807	 if (this->type->qualifier.constant || this->type->qualifier.uniform) {
1808	    ir_constant *constant_value = rhs->constant_expression_value();
1809	    if (!constant_value) {
1810	       _mesa_glsl_error(& initializer_loc, state,
1811				"initializer of %s variable `%s' must be a "
1812				"constant expression",
1813				(this->type->qualifier.constant)
1814				? "const" : "uniform",
1815				decl->identifier);
1816	    } else {
1817	       rhs = constant_value;
1818	       var->constant_value = constant_value;
1819	    }
1820	 }
1821
1822	 if (rhs && !rhs->type->is_error()) {
1823	    bool temp = var->read_only;
1824	    if (this->type->qualifier.constant)
1825	       var->read_only = false;
1826
1827	    /* Never emit code to initialize a uniform.
1828	     */
1829	    if (!this->type->qualifier.uniform)
1830	       result = do_assignment(&intializer_instructions, state, lhs, rhs,
1831				      this->get_location());
1832	    var->read_only = temp;
1833	 }
1834      }
1835
1836      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1837       *
1838       *     "It is an error to write to a const variable outside of
1839       *      its declaration, so they must be initialized when
1840       *      declared."
1841       */
1842      if (this->type->qualifier.constant && decl->initializer == NULL) {
1843	 _mesa_glsl_error(& loc, state,
1844			  "const declaration of `%s' must be initialized");
1845      }
1846
1847      /* Attempt to add the variable to the symbol table.  If this fails, it
1848       * means the variable has already been declared at this scope.  Arrays
1849       * fudge this rule a little bit.
1850       *
1851       * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1852       *
1853       *    "It is legal to declare an array without a size and then
1854       *    later re-declare the same name as an array of the same
1855       *    type and specify a size."
1856       */
1857      if (state->symbols->name_declared_this_scope(decl->identifier)) {
1858	 ir_variable *const earlier =
1859	    state->symbols->get_variable(decl->identifier);
1860
1861	 if ((earlier != NULL)
1862	     && (earlier->type->array_size() == 0)
1863	     && var->type->is_array()
1864	     && (var->type->element_type() == earlier->type->element_type())) {
1865	    /* FINISHME: This doesn't match the qualifiers on the two
1866	     * FINISHME: declarations.  It's not 100% clear whether this is
1867	     * FINISHME: required or not.
1868	     */
1869
1870	    /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1871	     *
1872	     *     "The size [of gl_TexCoord] can be at most
1873	     *     gl_MaxTextureCoords."
1874	     */
1875	    const unsigned size = unsigned(var->type->array_size());
1876	    if ((strcmp("gl_TexCoord", var->name) == 0)
1877		&& (size > state->Const.MaxTextureCoords)) {
1878	       YYLTYPE loc = this->get_location();
1879
1880	       _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
1881				"be larger than gl_MaxTextureCoords (%u)\n",
1882				state->Const.MaxTextureCoords);
1883	    } else if ((size > 0) && (size <= earlier->max_array_access)) {
1884	       YYLTYPE loc = this->get_location();
1885
1886	       _mesa_glsl_error(& loc, state, "array size must be > %u due to "
1887				"previous access",
1888				earlier->max_array_access);
1889	    }
1890
1891	    earlier->type = var->type;
1892	    delete var;
1893	    var = NULL;
1894	 } else {
1895	    YYLTYPE loc = this->get_location();
1896
1897	    _mesa_glsl_error(& loc, state, "`%s' redeclared",
1898			     decl->identifier);
1899	 }
1900
1901	 continue;
1902      }
1903
1904      /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1905       *
1906       *   "Identifiers starting with "gl_" are reserved for use by
1907       *   OpenGL, and may not be declared in a shader as either a
1908       *   variable or a function."
1909       */
1910      if (strncmp(decl->identifier, "gl_", 3) == 0) {
1911	 /* FINISHME: This should only trigger if we're not redefining
1912	  * FINISHME: a builtin (to add a qualifier, for example).
1913	  */
1914	 _mesa_glsl_error(& loc, state,
1915			  "identifier `%s' uses reserved `gl_' prefix",
1916			  decl->identifier);
1917      }
1918
1919      instructions->push_tail(var);
1920      instructions->append_list(&intializer_instructions);
1921
1922      /* Add the variable to the symbol table after processing the initializer.
1923       * This differs from most C-like languages, but it follows the GLSL
1924       * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
1925       * spec:
1926       *
1927       *     "Within a declaration, the scope of a name starts immediately
1928       *     after the initializer if present or immediately after the name
1929       *     being declared if not."
1930       */
1931      const bool added_variable =
1932	 state->symbols->add_variable(var->name, var);
1933      assert(added_variable);
1934   }
1935
1936
1937   /* Generally, variable declarations do not have r-values.  However,
1938    * one is used for the declaration in
1939    *
1940    * while (bool b = some_condition()) {
1941    *   ...
1942    * }
1943    *
1944    * so we return the rvalue from the last seen declaration here.
1945    */
1946   return result;
1947}
1948
1949
1950ir_rvalue *
1951ast_parameter_declarator::hir(exec_list *instructions,
1952			      struct _mesa_glsl_parse_state *state)
1953{
1954   void *ctx = state;
1955   const struct glsl_type *type;
1956   const char *name = NULL;
1957   YYLTYPE loc = this->get_location();
1958
1959   type = this->type->specifier->glsl_type(& name, state);
1960
1961   if (type == NULL) {
1962      if (name != NULL) {
1963	 _mesa_glsl_error(& loc, state,
1964			  "invalid type `%s' in declaration of `%s'",
1965			  name, this->identifier);
1966      } else {
1967	 _mesa_glsl_error(& loc, state,
1968			  "invalid type in declaration of `%s'",
1969			  this->identifier);
1970      }
1971
1972      type = glsl_type::error_type;
1973   }
1974
1975   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
1976    *
1977    *    "Functions that accept no input arguments need not use void in the
1978    *    argument list because prototypes (or definitions) are required and
1979    *    therefore there is no ambiguity when an empty argument list "( )" is
1980    *    declared. The idiom "(void)" as a parameter list is provided for
1981    *    convenience."
1982    *
1983    * Placing this check here prevents a void parameter being set up
1984    * for a function, which avoids tripping up checks for main taking
1985    * parameters and lookups of an unnamed symbol.
1986    */
1987   if (type->is_void()) {
1988      if (this->identifier != NULL)
1989	 _mesa_glsl_error(& loc, state,
1990			  "named parameter cannot have type `void'");
1991
1992      is_void = true;
1993      return NULL;
1994   }
1995
1996   if (formal_parameter && (this->identifier == NULL)) {
1997      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
1998      return NULL;
1999   }
2000
2001   is_void = false;
2002   ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2003
2004   /* FINISHME: Handle array declarations.  Note that this requires
2005    * FINISHME: complete handling of constant expressions.
2006    */
2007
2008   /* Apply any specified qualifiers to the parameter declaration.  Note that
2009    * for function parameters the default mode is 'in'.
2010    */
2011   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2012
2013   instructions->push_tail(var);
2014
2015   /* Parameter declarations do not have r-values.
2016    */
2017   return NULL;
2018}
2019
2020
2021void
2022ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2023					    bool formal,
2024					    exec_list *ir_parameters,
2025					    _mesa_glsl_parse_state *state)
2026{
2027   ast_parameter_declarator *void_param = NULL;
2028   unsigned count = 0;
2029
2030   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2031      param->formal_parameter = formal;
2032      param->hir(ir_parameters, state);
2033
2034      if (param->is_void)
2035	 void_param = param;
2036
2037      count++;
2038   }
2039
2040   if ((void_param != NULL) && (count > 1)) {
2041      YYLTYPE loc = void_param->get_location();
2042
2043      _mesa_glsl_error(& loc, state,
2044		       "`void' parameter must be only parameter");
2045   }
2046}
2047
2048
2049ir_rvalue *
2050ast_function::hir(exec_list *instructions,
2051		  struct _mesa_glsl_parse_state *state)
2052{
2053   void *ctx = state;
2054   ir_function *f = NULL;
2055   ir_function_signature *sig = NULL;
2056   exec_list hir_parameters;
2057
2058   const char *const name = identifier;
2059
2060   /* Convert the list of function parameters to HIR now so that they can be
2061    * used below to compare this function's signature with previously seen
2062    * signatures for functions with the same name.
2063    */
2064   ast_parameter_declarator::parameters_to_hir(& this->parameters,
2065					       is_definition,
2066					       & hir_parameters, state);
2067
2068   const char *return_type_name;
2069   const glsl_type *return_type =
2070      this->return_type->specifier->glsl_type(& return_type_name, state);
2071
2072   assert(return_type != NULL);
2073
2074   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2075    * "No qualifier is allowed on the return type of a function."
2076    */
2077   if (this->return_type->has_qualifiers()) {
2078      YYLTYPE loc = this->get_location();
2079      _mesa_glsl_error(& loc, state,
2080		       "function `%s' return type has qualifiers", name);
2081   }
2082
2083   /* Verify that this function's signature either doesn't match a previously
2084    * seen signature for a function with the same name, or, if a match is found,
2085    * that the previously seen signature does not have an associated definition.
2086    */
2087   f = state->symbols->get_function(name);
2088   if (f != NULL) {
2089      ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
2090      if (sig != NULL) {
2091	 const char *badvar = sig->qualifiers_match(&hir_parameters);
2092	 if (badvar != NULL) {
2093	    YYLTYPE loc = this->get_location();
2094
2095	    _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2096			     "qualifiers don't match prototype", name, badvar);
2097	 }
2098
2099	 if (sig->return_type != return_type) {
2100	    YYLTYPE loc = this->get_location();
2101
2102	    _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2103			     "match prototype", name);
2104	 }
2105
2106	 if (is_definition && sig->is_defined) {
2107	    YYLTYPE loc = this->get_location();
2108
2109	    _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2110	    sig = NULL;
2111	 }
2112      }
2113   } else if (state->symbols->name_declared_this_scope(name)) {
2114      /* This function name shadows a non-function use of the same name.
2115       */
2116      YYLTYPE loc = this->get_location();
2117
2118      _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
2119		       "non-function", name);
2120      sig = NULL;
2121   } else {
2122      f = new(ctx) ir_function(name);
2123      state->symbols->add_function(f->name, f);
2124
2125      /* Emit the new function header */
2126      instructions->push_tail(f);
2127   }
2128
2129   /* Verify the return type of main() */
2130   if (strcmp(name, "main") == 0) {
2131      if (! return_type->is_void()) {
2132	 YYLTYPE loc = this->get_location();
2133
2134	 _mesa_glsl_error(& loc, state, "main() must return void");
2135      }
2136
2137      if (!hir_parameters.is_empty()) {
2138	 YYLTYPE loc = this->get_location();
2139
2140	 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2141      }
2142   }
2143
2144   /* Finish storing the information about this new function in its signature.
2145    */
2146   if (sig == NULL) {
2147      sig = new(ctx) ir_function_signature(return_type);
2148      f->add_signature(sig);
2149   }
2150
2151   sig->replace_parameters(&hir_parameters);
2152   signature = sig;
2153
2154   /* Function declarations (prototypes) do not have r-values.
2155    */
2156   return NULL;
2157}
2158
2159
2160ir_rvalue *
2161ast_function_definition::hir(exec_list *instructions,
2162			     struct _mesa_glsl_parse_state *state)
2163{
2164   prototype->is_definition = true;
2165   prototype->hir(instructions, state);
2166
2167   ir_function_signature *signature = prototype->signature;
2168
2169   assert(state->current_function == NULL);
2170   state->current_function = signature;
2171   state->found_return = false;
2172
2173   /* Duplicate parameters declared in the prototype as concrete variables.
2174    * Add these to the symbol table.
2175    */
2176   state->symbols->push_scope();
2177   foreach_iter(exec_list_iterator, iter, signature->parameters) {
2178      ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2179
2180      assert(var != NULL);
2181
2182      /* The only way a parameter would "exist" is if two parameters have
2183       * the same name.
2184       */
2185      if (state->symbols->name_declared_this_scope(var->name)) {
2186	 YYLTYPE loc = this->get_location();
2187
2188	 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2189      } else {
2190	 state->symbols->add_variable(var->name, var);
2191      }
2192   }
2193
2194   /* Convert the body of the function to HIR. */
2195   this->body->hir(&signature->body, state);
2196   signature->is_defined = true;
2197
2198   state->symbols->pop_scope();
2199
2200   assert(state->current_function == signature);
2201   state->current_function = NULL;
2202
2203   if (!signature->return_type->is_void() && !state->found_return) {
2204      YYLTYPE loc = this->get_location();
2205      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2206		       "%s, but no return statement",
2207		       signature->function_name(),
2208		       signature->return_type->name);
2209   }
2210
2211   /* Function definitions do not have r-values.
2212    */
2213   return NULL;
2214}
2215
2216
2217ir_rvalue *
2218ast_jump_statement::hir(exec_list *instructions,
2219			struct _mesa_glsl_parse_state *state)
2220{
2221   void *ctx = state;
2222
2223   switch (mode) {
2224   case ast_return: {
2225      ir_return *inst;
2226      assert(state->current_function);
2227
2228      if (opt_return_value) {
2229	 if (state->current_function->return_type->base_type ==
2230	     GLSL_TYPE_VOID) {
2231	    YYLTYPE loc = this->get_location();
2232
2233	    _mesa_glsl_error(& loc, state,
2234			     "`return` with a value, in function `%s' "
2235			     "returning void",
2236			     state->current_function->function_name());
2237	 }
2238
2239	 ir_expression *const ret = (ir_expression *)
2240	    opt_return_value->hir(instructions, state);
2241	 assert(ret != NULL);
2242
2243	 /* Implicit conversions are not allowed for return values. */
2244	 if (state->current_function->return_type != ret->type) {
2245	    YYLTYPE loc = this->get_location();
2246
2247	    _mesa_glsl_error(& loc, state,
2248			     "`return' with wrong type %s, in function `%s' "
2249			     "returning %s",
2250			     ret->type->name,
2251			     state->current_function->function_name(),
2252			     state->current_function->return_type->name);
2253	 }
2254
2255	 inst = new(ctx) ir_return(ret);
2256      } else {
2257	 if (state->current_function->return_type->base_type !=
2258	     GLSL_TYPE_VOID) {
2259	    YYLTYPE loc = this->get_location();
2260
2261	    _mesa_glsl_error(& loc, state,
2262			     "`return' with no value, in function %s returning "
2263			     "non-void",
2264			     state->current_function->function_name());
2265	 }
2266	 inst = new(ctx) ir_return;
2267      }
2268
2269      state->found_return = true;
2270      instructions->push_tail(inst);
2271      break;
2272   }
2273
2274   case ast_discard:
2275      if (state->target != fragment_shader) {
2276	 YYLTYPE loc = this->get_location();
2277
2278	 _mesa_glsl_error(& loc, state,
2279			  "`discard' may only appear in a fragment shader");
2280      }
2281      instructions->push_tail(new(ctx) ir_discard);
2282      break;
2283
2284   case ast_break:
2285   case ast_continue:
2286      /* FINISHME: Handle switch-statements.  They cannot contain 'continue',
2287       * FINISHME: and they use a different IR instruction for 'break'.
2288       */
2289      /* FINISHME: Correctly handle the nesting.  If a switch-statement is
2290       * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2291       * FINISHME: loop.
2292       */
2293      if (state->loop_or_switch_nesting == NULL) {
2294	 YYLTYPE loc = this->get_location();
2295
2296	 _mesa_glsl_error(& loc, state,
2297			  "`%s' may only appear in a loop",
2298			  (mode == ast_break) ? "break" : "continue");
2299      } else {
2300	 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2301
2302	 if (loop != NULL) {
2303	    ir_loop_jump *const jump =
2304	       new(ctx) ir_loop_jump((mode == ast_break)
2305				     ? ir_loop_jump::jump_break
2306				     : ir_loop_jump::jump_continue);
2307	    instructions->push_tail(jump);
2308	 }
2309      }
2310
2311      break;
2312   }
2313
2314   /* Jump instructions do not have r-values.
2315    */
2316   return NULL;
2317}
2318
2319
2320ir_rvalue *
2321ast_selection_statement::hir(exec_list *instructions,
2322			     struct _mesa_glsl_parse_state *state)
2323{
2324   void *ctx = state;
2325
2326   ir_rvalue *const condition = this->condition->hir(instructions, state);
2327
2328   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2329    *
2330    *    "Any expression whose type evaluates to a Boolean can be used as the
2331    *    conditional expression bool-expression. Vector types are not accepted
2332    *    as the expression to if."
2333    *
2334    * The checks are separated so that higher quality diagnostics can be
2335    * generated for cases where both rules are violated.
2336    */
2337   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2338      YYLTYPE loc = this->condition->get_location();
2339
2340      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2341		       "boolean");
2342   }
2343
2344   ir_if *const stmt = new(ctx) ir_if(condition);
2345
2346   if (then_statement != NULL)
2347      then_statement->hir(& stmt->then_instructions, state);
2348
2349   if (else_statement != NULL)
2350      else_statement->hir(& stmt->else_instructions, state);
2351
2352   instructions->push_tail(stmt);
2353
2354   /* if-statements do not have r-values.
2355    */
2356   return NULL;
2357}
2358
2359
2360void
2361ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2362					  struct _mesa_glsl_parse_state *state)
2363{
2364   void *ctx = state;
2365
2366   if (condition != NULL) {
2367      ir_rvalue *const cond =
2368	 condition->hir(& stmt->body_instructions, state);
2369
2370      if ((cond == NULL)
2371	  || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2372	 YYLTYPE loc = condition->get_location();
2373
2374	 _mesa_glsl_error(& loc, state,
2375			  "loop condition must be scalar boolean");
2376      } else {
2377	 /* As the first code in the loop body, generate a block that looks
2378	  * like 'if (!condition) break;' as the loop termination condition.
2379	  */
2380	 ir_rvalue *const not_cond =
2381	    new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2382				   NULL);
2383
2384	 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2385
2386	 ir_jump *const break_stmt =
2387	    new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2388
2389	 if_stmt->then_instructions.push_tail(break_stmt);
2390	 stmt->body_instructions.push_tail(if_stmt);
2391      }
2392   }
2393}
2394
2395
2396ir_rvalue *
2397ast_iteration_statement::hir(exec_list *instructions,
2398			     struct _mesa_glsl_parse_state *state)
2399{
2400   void *ctx = state;
2401
2402   /* For-loops and while-loops start a new scope, but do-while loops do not.
2403    */
2404   if (mode != ast_do_while)
2405      state->symbols->push_scope();
2406
2407   if (init_statement != NULL)
2408      init_statement->hir(instructions, state);
2409
2410   ir_loop *const stmt = new(ctx) ir_loop();
2411   instructions->push_tail(stmt);
2412
2413   /* Track the current loop and / or switch-statement nesting.
2414    */
2415   ir_instruction *const nesting = state->loop_or_switch_nesting;
2416   state->loop_or_switch_nesting = stmt;
2417
2418   if (mode != ast_do_while)
2419      condition_to_hir(stmt, state);
2420
2421   if (body != NULL)
2422      body->hir(& stmt->body_instructions, state);
2423
2424   if (rest_expression != NULL)
2425      rest_expression->hir(& stmt->body_instructions, state);
2426
2427   if (mode == ast_do_while)
2428      condition_to_hir(stmt, state);
2429
2430   if (mode != ast_do_while)
2431      state->symbols->pop_scope();
2432
2433   /* Restore previous nesting before returning.
2434    */
2435   state->loop_or_switch_nesting = nesting;
2436
2437   /* Loops do not have r-values.
2438    */
2439   return NULL;
2440}
2441
2442
2443ir_rvalue *
2444ast_type_specifier::hir(exec_list *instructions,
2445			  struct _mesa_glsl_parse_state *state)
2446{
2447   if (this->structure != NULL)
2448      return this->structure->hir(instructions, state);
2449
2450   return NULL;
2451}
2452
2453
2454ir_rvalue *
2455ast_struct_specifier::hir(exec_list *instructions,
2456			  struct _mesa_glsl_parse_state *state)
2457{
2458   unsigned decl_count = 0;
2459
2460   /* Make an initial pass over the list of structure fields to determine how
2461    * many there are.  Each element in this list is an ast_declarator_list.
2462    * This means that we actually need to count the number of elements in the
2463    * 'declarations' list in each of the elements.
2464    */
2465   foreach_list_typed (ast_declarator_list, decl_list, link,
2466		       &this->declarations) {
2467      foreach_list_const (decl_ptr, & decl_list->declarations) {
2468	 decl_count++;
2469      }
2470   }
2471
2472
2473   /* Allocate storage for the structure fields and process the field
2474    * declarations.  As the declarations are processed, try to also convert
2475    * the types to HIR.  This ensures that structure definitions embedded in
2476    * other structure definitions are processed.
2477    */
2478   glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2479						  decl_count);
2480
2481   unsigned i = 0;
2482   foreach_list_typed (ast_declarator_list, decl_list, link,
2483		       &this->declarations) {
2484      const char *type_name;
2485
2486      decl_list->type->specifier->hir(instructions, state);
2487
2488      const glsl_type *decl_type =
2489	 decl_list->type->specifier->glsl_type(& type_name, state);
2490
2491      foreach_list_typed (ast_declaration, decl, link,
2492			  &decl_list->declarations) {
2493	 const struct glsl_type *const field_type =
2494	    (decl->is_array)
2495	    ? process_array_type(decl_type, decl->array_size, state)
2496	    : decl_type;
2497
2498	 fields[i].type = (field_type != NULL)
2499	    ? field_type : glsl_type::error_type;
2500	 fields[i].name = decl->identifier;
2501	 i++;
2502      }
2503   }
2504
2505   assert(i == decl_count);
2506
2507   const char *name;
2508   if (this->name == NULL) {
2509      static unsigned anon_count = 1;
2510      char buf[32];
2511
2512      snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count);
2513      anon_count++;
2514
2515      name = strdup(buf);
2516   } else {
2517      name = this->name;
2518   }
2519
2520   const glsl_type *t =
2521      glsl_type::get_record_instance(fields, decl_count, name);
2522
2523   YYLTYPE loc = this->get_location();
2524   if (!state->symbols->add_type(name, t)) {
2525      _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2526   } else {
2527      /* This logic is a bit tricky.  It is an error to declare a structure at
2528       * global scope if there is also a function with the same name.
2529       */
2530      if ((state->current_function == NULL)
2531	  && (state->symbols->get_function(name) != NULL)) {
2532	 _mesa_glsl_error(& loc, state, "name `%s' previously defined", name);
2533      } else {
2534	 t->generate_constructor(state->symbols);
2535      }
2536
2537      const glsl_type **s = (const glsl_type **)
2538	 realloc(state->user_structures,
2539		 sizeof(state->user_structures[0]) *
2540		 (state->num_user_structures + 1));
2541      if (s != NULL) {
2542	 s[state->num_user_structures] = t;
2543	 state->user_structures = s;
2544	 state->num_user_structures++;
2545      }
2546   }
2547
2548   /* Structure type definitions do not have r-values.
2549    */
2550   return NULL;
2551}
2552