ast_to_hir.cpp revision e942f328365309a1d8240cfe8eb5d88391015f37
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "main/core.h" /* for struct gl_extensions */
53#include "glsl_symbol_table.h"
54#include "glsl_parser_extras.h"
55#include "ast.h"
56#include "glsl_types.h"
57#include "ir.h"
58
59void
60_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61{
62   _mesa_glsl_initialize_variables(instructions, state);
63   _mesa_glsl_initialize_functions(state);
64
65   state->symbols->language_version = state->language_version;
66
67   state->current_function = NULL;
68
69   /* Section 4.2 of the GLSL 1.20 specification states:
70    * "The built-in functions are scoped in a scope outside the global scope
71    *  users declare global variables in.  That is, a shader's global scope,
72    *  available for user-defined functions and global variables, is nested
73    *  inside the scope containing the built-in functions."
74    *
75    * Since built-in functions like ftransform() access built-in variables,
76    * it follows that those must be in the outer scope as well.
77    *
78    * We push scope here to create this nesting effect...but don't pop.
79    * This way, a shader's globals are still in the symbol table for use
80    * by the linker.
81    */
82   state->symbols->push_scope();
83
84   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85      ast->hir(instructions, state);
86}
87
88
89/**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to     Type that the operand it to be converted to
95 * \param from   Operand that is being converted
96 * \param state  GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102bool
103apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104			  struct _mesa_glsl_parse_state *state)
105{
106   void *ctx = state;
107   if (to->base_type == from->type->base_type)
108      return true;
109
110   /* This conversion was added in GLSL 1.20.  If the compilation mode is
111    * GLSL 1.10, the conversion is skipped.
112    */
113   if (state->language_version < 120)
114      return false;
115
116   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117    *
118    *    "There are no implicit array or structure conversions. For
119    *    example, an array of int cannot be implicitly converted to an
120    *    array of float. There are no implicit conversions between
121    *    signed and unsigned integers."
122    */
123   /* FINISHME: The above comment is partially a lie.  There is int/uint
124    * FINISHME: conversion for immediate constants.
125    */
126   if (!to->is_float() || !from->type->is_numeric())
127      return false;
128
129   /* Convert to a floating point type with the same number of components
130    * as the original type - i.e. int to float, not int to vec4.
131    */
132   to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133			        from->type->matrix_columns);
134
135   switch (from->type->base_type) {
136   case GLSL_TYPE_INT:
137      from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138      break;
139   case GLSL_TYPE_UINT:
140      from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141      break;
142   case GLSL_TYPE_BOOL:
143      from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144      break;
145   default:
146      assert(0);
147   }
148
149   return true;
150}
151
152
153static const struct glsl_type *
154arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155		       bool multiply,
156		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157{
158   const glsl_type *type_a = value_a->type;
159   const glsl_type *type_b = value_b->type;
160
161   /* From GLSL 1.50 spec, page 56:
162    *
163    *    "The arithmetic binary operators add (+), subtract (-),
164    *    multiply (*), and divide (/) operate on integer and
165    *    floating-point scalars, vectors, and matrices."
166    */
167   if (!type_a->is_numeric() || !type_b->is_numeric()) {
168      _mesa_glsl_error(loc, state,
169		       "Operands to arithmetic operators must be numeric");
170      return glsl_type::error_type;
171   }
172
173
174   /*    "If one operand is floating-point based and the other is
175    *    not, then the conversions from Section 4.1.10 "Implicit
176    *    Conversions" are applied to the non-floating-point-based operand."
177    */
178   if (!apply_implicit_conversion(type_a, value_b, state)
179       && !apply_implicit_conversion(type_b, value_a, state)) {
180      _mesa_glsl_error(loc, state,
181		       "Could not implicitly convert operands to "
182		       "arithmetic operator");
183      return glsl_type::error_type;
184   }
185   type_a = value_a->type;
186   type_b = value_b->type;
187
188   /*    "If the operands are integer types, they must both be signed or
189    *    both be unsigned."
190    *
191    * From this rule and the preceeding conversion it can be inferred that
192    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193    * The is_numeric check above already filtered out the case where either
194    * type is not one of these, so now the base types need only be tested for
195    * equality.
196    */
197   if (type_a->base_type != type_b->base_type) {
198      _mesa_glsl_error(loc, state,
199		       "base type mismatch for arithmetic operator");
200      return glsl_type::error_type;
201   }
202
203   /*    "All arithmetic binary operators result in the same fundamental type
204    *    (signed integer, unsigned integer, or floating-point) as the
205    *    operands they operate on, after operand type conversion. After
206    *    conversion, the following cases are valid
207    *
208    *    * The two operands are scalars. In this case the operation is
209    *      applied, resulting in a scalar."
210    */
211   if (type_a->is_scalar() && type_b->is_scalar())
212      return type_a;
213
214   /*   "* One operand is a scalar, and the other is a vector or matrix.
215    *      In this case, the scalar operation is applied independently to each
216    *      component of the vector or matrix, resulting in the same size
217    *      vector or matrix."
218    */
219   if (type_a->is_scalar()) {
220      if (!type_b->is_scalar())
221	 return type_b;
222   } else if (type_b->is_scalar()) {
223      return type_a;
224   }
225
226   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228    * handled.
229    */
230   assert(!type_a->is_scalar());
231   assert(!type_b->is_scalar());
232
233   /*   "* The two operands are vectors of the same size. In this case, the
234    *      operation is done component-wise resulting in the same size
235    *      vector."
236    */
237   if (type_a->is_vector() && type_b->is_vector()) {
238      if (type_a == type_b) {
239	 return type_a;
240      } else {
241	 _mesa_glsl_error(loc, state,
242			  "vector size mismatch for arithmetic operator");
243	 return glsl_type::error_type;
244      }
245   }
246
247   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249    * <vector, vector> have been handled.  At least one of the operands must
250    * be matrix.  Further, since there are no integer matrix types, the base
251    * type of both operands must be float.
252    */
253   assert(type_a->is_matrix() || type_b->is_matrix());
254   assert(type_a->base_type == GLSL_TYPE_FLOAT);
255   assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257   /*   "* The operator is add (+), subtract (-), or divide (/), and the
258    *      operands are matrices with the same number of rows and the same
259    *      number of columns. In this case, the operation is done component-
260    *      wise resulting in the same size matrix."
261    *    * The operator is multiply (*), where both operands are matrices or
262    *      one operand is a vector and the other a matrix. A right vector
263    *      operand is treated as a column vector and a left vector operand as a
264    *      row vector. In all these cases, it is required that the number of
265    *      columns of the left operand is equal to the number of rows of the
266    *      right operand. Then, the multiply (*) operation does a linear
267    *      algebraic multiply, yielding an object that has the same number of
268    *      rows as the left operand and the same number of columns as the right
269    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
270    *      more detail how vectors and matrices are operated on."
271    */
272   if (! multiply) {
273      if (type_a == type_b)
274	 return type_a;
275   } else {
276      if (type_a->is_matrix() && type_b->is_matrix()) {
277	 /* Matrix multiply.  The columns of A must match the rows of B.  Given
278	  * the other previously tested constraints, this means the vector type
279	  * of a row from A must be the same as the vector type of a column from
280	  * B.
281	  */
282	 if (type_a->row_type() == type_b->column_type()) {
283	    /* The resulting matrix has the number of columns of matrix B and
284	     * the number of rows of matrix A.  We get the row count of A by
285	     * looking at the size of a vector that makes up a column.  The
286	     * transpose (size of a row) is done for B.
287	     */
288	    const glsl_type *const type =
289	       glsl_type::get_instance(type_a->base_type,
290				       type_a->column_type()->vector_elements,
291				       type_b->row_type()->vector_elements);
292	    assert(type != glsl_type::error_type);
293
294	    return type;
295	 }
296      } else if (type_a->is_matrix()) {
297	 /* A is a matrix and B is a column vector.  Columns of A must match
298	  * rows of B.  Given the other previously tested constraints, this
299	  * means the vector type of a row from A must be the same as the
300	  * vector the type of B.
301	  */
302	 if (type_a->row_type() == type_b) {
303	    /* The resulting vector has a number of elements equal to
304	     * the number of rows of matrix A. */
305	    const glsl_type *const type =
306	       glsl_type::get_instance(type_a->base_type,
307				       type_a->column_type()->vector_elements,
308				       1);
309	    assert(type != glsl_type::error_type);
310
311	    return type;
312	 }
313      } else {
314	 assert(type_b->is_matrix());
315
316	 /* A is a row vector and B is a matrix.  Columns of A must match rows
317	  * of B.  Given the other previously tested constraints, this means
318	  * the type of A must be the same as the vector type of a column from
319	  * B.
320	  */
321	 if (type_a == type_b->column_type()) {
322	    /* The resulting vector has a number of elements equal to
323	     * the number of columns of matrix B. */
324	    const glsl_type *const type =
325	       glsl_type::get_instance(type_a->base_type,
326				       type_b->row_type()->vector_elements,
327				       1);
328	    assert(type != glsl_type::error_type);
329
330	    return type;
331	 }
332      }
333
334      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335      return glsl_type::error_type;
336   }
337
338
339   /*    "All other cases are illegal."
340    */
341   _mesa_glsl_error(loc, state, "type mismatch");
342   return glsl_type::error_type;
343}
344
345
346static const struct glsl_type *
347unary_arithmetic_result_type(const struct glsl_type *type,
348			     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349{
350   /* From GLSL 1.50 spec, page 57:
351    *
352    *    "The arithmetic unary operators negate (-), post- and pre-increment
353    *     and decrement (-- and ++) operate on integer or floating-point
354    *     values (including vectors and matrices). All unary operators work
355    *     component-wise on their operands. These result with the same type
356    *     they operated on."
357    */
358   if (!type->is_numeric()) {
359      _mesa_glsl_error(loc, state,
360		       "Operands to arithmetic operators must be numeric");
361      return glsl_type::error_type;
362   }
363
364   return type;
365}
366
367/**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376static const struct glsl_type *
377bit_logic_result_type(const struct glsl_type *type_a,
378                      const struct glsl_type *type_b,
379                      ast_operators op,
380                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381{
382    if (state->language_version < 130) {
383       _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384       return glsl_type::error_type;
385    }
386
387    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388     *
389     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390     *     (|). The operands must be of type signed or unsigned integers or
391     *     integer vectors."
392     */
393    if (!type_a->is_integer()) {
394       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395                         ast_expression::operator_string(op));
396       return glsl_type::error_type;
397    }
398    if (!type_b->is_integer()) {
399       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400                        ast_expression::operator_string(op));
401       return glsl_type::error_type;
402    }
403
404    /*     "The fundamental types of the operands (signed or unsigned) must
405     *     match,"
406     */
407    if (type_a->base_type != type_b->base_type) {
408       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409                        "base type", ast_expression::operator_string(op));
410       return glsl_type::error_type;
411    }
412
413    /*     "The operands cannot be vectors of differing size." */
414    if (type_a->is_vector() &&
415        type_b->is_vector() &&
416        type_a->vector_elements != type_b->vector_elements) {
417       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418                        "different sizes", ast_expression::operator_string(op));
419       return glsl_type::error_type;
420    }
421
422    /*     "If one operand is a scalar and the other a vector, the scalar is
423     *     applied component-wise to the vector, resulting in the same type as
424     *     the vector. The fundamental types of the operands [...] will be the
425     *     resulting fundamental type."
426     */
427    if (type_a->is_scalar())
428        return type_b;
429    else
430        return type_a;
431}
432
433static const struct glsl_type *
434modulus_result_type(const struct glsl_type *type_a,
435		    const struct glsl_type *type_b,
436		    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437{
438   /* From GLSL 1.50 spec, page 56:
439    *    "The operator modulus (%) operates on signed or unsigned integers or
440    *    integer vectors. The operand types must both be signed or both be
441    *    unsigned."
442    */
443   if (!type_a->is_integer() || !type_b->is_integer()
444       || (type_a->base_type != type_b->base_type)) {
445      _mesa_glsl_error(loc, state, "type mismatch");
446      return glsl_type::error_type;
447   }
448
449   /*    "The operands cannot be vectors of differing size. If one operand is
450    *    a scalar and the other vector, then the scalar is applied component-
451    *    wise to the vector, resulting in the same type as the vector. If both
452    *    are vectors of the same size, the result is computed component-wise."
453    */
454   if (type_a->is_vector()) {
455      if (!type_b->is_vector()
456	  || (type_a->vector_elements == type_b->vector_elements))
457	 return type_a;
458   } else
459      return type_b;
460
461   /*    "The operator modulus (%) is not defined for any other data types
462    *    (non-integer types)."
463    */
464   _mesa_glsl_error(loc, state, "type mismatch");
465   return glsl_type::error_type;
466}
467
468
469static const struct glsl_type *
470relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472{
473   const glsl_type *type_a = value_a->type;
474   const glsl_type *type_b = value_b->type;
475
476   /* From GLSL 1.50 spec, page 56:
477    *    "The relational operators greater than (>), less than (<), greater
478    *    than or equal (>=), and less than or equal (<=) operate only on
479    *    scalar integer and scalar floating-point expressions."
480    */
481   if (!type_a->is_numeric()
482       || !type_b->is_numeric()
483       || !type_a->is_scalar()
484       || !type_b->is_scalar()) {
485      _mesa_glsl_error(loc, state,
486		       "Operands to relational operators must be scalar and "
487		       "numeric");
488      return glsl_type::error_type;
489   }
490
491   /*    "Either the operands' types must match, or the conversions from
492    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
493    *    operand, after which the types must match."
494    */
495   if (!apply_implicit_conversion(type_a, value_b, state)
496       && !apply_implicit_conversion(type_b, value_a, state)) {
497      _mesa_glsl_error(loc, state,
498		       "Could not implicitly convert operands to "
499		       "relational operator");
500      return glsl_type::error_type;
501   }
502   type_a = value_a->type;
503   type_b = value_b->type;
504
505   if (type_a->base_type != type_b->base_type) {
506      _mesa_glsl_error(loc, state, "base type mismatch");
507      return glsl_type::error_type;
508   }
509
510   /*    "The result is scalar Boolean."
511    */
512   return glsl_type::bool_type;
513}
514
515/**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524static const struct glsl_type *
525shift_result_type(const struct glsl_type *type_a,
526                  const struct glsl_type *type_b,
527                  ast_operators op,
528                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529{
530   if (state->language_version < 130) {
531      _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532      return glsl_type::error_type;
533   }
534
535   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536    *
537    *     "The shift operators (<<) and (>>). For both operators, the operands
538    *     must be signed or unsigned integers or integer vectors. One operand
539    *     can be signed while the other is unsigned."
540    */
541   if (!type_a->is_integer()) {
542      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543              "integer vector", ast_expression::operator_string(op));
544     return glsl_type::error_type;
545
546   }
547   if (!type_b->is_integer()) {
548      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549              "integer vector", ast_expression::operator_string(op));
550     return glsl_type::error_type;
551   }
552
553   /*     "If the first operand is a scalar, the second operand has to be
554    *     a scalar as well."
555    */
556   if (type_a->is_scalar() && !type_b->is_scalar()) {
557      _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558              "second must be scalar as well",
559              ast_expression::operator_string(op));
560     return glsl_type::error_type;
561   }
562
563   /* If both operands are vectors, check that they have same number of
564    * elements.
565    */
566   if (type_a->is_vector() &&
567      type_b->is_vector() &&
568      type_a->vector_elements != type_b->vector_elements) {
569      _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570              "have same number of elements",
571              ast_expression::operator_string(op));
572     return glsl_type::error_type;
573   }
574
575   /*     "In all cases, the resulting type will be the same type as the left
576    *     operand."
577    */
578   return type_a;
579}
580
581/**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location.  If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned.  This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597ir_rvalue *
598validate_assignment(struct _mesa_glsl_parse_state *state,
599		    const glsl_type *lhs_type, ir_rvalue *rhs)
600{
601   /* If there is already some error in the RHS, just return it.  Anything
602    * else will lead to an avalanche of error message back to the user.
603    */
604   if (rhs->type->is_error())
605      return rhs;
606
607   /* If the types are identical, the assignment can trivially proceed.
608    */
609   if (rhs->type == lhs_type)
610      return rhs;
611
612   /* If the array element types are the same and the size of the LHS is zero,
613    * the assignment is okay.
614    *
615    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
616    * is handled by ir_dereference::is_lvalue.
617    */
618   if (lhs_type->is_array() && rhs->type->is_array()
619       && (lhs_type->element_type() == rhs->type->element_type())
620       && (lhs_type->array_size() == 0)) {
621      return rhs;
622   }
623
624   /* Check for implicit conversion in GLSL 1.20 */
625   if (apply_implicit_conversion(lhs_type, rhs, state)) {
626      if (rhs->type == lhs_type)
627	 return rhs;
628   }
629
630   return NULL;
631}
632
633ir_rvalue *
634do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
635	      ir_rvalue *lhs, ir_rvalue *rhs,
636	      YYLTYPE lhs_loc)
637{
638   void *ctx = state;
639   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
640
641   if (!error_emitted) {
642      if (!lhs->is_lvalue()) {
643	 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
644	 error_emitted = true;
645      }
646
647      if (state->es_shader && lhs->type->is_array()) {
648	 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
649			  "allowed in GLSL ES 1.00.");
650	 error_emitted = true;
651      }
652   }
653
654   ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
655   if (new_rhs == NULL) {
656      _mesa_glsl_error(& lhs_loc, state, "type mismatch");
657   } else {
658      rhs = new_rhs;
659
660      /* If the LHS array was not declared with a size, it takes it size from
661       * the RHS.  If the LHS is an l-value and a whole array, it must be a
662       * dereference of a variable.  Any other case would require that the LHS
663       * is either not an l-value or not a whole array.
664       */
665      if (lhs->type->array_size() == 0) {
666	 ir_dereference *const d = lhs->as_dereference();
667
668	 assert(d != NULL);
669
670	 ir_variable *const var = d->variable_referenced();
671
672	 assert(var != NULL);
673
674	 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
675	    /* FINISHME: This should actually log the location of the RHS. */
676	    _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
677			     "previous access",
678			     var->max_array_access);
679	 }
680
681	 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
682						   rhs->type->array_size());
683	 d->type = var->type;
684      }
685   }
686
687   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
688    * but not post_inc) need the converted assigned value as an rvalue
689    * to handle things like:
690    *
691    * i = j += 1;
692    *
693    * So we always just store the computed value being assigned to a
694    * temporary and return a deref of that temporary.  If the rvalue
695    * ends up not being used, the temp will get copy-propagated out.
696    */
697   ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
698					   ir_var_temporary);
699   ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
700   instructions->push_tail(var);
701   instructions->push_tail(new(ctx) ir_assignment(deref_var,
702						  rhs,
703						  NULL));
704   deref_var = new(ctx) ir_dereference_variable(var);
705
706   if (!error_emitted)
707      instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
708
709   return new(ctx) ir_dereference_variable(var);
710}
711
712static ir_rvalue *
713get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
714{
715   void *ctx = talloc_parent(lvalue);
716   ir_variable *var;
717
718   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
719			      ir_var_temporary);
720   instructions->push_tail(var);
721   var->mode = ir_var_auto;
722
723   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
724						  lvalue, NULL));
725
726   /* Once we've created this temporary, mark it read only so it's no
727    * longer considered an lvalue.
728    */
729   var->read_only = true;
730
731   return new(ctx) ir_dereference_variable(var);
732}
733
734
735ir_rvalue *
736ast_node::hir(exec_list *instructions,
737	      struct _mesa_glsl_parse_state *state)
738{
739   (void) instructions;
740   (void) state;
741
742   return NULL;
743}
744
745static void
746mark_whole_array_access(ir_rvalue *access)
747{
748   ir_dereference_variable *deref = access->as_dereference_variable();
749
750   if (deref) {
751      deref->var->max_array_access = deref->type->length - 1;
752   }
753}
754
755static ir_rvalue *
756do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
757{
758   int join_op;
759   ir_rvalue *cmp = NULL;
760
761   if (operation == ir_binop_all_equal)
762      join_op = ir_binop_logic_and;
763   else
764      join_op = ir_binop_logic_or;
765
766   switch (op0->type->base_type) {
767   case GLSL_TYPE_FLOAT:
768   case GLSL_TYPE_UINT:
769   case GLSL_TYPE_INT:
770   case GLSL_TYPE_BOOL:
771      return new(mem_ctx) ir_expression(operation, op0, op1);
772
773   case GLSL_TYPE_ARRAY: {
774      for (unsigned int i = 0; i < op0->type->length; i++) {
775	 ir_rvalue *e0, *e1, *result;
776
777	 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
778						new(mem_ctx) ir_constant(i));
779	 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
780						new(mem_ctx) ir_constant(i));
781	 result = do_comparison(mem_ctx, operation, e0, e1);
782
783	 if (cmp) {
784	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
785	 } else {
786	    cmp = result;
787	 }
788      }
789
790      mark_whole_array_access(op0);
791      mark_whole_array_access(op1);
792      break;
793   }
794
795   case GLSL_TYPE_STRUCT: {
796      for (unsigned int i = 0; i < op0->type->length; i++) {
797	 ir_rvalue *e0, *e1, *result;
798	 const char *field_name = op0->type->fields.structure[i].name;
799
800	 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
801						 field_name);
802	 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
803						 field_name);
804	 result = do_comparison(mem_ctx, operation, e0, e1);
805
806	 if (cmp) {
807	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
808	 } else {
809	    cmp = result;
810	 }
811      }
812      break;
813   }
814
815   case GLSL_TYPE_ERROR:
816   case GLSL_TYPE_VOID:
817   case GLSL_TYPE_SAMPLER:
818      /* I assume a comparison of a struct containing a sampler just
819       * ignores the sampler present in the type.
820       */
821      break;
822
823   default:
824      assert(!"Should not get here.");
825      break;
826   }
827
828   if (cmp == NULL)
829      cmp = new(mem_ctx) ir_constant(true);
830
831   return cmp;
832}
833
834ir_rvalue *
835ast_expression::hir(exec_list *instructions,
836		    struct _mesa_glsl_parse_state *state)
837{
838   void *ctx = state;
839   static const int operations[AST_NUM_OPERATORS] = {
840      -1,               /* ast_assign doesn't convert to ir_expression. */
841      -1,               /* ast_plus doesn't convert to ir_expression. */
842      ir_unop_neg,
843      ir_binop_add,
844      ir_binop_sub,
845      ir_binop_mul,
846      ir_binop_div,
847      ir_binop_mod,
848      ir_binop_lshift,
849      ir_binop_rshift,
850      ir_binop_less,
851      ir_binop_greater,
852      ir_binop_lequal,
853      ir_binop_gequal,
854      ir_binop_all_equal,
855      ir_binop_any_nequal,
856      ir_binop_bit_and,
857      ir_binop_bit_xor,
858      ir_binop_bit_or,
859      ir_unop_bit_not,
860      ir_binop_logic_and,
861      ir_binop_logic_xor,
862      ir_binop_logic_or,
863      ir_unop_logic_not,
864
865      /* Note: The following block of expression types actually convert
866       * to multiple IR instructions.
867       */
868      ir_binop_mul,     /* ast_mul_assign */
869      ir_binop_div,     /* ast_div_assign */
870      ir_binop_mod,     /* ast_mod_assign */
871      ir_binop_add,     /* ast_add_assign */
872      ir_binop_sub,     /* ast_sub_assign */
873      ir_binop_lshift,  /* ast_ls_assign */
874      ir_binop_rshift,  /* ast_rs_assign */
875      ir_binop_bit_and, /* ast_and_assign */
876      ir_binop_bit_xor, /* ast_xor_assign */
877      ir_binop_bit_or,  /* ast_or_assign */
878
879      -1,               /* ast_conditional doesn't convert to ir_expression. */
880      ir_binop_add,     /* ast_pre_inc. */
881      ir_binop_sub,     /* ast_pre_dec. */
882      ir_binop_add,     /* ast_post_inc. */
883      ir_binop_sub,     /* ast_post_dec. */
884      -1,               /* ast_field_selection doesn't conv to ir_expression. */
885      -1,               /* ast_array_index doesn't convert to ir_expression. */
886      -1,               /* ast_function_call doesn't conv to ir_expression. */
887      -1,               /* ast_identifier doesn't convert to ir_expression. */
888      -1,               /* ast_int_constant doesn't convert to ir_expression. */
889      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
890      -1,               /* ast_float_constant doesn't conv to ir_expression. */
891      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
892      -1,               /* ast_sequence doesn't convert to ir_expression. */
893   };
894   ir_rvalue *result = NULL;
895   ir_rvalue *op[3];
896   const struct glsl_type *type = glsl_type::error_type;
897   bool error_emitted = false;
898   YYLTYPE loc;
899
900   loc = this->get_location();
901
902   switch (this->oper) {
903   case ast_assign: {
904      op[0] = this->subexpressions[0]->hir(instructions, state);
905      op[1] = this->subexpressions[1]->hir(instructions, state);
906
907      result = do_assignment(instructions, state, op[0], op[1],
908			     this->subexpressions[0]->get_location());
909      error_emitted = result->type->is_error();
910      type = result->type;
911      break;
912   }
913
914   case ast_plus:
915      op[0] = this->subexpressions[0]->hir(instructions, state);
916
917      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
918
919      error_emitted = type->is_error();
920
921      result = op[0];
922      break;
923
924   case ast_neg:
925      op[0] = this->subexpressions[0]->hir(instructions, state);
926
927      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
928
929      error_emitted = type->is_error();
930
931      result = new(ctx) ir_expression(operations[this->oper], type,
932				      op[0], NULL);
933      break;
934
935   case ast_add:
936   case ast_sub:
937   case ast_mul:
938   case ast_div:
939      op[0] = this->subexpressions[0]->hir(instructions, state);
940      op[1] = this->subexpressions[1]->hir(instructions, state);
941
942      type = arithmetic_result_type(op[0], op[1],
943				    (this->oper == ast_mul),
944				    state, & loc);
945      error_emitted = type->is_error();
946
947      result = new(ctx) ir_expression(operations[this->oper], type,
948				      op[0], op[1]);
949      break;
950
951   case ast_mod:
952      op[0] = this->subexpressions[0]->hir(instructions, state);
953      op[1] = this->subexpressions[1]->hir(instructions, state);
954
955      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
956
957      assert(operations[this->oper] == ir_binop_mod);
958
959      result = new(ctx) ir_expression(operations[this->oper], type,
960				      op[0], op[1]);
961      error_emitted = type->is_error();
962      break;
963
964   case ast_lshift:
965   case ast_rshift:
966       if (state->language_version < 130) {
967          _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
968              operator_string(this->oper));
969          error_emitted = true;
970       }
971
972       op[0] = this->subexpressions[0]->hir(instructions, state);
973       op[1] = this->subexpressions[1]->hir(instructions, state);
974       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
975                                &loc);
976       result = new(ctx) ir_expression(operations[this->oper], type,
977                                       op[0], op[1]);
978       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
979       break;
980
981   case ast_less:
982   case ast_greater:
983   case ast_lequal:
984   case ast_gequal:
985      op[0] = this->subexpressions[0]->hir(instructions, state);
986      op[1] = this->subexpressions[1]->hir(instructions, state);
987
988      type = relational_result_type(op[0], op[1], state, & loc);
989
990      /* The relational operators must either generate an error or result
991       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
992       */
993      assert(type->is_error()
994	     || ((type->base_type == GLSL_TYPE_BOOL)
995		 && type->is_scalar()));
996
997      result = new(ctx) ir_expression(operations[this->oper], type,
998				      op[0], op[1]);
999      error_emitted = type->is_error();
1000      break;
1001
1002   case ast_nequal:
1003   case ast_equal:
1004      op[0] = this->subexpressions[0]->hir(instructions, state);
1005      op[1] = this->subexpressions[1]->hir(instructions, state);
1006
1007      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1008       *
1009       *    "The equality operators equal (==), and not equal (!=)
1010       *    operate on all types. They result in a scalar Boolean. If
1011       *    the operand types do not match, then there must be a
1012       *    conversion from Section 4.1.10 "Implicit Conversions"
1013       *    applied to one operand that can make them match, in which
1014       *    case this conversion is done."
1015       */
1016      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1017	   && !apply_implicit_conversion(op[1]->type, op[0], state))
1018	  || (op[0]->type != op[1]->type)) {
1019	 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1020			  "type", (this->oper == ast_equal) ? "==" : "!=");
1021	 error_emitted = true;
1022      } else if ((state->language_version <= 110)
1023		 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1024	 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1025			  "GLSL 1.10");
1026	 error_emitted = true;
1027      }
1028
1029      result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1030      type = glsl_type::bool_type;
1031
1032      assert(error_emitted || (result->type == glsl_type::bool_type));
1033      break;
1034
1035   case ast_bit_and:
1036   case ast_bit_xor:
1037   case ast_bit_or:
1038      op[0] = this->subexpressions[0]->hir(instructions, state);
1039      op[1] = this->subexpressions[1]->hir(instructions, state);
1040      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1041                                   state, &loc);
1042      result = new(ctx) ir_expression(operations[this->oper], type,
1043				      op[0], op[1]);
1044      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1045      break;
1046
1047   case ast_bit_not:
1048      op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050      if (state->language_version < 130) {
1051	 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1052	 error_emitted = true;
1053      }
1054
1055      if (!op[0]->type->is_integer()) {
1056	 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1057	 error_emitted = true;
1058      }
1059
1060      type = op[0]->type;
1061      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1062      break;
1063
1064   case ast_logic_and: {
1065      op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1068	 YYLTYPE loc = this->subexpressions[0]->get_location();
1069
1070	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1071			  operator_string(this->oper));
1072	 error_emitted = true;
1073      }
1074
1075      ir_constant *op0_const = op[0]->constant_expression_value();
1076      if (op0_const) {
1077	 if (op0_const->value.b[0]) {
1078	    op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1081	       YYLTYPE loc = this->subexpressions[1]->get_location();
1082
1083	       _mesa_glsl_error(& loc, state,
1084				"RHS of `%s' must be scalar boolean",
1085				operator_string(this->oper));
1086	       error_emitted = true;
1087	    }
1088	    result = op[1];
1089	 } else {
1090	    result = op0_const;
1091	 }
1092	 type = glsl_type::bool_type;
1093      } else {
1094	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1095						       "and_tmp",
1096						       ir_var_temporary);
1097	 instructions->push_tail(tmp);
1098
1099	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1100	 instructions->push_tail(stmt);
1101
1102	 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1103
1104	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1105	    YYLTYPE loc = this->subexpressions[1]->get_location();
1106
1107	    _mesa_glsl_error(& loc, state,
1108			     "RHS of `%s' must be scalar boolean",
1109			     operator_string(this->oper));
1110	    error_emitted = true;
1111	 }
1112
1113	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1114	 ir_assignment *const then_assign =
1115	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1116	 stmt->then_instructions.push_tail(then_assign);
1117
1118	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1119	 ir_assignment *const else_assign =
1120	    new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1121	 stmt->else_instructions.push_tail(else_assign);
1122
1123	 result = new(ctx) ir_dereference_variable(tmp);
1124	 type = tmp->type;
1125      }
1126      break;
1127   }
1128
1129   case ast_logic_or: {
1130      op[0] = this->subexpressions[0]->hir(instructions, state);
1131
1132      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1133	 YYLTYPE loc = this->subexpressions[0]->get_location();
1134
1135	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1136			  operator_string(this->oper));
1137	 error_emitted = true;
1138      }
1139
1140      ir_constant *op0_const = op[0]->constant_expression_value();
1141      if (op0_const) {
1142	 if (op0_const->value.b[0]) {
1143	    result = op0_const;
1144	 } else {
1145	    op[1] = this->subexpressions[1]->hir(instructions, state);
1146
1147	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1148	       YYLTYPE loc = this->subexpressions[1]->get_location();
1149
1150	       _mesa_glsl_error(& loc, state,
1151				"RHS of `%s' must be scalar boolean",
1152				operator_string(this->oper));
1153	       error_emitted = true;
1154	    }
1155	    result = op[1];
1156	 }
1157	 type = glsl_type::bool_type;
1158      } else {
1159	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1160						       "or_tmp",
1161						       ir_var_temporary);
1162	 instructions->push_tail(tmp);
1163
1164	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1165	 instructions->push_tail(stmt);
1166
1167	 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1168
1169	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1170	    YYLTYPE loc = this->subexpressions[1]->get_location();
1171
1172	    _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1173			     operator_string(this->oper));
1174	    error_emitted = true;
1175	 }
1176
1177	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1178	 ir_assignment *const then_assign =
1179	    new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1180	 stmt->then_instructions.push_tail(then_assign);
1181
1182	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1183	 ir_assignment *const else_assign =
1184	    new(ctx) ir_assignment(else_deref, op[1], NULL);
1185	 stmt->else_instructions.push_tail(else_assign);
1186
1187	 result = new(ctx) ir_dereference_variable(tmp);
1188	 type = tmp->type;
1189      }
1190      break;
1191   }
1192
1193   case ast_logic_xor:
1194      op[0] = this->subexpressions[0]->hir(instructions, state);
1195      op[1] = this->subexpressions[1]->hir(instructions, state);
1196
1197
1198      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1199				      op[0], op[1]);
1200      type = glsl_type::bool_type;
1201      break;
1202
1203   case ast_logic_not:
1204      op[0] = this->subexpressions[0]->hir(instructions, state);
1205
1206      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1207	 YYLTYPE loc = this->subexpressions[0]->get_location();
1208
1209	 _mesa_glsl_error(& loc, state,
1210			  "operand of `!' must be scalar boolean");
1211	 error_emitted = true;
1212      }
1213
1214      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1215				      op[0], NULL);
1216      type = glsl_type::bool_type;
1217      break;
1218
1219   case ast_mul_assign:
1220   case ast_div_assign:
1221   case ast_add_assign:
1222   case ast_sub_assign: {
1223      op[0] = this->subexpressions[0]->hir(instructions, state);
1224      op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226      type = arithmetic_result_type(op[0], op[1],
1227				    (this->oper == ast_mul_assign),
1228				    state, & loc);
1229
1230      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231						   op[0], op[1]);
1232
1233      result = do_assignment(instructions, state,
1234			     op[0]->clone(ctx, NULL), temp_rhs,
1235			     this->subexpressions[0]->get_location());
1236      type = result->type;
1237      error_emitted = (op[0]->type->is_error());
1238
1239      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1240       * explicitly test for this because none of the binary expression
1241       * operators allow array operands either.
1242       */
1243
1244      break;
1245   }
1246
1247   case ast_mod_assign: {
1248      op[0] = this->subexpressions[0]->hir(instructions, state);
1249      op[1] = this->subexpressions[1]->hir(instructions, state);
1250
1251      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1252
1253      assert(operations[this->oper] == ir_binop_mod);
1254
1255      ir_rvalue *temp_rhs;
1256      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1257					op[0], op[1]);
1258
1259      result = do_assignment(instructions, state,
1260			     op[0]->clone(ctx, NULL), temp_rhs,
1261			     this->subexpressions[0]->get_location());
1262      type = result->type;
1263      error_emitted = type->is_error();
1264      break;
1265   }
1266
1267   case ast_ls_assign:
1268   case ast_rs_assign: {
1269      op[0] = this->subexpressions[0]->hir(instructions, state);
1270      op[1] = this->subexpressions[1]->hir(instructions, state);
1271      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1272                               &loc);
1273      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1274                                                   type, op[0], op[1]);
1275      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1276                             temp_rhs,
1277                             this->subexpressions[0]->get_location());
1278      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1279      break;
1280   }
1281
1282   case ast_and_assign:
1283   case ast_xor_assign:
1284   case ast_or_assign: {
1285      op[0] = this->subexpressions[0]->hir(instructions, state);
1286      op[1] = this->subexpressions[1]->hir(instructions, state);
1287      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288                                   state, &loc);
1289      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1290                                                   type, op[0], op[1]);
1291      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1292                             temp_rhs,
1293                             this->subexpressions[0]->get_location());
1294      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1295      break;
1296   }
1297
1298   case ast_conditional: {
1299      op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1302       *
1303       *    "The ternary selection operator (?:). It operates on three
1304       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1305       *    first expression, which must result in a scalar Boolean."
1306       */
1307      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1308	 YYLTYPE loc = this->subexpressions[0]->get_location();
1309
1310	 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1311	 error_emitted = true;
1312      }
1313
1314      /* The :? operator is implemented by generating an anonymous temporary
1315       * followed by an if-statement.  The last instruction in each branch of
1316       * the if-statement assigns a value to the anonymous temporary.  This
1317       * temporary is the r-value of the expression.
1318       */
1319      exec_list then_instructions;
1320      exec_list else_instructions;
1321
1322      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326       *
1327       *     "The second and third expressions can be any type, as
1328       *     long their types match, or there is a conversion in
1329       *     Section 4.1.10 "Implicit Conversions" that can be applied
1330       *     to one of the expressions to make their types match. This
1331       *     resulting matching type is the type of the entire
1332       *     expression."
1333       */
1334      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335	   && !apply_implicit_conversion(op[2]->type, op[1], state))
1336	  || (op[1]->type != op[2]->type)) {
1337	 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340			  "operator must have matching types.");
1341	 error_emitted = true;
1342	 type = glsl_type::error_type;
1343      } else {
1344	 type = op[1]->type;
1345      }
1346
1347      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348       *
1349       *    "The second and third expressions must be the same type, but can
1350       *    be of any type other than an array."
1351       */
1352      if ((state->language_version <= 110) && type->is_array()) {
1353	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354			  "operator must not be arrays.");
1355	 error_emitted = true;
1356      }
1357
1358      ir_constant *cond_val = op[0]->constant_expression_value();
1359      ir_constant *then_val = op[1]->constant_expression_value();
1360      ir_constant *else_val = op[2]->constant_expression_value();
1361
1362      if (then_instructions.is_empty()
1363	  && else_instructions.is_empty()
1364	  && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365	 result = (cond_val->value.b[0]) ? then_val : else_val;
1366      } else {
1367	 ir_variable *const tmp =
1368	    new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369	 instructions->push_tail(tmp);
1370
1371	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372	 instructions->push_tail(stmt);
1373
1374	 then_instructions.move_nodes_to(& stmt->then_instructions);
1375	 ir_dereference *const then_deref =
1376	    new(ctx) ir_dereference_variable(tmp);
1377	 ir_assignment *const then_assign =
1378	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1379	 stmt->then_instructions.push_tail(then_assign);
1380
1381	 else_instructions.move_nodes_to(& stmt->else_instructions);
1382	 ir_dereference *const else_deref =
1383	    new(ctx) ir_dereference_variable(tmp);
1384	 ir_assignment *const else_assign =
1385	    new(ctx) ir_assignment(else_deref, op[2], NULL);
1386	 stmt->else_instructions.push_tail(else_assign);
1387
1388	 result = new(ctx) ir_dereference_variable(tmp);
1389      }
1390      break;
1391   }
1392
1393   case ast_pre_inc:
1394   case ast_pre_dec: {
1395      op[0] = this->subexpressions[0]->hir(instructions, state);
1396      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397	 op[1] = new(ctx) ir_constant(1.0f);
1398      else
1399	 op[1] = new(ctx) ir_constant(1);
1400
1401      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403      ir_rvalue *temp_rhs;
1404      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405					op[0], op[1]);
1406
1407      result = do_assignment(instructions, state,
1408			     op[0]->clone(ctx, NULL), temp_rhs,
1409			     this->subexpressions[0]->get_location());
1410      type = result->type;
1411      error_emitted = op[0]->type->is_error();
1412      break;
1413   }
1414
1415   case ast_post_inc:
1416   case ast_post_dec: {
1417      op[0] = this->subexpressions[0]->hir(instructions, state);
1418      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1419	 op[1] = new(ctx) ir_constant(1.0f);
1420      else
1421	 op[1] = new(ctx) ir_constant(1);
1422
1423      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1424
1425      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1426
1427      ir_rvalue *temp_rhs;
1428      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1429					op[0], op[1]);
1430
1431      /* Get a temporary of a copy of the lvalue before it's modified.
1432       * This may get thrown away later.
1433       */
1434      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1435
1436      (void)do_assignment(instructions, state,
1437			  op[0]->clone(ctx, NULL), temp_rhs,
1438			  this->subexpressions[0]->get_location());
1439
1440      type = result->type;
1441      error_emitted = op[0]->type->is_error();
1442      break;
1443   }
1444
1445   case ast_field_selection:
1446      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447      type = result->type;
1448      break;
1449
1450   case ast_array_index: {
1451      YYLTYPE index_loc = subexpressions[1]->get_location();
1452
1453      op[0] = subexpressions[0]->hir(instructions, state);
1454      op[1] = subexpressions[1]->hir(instructions, state);
1455
1456      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457
1458      ir_rvalue *const array = op[0];
1459
1460      result = new(ctx) ir_dereference_array(op[0], op[1]);
1461
1462      /* Do not use op[0] after this point.  Use array.
1463       */
1464      op[0] = NULL;
1465
1466
1467      if (error_emitted)
1468	 break;
1469
1470      if (!array->type->is_array()
1471	  && !array->type->is_matrix()
1472	  && !array->type->is_vector()) {
1473	 _mesa_glsl_error(& index_loc, state,
1474			  "cannot dereference non-array / non-matrix / "
1475			  "non-vector");
1476	 error_emitted = true;
1477      }
1478
1479      if (!op[1]->type->is_integer()) {
1480	 _mesa_glsl_error(& index_loc, state,
1481			  "array index must be integer type");
1482	 error_emitted = true;
1483      } else if (!op[1]->type->is_scalar()) {
1484	 _mesa_glsl_error(& index_loc, state,
1485			  "array index must be scalar");
1486	 error_emitted = true;
1487      }
1488
1489      /* If the array index is a constant expression and the array has a
1490       * declared size, ensure that the access is in-bounds.  If the array
1491       * index is not a constant expression, ensure that the array has a
1492       * declared size.
1493       */
1494      ir_constant *const const_index = op[1]->constant_expression_value();
1495      if (const_index != NULL) {
1496	 const int idx = const_index->value.i[0];
1497	 const char *type_name;
1498	 unsigned bound = 0;
1499
1500	 if (array->type->is_matrix()) {
1501	    type_name = "matrix";
1502	 } else if (array->type->is_vector()) {
1503	    type_name = "vector";
1504	 } else {
1505	    type_name = "array";
1506	 }
1507
1508	 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1509	  *
1510	  *    "It is illegal to declare an array with a size, and then
1511	  *    later (in the same shader) index the same array with an
1512	  *    integral constant expression greater than or equal to the
1513	  *    declared size. It is also illegal to index an array with a
1514	  *    negative constant expression."
1515	  */
1516	 if (array->type->is_matrix()) {
1517	    if (array->type->row_type()->vector_elements <= idx) {
1518	       bound = array->type->row_type()->vector_elements;
1519	    }
1520	 } else if (array->type->is_vector()) {
1521	    if (array->type->vector_elements <= idx) {
1522	       bound = array->type->vector_elements;
1523	    }
1524	 } else {
1525	    if ((array->type->array_size() > 0)
1526		&& (array->type->array_size() <= idx)) {
1527	       bound = array->type->array_size();
1528	    }
1529	 }
1530
1531	 if (bound > 0) {
1532	    _mesa_glsl_error(& loc, state, "%s index must be < %u",
1533			     type_name, bound);
1534	    error_emitted = true;
1535	 } else if (idx < 0) {
1536	    _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1537			     type_name);
1538	    error_emitted = true;
1539	 }
1540
1541	 if (array->type->is_array()) {
1542	    /* If the array is a variable dereference, it dereferences the
1543	     * whole array, by definition.  Use this to get the variable.
1544	     *
1545	     * FINISHME: Should some methods for getting / setting / testing
1546	     * FINISHME: array access limits be added to ir_dereference?
1547	     */
1548	    ir_variable *const v = array->whole_variable_referenced();
1549	    if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1550	       v->max_array_access = idx;
1551	 }
1552      } else if (array->type->array_size() == 0) {
1553	 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1554      } else {
1555	 if (array->type->is_array()) {
1556	    /* whole_variable_referenced can return NULL if the array is a
1557	     * member of a structure.  In this case it is safe to not update
1558	     * the max_array_access field because it is never used for fields
1559	     * of structures.
1560	     */
1561	    ir_variable *v = array->whole_variable_referenced();
1562	    if (v != NULL)
1563	       v->max_array_access = array->type->array_size();
1564	 }
1565      }
1566
1567      /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1568       *
1569       *    "Samplers aggregated into arrays within a shader (using square
1570       *    brackets [ ]) can only be indexed with integral constant
1571       *    expressions [...]."
1572       *
1573       * This restriction was added in GLSL 1.30.  Shaders using earlier version
1574       * of the language should not be rejected by the compiler front-end for
1575       * using this construct.  This allows useful things such as using a loop
1576       * counter as the index to an array of samplers.  If the loop in unrolled,
1577       * the code should compile correctly.  Instead, emit a warning.
1578       */
1579      if (array->type->is_array() &&
1580          array->type->element_type()->is_sampler() &&
1581          const_index == NULL) {
1582
1583	 if (state->language_version == 100) {
1584	    _mesa_glsl_warning(&loc, state,
1585			       "sampler arrays indexed with non-constant "
1586			       "expressions is optional in GLSL ES 1.00");
1587	 } else if (state->language_version < 130) {
1588	    _mesa_glsl_warning(&loc, state,
1589			       "sampler arrays indexed with non-constant "
1590			       "expressions is forbidden in GLSL 1.30 and "
1591			       "later");
1592	 } else {
1593	    _mesa_glsl_error(&loc, state,
1594			     "sampler arrays indexed with non-constant "
1595			     "expressions is forbidden in GLSL 1.30 and "
1596			     "later");
1597	    error_emitted = true;
1598	 }
1599      }
1600
1601      if (error_emitted)
1602	 result->type = glsl_type::error_type;
1603
1604      type = result->type;
1605      break;
1606   }
1607
1608   case ast_function_call:
1609      /* Should *NEVER* get here.  ast_function_call should always be handled
1610       * by ast_function_expression::hir.
1611       */
1612      assert(0);
1613      break;
1614
1615   case ast_identifier: {
1616      /* ast_identifier can appear several places in a full abstract syntax
1617       * tree.  This particular use must be at location specified in the grammar
1618       * as 'variable_identifier'.
1619       */
1620      ir_variable *var =
1621	 state->symbols->get_variable(this->primary_expression.identifier);
1622
1623      result = new(ctx) ir_dereference_variable(var);
1624
1625      if (var != NULL) {
1626	 type = result->type;
1627      } else {
1628	 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1629			  this->primary_expression.identifier);
1630
1631	 error_emitted = true;
1632      }
1633      break;
1634   }
1635
1636   case ast_int_constant:
1637      type = glsl_type::int_type;
1638      result = new(ctx) ir_constant(this->primary_expression.int_constant);
1639      break;
1640
1641   case ast_uint_constant:
1642      type = glsl_type::uint_type;
1643      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1644      break;
1645
1646   case ast_float_constant:
1647      type = glsl_type::float_type;
1648      result = new(ctx) ir_constant(this->primary_expression.float_constant);
1649      break;
1650
1651   case ast_bool_constant:
1652      type = glsl_type::bool_type;
1653      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1654      break;
1655
1656   case ast_sequence: {
1657      /* It should not be possible to generate a sequence in the AST without
1658       * any expressions in it.
1659       */
1660      assert(!this->expressions.is_empty());
1661
1662      /* The r-value of a sequence is the last expression in the sequence.  If
1663       * the other expressions in the sequence do not have side-effects (and
1664       * therefore add instructions to the instruction list), they get dropped
1665       * on the floor.
1666       */
1667      foreach_list_typed (ast_node, ast, link, &this->expressions)
1668	 result = ast->hir(instructions, state);
1669
1670      type = result->type;
1671
1672      /* Any errors should have already been emitted in the loop above.
1673       */
1674      error_emitted = true;
1675      break;
1676   }
1677   }
1678
1679   if (type->is_error() && !error_emitted)
1680      _mesa_glsl_error(& loc, state, "type mismatch");
1681
1682   return result;
1683}
1684
1685
1686ir_rvalue *
1687ast_expression_statement::hir(exec_list *instructions,
1688			      struct _mesa_glsl_parse_state *state)
1689{
1690   /* It is possible to have expression statements that don't have an
1691    * expression.  This is the solitary semicolon:
1692    *
1693    * for (i = 0; i < 5; i++)
1694    *     ;
1695    *
1696    * In this case the expression will be NULL.  Test for NULL and don't do
1697    * anything in that case.
1698    */
1699   if (expression != NULL)
1700      expression->hir(instructions, state);
1701
1702   /* Statements do not have r-values.
1703    */
1704   return NULL;
1705}
1706
1707
1708ir_rvalue *
1709ast_compound_statement::hir(exec_list *instructions,
1710			    struct _mesa_glsl_parse_state *state)
1711{
1712   if (new_scope)
1713      state->symbols->push_scope();
1714
1715   foreach_list_typed (ast_node, ast, link, &this->statements)
1716      ast->hir(instructions, state);
1717
1718   if (new_scope)
1719      state->symbols->pop_scope();
1720
1721   /* Compound statements do not have r-values.
1722    */
1723   return NULL;
1724}
1725
1726
1727static const glsl_type *
1728process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1729		   struct _mesa_glsl_parse_state *state)
1730{
1731   unsigned length = 0;
1732
1733   /* FINISHME: Reject delcarations of multidimensional arrays. */
1734
1735   if (array_size != NULL) {
1736      exec_list dummy_instructions;
1737      ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1738      YYLTYPE loc = array_size->get_location();
1739
1740      /* FINISHME: Verify that the grammar forbids side-effects in array
1741       * FINISHME: sizes.   i.e., 'vec4 [x = 12] data'
1742       */
1743      assert(dummy_instructions.is_empty());
1744
1745      if (ir != NULL) {
1746	 if (!ir->type->is_integer()) {
1747	    _mesa_glsl_error(& loc, state, "array size must be integer type");
1748	 } else if (!ir->type->is_scalar()) {
1749	    _mesa_glsl_error(& loc, state, "array size must be scalar type");
1750	 } else {
1751	    ir_constant *const size = ir->constant_expression_value();
1752
1753	    if (size == NULL) {
1754	       _mesa_glsl_error(& loc, state, "array size must be a "
1755				"constant valued expression");
1756	    } else if (size->value.i[0] <= 0) {
1757	       _mesa_glsl_error(& loc, state, "array size must be > 0");
1758	    } else {
1759	       assert(size->type == ir->type);
1760	       length = size->value.u[0];
1761	    }
1762	 }
1763      }
1764   } else if (state->es_shader) {
1765      /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1766       * array declarations have been removed from the language.
1767       */
1768      _mesa_glsl_error(loc, state, "unsized array declarations are not "
1769		       "allowed in GLSL ES 1.00.");
1770   }
1771
1772   return glsl_type::get_array_instance(base, length);
1773}
1774
1775
1776const glsl_type *
1777ast_type_specifier::glsl_type(const char **name,
1778			      struct _mesa_glsl_parse_state *state) const
1779{
1780   const struct glsl_type *type;
1781
1782   type = state->symbols->get_type(this->type_name);
1783   *name = this->type_name;
1784
1785   if (this->is_array) {
1786      YYLTYPE loc = this->get_location();
1787      type = process_array_type(&loc, type, this->array_size, state);
1788   }
1789
1790   return type;
1791}
1792
1793
1794static void
1795apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1796				 ir_variable *var,
1797				 struct _mesa_glsl_parse_state *state,
1798				 YYLTYPE *loc)
1799{
1800   if (qual->flags.q.invariant)
1801      var->invariant = 1;
1802
1803   /* FINISHME: Mark 'in' variables at global scope as read-only. */
1804   if (qual->flags.q.constant || qual->flags.q.attribute
1805       || qual->flags.q.uniform
1806       || (qual->flags.q.varying && (state->target == fragment_shader)))
1807      var->read_only = 1;
1808
1809   if (qual->flags.q.centroid)
1810      var->centroid = 1;
1811
1812   if (qual->flags.q.attribute && state->target != vertex_shader) {
1813      var->type = glsl_type::error_type;
1814      _mesa_glsl_error(loc, state,
1815		       "`attribute' variables may not be declared in the "
1816		       "%s shader",
1817		       _mesa_glsl_shader_target_name(state->target));
1818   }
1819
1820   /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1821    *
1822    *     "The varying qualifier can be used only with the data types
1823    *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1824    *     these."
1825    */
1826   if (qual->flags.q.varying) {
1827      const glsl_type *non_array_type;
1828
1829      if (var->type && var->type->is_array())
1830	 non_array_type = var->type->fields.array;
1831      else
1832	 non_array_type = var->type;
1833
1834      if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1835	 var->type = glsl_type::error_type;
1836	 _mesa_glsl_error(loc, state,
1837			  "varying variables must be of base type float");
1838      }
1839   }
1840
1841   /* If there is no qualifier that changes the mode of the variable, leave
1842    * the setting alone.
1843    */
1844   if (qual->flags.q.in && qual->flags.q.out)
1845      var->mode = ir_var_inout;
1846   else if (qual->flags.q.attribute || qual->flags.q.in
1847	    || (qual->flags.q.varying && (state->target == fragment_shader)))
1848      var->mode = ir_var_in;
1849   else if (qual->flags.q.out
1850	    || (qual->flags.q.varying && (state->target == vertex_shader)))
1851      var->mode = ir_var_out;
1852   else if (qual->flags.q.uniform)
1853      var->mode = ir_var_uniform;
1854
1855   if (qual->flags.q.flat)
1856      var->interpolation = ir_var_flat;
1857   else if (qual->flags.q.noperspective)
1858      var->interpolation = ir_var_noperspective;
1859   else
1860      var->interpolation = ir_var_smooth;
1861
1862   var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1863   var->origin_upper_left = qual->flags.q.origin_upper_left;
1864   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1865       && (strcmp(var->name, "gl_FragCoord") != 0)) {
1866      const char *const qual_string = (qual->flags.q.origin_upper_left)
1867	 ? "origin_upper_left" : "pixel_center_integer";
1868
1869      _mesa_glsl_error(loc, state,
1870		       "layout qualifier `%s' can only be applied to "
1871		       "fragment shader input `gl_FragCoord'",
1872		       qual_string);
1873   }
1874
1875   if (qual->flags.q.explicit_location) {
1876      const bool global_scope = (state->current_function == NULL);
1877      bool fail = false;
1878      const char *string = "";
1879
1880      /* In the vertex shader only shader inputs can be given explicit
1881       * locations.
1882       *
1883       * In the fragment shader only shader outputs can be given explicit
1884       * locations.
1885       */
1886      switch (state->target) {
1887      case vertex_shader:
1888	 if (!global_scope || (var->mode != ir_var_in)) {
1889	    fail = true;
1890	    string = "input";
1891	 }
1892	 break;
1893
1894      case geometry_shader:
1895	 _mesa_glsl_error(loc, state,
1896			  "geometry shader variables cannot be given "
1897			  "explicit locations\n");
1898	 break;
1899
1900      case fragment_shader:
1901	 if (!global_scope || (var->mode != ir_var_in)) {
1902	    fail = true;
1903	    string = "output";
1904	 }
1905	 break;
1906      };
1907
1908      if (fail) {
1909	 _mesa_glsl_error(loc, state,
1910			  "only %s shader %s variables can be given an "
1911			  "explicit location\n",
1912			  _mesa_glsl_shader_target_name(state->target),
1913			  string);
1914      } else {
1915	 var->explicit_location = true;
1916
1917	 /* This bit of silliness is needed because invalid explicit locations
1918	  * are supposed to be flagged during linking.  Small negative values
1919	  * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1920	  * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1921	  * The linker needs to be able to differentiate these cases.  This
1922	  * ensures that negative values stay negative.
1923	  */
1924	 if (qual->location >= 0) {
1925	    var->location = (state->target == vertex_shader)
1926	       ? (qual->location + VERT_ATTRIB_GENERIC0)
1927	       : (qual->location + FRAG_RESULT_DATA0);
1928	 } else {
1929	    var->location = qual->location;
1930	 }
1931      }
1932   }
1933
1934   if (var->type->is_array() && state->language_version != 110) {
1935      var->array_lvalue = true;
1936   }
1937}
1938
1939
1940ir_rvalue *
1941ast_declarator_list::hir(exec_list *instructions,
1942			 struct _mesa_glsl_parse_state *state)
1943{
1944   void *ctx = state;
1945   const struct glsl_type *decl_type;
1946   const char *type_name = NULL;
1947   ir_rvalue *result = NULL;
1948   YYLTYPE loc = this->get_location();
1949
1950   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1951    *
1952    *     "To ensure that a particular output variable is invariant, it is
1953    *     necessary to use the invariant qualifier. It can either be used to
1954    *     qualify a previously declared variable as being invariant
1955    *
1956    *         invariant gl_Position; // make existing gl_Position be invariant"
1957    *
1958    * In these cases the parser will set the 'invariant' flag in the declarator
1959    * list, and the type will be NULL.
1960    */
1961   if (this->invariant) {
1962      assert(this->type == NULL);
1963
1964      if (state->current_function != NULL) {
1965	 _mesa_glsl_error(& loc, state,
1966			  "All uses of `invariant' keyword must be at global "
1967			  "scope\n");
1968      }
1969
1970      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1971	 assert(!decl->is_array);
1972	 assert(decl->array_size == NULL);
1973	 assert(decl->initializer == NULL);
1974
1975	 ir_variable *const earlier =
1976	    state->symbols->get_variable(decl->identifier);
1977	 if (earlier == NULL) {
1978	    _mesa_glsl_error(& loc, state,
1979			     "Undeclared variable `%s' cannot be marked "
1980			     "invariant\n", decl->identifier);
1981	 } else if ((state->target == vertex_shader)
1982	       && (earlier->mode != ir_var_out)) {
1983	    _mesa_glsl_error(& loc, state,
1984			     "`%s' cannot be marked invariant, vertex shader "
1985			     "outputs only\n", decl->identifier);
1986	 } else if ((state->target == fragment_shader)
1987	       && (earlier->mode != ir_var_in)) {
1988	    _mesa_glsl_error(& loc, state,
1989			     "`%s' cannot be marked invariant, fragment shader "
1990			     "inputs only\n", decl->identifier);
1991	 } else {
1992	    earlier->invariant = true;
1993	 }
1994      }
1995
1996      /* Invariant redeclarations do not have r-values.
1997       */
1998      return NULL;
1999   }
2000
2001   assert(this->type != NULL);
2002   assert(!this->invariant);
2003
2004   /* The type specifier may contain a structure definition.  Process that
2005    * before any of the variable declarations.
2006    */
2007   (void) this->type->specifier->hir(instructions, state);
2008
2009   decl_type = this->type->specifier->glsl_type(& type_name, state);
2010   if (this->declarations.is_empty()) {
2011      /* The only valid case where the declaration list can be empty is when
2012       * the declaration is setting the default precision of a built-in type
2013       * (e.g., 'precision highp vec4;').
2014       */
2015
2016      if (decl_type != NULL) {
2017      } else {
2018	    _mesa_glsl_error(& loc, state, "incomplete declaration");
2019      }
2020   }
2021
2022   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2023      const struct glsl_type *var_type;
2024      ir_variable *var;
2025
2026      /* FINISHME: Emit a warning if a variable declaration shadows a
2027       * FINISHME: declaration at a higher scope.
2028       */
2029
2030      if ((decl_type == NULL) || decl_type->is_void()) {
2031	 if (type_name != NULL) {
2032	    _mesa_glsl_error(& loc, state,
2033			     "invalid type `%s' in declaration of `%s'",
2034			     type_name, decl->identifier);
2035	 } else {
2036	    _mesa_glsl_error(& loc, state,
2037			     "invalid type in declaration of `%s'",
2038			     decl->identifier);
2039	 }
2040	 continue;
2041      }
2042
2043      if (decl->is_array) {
2044	 var_type = process_array_type(&loc, decl_type, decl->array_size,
2045				       state);
2046      } else {
2047	 var_type = decl_type;
2048      }
2049
2050      var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2051
2052      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2053       *
2054       *     "Global variables can only use the qualifiers const,
2055       *     attribute, uni form, or varying. Only one may be
2056       *     specified.
2057       *
2058       *     Local variables can only use the qualifier const."
2059       *
2060       * This is relaxed in GLSL 1.30.
2061       */
2062      if (state->language_version < 120) {
2063	 if (this->type->qualifier.flags.q.out) {
2064	    _mesa_glsl_error(& loc, state,
2065			     "`out' qualifier in declaration of `%s' "
2066			     "only valid for function parameters in GLSL 1.10.",
2067			     decl->identifier);
2068	 }
2069	 if (this->type->qualifier.flags.q.in) {
2070	    _mesa_glsl_error(& loc, state,
2071			     "`in' qualifier in declaration of `%s' "
2072			     "only valid for function parameters in GLSL 1.10.",
2073			     decl->identifier);
2074	 }
2075	 /* FINISHME: Test for other invalid qualifiers. */
2076      }
2077
2078      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2079				       & loc);
2080
2081      if (this->type->qualifier.flags.q.invariant) {
2082	 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2083						   var->mode == ir_var_inout)) {
2084	    /* FINISHME: Note that this doesn't work for invariant on
2085	     * a function signature outval
2086	     */
2087	    _mesa_glsl_error(& loc, state,
2088			     "`%s' cannot be marked invariant, vertex shader "
2089			     "outputs only\n", var->name);
2090	 } else if ((state->target == fragment_shader) &&
2091		    !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2092	    /* FINISHME: Note that this doesn't work for invariant on
2093	     * a function signature inval
2094	     */
2095	    _mesa_glsl_error(& loc, state,
2096			     "`%s' cannot be marked invariant, fragment shader "
2097			     "inputs only\n", var->name);
2098	 }
2099      }
2100
2101      if (state->current_function != NULL) {
2102	 const char *mode = NULL;
2103	 const char *extra = "";
2104
2105	 /* There is no need to check for 'inout' here because the parser will
2106	  * only allow that in function parameter lists.
2107	  */
2108	 if (this->type->qualifier.flags.q.attribute) {
2109	    mode = "attribute";
2110	 } else if (this->type->qualifier.flags.q.uniform) {
2111	    mode = "uniform";
2112	 } else if (this->type->qualifier.flags.q.varying) {
2113	    mode = "varying";
2114	 } else if (this->type->qualifier.flags.q.in) {
2115	    mode = "in";
2116	    extra = " or in function parameter list";
2117	 } else if (this->type->qualifier.flags.q.out) {
2118	    mode = "out";
2119	    extra = " or in function parameter list";
2120	 }
2121
2122	 if (mode) {
2123	    _mesa_glsl_error(& loc, state,
2124			     "%s variable `%s' must be declared at "
2125			     "global scope%s",
2126			     mode, var->name, extra);
2127	 }
2128      } else if (var->mode == ir_var_in) {
2129	 if (state->target == vertex_shader) {
2130	    bool error_emitted = false;
2131
2132	    /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2133	     *
2134	     *    "Vertex shader inputs can only be float, floating-point
2135	     *    vectors, matrices, signed and unsigned integers and integer
2136	     *    vectors. Vertex shader inputs can also form arrays of these
2137	     *    types, but not structures."
2138	     *
2139	     * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2140	     *
2141	     *    "Vertex shader inputs can only be float, floating-point
2142	     *    vectors, matrices, signed and unsigned integers and integer
2143	     *    vectors. They cannot be arrays or structures."
2144	     *
2145	     * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2146	     *
2147	     *    "The attribute qualifier can be used only with float,
2148	     *    floating-point vectors, and matrices. Attribute variables
2149	     *    cannot be declared as arrays or structures."
2150	     */
2151	    const glsl_type *check_type = var->type->is_array()
2152	       ? var->type->fields.array : var->type;
2153
2154	    switch (check_type->base_type) {
2155	    case GLSL_TYPE_FLOAT:
2156	       break;
2157	    case GLSL_TYPE_UINT:
2158	    case GLSL_TYPE_INT:
2159	       if (state->language_version > 120)
2160		  break;
2161	       /* FALLTHROUGH */
2162	    default:
2163	       _mesa_glsl_error(& loc, state,
2164				"vertex shader input / attribute cannot have "
2165				"type %s`%s'",
2166				var->type->is_array() ? "array of " : "",
2167				check_type->name);
2168	       error_emitted = true;
2169	    }
2170
2171	    if (!error_emitted && (state->language_version <= 130)
2172		&& var->type->is_array()) {
2173	       _mesa_glsl_error(& loc, state,
2174				"vertex shader input / attribute cannot have "
2175				"array type");
2176	       error_emitted = true;
2177	    }
2178	 }
2179      }
2180
2181      /* Integer vertex outputs must be qualified with 'flat'.
2182       *
2183       * From section 4.3.6 of the GLSL 1.30 spec:
2184       *    "If a vertex output is a signed or unsigned integer or integer
2185       *    vector, then it must be qualified with the interpolation qualifier
2186       *    flat."
2187       */
2188      if (state->language_version >= 130
2189          && state->target == vertex_shader
2190          && state->current_function == NULL
2191          && var->type->is_integer()
2192          && var->mode == ir_var_out
2193          && var->interpolation != ir_var_flat) {
2194
2195         _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2196                          "then it must be qualified with 'flat'");
2197      }
2198
2199
2200      /* Process the initializer and add its instructions to a temporary
2201       * list.  This list will be added to the instruction stream (below) after
2202       * the declaration is added.  This is done because in some cases (such as
2203       * redeclarations) the declaration may not actually be added to the
2204       * instruction stream.
2205       */
2206      exec_list initializer_instructions;
2207      if (decl->initializer != NULL) {
2208	 YYLTYPE initializer_loc = decl->initializer->get_location();
2209
2210	 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2211	  *
2212	  *    "All uniform variables are read-only and are initialized either
2213	  *    directly by an application via API commands, or indirectly by
2214	  *    OpenGL."
2215	  */
2216	 if ((state->language_version <= 110)
2217	     && (var->mode == ir_var_uniform)) {
2218	    _mesa_glsl_error(& initializer_loc, state,
2219			     "cannot initialize uniforms in GLSL 1.10");
2220	 }
2221
2222	 if (var->type->is_sampler()) {
2223	    _mesa_glsl_error(& initializer_loc, state,
2224			     "cannot initialize samplers");
2225	 }
2226
2227	 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2228	    _mesa_glsl_error(& initializer_loc, state,
2229			     "cannot initialize %s shader input / %s",
2230			     _mesa_glsl_shader_target_name(state->target),
2231			     (state->target == vertex_shader)
2232			     ? "attribute" : "varying");
2233	 }
2234
2235	 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2236	 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2237						 state);
2238
2239	 /* Calculate the constant value if this is a const or uniform
2240	  * declaration.
2241	  */
2242	 if (this->type->qualifier.flags.q.constant
2243	     || this->type->qualifier.flags.q.uniform) {
2244	    ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2245	    if (new_rhs != NULL) {
2246	       rhs = new_rhs;
2247
2248	       ir_constant *constant_value = rhs->constant_expression_value();
2249	       if (!constant_value) {
2250		  _mesa_glsl_error(& initializer_loc, state,
2251				   "initializer of %s variable `%s' must be a "
2252				   "constant expression",
2253				   (this->type->qualifier.flags.q.constant)
2254				   ? "const" : "uniform",
2255				   decl->identifier);
2256		  if (var->type->is_numeric()) {
2257		     /* Reduce cascading errors. */
2258		     var->constant_value = ir_constant::zero(ctx, var->type);
2259		  }
2260	       } else {
2261		  rhs = constant_value;
2262		  var->constant_value = constant_value;
2263	       }
2264	    } else {
2265	       _mesa_glsl_error(&initializer_loc, state,
2266			        "initializer of type %s cannot be assigned to "
2267				"variable of type %s",
2268				rhs->type->name, var->type->name);
2269	       if (var->type->is_numeric()) {
2270		  /* Reduce cascading errors. */
2271		  var->constant_value = ir_constant::zero(ctx, var->type);
2272	       }
2273	    }
2274	 }
2275
2276	 if (rhs && !rhs->type->is_error()) {
2277	    bool temp = var->read_only;
2278	    if (this->type->qualifier.flags.q.constant)
2279	       var->read_only = false;
2280
2281	    /* Never emit code to initialize a uniform.
2282	     */
2283	    const glsl_type *initializer_type;
2284	    if (!this->type->qualifier.flags.q.uniform) {
2285	       result = do_assignment(&initializer_instructions, state,
2286				      lhs, rhs,
2287				      this->get_location());
2288	       initializer_type = result->type;
2289	    } else
2290	       initializer_type = rhs->type;
2291
2292	    /* If the declared variable is an unsized array, it must inherrit
2293	     * its full type from the initializer.  A declaration such as
2294	     *
2295	     *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2296	     *
2297	     * becomes
2298	     *
2299	     *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2300	     *
2301	     * The assignment generated in the if-statement (below) will also
2302	     * automatically handle this case for non-uniforms.
2303	     *
2304	     * If the declared variable is not an array, the types must
2305	     * already match exactly.  As a result, the type assignment
2306	     * here can be done unconditionally.  For non-uniforms the call
2307	     * to do_assignment can change the type of the initializer (via
2308	     * the implicit conversion rules).  For uniforms the initializer
2309	     * must be a constant expression, and the type of that expression
2310	     * was validated above.
2311	     */
2312	    var->type = initializer_type;
2313
2314	    var->read_only = temp;
2315	 }
2316      }
2317
2318      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2319       *
2320       *     "It is an error to write to a const variable outside of
2321       *      its declaration, so they must be initialized when
2322       *      declared."
2323       */
2324      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2325	 _mesa_glsl_error(& loc, state,
2326			  "const declaration of `%s' must be initialized");
2327      }
2328
2329      /* Check if this declaration is actually a re-declaration, either to
2330       * resize an array or add qualifiers to an existing variable.
2331       *
2332       * This is allowed for variables in the current scope, or when at
2333       * global scope (for built-ins in the implicit outer scope).
2334       */
2335      ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2336      if (earlier != NULL && (state->current_function == NULL ||
2337	  state->symbols->name_declared_this_scope(decl->identifier))) {
2338
2339	 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2340	  *
2341	  * "It is legal to declare an array without a size and then
2342	  *  later re-declare the same name as an array of the same
2343	  *  type and specify a size."
2344	  */
2345	 if ((earlier->type->array_size() == 0)
2346	     && var->type->is_array()
2347	     && (var->type->element_type() == earlier->type->element_type())) {
2348	    /* FINISHME: This doesn't match the qualifiers on the two
2349	     * FINISHME: declarations.  It's not 100% clear whether this is
2350	     * FINISHME: required or not.
2351	     */
2352
2353	    /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2354	     *
2355	     *     "The size [of gl_TexCoord] can be at most
2356	     *     gl_MaxTextureCoords."
2357	     */
2358	    const unsigned size = unsigned(var->type->array_size());
2359	    if ((strcmp("gl_TexCoord", var->name) == 0)
2360		&& (size > state->Const.MaxTextureCoords)) {
2361	       YYLTYPE loc = this->get_location();
2362
2363	       _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2364				"be larger than gl_MaxTextureCoords (%u)\n",
2365				state->Const.MaxTextureCoords);
2366	    } else if ((size > 0) && (size <= earlier->max_array_access)) {
2367	       YYLTYPE loc = this->get_location();
2368
2369	       _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2370				"previous access",
2371				earlier->max_array_access);
2372	    }
2373
2374	    earlier->type = var->type;
2375	    delete var;
2376	    var = NULL;
2377	 } else if (state->ARB_fragment_coord_conventions_enable
2378		    && strcmp(var->name, "gl_FragCoord") == 0
2379		    && earlier->type == var->type
2380		    && earlier->mode == var->mode) {
2381	    /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2382	     * qualifiers.
2383	     */
2384	    earlier->origin_upper_left = var->origin_upper_left;
2385	    earlier->pixel_center_integer = var->pixel_center_integer;
2386
2387	 /* According to section 4.3.7 of the GLSL 1.30 spec,
2388	  * the following built-in varaibles can be redeclared with an
2389	  * interpolation qualifier:
2390	  *    * gl_FrontColor
2391	  *    * gl_BackColor
2392	  *    * gl_FrontSecondaryColor
2393	  *    * gl_BackSecondaryColor
2394	  *    * gl_Color
2395	  *    * gl_SecondaryColor
2396	  */
2397	 } else if (state->language_version >= 130
2398	            && (strcmp(var->name, "gl_FrontColor") == 0
2399                        || strcmp(var->name, "gl_BackColor") == 0
2400                        || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2401                        || strcmp(var->name, "gl_BackSecondaryColor") == 0
2402                        || strcmp(var->name, "gl_Color") == 0
2403                        || strcmp(var->name, "gl_SecondaryColor") == 0)
2404	            && earlier->type == var->type
2405	            && earlier->mode == var->mode) {
2406	    earlier->interpolation = var->interpolation;
2407	 } else {
2408	    YYLTYPE loc = this->get_location();
2409	    _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2410	 }
2411
2412	 continue;
2413      }
2414
2415      /* By now, we know it's a new variable declaration (we didn't hit the
2416       * above "continue").
2417       *
2418       * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2419       *
2420       *   "Identifiers starting with "gl_" are reserved for use by
2421       *   OpenGL, and may not be declared in a shader as either a
2422       *   variable or a function."
2423       */
2424      if (strncmp(decl->identifier, "gl_", 3) == 0)
2425	 _mesa_glsl_error(& loc, state,
2426			  "identifier `%s' uses reserved `gl_' prefix",
2427			  decl->identifier);
2428
2429      /* Add the variable to the symbol table.  Note that the initializer's
2430       * IR was already processed earlier (though it hasn't been emitted yet),
2431       * without the variable in scope.
2432       *
2433       * This differs from most C-like languages, but it follows the GLSL
2434       * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
2435       * spec:
2436       *
2437       *     "Within a declaration, the scope of a name starts immediately
2438       *     after the initializer if present or immediately after the name
2439       *     being declared if not."
2440       */
2441      if (!state->symbols->add_variable(var)) {
2442	 YYLTYPE loc = this->get_location();
2443	 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2444			  "current scope", decl->identifier);
2445	 continue;
2446      }
2447
2448      /* Push the variable declaration to the top.  It means that all
2449       * the variable declarations will appear in a funny
2450       * last-to-first order, but otherwise we run into trouble if a
2451       * function is prototyped, a global var is decled, then the
2452       * function is defined with usage of the global var.  See
2453       * glslparsertest's CorrectModule.frag.
2454       */
2455      instructions->push_head(var);
2456      instructions->append_list(&initializer_instructions);
2457   }
2458
2459
2460   /* Generally, variable declarations do not have r-values.  However,
2461    * one is used for the declaration in
2462    *
2463    * while (bool b = some_condition()) {
2464    *   ...
2465    * }
2466    *
2467    * so we return the rvalue from the last seen declaration here.
2468    */
2469   return result;
2470}
2471
2472
2473ir_rvalue *
2474ast_parameter_declarator::hir(exec_list *instructions,
2475			      struct _mesa_glsl_parse_state *state)
2476{
2477   void *ctx = state;
2478   const struct glsl_type *type;
2479   const char *name = NULL;
2480   YYLTYPE loc = this->get_location();
2481
2482   type = this->type->specifier->glsl_type(& name, state);
2483
2484   if (type == NULL) {
2485      if (name != NULL) {
2486	 _mesa_glsl_error(& loc, state,
2487			  "invalid type `%s' in declaration of `%s'",
2488			  name, this->identifier);
2489      } else {
2490	 _mesa_glsl_error(& loc, state,
2491			  "invalid type in declaration of `%s'",
2492			  this->identifier);
2493      }
2494
2495      type = glsl_type::error_type;
2496   }
2497
2498   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2499    *
2500    *    "Functions that accept no input arguments need not use void in the
2501    *    argument list because prototypes (or definitions) are required and
2502    *    therefore there is no ambiguity when an empty argument list "( )" is
2503    *    declared. The idiom "(void)" as a parameter list is provided for
2504    *    convenience."
2505    *
2506    * Placing this check here prevents a void parameter being set up
2507    * for a function, which avoids tripping up checks for main taking
2508    * parameters and lookups of an unnamed symbol.
2509    */
2510   if (type->is_void()) {
2511      if (this->identifier != NULL)
2512	 _mesa_glsl_error(& loc, state,
2513			  "named parameter cannot have type `void'");
2514
2515      is_void = true;
2516      return NULL;
2517   }
2518
2519   if (formal_parameter && (this->identifier == NULL)) {
2520      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2521      return NULL;
2522   }
2523
2524   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
2525    * call already handled the "vec4[..] foo" case.
2526    */
2527   if (this->is_array) {
2528      type = process_array_type(&loc, type, this->array_size, state);
2529   }
2530
2531   if (type->array_size() == 0) {
2532      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2533		       "a declared size.");
2534      type = glsl_type::error_type;
2535   }
2536
2537   is_void = false;
2538   ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2539
2540   /* Apply any specified qualifiers to the parameter declaration.  Note that
2541    * for function parameters the default mode is 'in'.
2542    */
2543   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2544
2545   instructions->push_tail(var);
2546
2547   /* Parameter declarations do not have r-values.
2548    */
2549   return NULL;
2550}
2551
2552
2553void
2554ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2555					    bool formal,
2556					    exec_list *ir_parameters,
2557					    _mesa_glsl_parse_state *state)
2558{
2559   ast_parameter_declarator *void_param = NULL;
2560   unsigned count = 0;
2561
2562   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2563      param->formal_parameter = formal;
2564      param->hir(ir_parameters, state);
2565
2566      if (param->is_void)
2567	 void_param = param;
2568
2569      count++;
2570   }
2571
2572   if ((void_param != NULL) && (count > 1)) {
2573      YYLTYPE loc = void_param->get_location();
2574
2575      _mesa_glsl_error(& loc, state,
2576		       "`void' parameter must be only parameter");
2577   }
2578}
2579
2580
2581void
2582emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2583	      ir_function *f)
2584{
2585   /* Emit the new function header */
2586   if (state->current_function == NULL) {
2587      instructions->push_tail(f);
2588   } else {
2589      /* IR invariants disallow function declarations or definitions nested
2590       * within other function definitions.  Insert the new ir_function
2591       * block in the instruction sequence before the ir_function block
2592       * containing the current ir_function_signature.
2593       */
2594      ir_function *const curr =
2595	 const_cast<ir_function *>(state->current_function->function());
2596
2597      curr->insert_before(f);
2598   }
2599}
2600
2601
2602ir_rvalue *
2603ast_function::hir(exec_list *instructions,
2604		  struct _mesa_glsl_parse_state *state)
2605{
2606   void *ctx = state;
2607   ir_function *f = NULL;
2608   ir_function_signature *sig = NULL;
2609   exec_list hir_parameters;
2610
2611   const char *const name = identifier;
2612
2613   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2614    *
2615    *   "Function declarations (prototypes) cannot occur inside of functions;
2616    *   they must be at global scope, or for the built-in functions, outside
2617    *   the global scope."
2618    *
2619    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2620    *
2621    *   "User defined functions may only be defined within the global scope."
2622    *
2623    * Note that this language does not appear in GLSL 1.10.
2624    */
2625   if ((state->current_function != NULL) && (state->language_version != 110)) {
2626      YYLTYPE loc = this->get_location();
2627      _mesa_glsl_error(&loc, state,
2628		       "declaration of function `%s' not allowed within "
2629		       "function body", name);
2630   }
2631
2632   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2633    *
2634    *   "Identifiers starting with "gl_" are reserved for use by
2635    *   OpenGL, and may not be declared in a shader as either a
2636    *   variable or a function."
2637    */
2638   if (strncmp(name, "gl_", 3) == 0) {
2639      YYLTYPE loc = this->get_location();
2640      _mesa_glsl_error(&loc, state,
2641		       "identifier `%s' uses reserved `gl_' prefix", name);
2642   }
2643
2644   /* Convert the list of function parameters to HIR now so that they can be
2645    * used below to compare this function's signature with previously seen
2646    * signatures for functions with the same name.
2647    */
2648   ast_parameter_declarator::parameters_to_hir(& this->parameters,
2649					       is_definition,
2650					       & hir_parameters, state);
2651
2652   const char *return_type_name;
2653   const glsl_type *return_type =
2654      this->return_type->specifier->glsl_type(& return_type_name, state);
2655
2656   if (!return_type) {
2657      YYLTYPE loc = this->get_location();
2658      _mesa_glsl_error(&loc, state,
2659		       "function `%s' has undeclared return type `%s'",
2660		       name, return_type_name);
2661      return_type = glsl_type::error_type;
2662   }
2663
2664   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2665    * "No qualifier is allowed on the return type of a function."
2666    */
2667   if (this->return_type->has_qualifiers()) {
2668      YYLTYPE loc = this->get_location();
2669      _mesa_glsl_error(& loc, state,
2670		       "function `%s' return type has qualifiers", name);
2671   }
2672
2673   /* Verify that this function's signature either doesn't match a previously
2674    * seen signature for a function with the same name, or, if a match is found,
2675    * that the previously seen signature does not have an associated definition.
2676    */
2677   f = state->symbols->get_function(name);
2678   if (f != NULL && (state->es_shader || f->has_user_signature())) {
2679      sig = f->exact_matching_signature(&hir_parameters);
2680      if (sig != NULL) {
2681	 const char *badvar = sig->qualifiers_match(&hir_parameters);
2682	 if (badvar != NULL) {
2683	    YYLTYPE loc = this->get_location();
2684
2685	    _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2686			     "qualifiers don't match prototype", name, badvar);
2687	 }
2688
2689	 if (sig->return_type != return_type) {
2690	    YYLTYPE loc = this->get_location();
2691
2692	    _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2693			     "match prototype", name);
2694	 }
2695
2696	 if (is_definition && sig->is_defined) {
2697	    YYLTYPE loc = this->get_location();
2698
2699	    _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2700	 }
2701      }
2702   } else {
2703      f = new(ctx) ir_function(name);
2704      if (!state->symbols->add_function(f)) {
2705	 /* This function name shadows a non-function use of the same name. */
2706	 YYLTYPE loc = this->get_location();
2707
2708	 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2709			  "non-function", name);
2710	 return NULL;
2711      }
2712
2713      emit_function(state, instructions, f);
2714   }
2715
2716   /* Verify the return type of main() */
2717   if (strcmp(name, "main") == 0) {
2718      if (! return_type->is_void()) {
2719	 YYLTYPE loc = this->get_location();
2720
2721	 _mesa_glsl_error(& loc, state, "main() must return void");
2722      }
2723
2724      if (!hir_parameters.is_empty()) {
2725	 YYLTYPE loc = this->get_location();
2726
2727	 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2728      }
2729   }
2730
2731   /* Finish storing the information about this new function in its signature.
2732    */
2733   if (sig == NULL) {
2734      sig = new(ctx) ir_function_signature(return_type);
2735      f->add_signature(sig);
2736   }
2737
2738   sig->replace_parameters(&hir_parameters);
2739   signature = sig;
2740
2741   /* Function declarations (prototypes) do not have r-values.
2742    */
2743   return NULL;
2744}
2745
2746
2747ir_rvalue *
2748ast_function_definition::hir(exec_list *instructions,
2749			     struct _mesa_glsl_parse_state *state)
2750{
2751   prototype->is_definition = true;
2752   prototype->hir(instructions, state);
2753
2754   ir_function_signature *signature = prototype->signature;
2755   if (signature == NULL)
2756      return NULL;
2757
2758   assert(state->current_function == NULL);
2759   state->current_function = signature;
2760   state->found_return = false;
2761
2762   /* Duplicate parameters declared in the prototype as concrete variables.
2763    * Add these to the symbol table.
2764    */
2765   state->symbols->push_scope();
2766   foreach_iter(exec_list_iterator, iter, signature->parameters) {
2767      ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2768
2769      assert(var != NULL);
2770
2771      /* The only way a parameter would "exist" is if two parameters have
2772       * the same name.
2773       */
2774      if (state->symbols->name_declared_this_scope(var->name)) {
2775	 YYLTYPE loc = this->get_location();
2776
2777	 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2778      } else {
2779	 state->symbols->add_variable(var);
2780      }
2781   }
2782
2783   /* Convert the body of the function to HIR. */
2784   this->body->hir(&signature->body, state);
2785   signature->is_defined = true;
2786
2787   state->symbols->pop_scope();
2788
2789   assert(state->current_function == signature);
2790   state->current_function = NULL;
2791
2792   if (!signature->return_type->is_void() && !state->found_return) {
2793      YYLTYPE loc = this->get_location();
2794      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2795		       "%s, but no return statement",
2796		       signature->function_name(),
2797		       signature->return_type->name);
2798   }
2799
2800   /* Function definitions do not have r-values.
2801    */
2802   return NULL;
2803}
2804
2805
2806ir_rvalue *
2807ast_jump_statement::hir(exec_list *instructions,
2808			struct _mesa_glsl_parse_state *state)
2809{
2810   void *ctx = state;
2811
2812   switch (mode) {
2813   case ast_return: {
2814      ir_return *inst;
2815      assert(state->current_function);
2816
2817      if (opt_return_value) {
2818	 if (state->current_function->return_type->base_type ==
2819	     GLSL_TYPE_VOID) {
2820	    YYLTYPE loc = this->get_location();
2821
2822	    _mesa_glsl_error(& loc, state,
2823			     "`return` with a value, in function `%s' "
2824			     "returning void",
2825			     state->current_function->function_name());
2826	 }
2827
2828	 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2829	 assert(ret != NULL);
2830
2831	 /* Implicit conversions are not allowed for return values. */
2832	 if (state->current_function->return_type != ret->type) {
2833	    YYLTYPE loc = this->get_location();
2834
2835	    _mesa_glsl_error(& loc, state,
2836			     "`return' with wrong type %s, in function `%s' "
2837			     "returning %s",
2838			     ret->type->name,
2839			     state->current_function->function_name(),
2840			     state->current_function->return_type->name);
2841	 }
2842
2843	 inst = new(ctx) ir_return(ret);
2844      } else {
2845	 if (state->current_function->return_type->base_type !=
2846	     GLSL_TYPE_VOID) {
2847	    YYLTYPE loc = this->get_location();
2848
2849	    _mesa_glsl_error(& loc, state,
2850			     "`return' with no value, in function %s returning "
2851			     "non-void",
2852			     state->current_function->function_name());
2853	 }
2854	 inst = new(ctx) ir_return;
2855      }
2856
2857      state->found_return = true;
2858      instructions->push_tail(inst);
2859      break;
2860   }
2861
2862   case ast_discard:
2863      if (state->target != fragment_shader) {
2864	 YYLTYPE loc = this->get_location();
2865
2866	 _mesa_glsl_error(& loc, state,
2867			  "`discard' may only appear in a fragment shader");
2868      }
2869      instructions->push_tail(new(ctx) ir_discard);
2870      break;
2871
2872   case ast_break:
2873   case ast_continue:
2874      /* FINISHME: Handle switch-statements.  They cannot contain 'continue',
2875       * FINISHME: and they use a different IR instruction for 'break'.
2876       */
2877      /* FINISHME: Correctly handle the nesting.  If a switch-statement is
2878       * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2879       * FINISHME: loop.
2880       */
2881      if (state->loop_or_switch_nesting == NULL) {
2882	 YYLTYPE loc = this->get_location();
2883
2884	 _mesa_glsl_error(& loc, state,
2885			  "`%s' may only appear in a loop",
2886			  (mode == ast_break) ? "break" : "continue");
2887      } else {
2888	 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2889
2890	 /* Inline the for loop expression again, since we don't know
2891	  * where near the end of the loop body the normal copy of it
2892	  * is going to be placed.
2893	  */
2894	 if (mode == ast_continue &&
2895	     state->loop_or_switch_nesting_ast->rest_expression) {
2896	    state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2897								    state);
2898	 }
2899
2900	 if (loop != NULL) {
2901	    ir_loop_jump *const jump =
2902	       new(ctx) ir_loop_jump((mode == ast_break)
2903				     ? ir_loop_jump::jump_break
2904				     : ir_loop_jump::jump_continue);
2905	    instructions->push_tail(jump);
2906	 }
2907      }
2908
2909      break;
2910   }
2911
2912   /* Jump instructions do not have r-values.
2913    */
2914   return NULL;
2915}
2916
2917
2918ir_rvalue *
2919ast_selection_statement::hir(exec_list *instructions,
2920			     struct _mesa_glsl_parse_state *state)
2921{
2922   void *ctx = state;
2923
2924   ir_rvalue *const condition = this->condition->hir(instructions, state);
2925
2926   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2927    *
2928    *    "Any expression whose type evaluates to a Boolean can be used as the
2929    *    conditional expression bool-expression. Vector types are not accepted
2930    *    as the expression to if."
2931    *
2932    * The checks are separated so that higher quality diagnostics can be
2933    * generated for cases where both rules are violated.
2934    */
2935   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2936      YYLTYPE loc = this->condition->get_location();
2937
2938      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2939		       "boolean");
2940   }
2941
2942   ir_if *const stmt = new(ctx) ir_if(condition);
2943
2944   if (then_statement != NULL) {
2945      state->symbols->push_scope();
2946      then_statement->hir(& stmt->then_instructions, state);
2947      state->symbols->pop_scope();
2948   }
2949
2950   if (else_statement != NULL) {
2951      state->symbols->push_scope();
2952      else_statement->hir(& stmt->else_instructions, state);
2953      state->symbols->pop_scope();
2954   }
2955
2956   instructions->push_tail(stmt);
2957
2958   /* if-statements do not have r-values.
2959    */
2960   return NULL;
2961}
2962
2963
2964void
2965ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2966					  struct _mesa_glsl_parse_state *state)
2967{
2968   void *ctx = state;
2969
2970   if (condition != NULL) {
2971      ir_rvalue *const cond =
2972	 condition->hir(& stmt->body_instructions, state);
2973
2974      if ((cond == NULL)
2975	  || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2976	 YYLTYPE loc = condition->get_location();
2977
2978	 _mesa_glsl_error(& loc, state,
2979			  "loop condition must be scalar boolean");
2980      } else {
2981	 /* As the first code in the loop body, generate a block that looks
2982	  * like 'if (!condition) break;' as the loop termination condition.
2983	  */
2984	 ir_rvalue *const not_cond =
2985	    new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2986				   NULL);
2987
2988	 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2989
2990	 ir_jump *const break_stmt =
2991	    new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2992
2993	 if_stmt->then_instructions.push_tail(break_stmt);
2994	 stmt->body_instructions.push_tail(if_stmt);
2995      }
2996   }
2997}
2998
2999
3000ir_rvalue *
3001ast_iteration_statement::hir(exec_list *instructions,
3002			     struct _mesa_glsl_parse_state *state)
3003{
3004   void *ctx = state;
3005
3006   /* For-loops and while-loops start a new scope, but do-while loops do not.
3007    */
3008   if (mode != ast_do_while)
3009      state->symbols->push_scope();
3010
3011   if (init_statement != NULL)
3012      init_statement->hir(instructions, state);
3013
3014   ir_loop *const stmt = new(ctx) ir_loop();
3015   instructions->push_tail(stmt);
3016
3017   /* Track the current loop and / or switch-statement nesting.
3018    */
3019   ir_instruction *const nesting = state->loop_or_switch_nesting;
3020   ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3021
3022   state->loop_or_switch_nesting = stmt;
3023   state->loop_or_switch_nesting_ast = this;
3024
3025   if (mode != ast_do_while)
3026      condition_to_hir(stmt, state);
3027
3028   if (body != NULL)
3029      body->hir(& stmt->body_instructions, state);
3030
3031   if (rest_expression != NULL)
3032      rest_expression->hir(& stmt->body_instructions, state);
3033
3034   if (mode == ast_do_while)
3035      condition_to_hir(stmt, state);
3036
3037   if (mode != ast_do_while)
3038      state->symbols->pop_scope();
3039
3040   /* Restore previous nesting before returning.
3041    */
3042   state->loop_or_switch_nesting = nesting;
3043   state->loop_or_switch_nesting_ast = nesting_ast;
3044
3045   /* Loops do not have r-values.
3046    */
3047   return NULL;
3048}
3049
3050
3051ir_rvalue *
3052ast_type_specifier::hir(exec_list *instructions,
3053			  struct _mesa_glsl_parse_state *state)
3054{
3055   if (this->structure != NULL)
3056      return this->structure->hir(instructions, state);
3057
3058   return NULL;
3059}
3060
3061
3062ir_rvalue *
3063ast_struct_specifier::hir(exec_list *instructions,
3064			  struct _mesa_glsl_parse_state *state)
3065{
3066   unsigned decl_count = 0;
3067
3068   /* Make an initial pass over the list of structure fields to determine how
3069    * many there are.  Each element in this list is an ast_declarator_list.
3070    * This means that we actually need to count the number of elements in the
3071    * 'declarations' list in each of the elements.
3072    */
3073   foreach_list_typed (ast_declarator_list, decl_list, link,
3074		       &this->declarations) {
3075      foreach_list_const (decl_ptr, & decl_list->declarations) {
3076	 decl_count++;
3077      }
3078   }
3079
3080   /* Allocate storage for the structure fields and process the field
3081    * declarations.  As the declarations are processed, try to also convert
3082    * the types to HIR.  This ensures that structure definitions embedded in
3083    * other structure definitions are processed.
3084    */
3085   glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
3086						  decl_count);
3087
3088   unsigned i = 0;
3089   foreach_list_typed (ast_declarator_list, decl_list, link,
3090		       &this->declarations) {
3091      const char *type_name;
3092
3093      decl_list->type->specifier->hir(instructions, state);
3094
3095      /* Section 10.9 of the GLSL ES 1.00 specification states that
3096       * embedded structure definitions have been removed from the language.
3097       */
3098      if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3099	 YYLTYPE loc = this->get_location();
3100	 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3101			  "not allowed in GLSL ES 1.00.");
3102      }
3103
3104      const glsl_type *decl_type =
3105	 decl_list->type->specifier->glsl_type(& type_name, state);
3106
3107      foreach_list_typed (ast_declaration, decl, link,
3108			  &decl_list->declarations) {
3109	 const struct glsl_type *field_type = decl_type;
3110	 if (decl->is_array) {
3111	    YYLTYPE loc = decl->get_location();
3112	    field_type = process_array_type(&loc, decl_type, decl->array_size,
3113					    state);
3114	 }
3115	 fields[i].type = (field_type != NULL)
3116	    ? field_type : glsl_type::error_type;
3117	 fields[i].name = decl->identifier;
3118	 i++;
3119      }
3120   }
3121
3122   assert(i == decl_count);
3123
3124   const glsl_type *t =
3125      glsl_type::get_record_instance(fields, decl_count, this->name);
3126
3127   YYLTYPE loc = this->get_location();
3128   if (!state->symbols->add_type(name, t)) {
3129      _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3130   } else {
3131
3132      const glsl_type **s = (const glsl_type **)
3133	 realloc(state->user_structures,
3134		 sizeof(state->user_structures[0]) *
3135		 (state->num_user_structures + 1));
3136      if (s != NULL) {
3137	 s[state->num_user_structures] = t;
3138	 state->user_structures = s;
3139	 state->num_user_structures++;
3140      }
3141   }
3142
3143   /* Structure type definitions do not have r-values.
3144    */
3145   return NULL;
3146}
3147