ast_to_hir.cpp revision f07221056e1822187546b76387714b3172f9b2c5
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "main/core.h" /* for struct gl_extensions */
53#include "glsl_symbol_table.h"
54#include "glsl_parser_extras.h"
55#include "ast.h"
56#include "glsl_types.h"
57#include "ir.h"
58
59void
60_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61{
62   _mesa_glsl_initialize_variables(instructions, state);
63   _mesa_glsl_initialize_functions(state);
64
65   state->symbols->language_version = state->language_version;
66
67   state->current_function = NULL;
68
69   /* Section 4.2 of the GLSL 1.20 specification states:
70    * "The built-in functions are scoped in a scope outside the global scope
71    *  users declare global variables in.  That is, a shader's global scope,
72    *  available for user-defined functions and global variables, is nested
73    *  inside the scope containing the built-in functions."
74    *
75    * Since built-in functions like ftransform() access built-in variables,
76    * it follows that those must be in the outer scope as well.
77    *
78    * We push scope here to create this nesting effect...but don't pop.
79    * This way, a shader's globals are still in the symbol table for use
80    * by the linker.
81    */
82   state->symbols->push_scope();
83
84   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85      ast->hir(instructions, state);
86}
87
88
89/**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to     Type that the operand it to be converted to
95 * \param from   Operand that is being converted
96 * \param state  GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102bool
103apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104			  struct _mesa_glsl_parse_state *state)
105{
106   void *ctx = state;
107   if (to->base_type == from->type->base_type)
108      return true;
109
110   /* This conversion was added in GLSL 1.20.  If the compilation mode is
111    * GLSL 1.10, the conversion is skipped.
112    */
113   if (state->language_version < 120)
114      return false;
115
116   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117    *
118    *    "There are no implicit array or structure conversions. For
119    *    example, an array of int cannot be implicitly converted to an
120    *    array of float. There are no implicit conversions between
121    *    signed and unsigned integers."
122    */
123   /* FINISHME: The above comment is partially a lie.  There is int/uint
124    * FINISHME: conversion for immediate constants.
125    */
126   if (!to->is_float() || !from->type->is_numeric())
127      return false;
128
129   /* Convert to a floating point type with the same number of components
130    * as the original type - i.e. int to float, not int to vec4.
131    */
132   to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133			        from->type->matrix_columns);
134
135   switch (from->type->base_type) {
136   case GLSL_TYPE_INT:
137      from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138      break;
139   case GLSL_TYPE_UINT:
140      from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141      break;
142   case GLSL_TYPE_BOOL:
143      from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144      break;
145   default:
146      assert(0);
147   }
148
149   return true;
150}
151
152
153static const struct glsl_type *
154arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155		       bool multiply,
156		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157{
158   const glsl_type *type_a = value_a->type;
159   const glsl_type *type_b = value_b->type;
160
161   /* From GLSL 1.50 spec, page 56:
162    *
163    *    "The arithmetic binary operators add (+), subtract (-),
164    *    multiply (*), and divide (/) operate on integer and
165    *    floating-point scalars, vectors, and matrices."
166    */
167   if (!type_a->is_numeric() || !type_b->is_numeric()) {
168      _mesa_glsl_error(loc, state,
169		       "Operands to arithmetic operators must be numeric");
170      return glsl_type::error_type;
171   }
172
173
174   /*    "If one operand is floating-point based and the other is
175    *    not, then the conversions from Section 4.1.10 "Implicit
176    *    Conversions" are applied to the non-floating-point-based operand."
177    */
178   if (!apply_implicit_conversion(type_a, value_b, state)
179       && !apply_implicit_conversion(type_b, value_a, state)) {
180      _mesa_glsl_error(loc, state,
181		       "Could not implicitly convert operands to "
182		       "arithmetic operator");
183      return glsl_type::error_type;
184   }
185   type_a = value_a->type;
186   type_b = value_b->type;
187
188   /*    "If the operands are integer types, they must both be signed or
189    *    both be unsigned."
190    *
191    * From this rule and the preceeding conversion it can be inferred that
192    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193    * The is_numeric check above already filtered out the case where either
194    * type is not one of these, so now the base types need only be tested for
195    * equality.
196    */
197   if (type_a->base_type != type_b->base_type) {
198      _mesa_glsl_error(loc, state,
199		       "base type mismatch for arithmetic operator");
200      return glsl_type::error_type;
201   }
202
203   /*    "All arithmetic binary operators result in the same fundamental type
204    *    (signed integer, unsigned integer, or floating-point) as the
205    *    operands they operate on, after operand type conversion. After
206    *    conversion, the following cases are valid
207    *
208    *    * The two operands are scalars. In this case the operation is
209    *      applied, resulting in a scalar."
210    */
211   if (type_a->is_scalar() && type_b->is_scalar())
212      return type_a;
213
214   /*   "* One operand is a scalar, and the other is a vector or matrix.
215    *      In this case, the scalar operation is applied independently to each
216    *      component of the vector or matrix, resulting in the same size
217    *      vector or matrix."
218    */
219   if (type_a->is_scalar()) {
220      if (!type_b->is_scalar())
221	 return type_b;
222   } else if (type_b->is_scalar()) {
223      return type_a;
224   }
225
226   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228    * handled.
229    */
230   assert(!type_a->is_scalar());
231   assert(!type_b->is_scalar());
232
233   /*   "* The two operands are vectors of the same size. In this case, the
234    *      operation is done component-wise resulting in the same size
235    *      vector."
236    */
237   if (type_a->is_vector() && type_b->is_vector()) {
238      if (type_a == type_b) {
239	 return type_a;
240      } else {
241	 _mesa_glsl_error(loc, state,
242			  "vector size mismatch for arithmetic operator");
243	 return glsl_type::error_type;
244      }
245   }
246
247   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249    * <vector, vector> have been handled.  At least one of the operands must
250    * be matrix.  Further, since there are no integer matrix types, the base
251    * type of both operands must be float.
252    */
253   assert(type_a->is_matrix() || type_b->is_matrix());
254   assert(type_a->base_type == GLSL_TYPE_FLOAT);
255   assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257   /*   "* The operator is add (+), subtract (-), or divide (/), and the
258    *      operands are matrices with the same number of rows and the same
259    *      number of columns. In this case, the operation is done component-
260    *      wise resulting in the same size matrix."
261    *    * The operator is multiply (*), where both operands are matrices or
262    *      one operand is a vector and the other a matrix. A right vector
263    *      operand is treated as a column vector and a left vector operand as a
264    *      row vector. In all these cases, it is required that the number of
265    *      columns of the left operand is equal to the number of rows of the
266    *      right operand. Then, the multiply (*) operation does a linear
267    *      algebraic multiply, yielding an object that has the same number of
268    *      rows as the left operand and the same number of columns as the right
269    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
270    *      more detail how vectors and matrices are operated on."
271    */
272   if (! multiply) {
273      if (type_a == type_b)
274	 return type_a;
275   } else {
276      if (type_a->is_matrix() && type_b->is_matrix()) {
277	 /* Matrix multiply.  The columns of A must match the rows of B.  Given
278	  * the other previously tested constraints, this means the vector type
279	  * of a row from A must be the same as the vector type of a column from
280	  * B.
281	  */
282	 if (type_a->row_type() == type_b->column_type()) {
283	    /* The resulting matrix has the number of columns of matrix B and
284	     * the number of rows of matrix A.  We get the row count of A by
285	     * looking at the size of a vector that makes up a column.  The
286	     * transpose (size of a row) is done for B.
287	     */
288	    const glsl_type *const type =
289	       glsl_type::get_instance(type_a->base_type,
290				       type_a->column_type()->vector_elements,
291				       type_b->row_type()->vector_elements);
292	    assert(type != glsl_type::error_type);
293
294	    return type;
295	 }
296      } else if (type_a->is_matrix()) {
297	 /* A is a matrix and B is a column vector.  Columns of A must match
298	  * rows of B.  Given the other previously tested constraints, this
299	  * means the vector type of a row from A must be the same as the
300	  * vector the type of B.
301	  */
302	 if (type_a->row_type() == type_b) {
303	    /* The resulting vector has a number of elements equal to
304	     * the number of rows of matrix A. */
305	    const glsl_type *const type =
306	       glsl_type::get_instance(type_a->base_type,
307				       type_a->column_type()->vector_elements,
308				       1);
309	    assert(type != glsl_type::error_type);
310
311	    return type;
312	 }
313      } else {
314	 assert(type_b->is_matrix());
315
316	 /* A is a row vector and B is a matrix.  Columns of A must match rows
317	  * of B.  Given the other previously tested constraints, this means
318	  * the type of A must be the same as the vector type of a column from
319	  * B.
320	  */
321	 if (type_a == type_b->column_type()) {
322	    /* The resulting vector has a number of elements equal to
323	     * the number of columns of matrix B. */
324	    const glsl_type *const type =
325	       glsl_type::get_instance(type_a->base_type,
326				       type_b->row_type()->vector_elements,
327				       1);
328	    assert(type != glsl_type::error_type);
329
330	    return type;
331	 }
332      }
333
334      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335      return glsl_type::error_type;
336   }
337
338
339   /*    "All other cases are illegal."
340    */
341   _mesa_glsl_error(loc, state, "type mismatch");
342   return glsl_type::error_type;
343}
344
345
346static const struct glsl_type *
347unary_arithmetic_result_type(const struct glsl_type *type,
348			     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349{
350   /* From GLSL 1.50 spec, page 57:
351    *
352    *    "The arithmetic unary operators negate (-), post- and pre-increment
353    *     and decrement (-- and ++) operate on integer or floating-point
354    *     values (including vectors and matrices). All unary operators work
355    *     component-wise on their operands. These result with the same type
356    *     they operated on."
357    */
358   if (!type->is_numeric()) {
359      _mesa_glsl_error(loc, state,
360		       "Operands to arithmetic operators must be numeric");
361      return glsl_type::error_type;
362   }
363
364   return type;
365}
366
367/**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376static const struct glsl_type *
377bit_logic_result_type(const struct glsl_type *type_a,
378                      const struct glsl_type *type_b,
379                      ast_operators op,
380                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381{
382    if (state->language_version < 130) {
383       _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384       return glsl_type::error_type;
385    }
386
387    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388     *
389     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390     *     (|). The operands must be of type signed or unsigned integers or
391     *     integer vectors."
392     */
393    if (!type_a->is_integer()) {
394       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395                         ast_expression::operator_string(op));
396       return glsl_type::error_type;
397    }
398    if (!type_b->is_integer()) {
399       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400                        ast_expression::operator_string(op));
401       return glsl_type::error_type;
402    }
403
404    /*     "The fundamental types of the operands (signed or unsigned) must
405     *     match,"
406     */
407    if (type_a->base_type != type_b->base_type) {
408       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409                        "base type", ast_expression::operator_string(op));
410       return glsl_type::error_type;
411    }
412
413    /*     "The operands cannot be vectors of differing size." */
414    if (type_a->is_vector() &&
415        type_b->is_vector() &&
416        type_a->vector_elements != type_b->vector_elements) {
417       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418                        "different sizes", ast_expression::operator_string(op));
419       return glsl_type::error_type;
420    }
421
422    /*     "If one operand is a scalar and the other a vector, the scalar is
423     *     applied component-wise to the vector, resulting in the same type as
424     *     the vector. The fundamental types of the operands [...] will be the
425     *     resulting fundamental type."
426     */
427    if (type_a->is_scalar())
428        return type_b;
429    else
430        return type_a;
431}
432
433static const struct glsl_type *
434modulus_result_type(const struct glsl_type *type_a,
435		    const struct glsl_type *type_b,
436		    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437{
438   if (state->language_version < 130) {
439      _mesa_glsl_error(loc, state,
440                       "operator '%%' is reserved in %s",
441                       state->version_string);
442      return glsl_type::error_type;
443   }
444
445   /* From GLSL 1.50 spec, page 56:
446    *    "The operator modulus (%) operates on signed or unsigned integers or
447    *    integer vectors. The operand types must both be signed or both be
448    *    unsigned."
449    */
450   if (!type_a->is_integer()) {
451      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
452      return glsl_type::error_type;
453   }
454   if (!type_b->is_integer()) {
455      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
456      return glsl_type::error_type;
457   }
458   if (type_a->base_type != type_b->base_type) {
459      _mesa_glsl_error(loc, state,
460		       "operands of %% must have the same base type");
461      return glsl_type::error_type;
462   }
463
464   /*    "The operands cannot be vectors of differing size. If one operand is
465    *    a scalar and the other vector, then the scalar is applied component-
466    *    wise to the vector, resulting in the same type as the vector. If both
467    *    are vectors of the same size, the result is computed component-wise."
468    */
469   if (type_a->is_vector()) {
470      if (!type_b->is_vector()
471	  || (type_a->vector_elements == type_b->vector_elements))
472	 return type_a;
473   } else
474      return type_b;
475
476   /*    "The operator modulus (%) is not defined for any other data types
477    *    (non-integer types)."
478    */
479   _mesa_glsl_error(loc, state, "type mismatch");
480   return glsl_type::error_type;
481}
482
483
484static const struct glsl_type *
485relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
486		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
487{
488   const glsl_type *type_a = value_a->type;
489   const glsl_type *type_b = value_b->type;
490
491   /* From GLSL 1.50 spec, page 56:
492    *    "The relational operators greater than (>), less than (<), greater
493    *    than or equal (>=), and less than or equal (<=) operate only on
494    *    scalar integer and scalar floating-point expressions."
495    */
496   if (!type_a->is_numeric()
497       || !type_b->is_numeric()
498       || !type_a->is_scalar()
499       || !type_b->is_scalar()) {
500      _mesa_glsl_error(loc, state,
501		       "Operands to relational operators must be scalar and "
502		       "numeric");
503      return glsl_type::error_type;
504   }
505
506   /*    "Either the operands' types must match, or the conversions from
507    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
508    *    operand, after which the types must match."
509    */
510   if (!apply_implicit_conversion(type_a, value_b, state)
511       && !apply_implicit_conversion(type_b, value_a, state)) {
512      _mesa_glsl_error(loc, state,
513		       "Could not implicitly convert operands to "
514		       "relational operator");
515      return glsl_type::error_type;
516   }
517   type_a = value_a->type;
518   type_b = value_b->type;
519
520   if (type_a->base_type != type_b->base_type) {
521      _mesa_glsl_error(loc, state, "base type mismatch");
522      return glsl_type::error_type;
523   }
524
525   /*    "The result is scalar Boolean."
526    */
527   return glsl_type::bool_type;
528}
529
530/**
531 * \brief Return the result type of a bit-shift operation.
532 *
533 * If the given types to the bit-shift operator are invalid, return
534 * glsl_type::error_type.
535 *
536 * \param type_a Type of LHS of bit-shift op
537 * \param type_b Type of RHS of bit-shift op
538 */
539static const struct glsl_type *
540shift_result_type(const struct glsl_type *type_a,
541                  const struct glsl_type *type_b,
542                  ast_operators op,
543                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
544{
545   if (state->language_version < 130) {
546      _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
547      return glsl_type::error_type;
548   }
549
550   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
551    *
552    *     "The shift operators (<<) and (>>). For both operators, the operands
553    *     must be signed or unsigned integers or integer vectors. One operand
554    *     can be signed while the other is unsigned."
555    */
556   if (!type_a->is_integer()) {
557      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
558              "integer vector", ast_expression::operator_string(op));
559     return glsl_type::error_type;
560
561   }
562   if (!type_b->is_integer()) {
563      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
564              "integer vector", ast_expression::operator_string(op));
565     return glsl_type::error_type;
566   }
567
568   /*     "If the first operand is a scalar, the second operand has to be
569    *     a scalar as well."
570    */
571   if (type_a->is_scalar() && !type_b->is_scalar()) {
572      _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
573              "second must be scalar as well",
574              ast_expression::operator_string(op));
575     return glsl_type::error_type;
576   }
577
578   /* If both operands are vectors, check that they have same number of
579    * elements.
580    */
581   if (type_a->is_vector() &&
582      type_b->is_vector() &&
583      type_a->vector_elements != type_b->vector_elements) {
584      _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
585              "have same number of elements",
586              ast_expression::operator_string(op));
587     return glsl_type::error_type;
588   }
589
590   /*     "In all cases, the resulting type will be the same type as the left
591    *     operand."
592    */
593   return type_a;
594}
595
596/**
597 * Validates that a value can be assigned to a location with a specified type
598 *
599 * Validates that \c rhs can be assigned to some location.  If the types are
600 * not an exact match but an automatic conversion is possible, \c rhs will be
601 * converted.
602 *
603 * \return
604 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
605 * Otherwise the actual RHS to be assigned will be returned.  This may be
606 * \c rhs, or it may be \c rhs after some type conversion.
607 *
608 * \note
609 * In addition to being used for assignments, this function is used to
610 * type-check return values.
611 */
612ir_rvalue *
613validate_assignment(struct _mesa_glsl_parse_state *state,
614		    const glsl_type *lhs_type, ir_rvalue *rhs,
615		    bool is_initializer)
616{
617   /* If there is already some error in the RHS, just return it.  Anything
618    * else will lead to an avalanche of error message back to the user.
619    */
620   if (rhs->type->is_error())
621      return rhs;
622
623   /* If the types are identical, the assignment can trivially proceed.
624    */
625   if (rhs->type == lhs_type)
626      return rhs;
627
628   /* If the array element types are the same and the size of the LHS is zero,
629    * the assignment is okay for initializers embedded in variable
630    * declarations.
631    *
632    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
633    * is handled by ir_dereference::is_lvalue.
634    */
635   if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
636       && (lhs_type->element_type() == rhs->type->element_type())
637       && (lhs_type->array_size() == 0)) {
638      return rhs;
639   }
640
641   /* Check for implicit conversion in GLSL 1.20 */
642   if (apply_implicit_conversion(lhs_type, rhs, state)) {
643      if (rhs->type == lhs_type)
644	 return rhs;
645   }
646
647   return NULL;
648}
649
650ir_rvalue *
651do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
652	      ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
653	      YYLTYPE lhs_loc)
654{
655   void *ctx = state;
656   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
657
658   if (!error_emitted) {
659      if (lhs->variable_referenced() != NULL
660          && lhs->variable_referenced()->read_only) {
661         _mesa_glsl_error(&lhs_loc, state,
662                          "assignment to read-only variable '%s'",
663                          lhs->variable_referenced()->name);
664         error_emitted = true;
665
666      } else if (!lhs->is_lvalue()) {
667	 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
668	 error_emitted = true;
669      }
670
671      if (state->es_shader && lhs->type->is_array()) {
672	 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
673			  "allowed in GLSL ES 1.00.");
674	 error_emitted = true;
675      }
676   }
677
678   ir_rvalue *new_rhs =
679      validate_assignment(state, lhs->type, rhs, is_initializer);
680   if (new_rhs == NULL) {
681      _mesa_glsl_error(& lhs_loc, state, "type mismatch");
682   } else {
683      rhs = new_rhs;
684
685      /* If the LHS array was not declared with a size, it takes it size from
686       * the RHS.  If the LHS is an l-value and a whole array, it must be a
687       * dereference of a variable.  Any other case would require that the LHS
688       * is either not an l-value or not a whole array.
689       */
690      if (lhs->type->array_size() == 0) {
691	 ir_dereference *const d = lhs->as_dereference();
692
693	 assert(d != NULL);
694
695	 ir_variable *const var = d->variable_referenced();
696
697	 assert(var != NULL);
698
699	 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
700	    /* FINISHME: This should actually log the location of the RHS. */
701	    _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
702			     "previous access",
703			     var->max_array_access);
704	 }
705
706	 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
707						   rhs->type->array_size());
708	 d->type = var->type;
709      }
710   }
711
712   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
713    * but not post_inc) need the converted assigned value as an rvalue
714    * to handle things like:
715    *
716    * i = j += 1;
717    *
718    * So we always just store the computed value being assigned to a
719    * temporary and return a deref of that temporary.  If the rvalue
720    * ends up not being used, the temp will get copy-propagated out.
721    */
722   ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
723					   ir_var_temporary);
724   ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
725   instructions->push_tail(var);
726   instructions->push_tail(new(ctx) ir_assignment(deref_var,
727						  rhs,
728						  NULL));
729   deref_var = new(ctx) ir_dereference_variable(var);
730
731   if (!error_emitted)
732      instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
733
734   return new(ctx) ir_dereference_variable(var);
735}
736
737static ir_rvalue *
738get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
739{
740   void *ctx = ralloc_parent(lvalue);
741   ir_variable *var;
742
743   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
744			      ir_var_temporary);
745   instructions->push_tail(var);
746   var->mode = ir_var_auto;
747
748   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
749						  lvalue, NULL));
750
751   /* Once we've created this temporary, mark it read only so it's no
752    * longer considered an lvalue.
753    */
754   var->read_only = true;
755
756   return new(ctx) ir_dereference_variable(var);
757}
758
759
760ir_rvalue *
761ast_node::hir(exec_list *instructions,
762	      struct _mesa_glsl_parse_state *state)
763{
764   (void) instructions;
765   (void) state;
766
767   return NULL;
768}
769
770static void
771mark_whole_array_access(ir_rvalue *access)
772{
773   ir_dereference_variable *deref = access->as_dereference_variable();
774
775   if (deref) {
776      deref->var->max_array_access = deref->type->length - 1;
777   }
778}
779
780static ir_rvalue *
781do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
782{
783   int join_op;
784   ir_rvalue *cmp = NULL;
785
786   if (operation == ir_binop_all_equal)
787      join_op = ir_binop_logic_and;
788   else
789      join_op = ir_binop_logic_or;
790
791   switch (op0->type->base_type) {
792   case GLSL_TYPE_FLOAT:
793   case GLSL_TYPE_UINT:
794   case GLSL_TYPE_INT:
795   case GLSL_TYPE_BOOL:
796      return new(mem_ctx) ir_expression(operation, op0, op1);
797
798   case GLSL_TYPE_ARRAY: {
799      for (unsigned int i = 0; i < op0->type->length; i++) {
800	 ir_rvalue *e0, *e1, *result;
801
802	 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
803						new(mem_ctx) ir_constant(i));
804	 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
805						new(mem_ctx) ir_constant(i));
806	 result = do_comparison(mem_ctx, operation, e0, e1);
807
808	 if (cmp) {
809	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
810	 } else {
811	    cmp = result;
812	 }
813      }
814
815      mark_whole_array_access(op0);
816      mark_whole_array_access(op1);
817      break;
818   }
819
820   case GLSL_TYPE_STRUCT: {
821      for (unsigned int i = 0; i < op0->type->length; i++) {
822	 ir_rvalue *e0, *e1, *result;
823	 const char *field_name = op0->type->fields.structure[i].name;
824
825	 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
826						 field_name);
827	 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
828						 field_name);
829	 result = do_comparison(mem_ctx, operation, e0, e1);
830
831	 if (cmp) {
832	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
833	 } else {
834	    cmp = result;
835	 }
836      }
837      break;
838   }
839
840   case GLSL_TYPE_ERROR:
841   case GLSL_TYPE_VOID:
842   case GLSL_TYPE_SAMPLER:
843      /* I assume a comparison of a struct containing a sampler just
844       * ignores the sampler present in the type.
845       */
846      break;
847
848   default:
849      assert(!"Should not get here.");
850      break;
851   }
852
853   if (cmp == NULL)
854      cmp = new(mem_ctx) ir_constant(true);
855
856   return cmp;
857}
858
859/* For logical operations, we want to ensure that the operands are
860 * scalar booleans.  If it isn't, emit an error and return a constant
861 * boolean to avoid triggering cascading error messages.
862 */
863ir_rvalue *
864get_scalar_boolean_operand(exec_list *instructions,
865			   struct _mesa_glsl_parse_state *state,
866			   ast_expression *parent_expr,
867			   int operand,
868			   const char *operand_name,
869			   bool *error_emitted)
870{
871   ast_expression *expr = parent_expr->subexpressions[operand];
872   void *ctx = state;
873   ir_rvalue *val = expr->hir(instructions, state);
874
875   if (val->type->is_boolean() && val->type->is_scalar())
876      return val;
877
878   if (!*error_emitted) {
879      YYLTYPE loc = expr->get_location();
880      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
881		       operand_name,
882		       parent_expr->operator_string(parent_expr->oper));
883      *error_emitted = true;
884   }
885
886   return new(ctx) ir_constant(true);
887}
888
889ir_rvalue *
890ast_expression::hir(exec_list *instructions,
891		    struct _mesa_glsl_parse_state *state)
892{
893   void *ctx = state;
894   static const int operations[AST_NUM_OPERATORS] = {
895      -1,               /* ast_assign doesn't convert to ir_expression. */
896      -1,               /* ast_plus doesn't convert to ir_expression. */
897      ir_unop_neg,
898      ir_binop_add,
899      ir_binop_sub,
900      ir_binop_mul,
901      ir_binop_div,
902      ir_binop_mod,
903      ir_binop_lshift,
904      ir_binop_rshift,
905      ir_binop_less,
906      ir_binop_greater,
907      ir_binop_lequal,
908      ir_binop_gequal,
909      ir_binop_all_equal,
910      ir_binop_any_nequal,
911      ir_binop_bit_and,
912      ir_binop_bit_xor,
913      ir_binop_bit_or,
914      ir_unop_bit_not,
915      ir_binop_logic_and,
916      ir_binop_logic_xor,
917      ir_binop_logic_or,
918      ir_unop_logic_not,
919
920      /* Note: The following block of expression types actually convert
921       * to multiple IR instructions.
922       */
923      ir_binop_mul,     /* ast_mul_assign */
924      ir_binop_div,     /* ast_div_assign */
925      ir_binop_mod,     /* ast_mod_assign */
926      ir_binop_add,     /* ast_add_assign */
927      ir_binop_sub,     /* ast_sub_assign */
928      ir_binop_lshift,  /* ast_ls_assign */
929      ir_binop_rshift,  /* ast_rs_assign */
930      ir_binop_bit_and, /* ast_and_assign */
931      ir_binop_bit_xor, /* ast_xor_assign */
932      ir_binop_bit_or,  /* ast_or_assign */
933
934      -1,               /* ast_conditional doesn't convert to ir_expression. */
935      ir_binop_add,     /* ast_pre_inc. */
936      ir_binop_sub,     /* ast_pre_dec. */
937      ir_binop_add,     /* ast_post_inc. */
938      ir_binop_sub,     /* ast_post_dec. */
939      -1,               /* ast_field_selection doesn't conv to ir_expression. */
940      -1,               /* ast_array_index doesn't convert to ir_expression. */
941      -1,               /* ast_function_call doesn't conv to ir_expression. */
942      -1,               /* ast_identifier doesn't convert to ir_expression. */
943      -1,               /* ast_int_constant doesn't convert to ir_expression. */
944      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
945      -1,               /* ast_float_constant doesn't conv to ir_expression. */
946      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
947      -1,               /* ast_sequence doesn't convert to ir_expression. */
948   };
949   ir_rvalue *result = NULL;
950   ir_rvalue *op[3];
951   const struct glsl_type *type; /* a temporary variable for switch cases */
952   bool error_emitted = false;
953   YYLTYPE loc;
954
955   loc = this->get_location();
956
957   switch (this->oper) {
958   case ast_assign: {
959      op[0] = this->subexpressions[0]->hir(instructions, state);
960      op[1] = this->subexpressions[1]->hir(instructions, state);
961
962      result = do_assignment(instructions, state, op[0], op[1], false,
963			     this->subexpressions[0]->get_location());
964      error_emitted = result->type->is_error();
965      break;
966   }
967
968   case ast_plus:
969      op[0] = this->subexpressions[0]->hir(instructions, state);
970
971      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
972
973      error_emitted = type->is_error();
974
975      result = op[0];
976      break;
977
978   case ast_neg:
979      op[0] = this->subexpressions[0]->hir(instructions, state);
980
981      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
982
983      error_emitted = type->is_error();
984
985      result = new(ctx) ir_expression(operations[this->oper], type,
986				      op[0], NULL);
987      break;
988
989   case ast_add:
990   case ast_sub:
991   case ast_mul:
992   case ast_div:
993      op[0] = this->subexpressions[0]->hir(instructions, state);
994      op[1] = this->subexpressions[1]->hir(instructions, state);
995
996      type = arithmetic_result_type(op[0], op[1],
997				    (this->oper == ast_mul),
998				    state, & loc);
999      error_emitted = type->is_error();
1000
1001      result = new(ctx) ir_expression(operations[this->oper], type,
1002				      op[0], op[1]);
1003      break;
1004
1005   case ast_mod:
1006      op[0] = this->subexpressions[0]->hir(instructions, state);
1007      op[1] = this->subexpressions[1]->hir(instructions, state);
1008
1009      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1010
1011      assert(operations[this->oper] == ir_binop_mod);
1012
1013      result = new(ctx) ir_expression(operations[this->oper], type,
1014				      op[0], op[1]);
1015      error_emitted = type->is_error();
1016      break;
1017
1018   case ast_lshift:
1019   case ast_rshift:
1020       if (state->language_version < 130) {
1021          _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1022              operator_string(this->oper));
1023          error_emitted = true;
1024       }
1025
1026       op[0] = this->subexpressions[0]->hir(instructions, state);
1027       op[1] = this->subexpressions[1]->hir(instructions, state);
1028       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1029                                &loc);
1030       result = new(ctx) ir_expression(operations[this->oper], type,
1031                                       op[0], op[1]);
1032       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1033       break;
1034
1035   case ast_less:
1036   case ast_greater:
1037   case ast_lequal:
1038   case ast_gequal:
1039      op[0] = this->subexpressions[0]->hir(instructions, state);
1040      op[1] = this->subexpressions[1]->hir(instructions, state);
1041
1042      type = relational_result_type(op[0], op[1], state, & loc);
1043
1044      /* The relational operators must either generate an error or result
1045       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1046       */
1047      assert(type->is_error()
1048	     || ((type->base_type == GLSL_TYPE_BOOL)
1049		 && type->is_scalar()));
1050
1051      result = new(ctx) ir_expression(operations[this->oper], type,
1052				      op[0], op[1]);
1053      error_emitted = type->is_error();
1054      break;
1055
1056   case ast_nequal:
1057   case ast_equal:
1058      op[0] = this->subexpressions[0]->hir(instructions, state);
1059      op[1] = this->subexpressions[1]->hir(instructions, state);
1060
1061      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1062       *
1063       *    "The equality operators equal (==), and not equal (!=)
1064       *    operate on all types. They result in a scalar Boolean. If
1065       *    the operand types do not match, then there must be a
1066       *    conversion from Section 4.1.10 "Implicit Conversions"
1067       *    applied to one operand that can make them match, in which
1068       *    case this conversion is done."
1069       */
1070      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1071	   && !apply_implicit_conversion(op[1]->type, op[0], state))
1072	  || (op[0]->type != op[1]->type)) {
1073	 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1074			  "type", (this->oper == ast_equal) ? "==" : "!=");
1075	 error_emitted = true;
1076      } else if ((state->language_version <= 110)
1077		 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1078	 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1079			  "GLSL 1.10");
1080	 error_emitted = true;
1081      }
1082
1083      if (error_emitted) {
1084	 result = new(ctx) ir_constant(false);
1085      } else {
1086	 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1087	 assert(result->type == glsl_type::bool_type);
1088      }
1089      break;
1090
1091   case ast_bit_and:
1092   case ast_bit_xor:
1093   case ast_bit_or:
1094      op[0] = this->subexpressions[0]->hir(instructions, state);
1095      op[1] = this->subexpressions[1]->hir(instructions, state);
1096      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1097                                   state, &loc);
1098      result = new(ctx) ir_expression(operations[this->oper], type,
1099				      op[0], op[1]);
1100      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1101      break;
1102
1103   case ast_bit_not:
1104      op[0] = this->subexpressions[0]->hir(instructions, state);
1105
1106      if (state->language_version < 130) {
1107	 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1108	 error_emitted = true;
1109      }
1110
1111      if (!op[0]->type->is_integer()) {
1112	 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1113	 error_emitted = true;
1114      }
1115
1116      type = op[0]->type;
1117      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1118      break;
1119
1120   case ast_logic_and: {
1121      exec_list rhs_instructions;
1122      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1123					 "LHS", &error_emitted);
1124      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1125					 "RHS", &error_emitted);
1126
1127      ir_constant *op0_const = op[0]->constant_expression_value();
1128      if (op0_const) {
1129	 if (op0_const->value.b[0]) {
1130	    instructions->append_list(&rhs_instructions);
1131	    result = op[1];
1132	 } else {
1133	    result = op0_const;
1134	 }
1135	 type = glsl_type::bool_type;
1136      } else {
1137	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1138						       "and_tmp",
1139						       ir_var_temporary);
1140	 instructions->push_tail(tmp);
1141
1142	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1143	 instructions->push_tail(stmt);
1144
1145	 stmt->then_instructions.append_list(&rhs_instructions);
1146	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1147	 ir_assignment *const then_assign =
1148	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1149	 stmt->then_instructions.push_tail(then_assign);
1150
1151	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1152	 ir_assignment *const else_assign =
1153	    new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1154	 stmt->else_instructions.push_tail(else_assign);
1155
1156	 result = new(ctx) ir_dereference_variable(tmp);
1157	 type = tmp->type;
1158      }
1159      break;
1160   }
1161
1162   case ast_logic_or: {
1163      exec_list rhs_instructions;
1164      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1165					 "LHS", &error_emitted);
1166      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1167					 "RHS", &error_emitted);
1168
1169      ir_constant *op0_const = op[0]->constant_expression_value();
1170      if (op0_const) {
1171	 if (op0_const->value.b[0]) {
1172	    result = op0_const;
1173	 } else {
1174	    result = op[1];
1175	 }
1176	 type = glsl_type::bool_type;
1177      } else {
1178	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1179						       "or_tmp",
1180						       ir_var_temporary);
1181	 instructions->push_tail(tmp);
1182
1183	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1184	 instructions->push_tail(stmt);
1185
1186	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1187	 ir_assignment *const then_assign =
1188	    new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1189	 stmt->then_instructions.push_tail(then_assign);
1190
1191	 stmt->else_instructions.append_list(&rhs_instructions);
1192	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1193	 ir_assignment *const else_assign =
1194	    new(ctx) ir_assignment(else_deref, op[1], NULL);
1195	 stmt->else_instructions.push_tail(else_assign);
1196
1197	 result = new(ctx) ir_dereference_variable(tmp);
1198	 type = tmp->type;
1199      }
1200      break;
1201   }
1202
1203   case ast_logic_xor:
1204      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1205       *
1206       *    "The logical binary operators and (&&), or ( | | ), and
1207       *     exclusive or (^^). They operate only on two Boolean
1208       *     expressions and result in a Boolean expression."
1209       */
1210      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1211					 &error_emitted);
1212      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1213					 &error_emitted);
1214
1215      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1216				      op[0], op[1]);
1217      break;
1218
1219   case ast_logic_not:
1220      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1221					 "operand", &error_emitted);
1222
1223      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1224				      op[0], NULL);
1225      break;
1226
1227   case ast_mul_assign:
1228   case ast_div_assign:
1229   case ast_add_assign:
1230   case ast_sub_assign: {
1231      op[0] = this->subexpressions[0]->hir(instructions, state);
1232      op[1] = this->subexpressions[1]->hir(instructions, state);
1233
1234      type = arithmetic_result_type(op[0], op[1],
1235				    (this->oper == ast_mul_assign),
1236				    state, & loc);
1237
1238      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1239						   op[0], op[1]);
1240
1241      result = do_assignment(instructions, state,
1242			     op[0]->clone(ctx, NULL), temp_rhs, false,
1243			     this->subexpressions[0]->get_location());
1244      error_emitted = (op[0]->type->is_error());
1245
1246      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1247       * explicitly test for this because none of the binary expression
1248       * operators allow array operands either.
1249       */
1250
1251      break;
1252   }
1253
1254   case ast_mod_assign: {
1255      op[0] = this->subexpressions[0]->hir(instructions, state);
1256      op[1] = this->subexpressions[1]->hir(instructions, state);
1257
1258      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1259
1260      assert(operations[this->oper] == ir_binop_mod);
1261
1262      ir_rvalue *temp_rhs;
1263      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1264					op[0], op[1]);
1265
1266      result = do_assignment(instructions, state,
1267			     op[0]->clone(ctx, NULL), temp_rhs, false,
1268			     this->subexpressions[0]->get_location());
1269      error_emitted = type->is_error();
1270      break;
1271   }
1272
1273   case ast_ls_assign:
1274   case ast_rs_assign: {
1275      op[0] = this->subexpressions[0]->hir(instructions, state);
1276      op[1] = this->subexpressions[1]->hir(instructions, state);
1277      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1278                               &loc);
1279      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1280                                                   type, op[0], op[1]);
1281      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1282                             temp_rhs, false,
1283                             this->subexpressions[0]->get_location());
1284      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1285      break;
1286   }
1287
1288   case ast_and_assign:
1289   case ast_xor_assign:
1290   case ast_or_assign: {
1291      op[0] = this->subexpressions[0]->hir(instructions, state);
1292      op[1] = this->subexpressions[1]->hir(instructions, state);
1293      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1294                                   state, &loc);
1295      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1296                                                   type, op[0], op[1]);
1297      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1298                             temp_rhs, false,
1299                             this->subexpressions[0]->get_location());
1300      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1301      break;
1302   }
1303
1304   case ast_conditional: {
1305      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1306       *
1307       *    "The ternary selection operator (?:). It operates on three
1308       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1309       *    first expression, which must result in a scalar Boolean."
1310       */
1311      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1312					 "condition", &error_emitted);
1313
1314      /* The :? operator is implemented by generating an anonymous temporary
1315       * followed by an if-statement.  The last instruction in each branch of
1316       * the if-statement assigns a value to the anonymous temporary.  This
1317       * temporary is the r-value of the expression.
1318       */
1319      exec_list then_instructions;
1320      exec_list else_instructions;
1321
1322      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326       *
1327       *     "The second and third expressions can be any type, as
1328       *     long their types match, or there is a conversion in
1329       *     Section 4.1.10 "Implicit Conversions" that can be applied
1330       *     to one of the expressions to make their types match. This
1331       *     resulting matching type is the type of the entire
1332       *     expression."
1333       */
1334      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335	   && !apply_implicit_conversion(op[2]->type, op[1], state))
1336	  || (op[1]->type != op[2]->type)) {
1337	 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340			  "operator must have matching types.");
1341	 error_emitted = true;
1342	 type = glsl_type::error_type;
1343      } else {
1344	 type = op[1]->type;
1345      }
1346
1347      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348       *
1349       *    "The second and third expressions must be the same type, but can
1350       *    be of any type other than an array."
1351       */
1352      if ((state->language_version <= 110) && type->is_array()) {
1353	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354			  "operator must not be arrays.");
1355	 error_emitted = true;
1356      }
1357
1358      ir_constant *cond_val = op[0]->constant_expression_value();
1359      ir_constant *then_val = op[1]->constant_expression_value();
1360      ir_constant *else_val = op[2]->constant_expression_value();
1361
1362      if (then_instructions.is_empty()
1363	  && else_instructions.is_empty()
1364	  && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365	 result = (cond_val->value.b[0]) ? then_val : else_val;
1366      } else {
1367	 ir_variable *const tmp =
1368	    new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369	 instructions->push_tail(tmp);
1370
1371	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372	 instructions->push_tail(stmt);
1373
1374	 then_instructions.move_nodes_to(& stmt->then_instructions);
1375	 ir_dereference *const then_deref =
1376	    new(ctx) ir_dereference_variable(tmp);
1377	 ir_assignment *const then_assign =
1378	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1379	 stmt->then_instructions.push_tail(then_assign);
1380
1381	 else_instructions.move_nodes_to(& stmt->else_instructions);
1382	 ir_dereference *const else_deref =
1383	    new(ctx) ir_dereference_variable(tmp);
1384	 ir_assignment *const else_assign =
1385	    new(ctx) ir_assignment(else_deref, op[2], NULL);
1386	 stmt->else_instructions.push_tail(else_assign);
1387
1388	 result = new(ctx) ir_dereference_variable(tmp);
1389      }
1390      break;
1391   }
1392
1393   case ast_pre_inc:
1394   case ast_pre_dec: {
1395      op[0] = this->subexpressions[0]->hir(instructions, state);
1396      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397	 op[1] = new(ctx) ir_constant(1.0f);
1398      else
1399	 op[1] = new(ctx) ir_constant(1);
1400
1401      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403      ir_rvalue *temp_rhs;
1404      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405					op[0], op[1]);
1406
1407      result = do_assignment(instructions, state,
1408			     op[0]->clone(ctx, NULL), temp_rhs, false,
1409			     this->subexpressions[0]->get_location());
1410      error_emitted = op[0]->type->is_error();
1411      break;
1412   }
1413
1414   case ast_post_inc:
1415   case ast_post_dec: {
1416      op[0] = this->subexpressions[0]->hir(instructions, state);
1417      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1418	 op[1] = new(ctx) ir_constant(1.0f);
1419      else
1420	 op[1] = new(ctx) ir_constant(1);
1421
1422      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1423
1424      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1425
1426      ir_rvalue *temp_rhs;
1427      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1428					op[0], op[1]);
1429
1430      /* Get a temporary of a copy of the lvalue before it's modified.
1431       * This may get thrown away later.
1432       */
1433      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1434
1435      (void)do_assignment(instructions, state,
1436			  op[0]->clone(ctx, NULL), temp_rhs, false,
1437			  this->subexpressions[0]->get_location());
1438
1439      error_emitted = op[0]->type->is_error();
1440      break;
1441   }
1442
1443   case ast_field_selection:
1444      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1445      break;
1446
1447   case ast_array_index: {
1448      YYLTYPE index_loc = subexpressions[1]->get_location();
1449
1450      op[0] = subexpressions[0]->hir(instructions, state);
1451      op[1] = subexpressions[1]->hir(instructions, state);
1452
1453      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1454
1455      ir_rvalue *const array = op[0];
1456
1457      result = new(ctx) ir_dereference_array(op[0], op[1]);
1458
1459      /* Do not use op[0] after this point.  Use array.
1460       */
1461      op[0] = NULL;
1462
1463
1464      if (error_emitted)
1465	 break;
1466
1467      if (!array->type->is_array()
1468	  && !array->type->is_matrix()
1469	  && !array->type->is_vector()) {
1470	 _mesa_glsl_error(& index_loc, state,
1471			  "cannot dereference non-array / non-matrix / "
1472			  "non-vector");
1473	 error_emitted = true;
1474      }
1475
1476      if (!op[1]->type->is_integer()) {
1477	 _mesa_glsl_error(& index_loc, state,
1478			  "array index must be integer type");
1479	 error_emitted = true;
1480      } else if (!op[1]->type->is_scalar()) {
1481	 _mesa_glsl_error(& index_loc, state,
1482			  "array index must be scalar");
1483	 error_emitted = true;
1484      }
1485
1486      /* If the array index is a constant expression and the array has a
1487       * declared size, ensure that the access is in-bounds.  If the array
1488       * index is not a constant expression, ensure that the array has a
1489       * declared size.
1490       */
1491      ir_constant *const const_index = op[1]->constant_expression_value();
1492      if (const_index != NULL) {
1493	 const int idx = const_index->value.i[0];
1494	 const char *type_name;
1495	 unsigned bound = 0;
1496
1497	 if (array->type->is_matrix()) {
1498	    type_name = "matrix";
1499	 } else if (array->type->is_vector()) {
1500	    type_name = "vector";
1501	 } else {
1502	    type_name = "array";
1503	 }
1504
1505	 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1506	  *
1507	  *    "It is illegal to declare an array with a size, and then
1508	  *    later (in the same shader) index the same array with an
1509	  *    integral constant expression greater than or equal to the
1510	  *    declared size. It is also illegal to index an array with a
1511	  *    negative constant expression."
1512	  */
1513	 if (array->type->is_matrix()) {
1514	    if (array->type->row_type()->vector_elements <= idx) {
1515	       bound = array->type->row_type()->vector_elements;
1516	    }
1517	 } else if (array->type->is_vector()) {
1518	    if (array->type->vector_elements <= idx) {
1519	       bound = array->type->vector_elements;
1520	    }
1521	 } else {
1522	    if ((array->type->array_size() > 0)
1523		&& (array->type->array_size() <= idx)) {
1524	       bound = array->type->array_size();
1525	    }
1526	 }
1527
1528	 if (bound > 0) {
1529	    _mesa_glsl_error(& loc, state, "%s index must be < %u",
1530			     type_name, bound);
1531	    error_emitted = true;
1532	 } else if (idx < 0) {
1533	    _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1534			     type_name);
1535	    error_emitted = true;
1536	 }
1537
1538	 if (array->type->is_array()) {
1539	    /* If the array is a variable dereference, it dereferences the
1540	     * whole array, by definition.  Use this to get the variable.
1541	     *
1542	     * FINISHME: Should some methods for getting / setting / testing
1543	     * FINISHME: array access limits be added to ir_dereference?
1544	     */
1545	    ir_variable *const v = array->whole_variable_referenced();
1546	    if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1547	       v->max_array_access = idx;
1548	 }
1549      } else if (array->type->array_size() == 0) {
1550	 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1551      } else {
1552	 if (array->type->is_array()) {
1553	    /* whole_variable_referenced can return NULL if the array is a
1554	     * member of a structure.  In this case it is safe to not update
1555	     * the max_array_access field because it is never used for fields
1556	     * of structures.
1557	     */
1558	    ir_variable *v = array->whole_variable_referenced();
1559	    if (v != NULL)
1560	       v->max_array_access = array->type->array_size() - 1;
1561	 }
1562      }
1563
1564      /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1565       *
1566       *    "Samplers aggregated into arrays within a shader (using square
1567       *    brackets [ ]) can only be indexed with integral constant
1568       *    expressions [...]."
1569       *
1570       * This restriction was added in GLSL 1.30.  Shaders using earlier version
1571       * of the language should not be rejected by the compiler front-end for
1572       * using this construct.  This allows useful things such as using a loop
1573       * counter as the index to an array of samplers.  If the loop in unrolled,
1574       * the code should compile correctly.  Instead, emit a warning.
1575       */
1576      if (array->type->is_array() &&
1577          array->type->element_type()->is_sampler() &&
1578          const_index == NULL) {
1579
1580	 if (state->language_version == 100) {
1581	    _mesa_glsl_warning(&loc, state,
1582			       "sampler arrays indexed with non-constant "
1583			       "expressions is optional in GLSL ES 1.00");
1584	 } else if (state->language_version < 130) {
1585	    _mesa_glsl_warning(&loc, state,
1586			       "sampler arrays indexed with non-constant "
1587			       "expressions is forbidden in GLSL 1.30 and "
1588			       "later");
1589	 } else {
1590	    _mesa_glsl_error(&loc, state,
1591			     "sampler arrays indexed with non-constant "
1592			     "expressions is forbidden in GLSL 1.30 and "
1593			     "later");
1594	    error_emitted = true;
1595	 }
1596      }
1597
1598      if (error_emitted)
1599	 result->type = glsl_type::error_type;
1600
1601      break;
1602   }
1603
1604   case ast_function_call:
1605      /* Should *NEVER* get here.  ast_function_call should always be handled
1606       * by ast_function_expression::hir.
1607       */
1608      assert(0);
1609      break;
1610
1611   case ast_identifier: {
1612      /* ast_identifier can appear several places in a full abstract syntax
1613       * tree.  This particular use must be at location specified in the grammar
1614       * as 'variable_identifier'.
1615       */
1616      ir_variable *var =
1617	 state->symbols->get_variable(this->primary_expression.identifier);
1618
1619      result = new(ctx) ir_dereference_variable(var);
1620
1621      if (var != NULL) {
1622	 var->used = true;
1623      } else {
1624	 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1625			  this->primary_expression.identifier);
1626
1627	 error_emitted = true;
1628      }
1629      break;
1630   }
1631
1632   case ast_int_constant:
1633      result = new(ctx) ir_constant(this->primary_expression.int_constant);
1634      break;
1635
1636   case ast_uint_constant:
1637      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1638      break;
1639
1640   case ast_float_constant:
1641      result = new(ctx) ir_constant(this->primary_expression.float_constant);
1642      break;
1643
1644   case ast_bool_constant:
1645      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1646      break;
1647
1648   case ast_sequence: {
1649      /* It should not be possible to generate a sequence in the AST without
1650       * any expressions in it.
1651       */
1652      assert(!this->expressions.is_empty());
1653
1654      /* The r-value of a sequence is the last expression in the sequence.  If
1655       * the other expressions in the sequence do not have side-effects (and
1656       * therefore add instructions to the instruction list), they get dropped
1657       * on the floor.
1658       */
1659      exec_node *previous_tail_pred = NULL;
1660      YYLTYPE previous_operand_loc = loc;
1661
1662      foreach_list_typed (ast_node, ast, link, &this->expressions) {
1663	 /* If one of the operands of comma operator does not generate any
1664	  * code, we want to emit a warning.  At each pass through the loop
1665	  * previous_tail_pred will point to the last instruction in the
1666	  * stream *before* processing the previous operand.  Naturally,
1667	  * instructions->tail_pred will point to the last instruction in the
1668	  * stream *after* processing the previous operand.  If the two
1669	  * pointers match, then the previous operand had no effect.
1670	  *
1671	  * The warning behavior here differs slightly from GCC.  GCC will
1672	  * only emit a warning if none of the left-hand operands have an
1673	  * effect.  However, it will emit a warning for each.  I believe that
1674	  * there are some cases in C (especially with GCC extensions) where
1675	  * it is useful to have an intermediate step in a sequence have no
1676	  * effect, but I don't think these cases exist in GLSL.  Either way,
1677	  * it would be a giant hassle to replicate that behavior.
1678	  */
1679	 if (previous_tail_pred == instructions->tail_pred) {
1680	    _mesa_glsl_warning(&previous_operand_loc, state,
1681			       "left-hand operand of comma expression has "
1682			       "no effect");
1683	 }
1684
1685	 /* tail_pred is directly accessed instead of using the get_tail()
1686	  * method for performance reasons.  get_tail() has extra code to
1687	  * return NULL when the list is empty.  We don't care about that
1688	  * here, so using tail_pred directly is fine.
1689	  */
1690	 previous_tail_pred = instructions->tail_pred;
1691	 previous_operand_loc = ast->get_location();
1692
1693	 result = ast->hir(instructions, state);
1694      }
1695
1696      /* Any errors should have already been emitted in the loop above.
1697       */
1698      error_emitted = true;
1699      break;
1700   }
1701   }
1702   type = NULL; /* use result->type, not type. */
1703   assert(result != NULL);
1704
1705   if (result->type->is_error() && !error_emitted)
1706      _mesa_glsl_error(& loc, state, "type mismatch");
1707
1708   return result;
1709}
1710
1711
1712ir_rvalue *
1713ast_expression_statement::hir(exec_list *instructions,
1714			      struct _mesa_glsl_parse_state *state)
1715{
1716   /* It is possible to have expression statements that don't have an
1717    * expression.  This is the solitary semicolon:
1718    *
1719    * for (i = 0; i < 5; i++)
1720    *     ;
1721    *
1722    * In this case the expression will be NULL.  Test for NULL and don't do
1723    * anything in that case.
1724    */
1725   if (expression != NULL)
1726      expression->hir(instructions, state);
1727
1728   /* Statements do not have r-values.
1729    */
1730   return NULL;
1731}
1732
1733
1734ir_rvalue *
1735ast_compound_statement::hir(exec_list *instructions,
1736			    struct _mesa_glsl_parse_state *state)
1737{
1738   if (new_scope)
1739      state->symbols->push_scope();
1740
1741   foreach_list_typed (ast_node, ast, link, &this->statements)
1742      ast->hir(instructions, state);
1743
1744   if (new_scope)
1745      state->symbols->pop_scope();
1746
1747   /* Compound statements do not have r-values.
1748    */
1749   return NULL;
1750}
1751
1752
1753static const glsl_type *
1754process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1755		   struct _mesa_glsl_parse_state *state)
1756{
1757   unsigned length = 0;
1758
1759   /* FINISHME: Reject delcarations of multidimensional arrays. */
1760
1761   if (array_size != NULL) {
1762      exec_list dummy_instructions;
1763      ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1764      YYLTYPE loc = array_size->get_location();
1765
1766      /* FINISHME: Verify that the grammar forbids side-effects in array
1767       * FINISHME: sizes.   i.e., 'vec4 [x = 12] data'
1768       */
1769      assert(dummy_instructions.is_empty());
1770
1771      if (ir != NULL) {
1772	 if (!ir->type->is_integer()) {
1773	    _mesa_glsl_error(& loc, state, "array size must be integer type");
1774	 } else if (!ir->type->is_scalar()) {
1775	    _mesa_glsl_error(& loc, state, "array size must be scalar type");
1776	 } else {
1777	    ir_constant *const size = ir->constant_expression_value();
1778
1779	    if (size == NULL) {
1780	       _mesa_glsl_error(& loc, state, "array size must be a "
1781				"constant valued expression");
1782	    } else if (size->value.i[0] <= 0) {
1783	       _mesa_glsl_error(& loc, state, "array size must be > 0");
1784	    } else {
1785	       assert(size->type == ir->type);
1786	       length = size->value.u[0];
1787	    }
1788	 }
1789      }
1790   } else if (state->es_shader) {
1791      /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1792       * array declarations have been removed from the language.
1793       */
1794      _mesa_glsl_error(loc, state, "unsized array declarations are not "
1795		       "allowed in GLSL ES 1.00.");
1796   }
1797
1798   return glsl_type::get_array_instance(base, length);
1799}
1800
1801
1802const glsl_type *
1803ast_type_specifier::glsl_type(const char **name,
1804			      struct _mesa_glsl_parse_state *state) const
1805{
1806   const struct glsl_type *type;
1807
1808   type = state->symbols->get_type(this->type_name);
1809   *name = this->type_name;
1810
1811   if (this->is_array) {
1812      YYLTYPE loc = this->get_location();
1813      type = process_array_type(&loc, type, this->array_size, state);
1814   }
1815
1816   return type;
1817}
1818
1819
1820static void
1821apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1822				 ir_variable *var,
1823				 struct _mesa_glsl_parse_state *state,
1824				 YYLTYPE *loc)
1825{
1826   if (qual->flags.q.invariant) {
1827      if (var->used) {
1828	 _mesa_glsl_error(loc, state,
1829			  "variable `%s' may not be redeclared "
1830			  "`invariant' after being used",
1831			  var->name);
1832      } else {
1833	 var->invariant = 1;
1834      }
1835   }
1836
1837   if (qual->flags.q.constant || qual->flags.q.attribute
1838       || qual->flags.q.uniform
1839       || (qual->flags.q.varying && (state->target == fragment_shader)))
1840      var->read_only = 1;
1841
1842   if (qual->flags.q.centroid)
1843      var->centroid = 1;
1844
1845   if (qual->flags.q.attribute && state->target != vertex_shader) {
1846      var->type = glsl_type::error_type;
1847      _mesa_glsl_error(loc, state,
1848		       "`attribute' variables may not be declared in the "
1849		       "%s shader",
1850		       _mesa_glsl_shader_target_name(state->target));
1851   }
1852
1853   /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1854    *
1855    *     "The varying qualifier can be used only with the data types
1856    *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1857    *     these."
1858    */
1859   if (qual->flags.q.varying) {
1860      const glsl_type *non_array_type;
1861
1862      if (var->type && var->type->is_array())
1863	 non_array_type = var->type->fields.array;
1864      else
1865	 non_array_type = var->type;
1866
1867      if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1868	 var->type = glsl_type::error_type;
1869	 _mesa_glsl_error(loc, state,
1870			  "varying variables must be of base type float");
1871      }
1872   }
1873
1874   /* If there is no qualifier that changes the mode of the variable, leave
1875    * the setting alone.
1876    */
1877   if (qual->flags.q.in && qual->flags.q.out)
1878      var->mode = ir_var_inout;
1879   else if (qual->flags.q.attribute || qual->flags.q.in
1880	    || (qual->flags.q.varying && (state->target == fragment_shader)))
1881      var->mode = ir_var_in;
1882   else if (qual->flags.q.out
1883	    || (qual->flags.q.varying && (state->target == vertex_shader)))
1884      var->mode = ir_var_out;
1885   else if (qual->flags.q.uniform)
1886      var->mode = ir_var_uniform;
1887
1888   if (state->all_invariant && (state->current_function == NULL)) {
1889      switch (state->target) {
1890      case vertex_shader:
1891	 if (var->mode == ir_var_out)
1892	    var->invariant = true;
1893	 break;
1894      case geometry_shader:
1895	 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1896	    var->invariant = true;
1897	 break;
1898      case fragment_shader:
1899	 if (var->mode == ir_var_in)
1900	    var->invariant = true;
1901	 break;
1902      }
1903   }
1904
1905   if (qual->flags.q.flat)
1906      var->interpolation = ir_var_flat;
1907   else if (qual->flags.q.noperspective)
1908      var->interpolation = ir_var_noperspective;
1909   else
1910      var->interpolation = ir_var_smooth;
1911
1912   var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1913   var->origin_upper_left = qual->flags.q.origin_upper_left;
1914   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1915       && (strcmp(var->name, "gl_FragCoord") != 0)) {
1916      const char *const qual_string = (qual->flags.q.origin_upper_left)
1917	 ? "origin_upper_left" : "pixel_center_integer";
1918
1919      _mesa_glsl_error(loc, state,
1920		       "layout qualifier `%s' can only be applied to "
1921		       "fragment shader input `gl_FragCoord'",
1922		       qual_string);
1923   }
1924
1925   if (qual->flags.q.explicit_location) {
1926      const bool global_scope = (state->current_function == NULL);
1927      bool fail = false;
1928      const char *string = "";
1929
1930      /* In the vertex shader only shader inputs can be given explicit
1931       * locations.
1932       *
1933       * In the fragment shader only shader outputs can be given explicit
1934       * locations.
1935       */
1936      switch (state->target) {
1937      case vertex_shader:
1938	 if (!global_scope || (var->mode != ir_var_in)) {
1939	    fail = true;
1940	    string = "input";
1941	 }
1942	 break;
1943
1944      case geometry_shader:
1945	 _mesa_glsl_error(loc, state,
1946			  "geometry shader variables cannot be given "
1947			  "explicit locations\n");
1948	 break;
1949
1950      case fragment_shader:
1951	 if (!global_scope || (var->mode != ir_var_out)) {
1952	    fail = true;
1953	    string = "output";
1954	 }
1955	 break;
1956      };
1957
1958      if (fail) {
1959	 _mesa_glsl_error(loc, state,
1960			  "only %s shader %s variables can be given an "
1961			  "explicit location\n",
1962			  _mesa_glsl_shader_target_name(state->target),
1963			  string);
1964      } else {
1965	 var->explicit_location = true;
1966
1967	 /* This bit of silliness is needed because invalid explicit locations
1968	  * are supposed to be flagged during linking.  Small negative values
1969	  * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1970	  * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1971	  * The linker needs to be able to differentiate these cases.  This
1972	  * ensures that negative values stay negative.
1973	  */
1974	 if (qual->location >= 0) {
1975	    var->location = (state->target == vertex_shader)
1976	       ? (qual->location + VERT_ATTRIB_GENERIC0)
1977	       : (qual->location + FRAG_RESULT_DATA0);
1978	 } else {
1979	    var->location = qual->location;
1980	 }
1981      }
1982   }
1983
1984   /* Does the declaration use the 'layout' keyword?
1985    */
1986   const bool uses_layout = qual->flags.q.pixel_center_integer
1987      || qual->flags.q.origin_upper_left
1988      || qual->flags.q.explicit_location;
1989
1990   /* Does the declaration use the deprecated 'attribute' or 'varying'
1991    * keywords?
1992    */
1993   const bool uses_deprecated_qualifier = qual->flags.q.attribute
1994      || qual->flags.q.varying;
1995
1996   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1997    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1998    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1999    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2000    * These extensions and all following extensions that add the 'layout'
2001    * keyword have been modified to require the use of 'in' or 'out'.
2002    *
2003    * The following extension do not allow the deprecated keywords:
2004    *
2005    *    GL_AMD_conservative_depth
2006    *    GL_ARB_gpu_shader5
2007    *    GL_ARB_separate_shader_objects
2008    *    GL_ARB_tesselation_shader
2009    *    GL_ARB_transform_feedback3
2010    *    GL_ARB_uniform_buffer_object
2011    *
2012    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2013    * allow layout with the deprecated keywords.
2014    */
2015   const bool relaxed_layout_qualifier_checking =
2016      state->ARB_fragment_coord_conventions_enable;
2017
2018   if (uses_layout && uses_deprecated_qualifier) {
2019      if (relaxed_layout_qualifier_checking) {
2020	 _mesa_glsl_warning(loc, state,
2021			    "`layout' qualifier may not be used with "
2022			    "`attribute' or `varying'");
2023      } else {
2024	 _mesa_glsl_error(loc, state,
2025			  "`layout' qualifier may not be used with "
2026			  "`attribute' or `varying'");
2027      }
2028   }
2029
2030   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2031    * AMD_conservative_depth.
2032    */
2033   int depth_layout_count = qual->flags.q.depth_any
2034      + qual->flags.q.depth_greater
2035      + qual->flags.q.depth_less
2036      + qual->flags.q.depth_unchanged;
2037   if (depth_layout_count > 0
2038       && !state->AMD_conservative_depth_enable) {
2039       _mesa_glsl_error(loc, state,
2040                        "extension GL_AMD_conservative_depth must be enabled "
2041			"to use depth layout qualifiers");
2042   } else if (depth_layout_count > 0
2043              && strcmp(var->name, "gl_FragDepth") != 0) {
2044       _mesa_glsl_error(loc, state,
2045                        "depth layout qualifiers can be applied only to "
2046                        "gl_FragDepth");
2047   } else if (depth_layout_count > 1
2048              && strcmp(var->name, "gl_FragDepth") == 0) {
2049      _mesa_glsl_error(loc, state,
2050                       "at most one depth layout qualifier can be applied to "
2051                       "gl_FragDepth");
2052   }
2053   if (qual->flags.q.depth_any)
2054      var->depth_layout = ir_depth_layout_any;
2055   else if (qual->flags.q.depth_greater)
2056      var->depth_layout = ir_depth_layout_greater;
2057   else if (qual->flags.q.depth_less)
2058      var->depth_layout = ir_depth_layout_less;
2059   else if (qual->flags.q.depth_unchanged)
2060       var->depth_layout = ir_depth_layout_unchanged;
2061   else
2062       var->depth_layout = ir_depth_layout_none;
2063
2064   if (var->type->is_array() && state->language_version != 110) {
2065      var->array_lvalue = true;
2066   }
2067}
2068
2069/**
2070 * Get the variable that is being redeclared by this declaration
2071 *
2072 * Semantic checks to verify the validity of the redeclaration are also
2073 * performed.  If semantic checks fail, compilation error will be emitted via
2074 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2075 *
2076 * \returns
2077 * A pointer to an existing variable in the current scope if the declaration
2078 * is a redeclaration, \c NULL otherwise.
2079 */
2080ir_variable *
2081get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2082			      struct _mesa_glsl_parse_state *state)
2083{
2084   /* Check if this declaration is actually a re-declaration, either to
2085    * resize an array or add qualifiers to an existing variable.
2086    *
2087    * This is allowed for variables in the current scope, or when at
2088    * global scope (for built-ins in the implicit outer scope).
2089    */
2090   ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2091   if (earlier == NULL ||
2092       (state->current_function != NULL &&
2093	!state->symbols->name_declared_this_scope(decl->identifier))) {
2094      return NULL;
2095   }
2096
2097
2098   YYLTYPE loc = decl->get_location();
2099
2100   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2101    *
2102    * "It is legal to declare an array without a size and then
2103    *  later re-declare the same name as an array of the same
2104    *  type and specify a size."
2105    */
2106   if ((earlier->type->array_size() == 0)
2107       && var->type->is_array()
2108       && (var->type->element_type() == earlier->type->element_type())) {
2109      /* FINISHME: This doesn't match the qualifiers on the two
2110       * FINISHME: declarations.  It's not 100% clear whether this is
2111       * FINISHME: required or not.
2112       */
2113
2114      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2115       *
2116       *     "The size [of gl_TexCoord] can be at most
2117       *     gl_MaxTextureCoords."
2118       */
2119      const unsigned size = unsigned(var->type->array_size());
2120      if ((strcmp("gl_TexCoord", var->name) == 0)
2121	  && (size > state->Const.MaxTextureCoords)) {
2122	 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2123			  "be larger than gl_MaxTextureCoords (%u)\n",
2124			  state->Const.MaxTextureCoords);
2125      } else if ((size > 0) && (size <= earlier->max_array_access)) {
2126	 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2127			  "previous access",
2128			  earlier->max_array_access);
2129      }
2130
2131      earlier->type = var->type;
2132      delete var;
2133      var = NULL;
2134   } else if (state->ARB_fragment_coord_conventions_enable
2135	      && strcmp(var->name, "gl_FragCoord") == 0
2136	      && earlier->type == var->type
2137	      && earlier->mode == var->mode) {
2138      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2139       * qualifiers.
2140       */
2141      earlier->origin_upper_left = var->origin_upper_left;
2142      earlier->pixel_center_integer = var->pixel_center_integer;
2143
2144      /* According to section 4.3.7 of the GLSL 1.30 spec,
2145       * the following built-in varaibles can be redeclared with an
2146       * interpolation qualifier:
2147       *    * gl_FrontColor
2148       *    * gl_BackColor
2149       *    * gl_FrontSecondaryColor
2150       *    * gl_BackSecondaryColor
2151       *    * gl_Color
2152       *    * gl_SecondaryColor
2153       */
2154   } else if (state->language_version >= 130
2155	      && (strcmp(var->name, "gl_FrontColor") == 0
2156		  || strcmp(var->name, "gl_BackColor") == 0
2157		  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2158		  || strcmp(var->name, "gl_BackSecondaryColor") == 0
2159		  || strcmp(var->name, "gl_Color") == 0
2160		  || strcmp(var->name, "gl_SecondaryColor") == 0)
2161	      && earlier->type == var->type
2162	      && earlier->mode == var->mode) {
2163      earlier->interpolation = var->interpolation;
2164
2165      /* Layout qualifiers for gl_FragDepth. */
2166   } else if (state->AMD_conservative_depth_enable
2167	      && strcmp(var->name, "gl_FragDepth") == 0
2168	      && earlier->type == var->type
2169	      && earlier->mode == var->mode) {
2170
2171      /** From the AMD_conservative_depth spec:
2172       *     Within any shader, the first redeclarations of gl_FragDepth
2173       *     must appear before any use of gl_FragDepth.
2174       */
2175      if (earlier->used) {
2176	 _mesa_glsl_error(&loc, state,
2177			  "the first redeclaration of gl_FragDepth "
2178			  "must appear before any use of gl_FragDepth");
2179      }
2180
2181      /* Prevent inconsistent redeclaration of depth layout qualifier. */
2182      if (earlier->depth_layout != ir_depth_layout_none
2183	  && earlier->depth_layout != var->depth_layout) {
2184	 _mesa_glsl_error(&loc, state,
2185			  "gl_FragDepth: depth layout is declared here "
2186			  "as '%s, but it was previously declared as "
2187			  "'%s'",
2188			  depth_layout_string(var->depth_layout),
2189			  depth_layout_string(earlier->depth_layout));
2190      }
2191
2192      earlier->depth_layout = var->depth_layout;
2193
2194   } else {
2195      _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2196   }
2197
2198   return earlier;
2199}
2200
2201/**
2202 * Generate the IR for an initializer in a variable declaration
2203 */
2204ir_rvalue *
2205process_initializer(ir_variable *var, ast_declaration *decl,
2206		    ast_fully_specified_type *type,
2207		    exec_list *initializer_instructions,
2208		    struct _mesa_glsl_parse_state *state)
2209{
2210   ir_rvalue *result = NULL;
2211
2212   YYLTYPE initializer_loc = decl->initializer->get_location();
2213
2214   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2215    *
2216    *    "All uniform variables are read-only and are initialized either
2217    *    directly by an application via API commands, or indirectly by
2218    *    OpenGL."
2219    */
2220   if ((state->language_version <= 110)
2221       && (var->mode == ir_var_uniform)) {
2222      _mesa_glsl_error(& initializer_loc, state,
2223		       "cannot initialize uniforms in GLSL 1.10");
2224   }
2225
2226   if (var->type->is_sampler()) {
2227      _mesa_glsl_error(& initializer_loc, state,
2228		       "cannot initialize samplers");
2229   }
2230
2231   if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2232      _mesa_glsl_error(& initializer_loc, state,
2233		       "cannot initialize %s shader input / %s",
2234		       _mesa_glsl_shader_target_name(state->target),
2235		       (state->target == vertex_shader)
2236		       ? "attribute" : "varying");
2237   }
2238
2239   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2240   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2241					   state);
2242
2243   /* Calculate the constant value if this is a const or uniform
2244    * declaration.
2245    */
2246   if (type->qualifier.flags.q.constant
2247       || type->qualifier.flags.q.uniform) {
2248      ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2249      if (new_rhs != NULL) {
2250	 rhs = new_rhs;
2251
2252	 ir_constant *constant_value = rhs->constant_expression_value();
2253	 if (!constant_value) {
2254	    _mesa_glsl_error(& initializer_loc, state,
2255			     "initializer of %s variable `%s' must be a "
2256			     "constant expression",
2257			     (type->qualifier.flags.q.constant)
2258			     ? "const" : "uniform",
2259			     decl->identifier);
2260	    if (var->type->is_numeric()) {
2261	       /* Reduce cascading errors. */
2262	       var->constant_value = ir_constant::zero(state, var->type);
2263	    }
2264	 } else {
2265	    rhs = constant_value;
2266	    var->constant_value = constant_value;
2267	 }
2268      } else {
2269	 _mesa_glsl_error(&initializer_loc, state,
2270			  "initializer of type %s cannot be assigned to "
2271			  "variable of type %s",
2272			  rhs->type->name, var->type->name);
2273	 if (var->type->is_numeric()) {
2274	    /* Reduce cascading errors. */
2275	    var->constant_value = ir_constant::zero(state, var->type);
2276	 }
2277      }
2278   }
2279
2280   if (rhs && !rhs->type->is_error()) {
2281      bool temp = var->read_only;
2282      if (type->qualifier.flags.q.constant)
2283	 var->read_only = false;
2284
2285      /* Never emit code to initialize a uniform.
2286       */
2287      const glsl_type *initializer_type;
2288      if (!type->qualifier.flags.q.uniform) {
2289	 result = do_assignment(initializer_instructions, state,
2290				lhs, rhs, true,
2291				type->get_location());
2292	 initializer_type = result->type;
2293      } else
2294	 initializer_type = rhs->type;
2295
2296      /* If the declared variable is an unsized array, it must inherrit
2297       * its full type from the initializer.  A declaration such as
2298       *
2299       *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2300       *
2301       * becomes
2302       *
2303       *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2304       *
2305       * The assignment generated in the if-statement (below) will also
2306       * automatically handle this case for non-uniforms.
2307       *
2308       * If the declared variable is not an array, the types must
2309       * already match exactly.  As a result, the type assignment
2310       * here can be done unconditionally.  For non-uniforms the call
2311       * to do_assignment can change the type of the initializer (via
2312       * the implicit conversion rules).  For uniforms the initializer
2313       * must be a constant expression, and the type of that expression
2314       * was validated above.
2315       */
2316      var->type = initializer_type;
2317
2318      var->read_only = temp;
2319   }
2320
2321   return result;
2322}
2323
2324ir_rvalue *
2325ast_declarator_list::hir(exec_list *instructions,
2326			 struct _mesa_glsl_parse_state *state)
2327{
2328   void *ctx = state;
2329   const struct glsl_type *decl_type;
2330   const char *type_name = NULL;
2331   ir_rvalue *result = NULL;
2332   YYLTYPE loc = this->get_location();
2333
2334   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2335    *
2336    *     "To ensure that a particular output variable is invariant, it is
2337    *     necessary to use the invariant qualifier. It can either be used to
2338    *     qualify a previously declared variable as being invariant
2339    *
2340    *         invariant gl_Position; // make existing gl_Position be invariant"
2341    *
2342    * In these cases the parser will set the 'invariant' flag in the declarator
2343    * list, and the type will be NULL.
2344    */
2345   if (this->invariant) {
2346      assert(this->type == NULL);
2347
2348      if (state->current_function != NULL) {
2349	 _mesa_glsl_error(& loc, state,
2350			  "All uses of `invariant' keyword must be at global "
2351			  "scope\n");
2352      }
2353
2354      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2355	 assert(!decl->is_array);
2356	 assert(decl->array_size == NULL);
2357	 assert(decl->initializer == NULL);
2358
2359	 ir_variable *const earlier =
2360	    state->symbols->get_variable(decl->identifier);
2361	 if (earlier == NULL) {
2362	    _mesa_glsl_error(& loc, state,
2363			     "Undeclared variable `%s' cannot be marked "
2364			     "invariant\n", decl->identifier);
2365	 } else if ((state->target == vertex_shader)
2366	       && (earlier->mode != ir_var_out)) {
2367	    _mesa_glsl_error(& loc, state,
2368			     "`%s' cannot be marked invariant, vertex shader "
2369			     "outputs only\n", decl->identifier);
2370	 } else if ((state->target == fragment_shader)
2371	       && (earlier->mode != ir_var_in)) {
2372	    _mesa_glsl_error(& loc, state,
2373			     "`%s' cannot be marked invariant, fragment shader "
2374			     "inputs only\n", decl->identifier);
2375	 } else if (earlier->used) {
2376	    _mesa_glsl_error(& loc, state,
2377			     "variable `%s' may not be redeclared "
2378			     "`invariant' after being used",
2379			     earlier->name);
2380	 } else {
2381	    earlier->invariant = true;
2382	 }
2383      }
2384
2385      /* Invariant redeclarations do not have r-values.
2386       */
2387      return NULL;
2388   }
2389
2390   assert(this->type != NULL);
2391   assert(!this->invariant);
2392
2393   /* The type specifier may contain a structure definition.  Process that
2394    * before any of the variable declarations.
2395    */
2396   (void) this->type->specifier->hir(instructions, state);
2397
2398   decl_type = this->type->specifier->glsl_type(& type_name, state);
2399   if (this->declarations.is_empty()) {
2400      /* The only valid case where the declaration list can be empty is when
2401       * the declaration is setting the default precision of a built-in type
2402       * (e.g., 'precision highp vec4;').
2403       */
2404
2405      if (decl_type != NULL) {
2406      } else {
2407	    _mesa_glsl_error(& loc, state, "incomplete declaration");
2408      }
2409   }
2410
2411   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2412      const struct glsl_type *var_type;
2413      ir_variable *var;
2414
2415      /* FINISHME: Emit a warning if a variable declaration shadows a
2416       * FINISHME: declaration at a higher scope.
2417       */
2418
2419      if ((decl_type == NULL) || decl_type->is_void()) {
2420	 if (type_name != NULL) {
2421	    _mesa_glsl_error(& loc, state,
2422			     "invalid type `%s' in declaration of `%s'",
2423			     type_name, decl->identifier);
2424	 } else {
2425	    _mesa_glsl_error(& loc, state,
2426			     "invalid type in declaration of `%s'",
2427			     decl->identifier);
2428	 }
2429	 continue;
2430      }
2431
2432      if (decl->is_array) {
2433	 var_type = process_array_type(&loc, decl_type, decl->array_size,
2434				       state);
2435      } else {
2436	 var_type = decl_type;
2437      }
2438
2439      var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2440
2441      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2442       *
2443       *     "Global variables can only use the qualifiers const,
2444       *     attribute, uni form, or varying. Only one may be
2445       *     specified.
2446       *
2447       *     Local variables can only use the qualifier const."
2448       *
2449       * This is relaxed in GLSL 1.30.  It is also relaxed by any extension
2450       * that adds the 'layout' keyword.
2451       */
2452      if ((state->language_version < 130)
2453	  && !state->ARB_explicit_attrib_location_enable
2454	  && !state->ARB_fragment_coord_conventions_enable) {
2455	 if (this->type->qualifier.flags.q.out) {
2456	    _mesa_glsl_error(& loc, state,
2457			     "`out' qualifier in declaration of `%s' "
2458			     "only valid for function parameters in %s.",
2459			     decl->identifier, state->version_string);
2460	 }
2461	 if (this->type->qualifier.flags.q.in) {
2462	    _mesa_glsl_error(& loc, state,
2463			     "`in' qualifier in declaration of `%s' "
2464			     "only valid for function parameters in %s.",
2465			     decl->identifier, state->version_string);
2466	 }
2467	 /* FINISHME: Test for other invalid qualifiers. */
2468      }
2469
2470      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2471				       & loc);
2472
2473      if (this->type->qualifier.flags.q.invariant) {
2474	 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2475						   var->mode == ir_var_inout)) {
2476	    /* FINISHME: Note that this doesn't work for invariant on
2477	     * a function signature outval
2478	     */
2479	    _mesa_glsl_error(& loc, state,
2480			     "`%s' cannot be marked invariant, vertex shader "
2481			     "outputs only\n", var->name);
2482	 } else if ((state->target == fragment_shader) &&
2483		    !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2484	    /* FINISHME: Note that this doesn't work for invariant on
2485	     * a function signature inval
2486	     */
2487	    _mesa_glsl_error(& loc, state,
2488			     "`%s' cannot be marked invariant, fragment shader "
2489			     "inputs only\n", var->name);
2490	 }
2491      }
2492
2493      if (state->current_function != NULL) {
2494	 const char *mode = NULL;
2495	 const char *extra = "";
2496
2497	 /* There is no need to check for 'inout' here because the parser will
2498	  * only allow that in function parameter lists.
2499	  */
2500	 if (this->type->qualifier.flags.q.attribute) {
2501	    mode = "attribute";
2502	 } else if (this->type->qualifier.flags.q.uniform) {
2503	    mode = "uniform";
2504	 } else if (this->type->qualifier.flags.q.varying) {
2505	    mode = "varying";
2506	 } else if (this->type->qualifier.flags.q.in) {
2507	    mode = "in";
2508	    extra = " or in function parameter list";
2509	 } else if (this->type->qualifier.flags.q.out) {
2510	    mode = "out";
2511	    extra = " or in function parameter list";
2512	 }
2513
2514	 if (mode) {
2515	    _mesa_glsl_error(& loc, state,
2516			     "%s variable `%s' must be declared at "
2517			     "global scope%s",
2518			     mode, var->name, extra);
2519	 }
2520      } else if (var->mode == ir_var_in) {
2521         var->read_only = true;
2522
2523	 if (state->target == vertex_shader) {
2524	    bool error_emitted = false;
2525
2526	    /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2527	     *
2528	     *    "Vertex shader inputs can only be float, floating-point
2529	     *    vectors, matrices, signed and unsigned integers and integer
2530	     *    vectors. Vertex shader inputs can also form arrays of these
2531	     *    types, but not structures."
2532	     *
2533	     * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2534	     *
2535	     *    "Vertex shader inputs can only be float, floating-point
2536	     *    vectors, matrices, signed and unsigned integers and integer
2537	     *    vectors. They cannot be arrays or structures."
2538	     *
2539	     * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2540	     *
2541	     *    "The attribute qualifier can be used only with float,
2542	     *    floating-point vectors, and matrices. Attribute variables
2543	     *    cannot be declared as arrays or structures."
2544	     */
2545	    const glsl_type *check_type = var->type->is_array()
2546	       ? var->type->fields.array : var->type;
2547
2548	    switch (check_type->base_type) {
2549	    case GLSL_TYPE_FLOAT:
2550	       break;
2551	    case GLSL_TYPE_UINT:
2552	    case GLSL_TYPE_INT:
2553	       if (state->language_version > 120)
2554		  break;
2555	       /* FALLTHROUGH */
2556	    default:
2557	       _mesa_glsl_error(& loc, state,
2558				"vertex shader input / attribute cannot have "
2559				"type %s`%s'",
2560				var->type->is_array() ? "array of " : "",
2561				check_type->name);
2562	       error_emitted = true;
2563	    }
2564
2565	    if (!error_emitted && (state->language_version <= 130)
2566		&& var->type->is_array()) {
2567	       _mesa_glsl_error(& loc, state,
2568				"vertex shader input / attribute cannot have "
2569				"array type");
2570	       error_emitted = true;
2571	    }
2572	 }
2573      }
2574
2575      /* Integer vertex outputs must be qualified with 'flat'.
2576       *
2577       * From section 4.3.6 of the GLSL 1.30 spec:
2578       *    "If a vertex output is a signed or unsigned integer or integer
2579       *    vector, then it must be qualified with the interpolation qualifier
2580       *    flat."
2581       */
2582      if (state->language_version >= 130
2583          && state->target == vertex_shader
2584          && state->current_function == NULL
2585          && var->type->is_integer()
2586          && var->mode == ir_var_out
2587          && var->interpolation != ir_var_flat) {
2588
2589         _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2590                          "then it must be qualified with 'flat'");
2591      }
2592
2593
2594      /* Interpolation qualifiers cannot be applied to 'centroid' and
2595       * 'centroid varying'.
2596       *
2597       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2598       *    "interpolation qualifiers may only precede the qualifiers in,
2599       *    centroid in, out, or centroid out in a declaration. They do not apply
2600       *    to the deprecated storage qualifiers varying or centroid varying."
2601       */
2602      if (state->language_version >= 130
2603          && this->type->qualifier.has_interpolation()
2604          && this->type->qualifier.flags.q.varying) {
2605
2606         const char *i = this->type->qualifier.interpolation_string();
2607         assert(i != NULL);
2608         const char *s;
2609         if (this->type->qualifier.flags.q.centroid)
2610            s = "centroid varying";
2611         else
2612            s = "varying";
2613
2614         _mesa_glsl_error(&loc, state,
2615                          "qualifier '%s' cannot be applied to the "
2616                          "deprecated storage qualifier '%s'", i, s);
2617      }
2618
2619
2620      /* Interpolation qualifiers can only apply to vertex shader outputs and
2621       * fragment shader inputs.
2622       *
2623       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2624       *    "Outputs from a vertex shader (out) and inputs to a fragment
2625       *    shader (in) can be further qualified with one or more of these
2626       *    interpolation qualifiers"
2627       */
2628      if (state->language_version >= 130
2629          && this->type->qualifier.has_interpolation()) {
2630
2631         const char *i = this->type->qualifier.interpolation_string();
2632         assert(i != NULL);
2633
2634         switch (state->target) {
2635         case vertex_shader:
2636            if (this->type->qualifier.flags.q.in) {
2637               _mesa_glsl_error(&loc, state,
2638                                "qualifier '%s' cannot be applied to vertex "
2639                                "shader inputs", i);
2640            }
2641            break;
2642         case fragment_shader:
2643            if (this->type->qualifier.flags.q.out) {
2644               _mesa_glsl_error(&loc, state,
2645                                "qualifier '%s' cannot be applied to fragment "
2646                                "shader outputs", i);
2647            }
2648            break;
2649         default:
2650            assert(0);
2651         }
2652      }
2653
2654
2655      /* From section 4.3.4 of the GLSL 1.30 spec:
2656       *    "It is an error to use centroid in in a vertex shader."
2657       */
2658      if (state->language_version >= 130
2659          && this->type->qualifier.flags.q.centroid
2660          && this->type->qualifier.flags.q.in
2661          && state->target == vertex_shader) {
2662
2663         _mesa_glsl_error(&loc, state,
2664                          "'centroid in' cannot be used in a vertex shader");
2665      }
2666
2667
2668      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2669       */
2670      if (this->type->specifier->precision != ast_precision_none
2671          && state->language_version != 100
2672          && state->language_version < 130) {
2673
2674         _mesa_glsl_error(&loc, state,
2675                          "precision qualifiers are supported only in GLSL ES "
2676                          "1.00, and GLSL 1.30 and later");
2677      }
2678
2679
2680      /* Precision qualifiers only apply to floating point and integer types.
2681       *
2682       * From section 4.5.2 of the GLSL 1.30 spec:
2683       *    "Any floating point or any integer declaration can have the type
2684       *    preceded by one of these precision qualifiers [...] Literal
2685       *    constants do not have precision qualifiers. Neither do Boolean
2686       *    variables.
2687       *
2688       * In GLSL ES, sampler types are also allowed.
2689       *
2690       * From page 87 of the GLSL ES spec:
2691       *    "RESOLUTION: Allow sampler types to take a precision qualifier."
2692       */
2693      if (this->type->specifier->precision != ast_precision_none
2694          && !var->type->is_float()
2695          && !var->type->is_integer()
2696          && !(var->type->is_sampler() && state->es_shader)
2697          && !(var->type->is_array()
2698               && (var->type->fields.array->is_float()
2699                   || var->type->fields.array->is_integer()))) {
2700
2701         _mesa_glsl_error(&loc, state,
2702                          "precision qualifiers apply only to floating point"
2703                          "%s types", state->es_shader ? ", integer, and sampler"
2704						       : "and integer");
2705      }
2706
2707      /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2708       *
2709       *    "[Sampler types] can only be declared as function
2710       *    parameters or uniform variables (see Section 4.3.5
2711       *    "Uniform")".
2712       */
2713      if (var_type->contains_sampler() &&
2714          !this->type->qualifier.flags.q.uniform) {
2715         _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2716      }
2717
2718      /* Process the initializer and add its instructions to a temporary
2719       * list.  This list will be added to the instruction stream (below) after
2720       * the declaration is added.  This is done because in some cases (such as
2721       * redeclarations) the declaration may not actually be added to the
2722       * instruction stream.
2723       */
2724      exec_list initializer_instructions;
2725      ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2726
2727      if (decl->initializer != NULL) {
2728	 result = process_initializer((earlier == NULL) ? var : earlier,
2729				      decl, this->type,
2730				      &initializer_instructions, state);
2731      }
2732
2733      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2734       *
2735       *     "It is an error to write to a const variable outside of
2736       *      its declaration, so they must be initialized when
2737       *      declared."
2738       */
2739      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2740	 _mesa_glsl_error(& loc, state,
2741			  "const declaration of `%s' must be initialized",
2742			  decl->identifier);
2743      }
2744
2745      /* If the declaration is not a redeclaration, there are a few additional
2746       * semantic checks that must be applied.  In addition, variable that was
2747       * created for the declaration should be added to the IR stream.
2748       */
2749      if (earlier == NULL) {
2750	 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2751	  *
2752	  *   "Identifiers starting with "gl_" are reserved for use by
2753	  *   OpenGL, and may not be declared in a shader as either a
2754	  *   variable or a function."
2755	  */
2756	 if (strncmp(decl->identifier, "gl_", 3) == 0)
2757	    _mesa_glsl_error(& loc, state,
2758			     "identifier `%s' uses reserved `gl_' prefix",
2759			     decl->identifier);
2760
2761	 /* Add the variable to the symbol table.  Note that the initializer's
2762	  * IR was already processed earlier (though it hasn't been emitted
2763	  * yet), without the variable in scope.
2764	  *
2765	  * This differs from most C-like languages, but it follows the GLSL
2766	  * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
2767	  * spec:
2768	  *
2769	  *     "Within a declaration, the scope of a name starts immediately
2770	  *     after the initializer if present or immediately after the name
2771	  *     being declared if not."
2772	  */
2773	 if (!state->symbols->add_variable(var)) {
2774	    YYLTYPE loc = this->get_location();
2775	    _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2776			     "current scope", decl->identifier);
2777	    continue;
2778	 }
2779
2780	 /* Push the variable declaration to the top.  It means that all the
2781	  * variable declarations will appear in a funny last-to-first order,
2782	  * but otherwise we run into trouble if a function is prototyped, a
2783	  * global var is decled, then the function is defined with usage of
2784	  * the global var.  See glslparsertest's CorrectModule.frag.
2785	  */
2786	 instructions->push_head(var);
2787      }
2788
2789      instructions->append_list(&initializer_instructions);
2790   }
2791
2792
2793   /* Generally, variable declarations do not have r-values.  However,
2794    * one is used for the declaration in
2795    *
2796    * while (bool b = some_condition()) {
2797    *   ...
2798    * }
2799    *
2800    * so we return the rvalue from the last seen declaration here.
2801    */
2802   return result;
2803}
2804
2805
2806ir_rvalue *
2807ast_parameter_declarator::hir(exec_list *instructions,
2808			      struct _mesa_glsl_parse_state *state)
2809{
2810   void *ctx = state;
2811   const struct glsl_type *type;
2812   const char *name = NULL;
2813   YYLTYPE loc = this->get_location();
2814
2815   type = this->type->specifier->glsl_type(& name, state);
2816
2817   if (type == NULL) {
2818      if (name != NULL) {
2819	 _mesa_glsl_error(& loc, state,
2820			  "invalid type `%s' in declaration of `%s'",
2821			  name, this->identifier);
2822      } else {
2823	 _mesa_glsl_error(& loc, state,
2824			  "invalid type in declaration of `%s'",
2825			  this->identifier);
2826      }
2827
2828      type = glsl_type::error_type;
2829   }
2830
2831   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2832    *
2833    *    "Functions that accept no input arguments need not use void in the
2834    *    argument list because prototypes (or definitions) are required and
2835    *    therefore there is no ambiguity when an empty argument list "( )" is
2836    *    declared. The idiom "(void)" as a parameter list is provided for
2837    *    convenience."
2838    *
2839    * Placing this check here prevents a void parameter being set up
2840    * for a function, which avoids tripping up checks for main taking
2841    * parameters and lookups of an unnamed symbol.
2842    */
2843   if (type->is_void()) {
2844      if (this->identifier != NULL)
2845	 _mesa_glsl_error(& loc, state,
2846			  "named parameter cannot have type `void'");
2847
2848      is_void = true;
2849      return NULL;
2850   }
2851
2852   if (formal_parameter && (this->identifier == NULL)) {
2853      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2854      return NULL;
2855   }
2856
2857   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
2858    * call already handled the "vec4[..] foo" case.
2859    */
2860   if (this->is_array) {
2861      type = process_array_type(&loc, type, this->array_size, state);
2862   }
2863
2864   if (type->array_size() == 0) {
2865      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2866		       "a declared size.");
2867      type = glsl_type::error_type;
2868   }
2869
2870   is_void = false;
2871   ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2872
2873   /* Apply any specified qualifiers to the parameter declaration.  Note that
2874    * for function parameters the default mode is 'in'.
2875    */
2876   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2877
2878   /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2879    *
2880    *    "Samplers cannot be treated as l-values; hence cannot be used
2881    *    as out or inout function parameters, nor can they be assigned
2882    *    into."
2883    */
2884   if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2885       && type->contains_sampler()) {
2886      _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2887      type = glsl_type::error_type;
2888   }
2889
2890   instructions->push_tail(var);
2891
2892   /* Parameter declarations do not have r-values.
2893    */
2894   return NULL;
2895}
2896
2897
2898void
2899ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2900					    bool formal,
2901					    exec_list *ir_parameters,
2902					    _mesa_glsl_parse_state *state)
2903{
2904   ast_parameter_declarator *void_param = NULL;
2905   unsigned count = 0;
2906
2907   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2908      param->formal_parameter = formal;
2909      param->hir(ir_parameters, state);
2910
2911      if (param->is_void)
2912	 void_param = param;
2913
2914      count++;
2915   }
2916
2917   if ((void_param != NULL) && (count > 1)) {
2918      YYLTYPE loc = void_param->get_location();
2919
2920      _mesa_glsl_error(& loc, state,
2921		       "`void' parameter must be only parameter");
2922   }
2923}
2924
2925
2926void
2927emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2928	      ir_function *f)
2929{
2930   /* Emit the new function header */
2931   if (state->current_function == NULL) {
2932      instructions->push_tail(f);
2933   } else {
2934      /* IR invariants disallow function declarations or definitions nested
2935       * within other function definitions.  Insert the new ir_function
2936       * block in the instruction sequence before the ir_function block
2937       * containing the current ir_function_signature.
2938       */
2939      ir_function *const curr =
2940	 const_cast<ir_function *>(state->current_function->function());
2941
2942      curr->insert_before(f);
2943   }
2944}
2945
2946
2947ir_rvalue *
2948ast_function::hir(exec_list *instructions,
2949		  struct _mesa_glsl_parse_state *state)
2950{
2951   void *ctx = state;
2952   ir_function *f = NULL;
2953   ir_function_signature *sig = NULL;
2954   exec_list hir_parameters;
2955
2956   const char *const name = identifier;
2957
2958   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2959    *
2960    *   "Function declarations (prototypes) cannot occur inside of functions;
2961    *   they must be at global scope, or for the built-in functions, outside
2962    *   the global scope."
2963    *
2964    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2965    *
2966    *   "User defined functions may only be defined within the global scope."
2967    *
2968    * Note that this language does not appear in GLSL 1.10.
2969    */
2970   if ((state->current_function != NULL) && (state->language_version != 110)) {
2971      YYLTYPE loc = this->get_location();
2972      _mesa_glsl_error(&loc, state,
2973		       "declaration of function `%s' not allowed within "
2974		       "function body", name);
2975   }
2976
2977   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2978    *
2979    *   "Identifiers starting with "gl_" are reserved for use by
2980    *   OpenGL, and may not be declared in a shader as either a
2981    *   variable or a function."
2982    */
2983   if (strncmp(name, "gl_", 3) == 0) {
2984      YYLTYPE loc = this->get_location();
2985      _mesa_glsl_error(&loc, state,
2986		       "identifier `%s' uses reserved `gl_' prefix", name);
2987   }
2988
2989   /* Convert the list of function parameters to HIR now so that they can be
2990    * used below to compare this function's signature with previously seen
2991    * signatures for functions with the same name.
2992    */
2993   ast_parameter_declarator::parameters_to_hir(& this->parameters,
2994					       is_definition,
2995					       & hir_parameters, state);
2996
2997   const char *return_type_name;
2998   const glsl_type *return_type =
2999      this->return_type->specifier->glsl_type(& return_type_name, state);
3000
3001   if (!return_type) {
3002      YYLTYPE loc = this->get_location();
3003      _mesa_glsl_error(&loc, state,
3004		       "function `%s' has undeclared return type `%s'",
3005		       name, return_type_name);
3006      return_type = glsl_type::error_type;
3007   }
3008
3009   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3010    * "No qualifier is allowed on the return type of a function."
3011    */
3012   if (this->return_type->has_qualifiers()) {
3013      YYLTYPE loc = this->get_location();
3014      _mesa_glsl_error(& loc, state,
3015		       "function `%s' return type has qualifiers", name);
3016   }
3017
3018   /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3019    *
3020    *    "[Sampler types] can only be declared as function parameters
3021    *    or uniform variables (see Section 4.3.5 "Uniform")".
3022    */
3023   if (return_type->contains_sampler()) {
3024      YYLTYPE loc = this->get_location();
3025      _mesa_glsl_error(&loc, state,
3026                       "function `%s' return type can't contain a sampler",
3027                       name);
3028   }
3029
3030   /* Verify that this function's signature either doesn't match a previously
3031    * seen signature for a function with the same name, or, if a match is found,
3032    * that the previously seen signature does not have an associated definition.
3033    */
3034   f = state->symbols->get_function(name);
3035   if (f != NULL && (state->es_shader || f->has_user_signature())) {
3036      sig = f->exact_matching_signature(&hir_parameters);
3037      if (sig != NULL) {
3038	 const char *badvar = sig->qualifiers_match(&hir_parameters);
3039	 if (badvar != NULL) {
3040	    YYLTYPE loc = this->get_location();
3041
3042	    _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3043			     "qualifiers don't match prototype", name, badvar);
3044	 }
3045
3046	 if (sig->return_type != return_type) {
3047	    YYLTYPE loc = this->get_location();
3048
3049	    _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3050			     "match prototype", name);
3051	 }
3052
3053	 if (is_definition && sig->is_defined) {
3054	    YYLTYPE loc = this->get_location();
3055
3056	    _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3057	 }
3058      }
3059   } else {
3060      f = new(ctx) ir_function(name);
3061      if (!state->symbols->add_function(f)) {
3062	 /* This function name shadows a non-function use of the same name. */
3063	 YYLTYPE loc = this->get_location();
3064
3065	 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3066			  "non-function", name);
3067	 return NULL;
3068      }
3069
3070      emit_function(state, instructions, f);
3071   }
3072
3073   /* Verify the return type of main() */
3074   if (strcmp(name, "main") == 0) {
3075      if (! return_type->is_void()) {
3076	 YYLTYPE loc = this->get_location();
3077
3078	 _mesa_glsl_error(& loc, state, "main() must return void");
3079      }
3080
3081      if (!hir_parameters.is_empty()) {
3082	 YYLTYPE loc = this->get_location();
3083
3084	 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3085      }
3086   }
3087
3088   /* Finish storing the information about this new function in its signature.
3089    */
3090   if (sig == NULL) {
3091      sig = new(ctx) ir_function_signature(return_type);
3092      f->add_signature(sig);
3093   }
3094
3095   sig->replace_parameters(&hir_parameters);
3096   signature = sig;
3097
3098   /* Function declarations (prototypes) do not have r-values.
3099    */
3100   return NULL;
3101}
3102
3103
3104ir_rvalue *
3105ast_function_definition::hir(exec_list *instructions,
3106			     struct _mesa_glsl_parse_state *state)
3107{
3108   prototype->is_definition = true;
3109   prototype->hir(instructions, state);
3110
3111   ir_function_signature *signature = prototype->signature;
3112   if (signature == NULL)
3113      return NULL;
3114
3115   assert(state->current_function == NULL);
3116   state->current_function = signature;
3117   state->found_return = false;
3118
3119   /* Duplicate parameters declared in the prototype as concrete variables.
3120    * Add these to the symbol table.
3121    */
3122   state->symbols->push_scope();
3123   foreach_iter(exec_list_iterator, iter, signature->parameters) {
3124      ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3125
3126      assert(var != NULL);
3127
3128      /* The only way a parameter would "exist" is if two parameters have
3129       * the same name.
3130       */
3131      if (state->symbols->name_declared_this_scope(var->name)) {
3132	 YYLTYPE loc = this->get_location();
3133
3134	 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3135      } else {
3136	 state->symbols->add_variable(var);
3137      }
3138   }
3139
3140   /* Convert the body of the function to HIR. */
3141   this->body->hir(&signature->body, state);
3142   signature->is_defined = true;
3143
3144   state->symbols->pop_scope();
3145
3146   assert(state->current_function == signature);
3147   state->current_function = NULL;
3148
3149   if (!signature->return_type->is_void() && !state->found_return) {
3150      YYLTYPE loc = this->get_location();
3151      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3152		       "%s, but no return statement",
3153		       signature->function_name(),
3154		       signature->return_type->name);
3155   }
3156
3157   /* Function definitions do not have r-values.
3158    */
3159   return NULL;
3160}
3161
3162
3163ir_rvalue *
3164ast_jump_statement::hir(exec_list *instructions,
3165			struct _mesa_glsl_parse_state *state)
3166{
3167   void *ctx = state;
3168
3169   switch (mode) {
3170   case ast_return: {
3171      ir_return *inst;
3172      assert(state->current_function);
3173
3174      if (opt_return_value) {
3175	 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3176
3177	 /* The value of the return type can be NULL if the shader says
3178	  * 'return foo();' and foo() is a function that returns void.
3179	  *
3180	  * NOTE: The GLSL spec doesn't say that this is an error.  The type
3181	  * of the return value is void.  If the return type of the function is
3182	  * also void, then this should compile without error.  Seriously.
3183	  */
3184	 const glsl_type *const ret_type =
3185	    (ret == NULL) ? glsl_type::void_type : ret->type;
3186
3187	 /* Implicit conversions are not allowed for return values. */
3188	 if (state->current_function->return_type != ret_type) {
3189	    YYLTYPE loc = this->get_location();
3190
3191	    _mesa_glsl_error(& loc, state,
3192			     "`return' with wrong type %s, in function `%s' "
3193			     "returning %s",
3194			     ret_type->name,
3195			     state->current_function->function_name(),
3196			     state->current_function->return_type->name);
3197	 }
3198
3199	 inst = new(ctx) ir_return(ret);
3200      } else {
3201	 if (state->current_function->return_type->base_type !=
3202	     GLSL_TYPE_VOID) {
3203	    YYLTYPE loc = this->get_location();
3204
3205	    _mesa_glsl_error(& loc, state,
3206			     "`return' with no value, in function %s returning "
3207			     "non-void",
3208			     state->current_function->function_name());
3209	 }
3210	 inst = new(ctx) ir_return;
3211      }
3212
3213      state->found_return = true;
3214      instructions->push_tail(inst);
3215      break;
3216   }
3217
3218   case ast_discard:
3219      if (state->target != fragment_shader) {
3220	 YYLTYPE loc = this->get_location();
3221
3222	 _mesa_glsl_error(& loc, state,
3223			  "`discard' may only appear in a fragment shader");
3224      }
3225      instructions->push_tail(new(ctx) ir_discard);
3226      break;
3227
3228   case ast_break:
3229   case ast_continue:
3230      /* FINISHME: Handle switch-statements.  They cannot contain 'continue',
3231       * FINISHME: and they use a different IR instruction for 'break'.
3232       */
3233      /* FINISHME: Correctly handle the nesting.  If a switch-statement is
3234       * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3235       * FINISHME: loop.
3236       */
3237      if (state->loop_or_switch_nesting == NULL) {
3238	 YYLTYPE loc = this->get_location();
3239
3240	 _mesa_glsl_error(& loc, state,
3241			  "`%s' may only appear in a loop",
3242			  (mode == ast_break) ? "break" : "continue");
3243      } else {
3244	 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3245
3246	 /* Inline the for loop expression again, since we don't know
3247	  * where near the end of the loop body the normal copy of it
3248	  * is going to be placed.
3249	  */
3250	 if (mode == ast_continue &&
3251	     state->loop_or_switch_nesting_ast->rest_expression) {
3252	    state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3253								    state);
3254	 }
3255
3256	 if (loop != NULL) {
3257	    ir_loop_jump *const jump =
3258	       new(ctx) ir_loop_jump((mode == ast_break)
3259				     ? ir_loop_jump::jump_break
3260				     : ir_loop_jump::jump_continue);
3261	    instructions->push_tail(jump);
3262	 }
3263      }
3264
3265      break;
3266   }
3267
3268   /* Jump instructions do not have r-values.
3269    */
3270   return NULL;
3271}
3272
3273
3274ir_rvalue *
3275ast_selection_statement::hir(exec_list *instructions,
3276			     struct _mesa_glsl_parse_state *state)
3277{
3278   void *ctx = state;
3279
3280   ir_rvalue *const condition = this->condition->hir(instructions, state);
3281
3282   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3283    *
3284    *    "Any expression whose type evaluates to a Boolean can be used as the
3285    *    conditional expression bool-expression. Vector types are not accepted
3286    *    as the expression to if."
3287    *
3288    * The checks are separated so that higher quality diagnostics can be
3289    * generated for cases where both rules are violated.
3290    */
3291   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3292      YYLTYPE loc = this->condition->get_location();
3293
3294      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3295		       "boolean");
3296   }
3297
3298   ir_if *const stmt = new(ctx) ir_if(condition);
3299
3300   if (then_statement != NULL) {
3301      state->symbols->push_scope();
3302      then_statement->hir(& stmt->then_instructions, state);
3303      state->symbols->pop_scope();
3304   }
3305
3306   if (else_statement != NULL) {
3307      state->symbols->push_scope();
3308      else_statement->hir(& stmt->else_instructions, state);
3309      state->symbols->pop_scope();
3310   }
3311
3312   instructions->push_tail(stmt);
3313
3314   /* if-statements do not have r-values.
3315    */
3316   return NULL;
3317}
3318
3319
3320void
3321ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3322					  struct _mesa_glsl_parse_state *state)
3323{
3324   void *ctx = state;
3325
3326   if (condition != NULL) {
3327      ir_rvalue *const cond =
3328	 condition->hir(& stmt->body_instructions, state);
3329
3330      if ((cond == NULL)
3331	  || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3332	 YYLTYPE loc = condition->get_location();
3333
3334	 _mesa_glsl_error(& loc, state,
3335			  "loop condition must be scalar boolean");
3336      } else {
3337	 /* As the first code in the loop body, generate a block that looks
3338	  * like 'if (!condition) break;' as the loop termination condition.
3339	  */
3340	 ir_rvalue *const not_cond =
3341	    new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3342				   NULL);
3343
3344	 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3345
3346	 ir_jump *const break_stmt =
3347	    new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3348
3349	 if_stmt->then_instructions.push_tail(break_stmt);
3350	 stmt->body_instructions.push_tail(if_stmt);
3351      }
3352   }
3353}
3354
3355
3356ir_rvalue *
3357ast_iteration_statement::hir(exec_list *instructions,
3358			     struct _mesa_glsl_parse_state *state)
3359{
3360   void *ctx = state;
3361
3362   /* For-loops and while-loops start a new scope, but do-while loops do not.
3363    */
3364   if (mode != ast_do_while)
3365      state->symbols->push_scope();
3366
3367   if (init_statement != NULL)
3368      init_statement->hir(instructions, state);
3369
3370   ir_loop *const stmt = new(ctx) ir_loop();
3371   instructions->push_tail(stmt);
3372
3373   /* Track the current loop and / or switch-statement nesting.
3374    */
3375   ir_instruction *const nesting = state->loop_or_switch_nesting;
3376   ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3377
3378   state->loop_or_switch_nesting = stmt;
3379   state->loop_or_switch_nesting_ast = this;
3380
3381   if (mode != ast_do_while)
3382      condition_to_hir(stmt, state);
3383
3384   if (body != NULL)
3385      body->hir(& stmt->body_instructions, state);
3386
3387   if (rest_expression != NULL)
3388      rest_expression->hir(& stmt->body_instructions, state);
3389
3390   if (mode == ast_do_while)
3391      condition_to_hir(stmt, state);
3392
3393   if (mode != ast_do_while)
3394      state->symbols->pop_scope();
3395
3396   /* Restore previous nesting before returning.
3397    */
3398   state->loop_or_switch_nesting = nesting;
3399   state->loop_or_switch_nesting_ast = nesting_ast;
3400
3401   /* Loops do not have r-values.
3402    */
3403   return NULL;
3404}
3405
3406
3407ir_rvalue *
3408ast_type_specifier::hir(exec_list *instructions,
3409			  struct _mesa_glsl_parse_state *state)
3410{
3411   if (!this->is_precision_statement && this->structure == NULL)
3412      return NULL;
3413
3414   YYLTYPE loc = this->get_location();
3415
3416   if (this->precision != ast_precision_none
3417       && state->language_version != 100
3418       && state->language_version < 130) {
3419      _mesa_glsl_error(&loc, state,
3420                       "precision qualifiers exist only in "
3421                       "GLSL ES 1.00, and GLSL 1.30 and later");
3422      return NULL;
3423   }
3424   if (this->precision != ast_precision_none
3425       && this->structure != NULL) {
3426      _mesa_glsl_error(&loc, state,
3427                       "precision qualifiers do not apply to structures");
3428      return NULL;
3429   }
3430
3431   /* If this is a precision statement, check that the type to which it is
3432    * applied is either float or int.
3433    *
3434    * From section 4.5.3 of the GLSL 1.30 spec:
3435    *    "The precision statement
3436    *       precision precision-qualifier type;
3437    *    can be used to establish a default precision qualifier. The type
3438    *    field can be either int or float [...].  Any other types or
3439    *    qualifiers will result in an error.
3440    */
3441   if (this->is_precision_statement) {
3442      assert(this->precision != ast_precision_none);
3443      assert(this->structure == NULL); /* The check for structures was
3444                                        * performed above. */
3445      if (this->is_array) {
3446         _mesa_glsl_error(&loc, state,
3447                          "default precision statements do not apply to "
3448                          "arrays");
3449         return NULL;
3450      }
3451      if (this->type_specifier != ast_float
3452          && this->type_specifier != ast_int) {
3453         _mesa_glsl_error(&loc, state,
3454                          "default precision statements apply only to types "
3455                          "float and int");
3456         return NULL;
3457      }
3458
3459      /* FINISHME: Translate precision statements into IR. */
3460      return NULL;
3461   }
3462
3463   if (this->structure != NULL)
3464      return this->structure->hir(instructions, state);
3465
3466   return NULL;
3467}
3468
3469
3470ir_rvalue *
3471ast_struct_specifier::hir(exec_list *instructions,
3472			  struct _mesa_glsl_parse_state *state)
3473{
3474   unsigned decl_count = 0;
3475
3476   /* Make an initial pass over the list of structure fields to determine how
3477    * many there are.  Each element in this list is an ast_declarator_list.
3478    * This means that we actually need to count the number of elements in the
3479    * 'declarations' list in each of the elements.
3480    */
3481   foreach_list_typed (ast_declarator_list, decl_list, link,
3482		       &this->declarations) {
3483      foreach_list_const (decl_ptr, & decl_list->declarations) {
3484	 decl_count++;
3485      }
3486   }
3487
3488   /* Allocate storage for the structure fields and process the field
3489    * declarations.  As the declarations are processed, try to also convert
3490    * the types to HIR.  This ensures that structure definitions embedded in
3491    * other structure definitions are processed.
3492    */
3493   glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3494						  decl_count);
3495
3496   unsigned i = 0;
3497   foreach_list_typed (ast_declarator_list, decl_list, link,
3498		       &this->declarations) {
3499      const char *type_name;
3500
3501      decl_list->type->specifier->hir(instructions, state);
3502
3503      /* Section 10.9 of the GLSL ES 1.00 specification states that
3504       * embedded structure definitions have been removed from the language.
3505       */
3506      if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3507	 YYLTYPE loc = this->get_location();
3508	 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3509			  "not allowed in GLSL ES 1.00.");
3510      }
3511
3512      const glsl_type *decl_type =
3513	 decl_list->type->specifier->glsl_type(& type_name, state);
3514
3515      foreach_list_typed (ast_declaration, decl, link,
3516			  &decl_list->declarations) {
3517	 const struct glsl_type *field_type = decl_type;
3518	 if (decl->is_array) {
3519	    YYLTYPE loc = decl->get_location();
3520	    field_type = process_array_type(&loc, decl_type, decl->array_size,
3521					    state);
3522	 }
3523	 fields[i].type = (field_type != NULL)
3524	    ? field_type : glsl_type::error_type;
3525	 fields[i].name = decl->identifier;
3526	 i++;
3527      }
3528   }
3529
3530   assert(i == decl_count);
3531
3532   const glsl_type *t =
3533      glsl_type::get_record_instance(fields, decl_count, this->name);
3534
3535   YYLTYPE loc = this->get_location();
3536   if (!state->symbols->add_type(name, t)) {
3537      _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3538   } else {
3539      const glsl_type **s = reralloc(state, state->user_structures,
3540				     const glsl_type *,
3541				     state->num_user_structures + 1);
3542      if (s != NULL) {
3543	 s[state->num_user_structures] = t;
3544	 state->user_structures = s;
3545	 state->num_user_structures++;
3546      }
3547   }
3548
3549   /* Structure type definitions do not have r-values.
3550    */
3551   return NULL;
3552}
3553