m_matrix.c revision 1e091f48f0434e8fb9713fbebc9d74ad68a75e34
1/* $Id: m_matrix.c,v 1.15 2003/01/08 16:42:47 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  5.1
6 *
7 * Copyright (C) 1999-2003  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * Matrix operations
30 *
31 * NOTES:
32 * 1. 4x4 transformation matrices are stored in memory in column major order.
33 * 2. Points/vertices are to be thought of as column vectors.
34 * 3. Transformation of a point p by a matrix M is: p' = M * p
35 */
36
37#include "glheader.h"
38#include "imports.h"
39#include "macros.h"
40#include "imports.h"
41#include "mmath.h"
42
43#include "m_matrix.h"
44
45
46static const char *types[] = {
47   "MATRIX_GENERAL",
48   "MATRIX_IDENTITY",
49   "MATRIX_3D_NO_ROT",
50   "MATRIX_PERSPECTIVE",
51   "MATRIX_2D",
52   "MATRIX_2D_NO_ROT",
53   "MATRIX_3D"
54};
55
56
57static GLfloat Identity[16] = {
58   1.0, 0.0, 0.0, 0.0,
59   0.0, 1.0, 0.0, 0.0,
60   0.0, 0.0, 1.0, 0.0,
61   0.0, 0.0, 0.0, 1.0
62};
63
64
65
66
67/*
68 * This matmul was contributed by Thomas Malik
69 *
70 * Perform a 4x4 matrix multiplication  (product = a x b).
71 * Input:  a, b - matrices to multiply
72 * Output:  product - product of a and b
73 * WARNING: (product != b) assumed
74 * NOTE:    (product == a) allowed
75 *
76 * KW: 4*16 = 64 muls
77 */
78#define A(row,col)  a[(col<<2)+row]
79#define B(row,col)  b[(col<<2)+row]
80#define P(row,col)  product[(col<<2)+row]
81
82static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
83{
84   GLint i;
85   for (i = 0; i < 4; i++) {
86      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
87      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
88      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
89      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
90      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
91   }
92}
93
94
95/* Multiply two matrices known to occupy only the top three rows, such
96 * as typical model matrices, and ortho matrices.
97 */
98static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
99{
100   GLint i;
101   for (i = 0; i < 3; i++) {
102      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
103      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
104      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
105      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
106      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
107   }
108   P(3,0) = 0;
109   P(3,1) = 0;
110   P(3,2) = 0;
111   P(3,3) = 1;
112}
113
114
115#undef A
116#undef B
117#undef P
118
119
120/*
121 * Multiply a matrix by an array of floats with known properties.
122 */
123static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
124{
125   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
126
127   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
128      matmul34( mat->m, mat->m, m );
129   else
130      matmul4( mat->m, mat->m, m );
131}
132
133
134static void print_matrix_floats( const GLfloat m[16] )
135{
136   int i;
137   for (i=0;i<4;i++) {
138      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
139   }
140}
141
142void
143_math_matrix_print( const GLmatrix *m )
144{
145   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
146   print_matrix_floats(m->m);
147   _mesa_debug(NULL, "Inverse: \n");
148   if (m->inv) {
149      GLfloat prod[16];
150      print_matrix_floats(m->inv);
151      matmul4(prod, m->m, m->inv);
152      _mesa_debug(NULL, "Mat * Inverse:\n");
153      print_matrix_floats(prod);
154   }
155   else {
156      _mesa_debug(NULL, "  - not available\n");
157   }
158}
159
160
161
162
163#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
164#define MAT(m,r,c) (m)[(c)*4+(r)]
165
166/*
167 * Compute inverse of 4x4 transformation matrix.
168 * Code contributed by Jacques Leroy jle@star.be
169 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
170 */
171static GLboolean invert_matrix_general( GLmatrix *mat )
172{
173   const GLfloat *m = mat->m;
174   GLfloat *out = mat->inv;
175   GLfloat wtmp[4][8];
176   GLfloat m0, m1, m2, m3, s;
177   GLfloat *r0, *r1, *r2, *r3;
178
179   r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
180
181   r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
182   r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
183   r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
184
185   r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
186   r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
187   r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
188
189   r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
190   r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
191   r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
192
193   r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
194   r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
195   r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
196
197   /* choose pivot - or die */
198   if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
199   if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
200   if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
201   if (0.0 == r0[0])  return GL_FALSE;
202
203   /* eliminate first variable     */
204   m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
205   s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
206   s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
207   s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
208   s = r0[4];
209   if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
210   s = r0[5];
211   if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
212   s = r0[6];
213   if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
214   s = r0[7];
215   if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
216
217   /* choose pivot - or die */
218   if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
219   if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
220   if (0.0 == r1[1])  return GL_FALSE;
221
222   /* eliminate second variable */
223   m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
224   r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
225   r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
226   s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
227   s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
228   s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
229   s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
230
231   /* choose pivot - or die */
232   if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
233   if (0.0 == r2[2])  return GL_FALSE;
234
235   /* eliminate third variable */
236   m3 = r3[2]/r2[2];
237   r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
238   r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
239   r3[7] -= m3 * r2[7];
240
241   /* last check */
242   if (0.0 == r3[3]) return GL_FALSE;
243
244   s = 1.0F/r3[3];             /* now back substitute row 3 */
245   r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
246
247   m2 = r2[3];                 /* now back substitute row 2 */
248   s  = 1.0F/r2[2];
249   r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
250   r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
251   m1 = r1[3];
252   r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
253   r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
254   m0 = r0[3];
255   r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
256   r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
257
258   m1 = r1[2];                 /* now back substitute row 1 */
259   s  = 1.0F/r1[1];
260   r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
261   r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
262   m0 = r0[2];
263   r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
264   r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
265
266   m0 = r0[1];                 /* now back substitute row 0 */
267   s  = 1.0F/r0[0];
268   r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
269   r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
270
271   MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
272   MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
273   MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
274   MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
275   MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
276   MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
277   MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
278   MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
279
280   return GL_TRUE;
281}
282#undef SWAP_ROWS
283
284
285/* Adapted from graphics gems II.
286 */
287static GLboolean invert_matrix_3d_general( GLmatrix *mat )
288{
289   const GLfloat *in = mat->m;
290   GLfloat *out = mat->inv;
291   GLfloat pos, neg, t;
292   GLfloat det;
293
294   /* Calculate the determinant of upper left 3x3 submatrix and
295    * determine if the matrix is singular.
296    */
297   pos = neg = 0.0;
298   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
299   if (t >= 0.0) pos += t; else neg += t;
300
301   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
302   if (t >= 0.0) pos += t; else neg += t;
303
304   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
305   if (t >= 0.0) pos += t; else neg += t;
306
307   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
308   if (t >= 0.0) pos += t; else neg += t;
309
310   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
311   if (t >= 0.0) pos += t; else neg += t;
312
313   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
314   if (t >= 0.0) pos += t; else neg += t;
315
316   det = pos + neg;
317
318   if (det*det < 1e-25)
319      return GL_FALSE;
320
321   det = 1.0F / det;
322   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
323   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
324   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
325   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
326   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
327   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
328   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
329   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
330   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
331
332   /* Do the translation part */
333   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
334		     MAT(in,1,3) * MAT(out,0,1) +
335		     MAT(in,2,3) * MAT(out,0,2) );
336   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
337		     MAT(in,1,3) * MAT(out,1,1) +
338		     MAT(in,2,3) * MAT(out,1,2) );
339   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
340		     MAT(in,1,3) * MAT(out,2,1) +
341		     MAT(in,2,3) * MAT(out,2,2) );
342
343   return GL_TRUE;
344}
345
346
347static GLboolean invert_matrix_3d( GLmatrix *mat )
348{
349   const GLfloat *in = mat->m;
350   GLfloat *out = mat->inv;
351
352   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
353      return invert_matrix_3d_general( mat );
354   }
355
356   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
357      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
358                       MAT(in,0,1) * MAT(in,0,1) +
359                       MAT(in,0,2) * MAT(in,0,2));
360
361      if (scale == 0.0)
362         return GL_FALSE;
363
364      scale = 1.0F / scale;
365
366      /* Transpose and scale the 3 by 3 upper-left submatrix. */
367      MAT(out,0,0) = scale * MAT(in,0,0);
368      MAT(out,1,0) = scale * MAT(in,0,1);
369      MAT(out,2,0) = scale * MAT(in,0,2);
370      MAT(out,0,1) = scale * MAT(in,1,0);
371      MAT(out,1,1) = scale * MAT(in,1,1);
372      MAT(out,2,1) = scale * MAT(in,1,2);
373      MAT(out,0,2) = scale * MAT(in,2,0);
374      MAT(out,1,2) = scale * MAT(in,2,1);
375      MAT(out,2,2) = scale * MAT(in,2,2);
376   }
377   else if (mat->flags & MAT_FLAG_ROTATION) {
378      /* Transpose the 3 by 3 upper-left submatrix. */
379      MAT(out,0,0) = MAT(in,0,0);
380      MAT(out,1,0) = MAT(in,0,1);
381      MAT(out,2,0) = MAT(in,0,2);
382      MAT(out,0,1) = MAT(in,1,0);
383      MAT(out,1,1) = MAT(in,1,1);
384      MAT(out,2,1) = MAT(in,1,2);
385      MAT(out,0,2) = MAT(in,2,0);
386      MAT(out,1,2) = MAT(in,2,1);
387      MAT(out,2,2) = MAT(in,2,2);
388   }
389   else {
390      /* pure translation */
391      MEMCPY( out, Identity, sizeof(Identity) );
392      MAT(out,0,3) = - MAT(in,0,3);
393      MAT(out,1,3) = - MAT(in,1,3);
394      MAT(out,2,3) = - MAT(in,2,3);
395      return GL_TRUE;
396   }
397
398   if (mat->flags & MAT_FLAG_TRANSLATION) {
399      /* Do the translation part */
400      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
401			MAT(in,1,3) * MAT(out,0,1) +
402			MAT(in,2,3) * MAT(out,0,2) );
403      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
404			MAT(in,1,3) * MAT(out,1,1) +
405			MAT(in,2,3) * MAT(out,1,2) );
406      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
407			MAT(in,1,3) * MAT(out,2,1) +
408			MAT(in,2,3) * MAT(out,2,2) );
409   }
410   else {
411      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
412   }
413
414   return GL_TRUE;
415}
416
417
418
419static GLboolean invert_matrix_identity( GLmatrix *mat )
420{
421   MEMCPY( mat->inv, Identity, sizeof(Identity) );
422   return GL_TRUE;
423}
424
425
426static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
427{
428   const GLfloat *in = mat->m;
429   GLfloat *out = mat->inv;
430
431   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
432      return GL_FALSE;
433
434   MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
435   MAT(out,0,0) = 1.0F / MAT(in,0,0);
436   MAT(out,1,1) = 1.0F / MAT(in,1,1);
437   MAT(out,2,2) = 1.0F / MAT(in,2,2);
438
439   if (mat->flags & MAT_FLAG_TRANSLATION) {
440      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
441      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
442      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
443   }
444
445   return GL_TRUE;
446}
447
448
449static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
450{
451   const GLfloat *in = mat->m;
452   GLfloat *out = mat->inv;
453
454   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
455      return GL_FALSE;
456
457   MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
458   MAT(out,0,0) = 1.0F / MAT(in,0,0);
459   MAT(out,1,1) = 1.0F / MAT(in,1,1);
460
461   if (mat->flags & MAT_FLAG_TRANSLATION) {
462      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
463      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
464   }
465
466   return GL_TRUE;
467}
468
469
470#if 0
471/* broken */
472static GLboolean invert_matrix_perspective( GLmatrix *mat )
473{
474   const GLfloat *in = mat->m;
475   GLfloat *out = mat->inv;
476
477   if (MAT(in,2,3) == 0)
478      return GL_FALSE;
479
480   MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
481
482   MAT(out,0,0) = 1.0F / MAT(in,0,0);
483   MAT(out,1,1) = 1.0F / MAT(in,1,1);
484
485   MAT(out,0,3) = MAT(in,0,2);
486   MAT(out,1,3) = MAT(in,1,2);
487
488   MAT(out,2,2) = 0;
489   MAT(out,2,3) = -1;
490
491   MAT(out,3,2) = 1.0F / MAT(in,2,3);
492   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
493
494   return GL_TRUE;
495}
496#endif
497
498
499typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
500
501
502static inv_mat_func inv_mat_tab[7] = {
503   invert_matrix_general,
504   invert_matrix_identity,
505   invert_matrix_3d_no_rot,
506#if 0
507   /* Don't use this function for now - it fails when the projection matrix
508    * is premultiplied by a translation (ala Chromium's tilesort SPU).
509    */
510   invert_matrix_perspective,
511#else
512   invert_matrix_general,
513#endif
514   invert_matrix_3d,		/* lazy! */
515   invert_matrix_2d_no_rot,
516   invert_matrix_3d
517};
518
519
520static GLboolean matrix_invert( GLmatrix *mat )
521{
522   if (inv_mat_tab[mat->type](mat)) {
523      mat->flags &= ~MAT_FLAG_SINGULAR;
524      return GL_TRUE;
525   } else {
526      mat->flags |= MAT_FLAG_SINGULAR;
527      MEMCPY( mat->inv, Identity, sizeof(Identity) );
528      return GL_FALSE;
529   }
530}
531
532
533
534
535
536
537/*
538 * Generate a 4x4 transformation matrix from glRotate parameters, and
539 * postmultiply the input matrix by it.
540 * This function contributed by Erich Boleyn (erich@uruk.org).
541 * Optimizatios contributed by Rudolf Opalla (rudi@khm.de).
542 */
543void
544_math_matrix_rotate( GLmatrix *mat,
545		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
546{
547   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
548   GLfloat m[16];
549   GLboolean optimized;
550
551   s = (GLfloat) sin( angle * DEG2RAD );
552   c = (GLfloat) cos( angle * DEG2RAD );
553
554   MEMCPY(m, Identity, sizeof(GLfloat)*16);
555   optimized = GL_FALSE;
556
557#define M(row,col)  m[col*4+row]
558
559   if (x == 0.0F) {
560      if (y == 0.0F) {
561         if (z != 0.0F) {
562            optimized = GL_TRUE;
563            /* rotate only around z-axis */
564            M(0,0) = c;
565            M(1,1) = c;
566            if (z < 0.0F) {
567               M(0,1) = s;
568               M(1,0) = -s;
569            }
570            else {
571               M(0,1) = -s;
572               M(1,0) = s;
573            }
574         }
575      }
576      else if (z == 0.0F) {
577         optimized = GL_TRUE;
578         /* rotate only around y-axis */
579         M(0,0) = c;
580         M(2,2) = c;
581         if (y < 0.0F) {
582            M(0,2) = -s;
583            M(2,0) = s;
584         }
585         else {
586            M(0,2) = s;
587            M(2,0) = -s;
588         }
589      }
590   }
591   else if (y == 0.0F) {
592      if (z == 0.0F) {
593         optimized = GL_TRUE;
594         /* rotate only around x-axis */
595         M(1,1) = c;
596         M(2,2) = c;
597         if (x < 0.0F) {
598            M(1,2) = s;
599            M(2,1) = -s;
600         }
601         else {
602            M(1,2) = -s;
603            M(2,1) = s;
604         }
605      }
606   }
607
608   if (!optimized) {
609      const GLfloat mag = (GLfloat) GL_SQRT(x * x + y * y + z * z);
610
611      if (mag <= 1.0e-4) {
612         /* no rotation, leave mat as-is */
613         return;
614      }
615
616      x /= mag;
617      y /= mag;
618      z /= mag;
619
620
621      /*
622       *     Arbitrary axis rotation matrix.
623       *
624       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
625       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
626       *  (which is about the X-axis), and the two composite transforms
627       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
628       *  from the arbitrary axis to the X-axis then back.  They are
629       *  all elementary rotations.
630       *
631       *  Rz' is a rotation about the Z-axis, to bring the axis vector
632       *  into the x-z plane.  Then Ry' is applied, rotating about the
633       *  Y-axis to bring the axis vector parallel with the X-axis.  The
634       *  rotation about the X-axis is then performed.  Ry and Rz are
635       *  simply the respective inverse transforms to bring the arbitrary
636       *  axis back to it's original orientation.  The first transforms
637       *  Rz' and Ry' are considered inverses, since the data from the
638       *  arbitrary axis gives you info on how to get to it, not how
639       *  to get away from it, and an inverse must be applied.
640       *
641       *  The basic calculation used is to recognize that the arbitrary
642       *  axis vector (x, y, z), since it is of unit length, actually
643       *  represents the sines and cosines of the angles to rotate the
644       *  X-axis to the same orientation, with theta being the angle about
645       *  Z and phi the angle about Y (in the order described above)
646       *  as follows:
647       *
648       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
649       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
650       *
651       *  cos ( phi ) = sqrt ( 1 - z^2 )
652       *  sin ( phi ) = z
653       *
654       *  Note that cos ( phi ) can further be inserted to the above
655       *  formulas:
656       *
657       *  cos ( theta ) = x / cos ( phi )
658       *  sin ( theta ) = y / sin ( phi )
659       *
660       *  ...etc.  Because of those relations and the standard trigonometric
661       *  relations, it is pssible to reduce the transforms down to what
662       *  is used below.  It may be that any primary axis chosen will give the
663       *  same results (modulo a sign convention) using thie method.
664       *
665       *  Particularly nice is to notice that all divisions that might
666       *  have caused trouble when parallel to certain planes or
667       *  axis go away with care paid to reducing the expressions.
668       *  After checking, it does perform correctly under all cases, since
669       *  in all the cases of division where the denominator would have
670       *  been zero, the numerator would have been zero as well, giving
671       *  the expected result.
672       */
673
674      xx = x * x;
675      yy = y * y;
676      zz = z * z;
677      xy = x * y;
678      yz = y * z;
679      zx = z * x;
680      xs = x * s;
681      ys = y * s;
682      zs = z * s;
683      one_c = 1.0F - c;
684
685      /* We already hold the identity-matrix so we can skip some statements */
686      M(0,0) = (one_c * xx) + c;
687      M(0,1) = (one_c * xy) - zs;
688      M(0,2) = (one_c * zx) + ys;
689/*    M(0,3) = 0.0F; */
690
691      M(1,0) = (one_c * xy) + zs;
692      M(1,1) = (one_c * yy) + c;
693      M(1,2) = (one_c * yz) - xs;
694/*    M(1,3) = 0.0F; */
695
696      M(2,0) = (one_c * zx) - ys;
697      M(2,1) = (one_c * yz) + xs;
698      M(2,2) = (one_c * zz) + c;
699/*    M(2,3) = 0.0F; */
700
701/*
702      M(3,0) = 0.0F;
703      M(3,1) = 0.0F;
704      M(3,2) = 0.0F;
705      M(3,3) = 1.0F;
706*/
707   }
708#undef M
709
710   matrix_multf( mat, m, MAT_FLAG_ROTATION );
711}
712
713
714
715void
716_math_matrix_frustum( GLmatrix *mat,
717		      GLfloat left, GLfloat right,
718		      GLfloat bottom, GLfloat top,
719		      GLfloat nearval, GLfloat farval )
720{
721   GLfloat x, y, a, b, c, d;
722   GLfloat m[16];
723
724   x = (2.0F*nearval) / (right-left);
725   y = (2.0F*nearval) / (top-bottom);
726   a = (right+left) / (right-left);
727   b = (top+bottom) / (top-bottom);
728   c = -(farval+nearval) / ( farval-nearval);
729   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
730
731#define M(row,col)  m[col*4+row]
732   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
733   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
734   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
735   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
736#undef M
737
738   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
739}
740
741void
742_math_matrix_ortho( GLmatrix *mat,
743		    GLfloat left, GLfloat right,
744		    GLfloat bottom, GLfloat top,
745		    GLfloat nearval, GLfloat farval )
746{
747   GLfloat x, y, z;
748   GLfloat tx, ty, tz;
749   GLfloat m[16];
750
751   x = 2.0F / (right-left);
752   y = 2.0F / (top-bottom);
753   z = -2.0F / (farval-nearval);
754   tx = -(right+left) / (right-left);
755   ty = -(top+bottom) / (top-bottom);
756   tz = -(farval+nearval) / (farval-nearval);
757
758#define M(row,col)  m[col*4+row]
759   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = 0.0F;  M(0,3) = tx;
760   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = 0.0F;  M(1,3) = ty;
761   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = z;     M(2,3) = tz;
762   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = 0.0F;  M(3,3) = 1.0F;
763#undef M
764
765   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
766}
767
768
769#define ZERO(x) (1<<x)
770#define ONE(x)  (1<<(x+16))
771
772#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
773#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
774
775#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
776			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
777			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
778			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
779
780#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
781			  ZERO(1)  |            ZERO(9)  |           \
782			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
783			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
784
785#define MASK_2D          (                      ZERO(8)  |           \
786			                        ZERO(9)  |           \
787			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
788			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
789
790
791#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
792			  ZERO(1)  |            ZERO(9)  |           \
793			  ZERO(2)  | ZERO(6)  |                      \
794			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
795
796#define MASK_3D          (                                           \
797			                                             \
798			                                             \
799			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
800
801
802#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
803			  ZERO(1)  |                       ZERO(13) |\
804			  ZERO(2)  | ZERO(6)  |                      \
805			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
806
807#define SQ(x) ((x)*(x))
808
809/* Determine type and flags from scratch.  This is expensive enough to
810 * only want to do it once.
811 */
812static void analyse_from_scratch( GLmatrix *mat )
813{
814   const GLfloat *m = mat->m;
815   GLuint mask = 0;
816   GLuint i;
817
818   for (i = 0 ; i < 16 ; i++) {
819      if (m[i] == 0.0) mask |= (1<<i);
820   }
821
822   if (m[0] == 1.0F) mask |= (1<<16);
823   if (m[5] == 1.0F) mask |= (1<<21);
824   if (m[10] == 1.0F) mask |= (1<<26);
825   if (m[15] == 1.0F) mask |= (1<<31);
826
827   mat->flags &= ~MAT_FLAGS_GEOMETRY;
828
829   /* Check for translation - no-one really cares
830    */
831   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
832      mat->flags |= MAT_FLAG_TRANSLATION;
833
834   /* Do the real work
835    */
836   if (mask == (GLuint) MASK_IDENTITY) {
837      mat->type = MATRIX_IDENTITY;
838   }
839   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
840      mat->type = MATRIX_2D_NO_ROT;
841
842      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
843	 mat->flags = MAT_FLAG_GENERAL_SCALE;
844   }
845   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
846      GLfloat mm = DOT2(m, m);
847      GLfloat m4m4 = DOT2(m+4,m+4);
848      GLfloat mm4 = DOT2(m,m+4);
849
850      mat->type = MATRIX_2D;
851
852      /* Check for scale */
853      if (SQ(mm-1) > SQ(1e-6) ||
854	  SQ(m4m4-1) > SQ(1e-6))
855	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
856
857      /* Check for rotation */
858      if (SQ(mm4) > SQ(1e-6))
859	 mat->flags |= MAT_FLAG_GENERAL_3D;
860      else
861	 mat->flags |= MAT_FLAG_ROTATION;
862
863   }
864   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
865      mat->type = MATRIX_3D_NO_ROT;
866
867      /* Check for scale */
868      if (SQ(m[0]-m[5]) < SQ(1e-6) &&
869	  SQ(m[0]-m[10]) < SQ(1e-6)) {
870	 if (SQ(m[0]-1.0) > SQ(1e-6)) {
871	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
872         }
873      }
874      else {
875	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
876      }
877   }
878   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
879      GLfloat c1 = DOT3(m,m);
880      GLfloat c2 = DOT3(m+4,m+4);
881      GLfloat c3 = DOT3(m+8,m+8);
882      GLfloat d1 = DOT3(m, m+4);
883      GLfloat cp[3];
884
885      mat->type = MATRIX_3D;
886
887      /* Check for scale */
888      if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
889	 if (SQ(c1-1.0) > SQ(1e-6))
890	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
891	 /* else no scale at all */
892      }
893      else {
894	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
895      }
896
897      /* Check for rotation */
898      if (SQ(d1) < SQ(1e-6)) {
899	 CROSS3( cp, m, m+4 );
900	 SUB_3V( cp, cp, (m+8) );
901	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
902	    mat->flags |= MAT_FLAG_ROTATION;
903	 else
904	    mat->flags |= MAT_FLAG_GENERAL_3D;
905      }
906      else {
907	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
908      }
909   }
910   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
911      mat->type = MATRIX_PERSPECTIVE;
912      mat->flags |= MAT_FLAG_GENERAL;
913   }
914   else {
915      mat->type = MATRIX_GENERAL;
916      mat->flags |= MAT_FLAG_GENERAL;
917   }
918}
919
920
921/* Analyse a matrix given that its flags are accurate - this is the
922 * more common operation, hopefully.
923 */
924static void analyse_from_flags( GLmatrix *mat )
925{
926   const GLfloat *m = mat->m;
927
928   if (TEST_MAT_FLAGS(mat, 0)) {
929      mat->type = MATRIX_IDENTITY;
930   }
931   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
932				 MAT_FLAG_UNIFORM_SCALE |
933				 MAT_FLAG_GENERAL_SCALE))) {
934      if ( m[10]==1.0F && m[14]==0.0F ) {
935	 mat->type = MATRIX_2D_NO_ROT;
936      }
937      else {
938	 mat->type = MATRIX_3D_NO_ROT;
939      }
940   }
941   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
942      if (                                 m[ 8]==0.0F
943            &&                             m[ 9]==0.0F
944            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
945	 mat->type = MATRIX_2D;
946      }
947      else {
948	 mat->type = MATRIX_3D;
949      }
950   }
951   else if (                 m[4]==0.0F                 && m[12]==0.0F
952            && m[1]==0.0F                               && m[13]==0.0F
953            && m[2]==0.0F && m[6]==0.0F
954            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
955      mat->type = MATRIX_PERSPECTIVE;
956   }
957   else {
958      mat->type = MATRIX_GENERAL;
959   }
960}
961
962
963void
964_math_matrix_analyse( GLmatrix *mat )
965{
966   if (mat->flags & MAT_DIRTY_TYPE) {
967      if (mat->flags & MAT_DIRTY_FLAGS)
968	 analyse_from_scratch( mat );
969      else
970	 analyse_from_flags( mat );
971   }
972
973   if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
974      matrix_invert( mat );
975   }
976
977   mat->flags &= ~(MAT_DIRTY_FLAGS|
978		   MAT_DIRTY_TYPE|
979		   MAT_DIRTY_INVERSE);
980}
981
982
983void
984_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
985{
986   MEMCPY( to->m, from->m, sizeof(Identity) );
987   to->flags = from->flags;
988   to->type = from->type;
989
990   if (to->inv != 0) {
991      if (from->inv == 0) {
992	 matrix_invert( to );
993      }
994      else {
995	 MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16);
996      }
997   }
998}
999
1000
1001void
1002_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1003{
1004   GLfloat *m = mat->m;
1005   m[0] *= x;   m[4] *= y;   m[8]  *= z;
1006   m[1] *= x;   m[5] *= y;   m[9]  *= z;
1007   m[2] *= x;   m[6] *= y;   m[10] *= z;
1008   m[3] *= x;   m[7] *= y;   m[11] *= z;
1009
1010   if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
1011      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1012   else
1013      mat->flags |= MAT_FLAG_GENERAL_SCALE;
1014
1015   mat->flags |= (MAT_DIRTY_TYPE |
1016		  MAT_DIRTY_INVERSE);
1017}
1018
1019
1020void
1021_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1022{
1023   GLfloat *m = mat->m;
1024   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1025   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1026   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1027   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1028
1029   mat->flags |= (MAT_FLAG_TRANSLATION |
1030		  MAT_DIRTY_TYPE |
1031		  MAT_DIRTY_INVERSE);
1032}
1033
1034
1035void
1036_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1037{
1038   MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
1039   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1040}
1041
1042void
1043_math_matrix_ctr( GLmatrix *m )
1044{
1045   m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
1046   if (m->m)
1047      MEMCPY( m->m, Identity, sizeof(Identity) );
1048   m->inv = NULL;
1049   m->type = MATRIX_IDENTITY;
1050   m->flags = 0;
1051}
1052
1053void
1054_math_matrix_dtr( GLmatrix *m )
1055{
1056   if (m->m) {
1057      ALIGN_FREE( m->m );
1058      m->m = NULL;
1059   }
1060   if (m->inv) {
1061      ALIGN_FREE( m->inv );
1062      m->inv = NULL;
1063   }
1064}
1065
1066
1067void
1068_math_matrix_alloc_inv( GLmatrix *m )
1069{
1070   if (!m->inv) {
1071      m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
1072      if (m->inv)
1073         MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) );
1074   }
1075}
1076
1077
1078void
1079_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
1080{
1081   dest->flags = (a->flags |
1082		  b->flags |
1083		  MAT_DIRTY_TYPE |
1084		  MAT_DIRTY_INVERSE);
1085
1086   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
1087      matmul34( dest->m, a->m, b->m );
1088   else
1089      matmul4( dest->m, a->m, b->m );
1090}
1091
1092
1093void
1094_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
1095{
1096   dest->flags |= (MAT_FLAG_GENERAL |
1097		   MAT_DIRTY_TYPE |
1098		   MAT_DIRTY_INVERSE);
1099
1100   matmul4( dest->m, dest->m, m );
1101}
1102
1103void
1104_math_matrix_set_identity( GLmatrix *mat )
1105{
1106   MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
1107
1108   if (mat->inv)
1109      MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
1110
1111   mat->type = MATRIX_IDENTITY;
1112   mat->flags &= ~(MAT_DIRTY_FLAGS|
1113		   MAT_DIRTY_TYPE|
1114		   MAT_DIRTY_INVERSE);
1115}
1116
1117
1118
1119void
1120_math_transposef( GLfloat to[16], const GLfloat from[16] )
1121{
1122   to[0] = from[0];
1123   to[1] = from[4];
1124   to[2] = from[8];
1125   to[3] = from[12];
1126   to[4] = from[1];
1127   to[5] = from[5];
1128   to[6] = from[9];
1129   to[7] = from[13];
1130   to[8] = from[2];
1131   to[9] = from[6];
1132   to[10] = from[10];
1133   to[11] = from[14];
1134   to[12] = from[3];
1135   to[13] = from[7];
1136   to[14] = from[11];
1137   to[15] = from[15];
1138}
1139
1140
1141void
1142_math_transposed( GLdouble to[16], const GLdouble from[16] )
1143{
1144   to[0] = from[0];
1145   to[1] = from[4];
1146   to[2] = from[8];
1147   to[3] = from[12];
1148   to[4] = from[1];
1149   to[5] = from[5];
1150   to[6] = from[9];
1151   to[7] = from[13];
1152   to[8] = from[2];
1153   to[9] = from[6];
1154   to[10] = from[10];
1155   to[11] = from[14];
1156   to[12] = from[3];
1157   to[13] = from[7];
1158   to[14] = from[11];
1159   to[15] = from[15];
1160}
1161
1162void
1163_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1164{
1165   to[0] = (GLfloat) from[0];
1166   to[1] = (GLfloat) from[4];
1167   to[2] = (GLfloat) from[8];
1168   to[3] = (GLfloat) from[12];
1169   to[4] = (GLfloat) from[1];
1170   to[5] = (GLfloat) from[5];
1171   to[6] = (GLfloat) from[9];
1172   to[7] = (GLfloat) from[13];
1173   to[8] = (GLfloat) from[2];
1174   to[9] = (GLfloat) from[6];
1175   to[10] = (GLfloat) from[10];
1176   to[11] = (GLfloat) from[14];
1177   to[12] = (GLfloat) from[3];
1178   to[13] = (GLfloat) from[7];
1179   to[14] = (GLfloat) from[11];
1180   to[15] = (GLfloat) from[15];
1181}
1182