st_glsl_to_tgsi.cpp revision 41472f7809dcff114223b8fadc5b97baff6060a9
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45extern "C" {
46#include "main/mtypes.h"
47#include "main/shaderapi.h"
48#include "main/shaderobj.h"
49#include "main/uniforms.h"
50#include "program/hash_table.h"
51#include "program/prog_instruction.h"
52#include "program/prog_optimize.h"
53#include "program/prog_print.h"
54#include "program/program.h"
55#include "program/prog_uniform.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
74                           (1 << PROGRAM_ENV_PARAM) |    \
75                           (1 << PROGRAM_STATE_VAR) |    \
76                           (1 << PROGRAM_NAMED_PARAM) |  \
77                           (1 << PROGRAM_CONSTANT) |     \
78                           (1 << PROGRAM_UNIFORM))
79
80class st_src_reg;
81class st_dst_reg;
82
83static int swizzle_for_size(int size);
84
85/**
86 * This struct is a corresponding struct to TGSI ureg_src.
87 */
88class st_src_reg {
89public:
90   st_src_reg(gl_register_file file, int index, const glsl_type *type)
91   {
92      this->file = file;
93      this->index = index;
94      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
95         this->swizzle = swizzle_for_size(type->vector_elements);
96      else
97         this->swizzle = SWIZZLE_XYZW;
98      this->negate = 0;
99      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
100      this->reladdr = NULL;
101   }
102
103   st_src_reg(gl_register_file file, int index, int type)
104   {
105      this->type = type;
106      this->file = file;
107      this->index = index;
108      this->swizzle = SWIZZLE_XYZW;
109      this->negate = 0;
110      this->reladdr = NULL;
111   }
112
113   st_src_reg()
114   {
115      this->type = GLSL_TYPE_ERROR;
116      this->file = PROGRAM_UNDEFINED;
117      this->index = 0;
118      this->swizzle = 0;
119      this->negate = 0;
120      this->reladdr = NULL;
121   }
122
123   explicit st_src_reg(st_dst_reg reg);
124
125   gl_register_file file; /**< PROGRAM_* from Mesa */
126   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
128   int negate; /**< NEGATE_XYZW mask from mesa */
129   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
130   /** Register index should be offset by the integer in this reg. */
131   st_src_reg *reladdr;
132};
133
134class st_dst_reg {
135public:
136   st_dst_reg(gl_register_file file, int writemask, int type)
137   {
138      this->file = file;
139      this->index = 0;
140      this->writemask = writemask;
141      this->cond_mask = COND_TR;
142      this->reladdr = NULL;
143      this->type = type;
144   }
145
146   st_dst_reg()
147   {
148      this->type = GLSL_TYPE_ERROR;
149      this->file = PROGRAM_UNDEFINED;
150      this->index = 0;
151      this->writemask = 0;
152      this->cond_mask = COND_TR;
153      this->reladdr = NULL;
154   }
155
156   explicit st_dst_reg(st_src_reg reg);
157
158   gl_register_file file; /**< PROGRAM_* from Mesa */
159   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
160   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
161   GLuint cond_mask:4;
162   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
163   /** Register index should be offset by the integer in this reg. */
164   st_src_reg *reladdr;
165};
166
167st_src_reg::st_src_reg(st_dst_reg reg)
168{
169   this->type = reg.type;
170   this->file = reg.file;
171   this->index = reg.index;
172   this->swizzle = SWIZZLE_XYZW;
173   this->negate = 0;
174   this->reladdr = NULL;
175}
176
177st_dst_reg::st_dst_reg(st_src_reg reg)
178{
179   this->type = reg.type;
180   this->file = reg.file;
181   this->index = reg.index;
182   this->writemask = WRITEMASK_XYZW;
183   this->cond_mask = COND_TR;
184   this->reladdr = reg.reladdr;
185}
186
187class glsl_to_tgsi_instruction : public exec_node {
188public:
189   /* Callers of this ralloc-based new need not call delete. It's
190    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
191   static void* operator new(size_t size, void *ctx)
192   {
193      void *node;
194
195      node = rzalloc_size(ctx, size);
196      assert(node != NULL);
197
198      return node;
199   }
200
201   unsigned op;
202   st_dst_reg dst;
203   st_src_reg src[3];
204   /** Pointer to the ir source this tree came from for debugging */
205   ir_instruction *ir;
206   GLboolean cond_update;
207   bool saturate;
208   int sampler; /**< sampler index */
209   int tex_target; /**< One of TEXTURE_*_INDEX */
210   GLboolean tex_shadow;
211   int dead_mask; /**< Used in dead code elimination */
212
213   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
214};
215
216class variable_storage : public exec_node {
217public:
218   variable_storage(ir_variable *var, gl_register_file file, int index)
219      : file(file), index(index), var(var)
220   {
221      /* empty */
222   }
223
224   gl_register_file file;
225   int index;
226   ir_variable *var; /* variable that maps to this, if any */
227};
228
229class function_entry : public exec_node {
230public:
231   ir_function_signature *sig;
232
233   /**
234    * identifier of this function signature used by the program.
235    *
236    * At the point that Mesa instructions for function calls are
237    * generated, we don't know the address of the first instruction of
238    * the function body.  So we make the BranchTarget that is called a
239    * small integer and rewrite them during set_branchtargets().
240    */
241   int sig_id;
242
243   /**
244    * Pointer to first instruction of the function body.
245    *
246    * Set during function body emits after main() is processed.
247    */
248   glsl_to_tgsi_instruction *bgn_inst;
249
250   /**
251    * Index of the first instruction of the function body in actual
252    * Mesa IR.
253    *
254    * Set after convertion from glsl_to_tgsi_instruction to prog_instruction.
255    */
256   int inst;
257
258   /** Storage for the return value. */
259   st_src_reg return_reg;
260};
261
262class glsl_to_tgsi_visitor : public ir_visitor {
263public:
264   glsl_to_tgsi_visitor();
265   ~glsl_to_tgsi_visitor();
266
267   function_entry *current_function;
268
269   struct gl_context *ctx;
270   struct gl_program *prog;
271   struct gl_shader_program *shader_program;
272   struct gl_shader_compiler_options *options;
273
274   int next_temp;
275
276   int num_address_regs;
277   int samplers_used;
278   bool indirect_addr_temps;
279   bool indirect_addr_consts;
280
281   int glsl_version;
282
283   variable_storage *find_variable_storage(ir_variable *var);
284
285   function_entry *get_function_signature(ir_function_signature *sig);
286
287   st_src_reg get_temp(const glsl_type *type);
288   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
289
290   st_src_reg st_src_reg_for_float(float val);
291   st_src_reg st_src_reg_for_int(int val);
292   st_src_reg st_src_reg_for_type(int type, int val);
293
294   /**
295    * \name Visit methods
296    *
297    * As typical for the visitor pattern, there must be one \c visit method for
298    * each concrete subclass of \c ir_instruction.  Virtual base classes within
299    * the hierarchy should not have \c visit methods.
300    */
301   /*@{*/
302   virtual void visit(ir_variable *);
303   virtual void visit(ir_loop *);
304   virtual void visit(ir_loop_jump *);
305   virtual void visit(ir_function_signature *);
306   virtual void visit(ir_function *);
307   virtual void visit(ir_expression *);
308   virtual void visit(ir_swizzle *);
309   virtual void visit(ir_dereference_variable  *);
310   virtual void visit(ir_dereference_array *);
311   virtual void visit(ir_dereference_record *);
312   virtual void visit(ir_assignment *);
313   virtual void visit(ir_constant *);
314   virtual void visit(ir_call *);
315   virtual void visit(ir_return *);
316   virtual void visit(ir_discard *);
317   virtual void visit(ir_texture *);
318   virtual void visit(ir_if *);
319   /*@}*/
320
321   st_src_reg result;
322
323   /** List of variable_storage */
324   exec_list variables;
325
326   /** List of function_entry */
327   exec_list function_signatures;
328   int next_signature_id;
329
330   /** List of glsl_to_tgsi_instruction */
331   exec_list instructions;
332
333   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
334
335   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
336        		        st_dst_reg dst, st_src_reg src0);
337
338   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
339        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
340
341   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
342        		        st_dst_reg dst,
343        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
344
345   unsigned get_opcode(ir_instruction *ir, unsigned op,
346                    st_dst_reg dst,
347                    st_src_reg src0, st_src_reg src1);
348
349   /**
350    * Emit the correct dot-product instruction for the type of arguments
351    */
352   void emit_dp(ir_instruction *ir,
353                st_dst_reg dst,
354                st_src_reg src0,
355                st_src_reg src1,
356                unsigned elements);
357
358   void emit_scalar(ir_instruction *ir, unsigned op,
359        	    st_dst_reg dst, st_src_reg src0);
360
361   void emit_scalar(ir_instruction *ir, unsigned op,
362        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
363
364   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
365
366   void emit_scs(ir_instruction *ir, unsigned op,
367        	 st_dst_reg dst, const st_src_reg &src);
368
369   GLboolean try_emit_mad(ir_expression *ir,
370        		  int mul_operand);
371   GLboolean try_emit_sat(ir_expression *ir);
372
373   void emit_swz(ir_expression *ir);
374
375   bool process_move_condition(ir_rvalue *ir);
376
377   void remove_output_reads(gl_register_file type);
378   void simplify_cmp(void);
379
380   void rename_temp_register(int index, int new_index);
381   int get_first_temp_read(int index);
382   int get_first_temp_write(int index);
383   int get_last_temp_read(int index);
384   int get_last_temp_write(int index);
385
386   void copy_propagate(void);
387   void eliminate_dead_code(void);
388   int eliminate_dead_code_advanced(void);
389   void merge_registers(void);
390   void renumber_registers(void);
391
392   void *mem_ctx;
393};
394
395static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
396
397static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
398
399static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
400
401static void
402fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
403
404static void
405fail_link(struct gl_shader_program *prog, const char *fmt, ...)
406{
407   va_list args;
408   va_start(args, fmt);
409   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
410   va_end(args);
411
412   prog->LinkStatus = GL_FALSE;
413}
414
415static int
416swizzle_for_size(int size)
417{
418   int size_swizzles[4] = {
419      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
420      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
421      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
422      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
423   };
424
425   assert((size >= 1) && (size <= 4));
426   return size_swizzles[size - 1];
427}
428
429static bool
430is_tex_instruction(unsigned opcode)
431{
432   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
433   return info->is_tex;
434}
435
436static unsigned
437num_inst_dst_regs(unsigned opcode)
438{
439   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
440   return info->num_dst;
441}
442
443static unsigned
444num_inst_src_regs(unsigned opcode)
445{
446   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
447   return info->is_tex ? info->num_src - 1 : info->num_src;
448}
449
450glsl_to_tgsi_instruction *
451glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
452        		 st_dst_reg dst,
453        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
454{
455   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
456   int num_reladdr = 0, i;
457
458   op = get_opcode(ir, op, dst, src0, src1);
459
460   /* If we have to do relative addressing, we want to load the ARL
461    * reg directly for one of the regs, and preload the other reladdr
462    * sources into temps.
463    */
464   num_reladdr += dst.reladdr != NULL;
465   num_reladdr += src0.reladdr != NULL;
466   num_reladdr += src1.reladdr != NULL;
467   num_reladdr += src2.reladdr != NULL;
468
469   reladdr_to_temp(ir, &src2, &num_reladdr);
470   reladdr_to_temp(ir, &src1, &num_reladdr);
471   reladdr_to_temp(ir, &src0, &num_reladdr);
472
473   if (dst.reladdr) {
474      emit_arl(ir, address_reg, *dst.reladdr);
475      num_reladdr--;
476   }
477   assert(num_reladdr == 0);
478
479   inst->op = op;
480   inst->dst = dst;
481   inst->src[0] = src0;
482   inst->src[1] = src1;
483   inst->src[2] = src2;
484   inst->ir = ir;
485   inst->dead_mask = 0;
486
487   inst->function = NULL;
488
489   if (op == TGSI_OPCODE_ARL)
490      this->num_address_regs = 1;
491
492   /* Update indirect addressing status used by TGSI */
493   if (dst.reladdr) {
494      switch(dst.file) {
495      case PROGRAM_TEMPORARY:
496         this->indirect_addr_temps = true;
497         break;
498      case PROGRAM_LOCAL_PARAM:
499      case PROGRAM_ENV_PARAM:
500      case PROGRAM_STATE_VAR:
501      case PROGRAM_NAMED_PARAM:
502      case PROGRAM_CONSTANT:
503      case PROGRAM_UNIFORM:
504         this->indirect_addr_consts = true;
505         break;
506      default:
507         break;
508      }
509   }
510   else {
511      for (i=0; i<3; i++) {
512         if(inst->src[i].reladdr) {
513            switch(inst->src[i].file) {
514            case PROGRAM_TEMPORARY:
515               this->indirect_addr_temps = true;
516               break;
517            case PROGRAM_LOCAL_PARAM:
518            case PROGRAM_ENV_PARAM:
519            case PROGRAM_STATE_VAR:
520            case PROGRAM_NAMED_PARAM:
521            case PROGRAM_CONSTANT:
522            case PROGRAM_UNIFORM:
523               this->indirect_addr_consts = true;
524               break;
525            default:
526               break;
527            }
528         }
529      }
530   }
531
532   this->instructions.push_tail(inst);
533
534   return inst;
535}
536
537
538glsl_to_tgsi_instruction *
539glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
540        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
541{
542   return emit(ir, op, dst, src0, src1, undef_src);
543}
544
545glsl_to_tgsi_instruction *
546glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
547        		 st_dst_reg dst, st_src_reg src0)
548{
549   assert(dst.writemask != 0);
550   return emit(ir, op, dst, src0, undef_src, undef_src);
551}
552
553glsl_to_tgsi_instruction *
554glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
555{
556   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
557}
558
559/**
560 * Determines whether to use an integer, unsigned integer, or float opcode
561 * based on the operands and input opcode, then emits the result.
562 *
563 * TODO: type checking for remaining TGSI opcodes
564 */
565unsigned
566glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
567        		 st_dst_reg dst,
568        		 st_src_reg src0, st_src_reg src1)
569{
570   int type = GLSL_TYPE_FLOAT;
571
572   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
573      type = GLSL_TYPE_FLOAT;
574   else if (glsl_version >= 130)
575      type = src0.type;
576
577#define case4(c, f, i, u) \
578   case TGSI_OPCODE_##c: \
579      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
580      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
581      else op = TGSI_OPCODE_##f; \
582      break;
583#define case3(f, i, u)  case4(f, f, i, u)
584#define case2fi(f, i)   case4(f, f, i, i)
585#define case2iu(i, u)   case4(i, LAST, i, u)
586
587   switch(op) {
588      case2fi(ADD, UADD);
589      case2fi(MUL, UMUL);
590      case2fi(MAD, UMAD);
591      case3(DIV, IDIV, UDIV);
592      case3(MAX, IMAX, UMAX);
593      case3(MIN, IMIN, UMIN);
594      case2iu(MOD, UMOD);
595
596      case2fi(SEQ, USEQ);
597      case2fi(SNE, USNE);
598      case3(SGE, ISGE, USGE);
599      case3(SLT, ISLT, USLT);
600
601      case2iu(SHL, SHL);
602      case2iu(ISHR, USHR);
603      case2iu(NOT, NOT);
604      case2iu(AND, AND);
605      case2iu(OR, OR);
606      case2iu(XOR, XOR);
607
608      default: break;
609   }
610
611   assert(op != TGSI_OPCODE_LAST);
612   return op;
613}
614
615void
616glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
617        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
618        		    unsigned elements)
619{
620   static const unsigned dot_opcodes[] = {
621      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
622   };
623
624   emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
625}
626
627/**
628 * Emits TGSI scalar opcodes to produce unique answers across channels.
629 *
630 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
631 * channel determines the result across all channels.  So to do a vec4
632 * of this operation, we want to emit a scalar per source channel used
633 * to produce dest channels.
634 */
635void
636glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
637        		        st_dst_reg dst,
638        			st_src_reg orig_src0, st_src_reg orig_src1)
639{
640   int i, j;
641   int done_mask = ~dst.writemask;
642
643   /* TGSI RCP is a scalar operation splatting results to all channels,
644    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
645    * dst channels.
646    */
647   for (i = 0; i < 4; i++) {
648      GLuint this_mask = (1 << i);
649      glsl_to_tgsi_instruction *inst;
650      st_src_reg src0 = orig_src0;
651      st_src_reg src1 = orig_src1;
652
653      if (done_mask & this_mask)
654         continue;
655
656      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
657      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
658      for (j = i + 1; j < 4; j++) {
659         /* If there is another enabled component in the destination that is
660          * derived from the same inputs, generate its value on this pass as
661          * well.
662          */
663         if (!(done_mask & (1 << j)) &&
664             GET_SWZ(src0.swizzle, j) == src0_swiz &&
665             GET_SWZ(src1.swizzle, j) == src1_swiz) {
666            this_mask |= (1 << j);
667         }
668      }
669      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
670        			   src0_swiz, src0_swiz);
671      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
672        			  src1_swiz, src1_swiz);
673
674      inst = emit(ir, op, dst, src0, src1);
675      inst->dst.writemask = this_mask;
676      done_mask |= this_mask;
677   }
678}
679
680void
681glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
682        		        st_dst_reg dst, st_src_reg src0)
683{
684   st_src_reg undef = undef_src;
685
686   undef.swizzle = SWIZZLE_XXXX;
687
688   emit_scalar(ir, op, dst, src0, undef);
689}
690
691void
692glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
693        		        st_dst_reg dst, st_src_reg src0)
694{
695   st_src_reg tmp = get_temp(glsl_type::float_type);
696
697   if (src0.type == GLSL_TYPE_INT)
698      emit(ir, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
699   else if (src0.type == GLSL_TYPE_UINT)
700      emit(ir, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
701   else
702      tmp = src0;
703
704   emit(ir, TGSI_OPCODE_ARL, dst, tmp);
705}
706
707/**
708 * Emit an TGSI_OPCODE_SCS instruction
709 *
710 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
711 * Instead of splatting its result across all four components of the
712 * destination, it writes one value to the \c x component and another value to
713 * the \c y component.
714 *
715 * \param ir        IR instruction being processed
716 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
717 *                  on which value is desired.
718 * \param dst       Destination register
719 * \param src       Source register
720 */
721void
722glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
723        		     st_dst_reg dst,
724        		     const st_src_reg &src)
725{
726   /* Vertex programs cannot use the SCS opcode.
727    */
728   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
729      emit_scalar(ir, op, dst, src);
730      return;
731   }
732
733   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
734   const unsigned scs_mask = (1U << component);
735   int done_mask = ~dst.writemask;
736   st_src_reg tmp;
737
738   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
739
740   /* If there are compnents in the destination that differ from the component
741    * that will be written by the SCS instrution, we'll need a temporary.
742    */
743   if (scs_mask != unsigned(dst.writemask)) {
744      tmp = get_temp(glsl_type::vec4_type);
745   }
746
747   for (unsigned i = 0; i < 4; i++) {
748      unsigned this_mask = (1U << i);
749      st_src_reg src0 = src;
750
751      if ((done_mask & this_mask) != 0)
752         continue;
753
754      /* The source swizzle specified which component of the source generates
755       * sine / cosine for the current component in the destination.  The SCS
756       * instruction requires that this value be swizzle to the X component.
757       * Replace the current swizzle with a swizzle that puts the source in
758       * the X component.
759       */
760      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
761
762      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
763        			   src0_swiz, src0_swiz);
764      for (unsigned j = i + 1; j < 4; j++) {
765         /* If there is another enabled component in the destination that is
766          * derived from the same inputs, generate its value on this pass as
767          * well.
768          */
769         if (!(done_mask & (1 << j)) &&
770             GET_SWZ(src0.swizzle, j) == src0_swiz) {
771            this_mask |= (1 << j);
772         }
773      }
774
775      if (this_mask != scs_mask) {
776         glsl_to_tgsi_instruction *inst;
777         st_dst_reg tmp_dst = st_dst_reg(tmp);
778
779         /* Emit the SCS instruction.
780          */
781         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
782         inst->dst.writemask = scs_mask;
783
784         /* Move the result of the SCS instruction to the desired location in
785          * the destination.
786          */
787         tmp.swizzle = MAKE_SWIZZLE4(component, component,
788        			     component, component);
789         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
790         inst->dst.writemask = this_mask;
791      } else {
792         /* Emit the SCS instruction to write directly to the destination.
793          */
794         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
795         inst->dst.writemask = scs_mask;
796      }
797
798      done_mask |= this_mask;
799   }
800}
801
802struct st_src_reg
803glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
804{
805   st_src_reg src(PROGRAM_CONSTANT, -1, GLSL_TYPE_FLOAT);
806   union gl_constant_value uval;
807
808   uval.f = val;
809   src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
810        				  &uval, 1, GL_FLOAT, &src.swizzle);
811
812   return src;
813}
814
815struct st_src_reg
816glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
817{
818   st_src_reg src(PROGRAM_CONSTANT, -1, GLSL_TYPE_INT);
819   union gl_constant_value uval;
820
821   assert(glsl_version >= 130);
822
823   uval.i = val;
824   src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
825        				  &uval, 1, GL_INT, &src.swizzle);
826
827   return src;
828}
829
830struct st_src_reg
831glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
832{
833   if (glsl_version >= 130)
834      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
835                                       st_src_reg_for_int(val);
836   else
837      return st_src_reg_for_float(val);
838}
839
840static int
841type_size(const struct glsl_type *type)
842{
843   unsigned int i;
844   int size;
845
846   switch (type->base_type) {
847   case GLSL_TYPE_UINT:
848   case GLSL_TYPE_INT:
849   case GLSL_TYPE_FLOAT:
850   case GLSL_TYPE_BOOL:
851      if (type->is_matrix()) {
852         return type->matrix_columns;
853      } else {
854         /* Regardless of size of vector, it gets a vec4. This is bad
855          * packing for things like floats, but otherwise arrays become a
856          * mess.  Hopefully a later pass over the code can pack scalars
857          * down if appropriate.
858          */
859         return 1;
860      }
861   case GLSL_TYPE_ARRAY:
862      assert(type->length > 0);
863      return type_size(type->fields.array) * type->length;
864   case GLSL_TYPE_STRUCT:
865      size = 0;
866      for (i = 0; i < type->length; i++) {
867         size += type_size(type->fields.structure[i].type);
868      }
869      return size;
870   case GLSL_TYPE_SAMPLER:
871      /* Samplers take up one slot in UNIFORMS[], but they're baked in
872       * at link time.
873       */
874      return 1;
875   default:
876      assert(0);
877      return 0;
878   }
879}
880
881/**
882 * In the initial pass of codegen, we assign temporary numbers to
883 * intermediate results.  (not SSA -- variable assignments will reuse
884 * storage).
885 */
886st_src_reg
887glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
888{
889   st_src_reg src;
890   int swizzle[4];
891   int i;
892
893   src.type = glsl_version >= 130 ? type->base_type : GLSL_TYPE_FLOAT;
894   src.file = PROGRAM_TEMPORARY;
895   src.index = next_temp;
896   src.reladdr = NULL;
897   next_temp += type_size(type);
898
899   if (type->is_array() || type->is_record()) {
900      src.swizzle = SWIZZLE_NOOP;
901   } else {
902      for (i = 0; i < type->vector_elements; i++)
903         swizzle[i] = i;
904      for (; i < 4; i++)
905         swizzle[i] = type->vector_elements - 1;
906      src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
907        			  swizzle[2], swizzle[3]);
908   }
909   src.negate = 0;
910
911   return src;
912}
913
914variable_storage *
915glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
916{
917
918   variable_storage *entry;
919
920   foreach_iter(exec_list_iterator, iter, this->variables) {
921      entry = (variable_storage *)iter.get();
922
923      if (entry->var == var)
924         return entry;
925   }
926
927   return NULL;
928}
929
930void
931glsl_to_tgsi_visitor::visit(ir_variable *ir)
932{
933   if (strcmp(ir->name, "gl_FragCoord") == 0) {
934      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
935
936      fp->OriginUpperLeft = ir->origin_upper_left;
937      fp->PixelCenterInteger = ir->pixel_center_integer;
938
939   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
940      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
941      switch (ir->depth_layout) {
942      case ir_depth_layout_none:
943         fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
944         break;
945      case ir_depth_layout_any:
946         fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
947         break;
948      case ir_depth_layout_greater:
949         fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
950         break;
951      case ir_depth_layout_less:
952         fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
953         break;
954      case ir_depth_layout_unchanged:
955         fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
956         break;
957      default:
958         assert(0);
959         break;
960      }
961   }
962
963   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
964      unsigned int i;
965      const ir_state_slot *const slots = ir->state_slots;
966      assert(ir->state_slots != NULL);
967
968      /* Check if this statevar's setup in the STATE file exactly
969       * matches how we'll want to reference it as a
970       * struct/array/whatever.  If not, then we need to move it into
971       * temporary storage and hope that it'll get copy-propagated
972       * out.
973       */
974      for (i = 0; i < ir->num_state_slots; i++) {
975         if (slots[i].swizzle != SWIZZLE_XYZW) {
976            break;
977         }
978      }
979
980      struct variable_storage *storage;
981      st_dst_reg dst;
982      if (i == ir->num_state_slots) {
983         /* We'll set the index later. */
984         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
985         this->variables.push_tail(storage);
986
987         dst = undef_dst;
988      } else {
989         /* The variable_storage constructor allocates slots based on the size
990          * of the type.  However, this had better match the number of state
991          * elements that we're going to copy into the new temporary.
992          */
993         assert((int) ir->num_state_slots == type_size(ir->type));
994
995         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
996        					 this->next_temp);
997         this->variables.push_tail(storage);
998         this->next_temp += type_size(ir->type);
999
1000         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1001               glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT));
1002      }
1003
1004
1005      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1006         int index = _mesa_add_state_reference(this->prog->Parameters,
1007        				       (gl_state_index *)slots[i].tokens);
1008
1009         if (storage->file == PROGRAM_STATE_VAR) {
1010            if (storage->index == -1) {
1011               storage->index = index;
1012            } else {
1013               assert(index == storage->index + (int)i);
1014            }
1015         } else {
1016            st_src_reg src(PROGRAM_STATE_VAR, index,
1017                  glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT);
1018            src.swizzle = slots[i].swizzle;
1019            emit(ir, TGSI_OPCODE_MOV, dst, src);
1020            /* even a float takes up a whole vec4 reg in a struct/array. */
1021            dst.index++;
1022         }
1023      }
1024
1025      if (storage->file == PROGRAM_TEMPORARY &&
1026          dst.index != storage->index + (int) ir->num_state_slots) {
1027         fail_link(this->shader_program,
1028        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1029        	   ir->name, dst.index - storage->index,
1030        	   type_size(ir->type));
1031      }
1032   }
1033}
1034
1035void
1036glsl_to_tgsi_visitor::visit(ir_loop *ir)
1037{
1038   ir_dereference_variable *counter = NULL;
1039
1040   if (ir->counter != NULL)
1041      counter = new(ir) ir_dereference_variable(ir->counter);
1042
1043   if (ir->from != NULL) {
1044      assert(ir->counter != NULL);
1045
1046      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1047
1048      a->accept(this);
1049      delete a;
1050   }
1051
1052   emit(NULL, TGSI_OPCODE_BGNLOOP);
1053
1054   if (ir->to) {
1055      ir_expression *e =
1056         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1057        		       counter, ir->to);
1058      ir_if *if_stmt =  new(ir) ir_if(e);
1059
1060      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1061
1062      if_stmt->then_instructions.push_tail(brk);
1063
1064      if_stmt->accept(this);
1065
1066      delete if_stmt;
1067      delete e;
1068      delete brk;
1069   }
1070
1071   visit_exec_list(&ir->body_instructions, this);
1072
1073   if (ir->increment) {
1074      ir_expression *e =
1075         new(ir) ir_expression(ir_binop_add, counter->type,
1076        		       counter, ir->increment);
1077
1078      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1079
1080      a->accept(this);
1081      delete a;
1082      delete e;
1083   }
1084
1085   emit(NULL, TGSI_OPCODE_ENDLOOP);
1086}
1087
1088void
1089glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1090{
1091   switch (ir->mode) {
1092   case ir_loop_jump::jump_break:
1093      emit(NULL, TGSI_OPCODE_BRK);
1094      break;
1095   case ir_loop_jump::jump_continue:
1096      emit(NULL, TGSI_OPCODE_CONT);
1097      break;
1098   }
1099}
1100
1101
1102void
1103glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1104{
1105   assert(0);
1106   (void)ir;
1107}
1108
1109void
1110glsl_to_tgsi_visitor::visit(ir_function *ir)
1111{
1112   /* Ignore function bodies other than main() -- we shouldn't see calls to
1113    * them since they should all be inlined before we get to glsl_to_tgsi.
1114    */
1115   if (strcmp(ir->name, "main") == 0) {
1116      const ir_function_signature *sig;
1117      exec_list empty;
1118
1119      sig = ir->matching_signature(&empty);
1120
1121      assert(sig);
1122
1123      foreach_iter(exec_list_iterator, iter, sig->body) {
1124         ir_instruction *ir = (ir_instruction *)iter.get();
1125
1126         ir->accept(this);
1127      }
1128   }
1129}
1130
1131GLboolean
1132glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1133{
1134   int nonmul_operand = 1 - mul_operand;
1135   st_src_reg a, b, c;
1136
1137   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1138   if (!expr || expr->operation != ir_binop_mul)
1139      return false;
1140
1141   expr->operands[0]->accept(this);
1142   a = this->result;
1143   expr->operands[1]->accept(this);
1144   b = this->result;
1145   ir->operands[nonmul_operand]->accept(this);
1146   c = this->result;
1147
1148   this->result = get_temp(ir->type);
1149   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, c);
1150
1151   return true;
1152}
1153
1154GLboolean
1155glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1156{
1157   /* Saturates were only introduced to vertex programs in
1158    * NV_vertex_program3, so don't give them to drivers in the VP.
1159    */
1160   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1161      return false;
1162
1163   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1164   if (!sat_src)
1165      return false;
1166
1167   sat_src->accept(this);
1168   st_src_reg src = this->result;
1169
1170   this->result = get_temp(ir->type);
1171   glsl_to_tgsi_instruction *inst;
1172   inst = emit(ir, TGSI_OPCODE_MOV, st_dst_reg(this->result), src);
1173   inst->saturate = true;
1174
1175   return true;
1176}
1177
1178void
1179glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1180        			    st_src_reg *reg, int *num_reladdr)
1181{
1182   if (!reg->reladdr)
1183      return;
1184
1185   emit_arl(ir, address_reg, *reg->reladdr);
1186
1187   if (*num_reladdr != 1) {
1188      st_src_reg temp = get_temp(glsl_type::vec4_type);
1189
1190      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1191      *reg = temp;
1192   }
1193
1194   (*num_reladdr)--;
1195}
1196
1197void
1198glsl_to_tgsi_visitor::visit(ir_expression *ir)
1199{
1200   unsigned int operand;
1201   st_src_reg op[Elements(ir->operands)];
1202   st_src_reg result_src;
1203   st_dst_reg result_dst;
1204
1205   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1206    */
1207   if (ir->operation == ir_binop_add) {
1208      if (try_emit_mad(ir, 1))
1209         return;
1210      if (try_emit_mad(ir, 0))
1211         return;
1212   }
1213   if (try_emit_sat(ir))
1214      return;
1215
1216   if (ir->operation == ir_quadop_vector)
1217      assert(!"ir_quadop_vector should have been lowered");
1218
1219   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1220      this->result.file = PROGRAM_UNDEFINED;
1221      ir->operands[operand]->accept(this);
1222      if (this->result.file == PROGRAM_UNDEFINED) {
1223         ir_print_visitor v;
1224         printf("Failed to get tree for expression operand:\n");
1225         ir->operands[operand]->accept(&v);
1226         exit(1);
1227      }
1228      op[operand] = this->result;
1229
1230      /* Matrix expression operands should have been broken down to vector
1231       * operations already.
1232       */
1233      assert(!ir->operands[operand]->type->is_matrix());
1234   }
1235
1236   int vector_elements = ir->operands[0]->type->vector_elements;
1237   if (ir->operands[1]) {
1238      vector_elements = MAX2(vector_elements,
1239        		     ir->operands[1]->type->vector_elements);
1240   }
1241
1242   this->result.file = PROGRAM_UNDEFINED;
1243
1244   /* Storage for our result.  Ideally for an assignment we'd be using
1245    * the actual storage for the result here, instead.
1246    */
1247   result_src = get_temp(ir->type);
1248   /* convenience for the emit functions below. */
1249   result_dst = st_dst_reg(result_src);
1250   /* Limit writes to the channels that will be used by result_src later.
1251    * This does limit this temp's use as a temporary for multi-instruction
1252    * sequences.
1253    */
1254   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1255
1256   switch (ir->operation) {
1257   case ir_unop_logic_not:
1258      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1259      break;
1260   case ir_unop_neg:
1261      assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1262      if (result_dst.type == GLSL_TYPE_INT)
1263         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1264      else {
1265         op[0].negate = ~op[0].negate;
1266         result_src = op[0];
1267      }
1268      break;
1269   case ir_unop_abs:
1270      assert(result_dst.type == GLSL_TYPE_FLOAT);
1271      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1272      break;
1273   case ir_unop_sign:
1274      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1275      break;
1276   case ir_unop_rcp:
1277      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1278      break;
1279
1280   case ir_unop_exp2:
1281      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1282      break;
1283   case ir_unop_exp:
1284   case ir_unop_log:
1285      assert(!"not reached: should be handled by ir_explog_to_explog2");
1286      break;
1287   case ir_unop_log2:
1288      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1289      break;
1290   case ir_unop_sin:
1291      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1292      break;
1293   case ir_unop_cos:
1294      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1295      break;
1296   case ir_unop_sin_reduced:
1297      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1298      break;
1299   case ir_unop_cos_reduced:
1300      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1301      break;
1302
1303   case ir_unop_dFdx:
1304      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1305      break;
1306   case ir_unop_dFdy:
1307      op[0].negate = ~op[0].negate;
1308      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1309      break;
1310
1311   case ir_unop_noise: {
1312      /* At some point, a motivated person could add a better
1313       * implementation of noise.  Currently not even the nvidia
1314       * binary drivers do anything more than this.  In any case, the
1315       * place to do this is in the GL state tracker, not the poor
1316       * driver.
1317       */
1318      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1319      break;
1320   }
1321
1322   case ir_binop_add:
1323      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1324      break;
1325   case ir_binop_sub:
1326      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1327      break;
1328
1329   case ir_binop_mul:
1330      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1331      break;
1332   case ir_binop_div:
1333      if (result_dst.type == GLSL_TYPE_FLOAT)
1334         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1335      else
1336         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1337      break;
1338   case ir_binop_mod:
1339      if (result_dst.type == GLSL_TYPE_FLOAT)
1340         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1341      else
1342         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1343      break;
1344
1345   case ir_binop_less:
1346      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1347      break;
1348   case ir_binop_greater:
1349      emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1350      break;
1351   case ir_binop_lequal:
1352      emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1353      break;
1354   case ir_binop_gequal:
1355      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1356      break;
1357   case ir_binop_equal:
1358      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1359      break;
1360   case ir_binop_nequal:
1361      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1362      break;
1363   case ir_binop_all_equal:
1364      /* "==" operator producing a scalar boolean. */
1365      if (ir->operands[0]->type->is_vector() ||
1366          ir->operands[1]->type->is_vector()) {
1367         st_src_reg temp = get_temp(glsl_version >= 130 ?
1368               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1369               glsl_type::vec4_type);
1370         assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1371         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1372         emit_dp(ir, result_dst, temp, temp, vector_elements);
1373         emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1374      } else {
1375         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1376      }
1377      break;
1378   case ir_binop_any_nequal:
1379      /* "!=" operator producing a scalar boolean. */
1380      if (ir->operands[0]->type->is_vector() ||
1381          ir->operands[1]->type->is_vector()) {
1382         st_src_reg temp = get_temp(glsl_version >= 130 ?
1383               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1384               glsl_type::vec4_type);
1385         assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1386         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1387         emit_dp(ir, result_dst, temp, temp, vector_elements);
1388         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1389      } else {
1390         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1391      }
1392      break;
1393
1394   case ir_unop_any:
1395      assert(ir->operands[0]->type->is_vector());
1396      emit_dp(ir, result_dst, op[0], op[0],
1397              ir->operands[0]->type->vector_elements);
1398      emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1399      break;
1400
1401   case ir_binop_logic_xor:
1402      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1403      break;
1404
1405   case ir_binop_logic_or:
1406      /* This could be a saturated add and skip the SNE. */
1407      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1408      emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1409      break;
1410
1411   case ir_binop_logic_and:
1412      /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1413      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1414      break;
1415
1416   case ir_binop_dot:
1417      assert(ir->operands[0]->type->is_vector());
1418      assert(ir->operands[0]->type == ir->operands[1]->type);
1419      emit_dp(ir, result_dst, op[0], op[1],
1420              ir->operands[0]->type->vector_elements);
1421      break;
1422
1423   case ir_unop_sqrt:
1424      /* sqrt(x) = x * rsq(x). */
1425      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1426      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1427      /* For incoming channels <= 0, set the result to 0. */
1428      op[0].negate = ~op[0].negate;
1429      emit(ir, TGSI_OPCODE_CMP, result_dst,
1430        		  op[0], result_src, st_src_reg_for_float(0.0));
1431      break;
1432   case ir_unop_rsq:
1433      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1434      break;
1435   case ir_unop_i2f:
1436   case ir_unop_b2f:
1437      if (glsl_version >= 130) {
1438         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1439         break;
1440      }
1441   case ir_unop_b2i:
1442      /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1443      result_src = op[0];
1444      break;
1445   case ir_unop_f2i:
1446      if (glsl_version >= 130)
1447         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1448      else
1449         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1450      break;
1451   case ir_unop_f2b:
1452   case ir_unop_i2b:
1453      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1454            st_src_reg_for_type(result_dst.type, 0));
1455      break;
1456   case ir_unop_trunc:
1457      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1458      break;
1459   case ir_unop_ceil:
1460      op[0].negate = ~op[0].negate;
1461      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1462      result_src.negate = ~result_src.negate;
1463      break;
1464   case ir_unop_floor:
1465      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1466      break;
1467   case ir_unop_fract:
1468      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1469      break;
1470
1471   case ir_binop_min:
1472      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1473      break;
1474   case ir_binop_max:
1475      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1476      break;
1477   case ir_binop_pow:
1478      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1479      break;
1480
1481   case ir_unop_bit_not:
1482      if (glsl_version >= 130) {
1483         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1484         break;
1485      }
1486   case ir_unop_u2f:
1487      if (glsl_version >= 130) {
1488         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1489         break;
1490      }
1491   case ir_binop_lshift:
1492      if (glsl_version >= 130) {
1493         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1494         break;
1495      }
1496   case ir_binop_rshift:
1497      if (glsl_version >= 130) {
1498         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1499         break;
1500      }
1501   case ir_binop_bit_and:
1502      if (glsl_version >= 130) {
1503         emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1504         break;
1505      }
1506   case ir_binop_bit_xor:
1507      if (glsl_version >= 130) {
1508         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1509         break;
1510      }
1511   case ir_binop_bit_or:
1512      if (glsl_version >= 130) {
1513         emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1514         break;
1515      }
1516   case ir_unop_round_even:
1517      assert(!"GLSL 1.30 features unsupported");
1518      break;
1519
1520   case ir_quadop_vector:
1521      /* This operation should have already been handled.
1522       */
1523      assert(!"Should not get here.");
1524      break;
1525   }
1526
1527   this->result = result_src;
1528}
1529
1530
1531void
1532glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1533{
1534   st_src_reg src;
1535   int i;
1536   int swizzle[4];
1537
1538   /* Note that this is only swizzles in expressions, not those on the left
1539    * hand side of an assignment, which do write masking.  See ir_assignment
1540    * for that.
1541    */
1542
1543   ir->val->accept(this);
1544   src = this->result;
1545   assert(src.file != PROGRAM_UNDEFINED);
1546
1547   for (i = 0; i < 4; i++) {
1548      if (i < ir->type->vector_elements) {
1549         switch (i) {
1550         case 0:
1551            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1552            break;
1553         case 1:
1554            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1555            break;
1556         case 2:
1557            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1558            break;
1559         case 3:
1560            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1561            break;
1562         }
1563      } else {
1564         /* If the type is smaller than a vec4, replicate the last
1565          * channel out.
1566          */
1567         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1568      }
1569   }
1570
1571   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1572
1573   this->result = src;
1574}
1575
1576void
1577glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1578{
1579   variable_storage *entry = find_variable_storage(ir->var);
1580   ir_variable *var = ir->var;
1581
1582   if (!entry) {
1583      switch (var->mode) {
1584      case ir_var_uniform:
1585         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1586        				       var->location);
1587         this->variables.push_tail(entry);
1588         break;
1589      case ir_var_in:
1590      case ir_var_inout:
1591         /* The linker assigns locations for varyings and attributes,
1592          * including deprecated builtins (like gl_Color), user-assign
1593          * generic attributes (glBindVertexLocation), and
1594          * user-defined varyings.
1595          *
1596          * FINISHME: We would hit this path for function arguments.  Fix!
1597          */
1598         assert(var->location != -1);
1599         entry = new(mem_ctx) variable_storage(var,
1600                                               PROGRAM_INPUT,
1601                                               var->location);
1602         if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1603             var->location >= VERT_ATTRIB_GENERIC0) {
1604            _mesa_add_attribute(this->prog->Attributes,
1605                                var->name,
1606                                _mesa_sizeof_glsl_type(var->type->gl_type),
1607                                var->type->gl_type,
1608                                var->location - VERT_ATTRIB_GENERIC0);
1609         }
1610         break;
1611      case ir_var_out:
1612         assert(var->location != -1);
1613         entry = new(mem_ctx) variable_storage(var,
1614                                               PROGRAM_OUTPUT,
1615                                               var->location);
1616         break;
1617      case ir_var_system_value:
1618         entry = new(mem_ctx) variable_storage(var,
1619                                               PROGRAM_SYSTEM_VALUE,
1620                                               var->location);
1621         break;
1622      case ir_var_auto:
1623      case ir_var_temporary:
1624         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1625        				       this->next_temp);
1626         this->variables.push_tail(entry);
1627
1628         next_temp += type_size(var->type);
1629         break;
1630      }
1631
1632      if (!entry) {
1633         printf("Failed to make storage for %s\n", var->name);
1634         exit(1);
1635      }
1636   }
1637
1638   this->result = st_src_reg(entry->file, entry->index, var->type);
1639   if (glsl_version <= 120)
1640      this->result.type = GLSL_TYPE_FLOAT;
1641}
1642
1643void
1644glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1645{
1646   ir_constant *index;
1647   st_src_reg src;
1648   int element_size = type_size(ir->type);
1649
1650   index = ir->array_index->constant_expression_value();
1651
1652   ir->array->accept(this);
1653   src = this->result;
1654
1655   if (index) {
1656      src.index += index->value.i[0] * element_size;
1657   } else {
1658      st_src_reg array_base = this->result;
1659      /* Variable index array dereference.  It eats the "vec4" of the
1660       * base of the array and an index that offsets the Mesa register
1661       * index.
1662       */
1663      ir->array_index->accept(this);
1664
1665      st_src_reg index_reg;
1666
1667      if (element_size == 1) {
1668         index_reg = this->result;
1669      } else {
1670         index_reg = get_temp(glsl_type::float_type);
1671
1672         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1673              this->result, st_src_reg_for_float(element_size));
1674      }
1675
1676      src.reladdr = ralloc(mem_ctx, st_src_reg);
1677      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1678   }
1679
1680   /* If the type is smaller than a vec4, replicate the last channel out. */
1681   if (ir->type->is_scalar() || ir->type->is_vector())
1682      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1683   else
1684      src.swizzle = SWIZZLE_NOOP;
1685
1686   this->result = src;
1687}
1688
1689void
1690glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1691{
1692   unsigned int i;
1693   const glsl_type *struct_type = ir->record->type;
1694   int offset = 0;
1695
1696   ir->record->accept(this);
1697
1698   for (i = 0; i < struct_type->length; i++) {
1699      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1700         break;
1701      offset += type_size(struct_type->fields.structure[i].type);
1702   }
1703
1704   /* If the type is smaller than a vec4, replicate the last channel out. */
1705   if (ir->type->is_scalar() || ir->type->is_vector())
1706      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1707   else
1708      this->result.swizzle = SWIZZLE_NOOP;
1709
1710   this->result.index += offset;
1711}
1712
1713/**
1714 * We want to be careful in assignment setup to hit the actual storage
1715 * instead of potentially using a temporary like we might with the
1716 * ir_dereference handler.
1717 */
1718static st_dst_reg
1719get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1720{
1721   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1722    * access of a vector, it must be separated into a series conditional moves
1723    * before reaching this point (see ir_vec_index_to_cond_assign).
1724    */
1725   assert(ir->as_dereference());
1726   ir_dereference_array *deref_array = ir->as_dereference_array();
1727   if (deref_array) {
1728      assert(!deref_array->array->type->is_vector());
1729   }
1730
1731   /* Use the rvalue deref handler for the most part.  We'll ignore
1732    * swizzles in it and write swizzles using writemask, though.
1733    */
1734   ir->accept(v);
1735   return st_dst_reg(v->result);
1736}
1737
1738/**
1739 * Process the condition of a conditional assignment
1740 *
1741 * Examines the condition of a conditional assignment to generate the optimal
1742 * first operand of a \c CMP instruction.  If the condition is a relational
1743 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1744 * used as the source for the \c CMP instruction.  Otherwise the comparison
1745 * is processed to a boolean result, and the boolean result is used as the
1746 * operand to the CMP instruction.
1747 */
1748bool
1749glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1750{
1751   ir_rvalue *src_ir = ir;
1752   bool negate = true;
1753   bool switch_order = false;
1754
1755   ir_expression *const expr = ir->as_expression();
1756   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1757      bool zero_on_left = false;
1758
1759      if (expr->operands[0]->is_zero()) {
1760         src_ir = expr->operands[1];
1761         zero_on_left = true;
1762      } else if (expr->operands[1]->is_zero()) {
1763         src_ir = expr->operands[0];
1764         zero_on_left = false;
1765      }
1766
1767      /*      a is -  0  +            -  0  +
1768       * (a <  0)  T  F  F  ( a < 0)  T  F  F
1769       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1770       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1771       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1772       * (a >  0)  F  F  T  (-a < 0)  F  F  T
1773       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
1774       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1775       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1776       *
1777       * Note that exchanging the order of 0 and 'a' in the comparison simply
1778       * means that the value of 'a' should be negated.
1779       */
1780      if (src_ir != ir) {
1781         switch (expr->operation) {
1782         case ir_binop_less:
1783            switch_order = false;
1784            negate = zero_on_left;
1785            break;
1786
1787         case ir_binop_greater:
1788            switch_order = false;
1789            negate = !zero_on_left;
1790            break;
1791
1792         case ir_binop_lequal:
1793            switch_order = true;
1794            negate = !zero_on_left;
1795            break;
1796
1797         case ir_binop_gequal:
1798            switch_order = true;
1799            negate = zero_on_left;
1800            break;
1801
1802         default:
1803            /* This isn't the right kind of comparison afterall, so make sure
1804             * the whole condition is visited.
1805             */
1806            src_ir = ir;
1807            break;
1808         }
1809      }
1810   }
1811
1812   src_ir->accept(this);
1813
1814   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1815    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1816    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1817    * computing the condition.
1818    */
1819   if (negate)
1820      this->result.negate = ~this->result.negate;
1821
1822   return switch_order;
1823}
1824
1825void
1826glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1827{
1828   st_dst_reg l;
1829   st_src_reg r;
1830   int i;
1831
1832   ir->rhs->accept(this);
1833   r = this->result;
1834
1835   l = get_assignment_lhs(ir->lhs, this);
1836
1837   /* FINISHME: This should really set to the correct maximal writemask for each
1838    * FINISHME: component written (in the loops below).  This case can only
1839    * FINISHME: occur for matrices, arrays, and structures.
1840    */
1841   if (ir->write_mask == 0) {
1842      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1843      l.writemask = WRITEMASK_XYZW;
1844   } else if (ir->lhs->type->is_scalar()) {
1845      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1846       * FINISHME: W component of fragment shader output zero, work correctly.
1847       */
1848      l.writemask = WRITEMASK_XYZW;
1849   } else {
1850      int swizzles[4];
1851      int first_enabled_chan = 0;
1852      int rhs_chan = 0;
1853
1854      assert(ir->lhs->type->is_vector());
1855      l.writemask = ir->write_mask;
1856
1857      for (int i = 0; i < 4; i++) {
1858         if (l.writemask & (1 << i)) {
1859            first_enabled_chan = GET_SWZ(r.swizzle, i);
1860            break;
1861         }
1862      }
1863
1864      /* Swizzle a small RHS vector into the channels being written.
1865       *
1866       * glsl ir treats write_mask as dictating how many channels are
1867       * present on the RHS while Mesa IR treats write_mask as just
1868       * showing which channels of the vec4 RHS get written.
1869       */
1870      for (int i = 0; i < 4; i++) {
1871         if (l.writemask & (1 << i))
1872            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1873         else
1874            swizzles[i] = first_enabled_chan;
1875      }
1876      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1877        			swizzles[2], swizzles[3]);
1878   }
1879
1880   assert(l.file != PROGRAM_UNDEFINED);
1881   assert(r.file != PROGRAM_UNDEFINED);
1882
1883   if (ir->condition) {
1884      const bool switch_order = this->process_move_condition(ir->condition);
1885      st_src_reg condition = this->result;
1886
1887      for (i = 0; i < type_size(ir->lhs->type); i++) {
1888         st_src_reg l_src = st_src_reg(l);
1889         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
1890
1891         if (switch_order) {
1892            emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
1893         } else {
1894            emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
1895         }
1896
1897         l.index++;
1898         r.index++;
1899      }
1900   } else {
1901      for (i = 0; i < type_size(ir->lhs->type); i++) {
1902         emit(ir, TGSI_OPCODE_MOV, l, r);
1903         l.index++;
1904         r.index++;
1905      }
1906   }
1907}
1908
1909
1910void
1911glsl_to_tgsi_visitor::visit(ir_constant *ir)
1912{
1913   st_src_reg src;
1914   GLfloat stack_vals[4] = { 0 };
1915   gl_constant_value *values = (gl_constant_value *) stack_vals;
1916   GLenum gl_type = GL_NONE;
1917   unsigned int i;
1918
1919   /* Unfortunately, 4 floats is all we can get into
1920    * _mesa_add_unnamed_constant.  So, make a temp to store an
1921    * aggregate constant and move each constant value into it.  If we
1922    * get lucky, copy propagation will eliminate the extra moves.
1923    */
1924   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1925      st_src_reg temp_base = get_temp(ir->type);
1926      st_dst_reg temp = st_dst_reg(temp_base);
1927
1928      foreach_iter(exec_list_iterator, iter, ir->components) {
1929         ir_constant *field_value = (ir_constant *)iter.get();
1930         int size = type_size(field_value->type);
1931
1932         assert(size > 0);
1933
1934         field_value->accept(this);
1935         src = this->result;
1936
1937         for (i = 0; i < (unsigned int)size; i++) {
1938            emit(ir, TGSI_OPCODE_MOV, temp, src);
1939
1940            src.index++;
1941            temp.index++;
1942         }
1943      }
1944      this->result = temp_base;
1945      return;
1946   }
1947
1948   if (ir->type->is_array()) {
1949      st_src_reg temp_base = get_temp(ir->type);
1950      st_dst_reg temp = st_dst_reg(temp_base);
1951      int size = type_size(ir->type->fields.array);
1952
1953      assert(size > 0);
1954
1955      for (i = 0; i < ir->type->length; i++) {
1956         ir->array_elements[i]->accept(this);
1957         src = this->result;
1958         for (int j = 0; j < size; j++) {
1959            emit(ir, TGSI_OPCODE_MOV, temp, src);
1960
1961            src.index++;
1962            temp.index++;
1963         }
1964      }
1965      this->result = temp_base;
1966      return;
1967   }
1968
1969   if (ir->type->is_matrix()) {
1970      st_src_reg mat = get_temp(ir->type);
1971      st_dst_reg mat_column = st_dst_reg(mat);
1972
1973      for (i = 0; i < ir->type->matrix_columns; i++) {
1974         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1975         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
1976
1977         src = st_src_reg(PROGRAM_CONSTANT, -1, ir->type->base_type);
1978         src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
1979                                                      values,
1980                                                      ir->type->vector_elements,
1981                                                      GL_FLOAT,
1982                                                      &src.swizzle);
1983         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
1984
1985         mat_column.index++;
1986      }
1987
1988      this->result = mat;
1989      return;
1990   }
1991
1992   src.file = PROGRAM_CONSTANT;
1993   switch (ir->type->base_type) {
1994   case GLSL_TYPE_FLOAT:
1995      gl_type = GL_FLOAT;
1996      for (i = 0; i < ir->type->vector_elements; i++) {
1997         values[i].f = ir->value.f[i];
1998      }
1999      break;
2000   case GLSL_TYPE_UINT:
2001      gl_type = glsl_version >= 130 ? GL_UNSIGNED_INT : GL_FLOAT;
2002      for (i = 0; i < ir->type->vector_elements; i++) {
2003         if (glsl_version >= 130)
2004            values[i].u = ir->value.u[i];
2005         else
2006            values[i].f = ir->value.u[i];
2007      }
2008      break;
2009   case GLSL_TYPE_INT:
2010      gl_type = glsl_version >= 130 ? GL_INT : GL_FLOAT;
2011      for (i = 0; i < ir->type->vector_elements; i++) {
2012         if (glsl_version >= 130)
2013            values[i].i = ir->value.i[i];
2014         else
2015            values[i].f = ir->value.i[i];
2016      }
2017      break;
2018   case GLSL_TYPE_BOOL:
2019      gl_type = glsl_version >= 130 ? GL_BOOL : GL_FLOAT;
2020      for (i = 0; i < ir->type->vector_elements; i++) {
2021         if (glsl_version >= 130)
2022            values[i].b = ir->value.b[i];
2023         else
2024            values[i].f = ir->value.b[i];
2025      }
2026      break;
2027   default:
2028      assert(!"Non-float/uint/int/bool constant");
2029   }
2030
2031   this->result = st_src_reg(PROGRAM_CONSTANT, -1, ir->type);
2032   this->result.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
2033        					   values, ir->type->vector_elements, gl_type,
2034        					   &this->result.swizzle);
2035}
2036
2037function_entry *
2038glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2039{
2040   function_entry *entry;
2041
2042   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2043      entry = (function_entry *)iter.get();
2044
2045      if (entry->sig == sig)
2046         return entry;
2047   }
2048
2049   entry = ralloc(mem_ctx, function_entry);
2050   entry->sig = sig;
2051   entry->sig_id = this->next_signature_id++;
2052   entry->bgn_inst = NULL;
2053
2054   /* Allocate storage for all the parameters. */
2055   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2056      ir_variable *param = (ir_variable *)iter.get();
2057      variable_storage *storage;
2058
2059      storage = find_variable_storage(param);
2060      assert(!storage);
2061
2062      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2063        				      this->next_temp);
2064      this->variables.push_tail(storage);
2065
2066      this->next_temp += type_size(param->type);
2067   }
2068
2069   if (!sig->return_type->is_void()) {
2070      entry->return_reg = get_temp(sig->return_type);
2071   } else {
2072      entry->return_reg = undef_src;
2073   }
2074
2075   this->function_signatures.push_tail(entry);
2076   return entry;
2077}
2078
2079void
2080glsl_to_tgsi_visitor::visit(ir_call *ir)
2081{
2082   glsl_to_tgsi_instruction *call_inst;
2083   ir_function_signature *sig = ir->get_callee();
2084   function_entry *entry = get_function_signature(sig);
2085   int i;
2086
2087   /* Process in parameters. */
2088   exec_list_iterator sig_iter = sig->parameters.iterator();
2089   foreach_iter(exec_list_iterator, iter, *ir) {
2090      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2091      ir_variable *param = (ir_variable *)sig_iter.get();
2092
2093      if (param->mode == ir_var_in ||
2094          param->mode == ir_var_inout) {
2095         variable_storage *storage = find_variable_storage(param);
2096         assert(storage);
2097
2098         param_rval->accept(this);
2099         st_src_reg r = this->result;
2100
2101         st_dst_reg l;
2102         l.file = storage->file;
2103         l.index = storage->index;
2104         l.reladdr = NULL;
2105         l.writemask = WRITEMASK_XYZW;
2106         l.cond_mask = COND_TR;
2107
2108         for (i = 0; i < type_size(param->type); i++) {
2109            emit(ir, TGSI_OPCODE_MOV, l, r);
2110            l.index++;
2111            r.index++;
2112         }
2113      }
2114
2115      sig_iter.next();
2116   }
2117   assert(!sig_iter.has_next());
2118
2119   /* Emit call instruction */
2120   call_inst = emit(ir, TGSI_OPCODE_CAL);
2121   call_inst->function = entry;
2122
2123   /* Process out parameters. */
2124   sig_iter = sig->parameters.iterator();
2125   foreach_iter(exec_list_iterator, iter, *ir) {
2126      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2127      ir_variable *param = (ir_variable *)sig_iter.get();
2128
2129      if (param->mode == ir_var_out ||
2130          param->mode == ir_var_inout) {
2131         variable_storage *storage = find_variable_storage(param);
2132         assert(storage);
2133
2134         st_src_reg r;
2135         r.file = storage->file;
2136         r.index = storage->index;
2137         r.reladdr = NULL;
2138         r.swizzle = SWIZZLE_NOOP;
2139         r.negate = 0;
2140
2141         param_rval->accept(this);
2142         st_dst_reg l = st_dst_reg(this->result);
2143
2144         for (i = 0; i < type_size(param->type); i++) {
2145            emit(ir, TGSI_OPCODE_MOV, l, r);
2146            l.index++;
2147            r.index++;
2148         }
2149      }
2150
2151      sig_iter.next();
2152   }
2153   assert(!sig_iter.has_next());
2154
2155   /* Process return value. */
2156   this->result = entry->return_reg;
2157}
2158
2159void
2160glsl_to_tgsi_visitor::visit(ir_texture *ir)
2161{
2162   st_src_reg result_src, coord, lod_info, projector, dx, dy;
2163   st_dst_reg result_dst, coord_dst;
2164   glsl_to_tgsi_instruction *inst = NULL;
2165   unsigned opcode = TGSI_OPCODE_NOP;
2166
2167   ir->coordinate->accept(this);
2168
2169   /* Put our coords in a temp.  We'll need to modify them for shadow,
2170    * projection, or LOD, so the only case we'd use it as is is if
2171    * we're doing plain old texturing.  Mesa IR optimization should
2172    * handle cleaning up our mess in that case.
2173    */
2174   coord = get_temp(glsl_type::vec4_type);
2175   coord_dst = st_dst_reg(coord);
2176   emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2177
2178   if (ir->projector) {
2179      ir->projector->accept(this);
2180      projector = this->result;
2181   }
2182
2183   /* Storage for our result.  Ideally for an assignment we'd be using
2184    * the actual storage for the result here, instead.
2185    */
2186   result_src = get_temp(glsl_type::vec4_type);
2187   result_dst = st_dst_reg(result_src);
2188
2189   switch (ir->op) {
2190   case ir_tex:
2191      opcode = TGSI_OPCODE_TEX;
2192      break;
2193   case ir_txb:
2194      opcode = TGSI_OPCODE_TXB;
2195      ir->lod_info.bias->accept(this);
2196      lod_info = this->result;
2197      break;
2198   case ir_txl:
2199      opcode = TGSI_OPCODE_TXL;
2200      ir->lod_info.lod->accept(this);
2201      lod_info = this->result;
2202      break;
2203   case ir_txd:
2204      opcode = TGSI_OPCODE_TXD;
2205      ir->lod_info.grad.dPdx->accept(this);
2206      dx = this->result;
2207      ir->lod_info.grad.dPdy->accept(this);
2208      dy = this->result;
2209      break;
2210   case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2211      assert(!"GLSL 1.30 features unsupported");
2212      break;
2213   }
2214
2215   if (ir->projector) {
2216      if (opcode == TGSI_OPCODE_TEX) {
2217         /* Slot the projector in as the last component of the coord. */
2218         coord_dst.writemask = WRITEMASK_W;
2219         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2220         coord_dst.writemask = WRITEMASK_XYZW;
2221         opcode = TGSI_OPCODE_TXP;
2222      } else {
2223         st_src_reg coord_w = coord;
2224         coord_w.swizzle = SWIZZLE_WWWW;
2225
2226         /* For the other TEX opcodes there's no projective version
2227          * since the last slot is taken up by LOD info.  Do the
2228          * projective divide now.
2229          */
2230         coord_dst.writemask = WRITEMASK_W;
2231         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2232
2233         /* In the case where we have to project the coordinates "by hand,"
2234          * the shadow comparator value must also be projected.
2235          */
2236         st_src_reg tmp_src = coord;
2237         if (ir->shadow_comparitor) {
2238            /* Slot the shadow value in as the second to last component of the
2239             * coord.
2240             */
2241            ir->shadow_comparitor->accept(this);
2242
2243            tmp_src = get_temp(glsl_type::vec4_type);
2244            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2245
2246            tmp_dst.writemask = WRITEMASK_Z;
2247            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2248
2249            tmp_dst.writemask = WRITEMASK_XY;
2250            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2251         }
2252
2253         coord_dst.writemask = WRITEMASK_XYZ;
2254         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2255
2256         coord_dst.writemask = WRITEMASK_XYZW;
2257         coord.swizzle = SWIZZLE_XYZW;
2258      }
2259   }
2260
2261   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2262    * comparator was put in the correct place (and projected) by the code,
2263    * above, that handles by-hand projection.
2264    */
2265   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2266      /* Slot the shadow value in as the second to last component of the
2267       * coord.
2268       */
2269      ir->shadow_comparitor->accept(this);
2270      coord_dst.writemask = WRITEMASK_Z;
2271      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2272      coord_dst.writemask = WRITEMASK_XYZW;
2273   }
2274
2275   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2276      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2277      coord_dst.writemask = WRITEMASK_W;
2278      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2279      coord_dst.writemask = WRITEMASK_XYZW;
2280   }
2281
2282   if (opcode == TGSI_OPCODE_TXD)
2283      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2284   else
2285      inst = emit(ir, opcode, result_dst, coord);
2286
2287   if (ir->shadow_comparitor)
2288      inst->tex_shadow = GL_TRUE;
2289
2290   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2291        					   this->shader_program,
2292        					   this->prog);
2293
2294   const glsl_type *sampler_type = ir->sampler->type;
2295
2296   switch (sampler_type->sampler_dimensionality) {
2297   case GLSL_SAMPLER_DIM_1D:
2298      inst->tex_target = (sampler_type->sampler_array)
2299         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2300      break;
2301   case GLSL_SAMPLER_DIM_2D:
2302      inst->tex_target = (sampler_type->sampler_array)
2303         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2304      break;
2305   case GLSL_SAMPLER_DIM_3D:
2306      inst->tex_target = TEXTURE_3D_INDEX;
2307      break;
2308   case GLSL_SAMPLER_DIM_CUBE:
2309      inst->tex_target = TEXTURE_CUBE_INDEX;
2310      break;
2311   case GLSL_SAMPLER_DIM_RECT:
2312      inst->tex_target = TEXTURE_RECT_INDEX;
2313      break;
2314   case GLSL_SAMPLER_DIM_BUF:
2315      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2316      break;
2317   default:
2318      assert(!"Should not get here.");
2319   }
2320
2321   this->result = result_src;
2322}
2323
2324void
2325glsl_to_tgsi_visitor::visit(ir_return *ir)
2326{
2327   if (ir->get_value()) {
2328      st_dst_reg l;
2329      int i;
2330
2331      assert(current_function);
2332
2333      ir->get_value()->accept(this);
2334      st_src_reg r = this->result;
2335
2336      l = st_dst_reg(current_function->return_reg);
2337
2338      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2339         emit(ir, TGSI_OPCODE_MOV, l, r);
2340         l.index++;
2341         r.index++;
2342      }
2343   }
2344
2345   emit(ir, TGSI_OPCODE_RET);
2346}
2347
2348void
2349glsl_to_tgsi_visitor::visit(ir_discard *ir)
2350{
2351   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2352
2353   if (ir->condition) {
2354      ir->condition->accept(this);
2355      this->result.negate = ~this->result.negate;
2356      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2357   } else {
2358      emit(ir, TGSI_OPCODE_KILP);
2359   }
2360
2361   fp->UsesKill = GL_TRUE;
2362}
2363
2364void
2365glsl_to_tgsi_visitor::visit(ir_if *ir)
2366{
2367   glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL;
2368   glsl_to_tgsi_instruction *prev_inst;
2369
2370   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2371
2372   ir->condition->accept(this);
2373   assert(this->result.file != PROGRAM_UNDEFINED);
2374
2375   if (this->options->EmitCondCodes) {
2376      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2377
2378      /* See if we actually generated any instruction for generating
2379       * the condition.  If not, then cook up a move to a temp so we
2380       * have something to set cond_update on.
2381       */
2382      if (cond_inst == prev_inst) {
2383         st_src_reg temp = get_temp(glsl_type::bool_type);
2384         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2385      }
2386      cond_inst->cond_update = GL_TRUE;
2387
2388      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2389      if_inst->dst.cond_mask = COND_NE;
2390   } else {
2391      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2392   }
2393
2394   this->instructions.push_tail(if_inst);
2395
2396   visit_exec_list(&ir->then_instructions, this);
2397
2398   if (!ir->else_instructions.is_empty()) {
2399      else_inst = emit(ir->condition, TGSI_OPCODE_ELSE);
2400      visit_exec_list(&ir->else_instructions, this);
2401   }
2402
2403   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2404}
2405
2406glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2407{
2408   result.file = PROGRAM_UNDEFINED;
2409   next_temp = 1;
2410   next_signature_id = 1;
2411   current_function = NULL;
2412   num_address_regs = 0;
2413   indirect_addr_temps = false;
2414   indirect_addr_consts = false;
2415   mem_ctx = ralloc_context(NULL);
2416}
2417
2418glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2419{
2420   ralloc_free(mem_ctx);
2421}
2422
2423extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2424{
2425   delete v;
2426}
2427
2428
2429/**
2430 * Count resources used by the given gpu program (number of texture
2431 * samplers, etc).
2432 */
2433static void
2434count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2435{
2436   v->samplers_used = 0;
2437
2438   foreach_iter(exec_list_iterator, iter, v->instructions) {
2439      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2440
2441      if (is_tex_instruction(inst->op)) {
2442         v->samplers_used |= 1 << inst->sampler;
2443
2444         prog->SamplerTargets[inst->sampler] =
2445            (gl_texture_index)inst->tex_target;
2446         if (inst->tex_shadow) {
2447            prog->ShadowSamplers |= 1 << inst->sampler;
2448         }
2449      }
2450   }
2451
2452   prog->SamplersUsed = v->samplers_used;
2453   _mesa_update_shader_textures_used(prog);
2454}
2455
2456
2457/**
2458 * Check if the given vertex/fragment/shader program is within the
2459 * resource limits of the context (number of texture units, etc).
2460 * If any of those checks fail, record a linker error.
2461 *
2462 * XXX more checks are needed...
2463 */
2464static void
2465check_resources(const struct gl_context *ctx,
2466                struct gl_shader_program *shader_program,
2467                glsl_to_tgsi_visitor *prog,
2468                struct gl_program *proginfo)
2469{
2470   switch (proginfo->Target) {
2471   case GL_VERTEX_PROGRAM_ARB:
2472      if (_mesa_bitcount(prog->samplers_used) >
2473          ctx->Const.MaxVertexTextureImageUnits) {
2474         fail_link(shader_program, "Too many vertex shader texture samplers");
2475      }
2476      if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2477         fail_link(shader_program, "Too many vertex shader constants");
2478      }
2479      break;
2480   case MESA_GEOMETRY_PROGRAM:
2481      if (_mesa_bitcount(prog->samplers_used) >
2482          ctx->Const.MaxGeometryTextureImageUnits) {
2483         fail_link(shader_program, "Too many geometry shader texture samplers");
2484      }
2485      if (proginfo->Parameters->NumParameters >
2486          MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2487         fail_link(shader_program, "Too many geometry shader constants");
2488      }
2489      break;
2490   case GL_FRAGMENT_PROGRAM_ARB:
2491      if (_mesa_bitcount(prog->samplers_used) >
2492          ctx->Const.MaxTextureImageUnits) {
2493         fail_link(shader_program, "Too many fragment shader texture samplers");
2494      }
2495      if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2496         fail_link(shader_program, "Too many fragment shader constants");
2497      }
2498      break;
2499   default:
2500      _mesa_problem(ctx, "unexpected program type in check_resources()");
2501   }
2502}
2503
2504
2505
2506struct uniform_sort {
2507   struct gl_uniform *u;
2508   int pos;
2509};
2510
2511/* The shader_program->Uniforms list is almost sorted in increasing
2512 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2513 * uniforms shared between targets.  We need to add parameters in
2514 * increasing order for the targets.
2515 */
2516static int
2517sort_uniforms(const void *a, const void *b)
2518{
2519   struct uniform_sort *u1 = (struct uniform_sort *)a;
2520   struct uniform_sort *u2 = (struct uniform_sort *)b;
2521
2522   return u1->pos - u2->pos;
2523}
2524
2525/* Add the uniforms to the parameters.  The linker chose locations
2526 * in our parameters lists (which weren't created yet), which the
2527 * uniforms code will use to poke values into our parameters list
2528 * when uniforms are updated.
2529 */
2530static void
2531add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2532        			struct gl_shader *shader,
2533        			struct gl_program *prog)
2534{
2535   unsigned int i;
2536   unsigned int next_sampler = 0, num_uniforms = 0;
2537   struct uniform_sort *sorted_uniforms;
2538
2539   sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2540        			  shader_program->Uniforms->NumUniforms);
2541
2542   for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2543      struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2544      int parameter_index = -1;
2545
2546      switch (shader->Type) {
2547      case GL_VERTEX_SHADER:
2548         parameter_index = uniform->VertPos;
2549         break;
2550      case GL_FRAGMENT_SHADER:
2551         parameter_index = uniform->FragPos;
2552         break;
2553      case GL_GEOMETRY_SHADER:
2554         parameter_index = uniform->GeomPos;
2555         break;
2556      }
2557
2558      /* Only add uniforms used in our target. */
2559      if (parameter_index != -1) {
2560         sorted_uniforms[num_uniforms].pos = parameter_index;
2561         sorted_uniforms[num_uniforms].u = uniform;
2562         num_uniforms++;
2563      }
2564   }
2565
2566   qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2567         sort_uniforms);
2568
2569   for (i = 0; i < num_uniforms; i++) {
2570      struct gl_uniform *uniform = sorted_uniforms[i].u;
2571      int parameter_index = sorted_uniforms[i].pos;
2572      const glsl_type *type = uniform->Type;
2573      unsigned int size;
2574
2575      if (type->is_vector() ||
2576          type->is_scalar()) {
2577         size = type->vector_elements;
2578      } else {
2579         size = type_size(type) * 4;
2580      }
2581
2582      gl_register_file file;
2583      if (type->is_sampler() ||
2584          (type->is_array() && type->fields.array->is_sampler())) {
2585         file = PROGRAM_SAMPLER;
2586      } else {
2587         file = PROGRAM_UNIFORM;
2588      }
2589
2590      GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2591        					 uniform->Name);
2592
2593      if (index < 0) {
2594         index = _mesa_add_parameter(prog->Parameters, file,
2595        			     uniform->Name, size, type->gl_type,
2596        			     NULL, NULL, 0x0);
2597
2598         /* Sampler uniform values are stored in prog->SamplerUnits,
2599          * and the entry in that array is selected by this index we
2600          * store in ParameterValues[].
2601          */
2602         if (file == PROGRAM_SAMPLER) {
2603            for (unsigned int j = 0; j < size / 4; j++)
2604               prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2605         }
2606
2607         /* The location chosen in the Parameters list here (returned
2608          * from _mesa_add_uniform) has to match what the linker chose.
2609          */
2610         if (index != parameter_index) {
2611            fail_link(shader_program, "Allocation of uniform `%s' to target "
2612        	      "failed (%d vs %d)\n",
2613        	      uniform->Name, index, parameter_index);
2614         }
2615      }
2616   }
2617
2618   ralloc_free(sorted_uniforms);
2619}
2620
2621static void
2622set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2623        		struct gl_shader_program *shader_program,
2624        		const char *name, const glsl_type *type,
2625        		ir_constant *val)
2626{
2627   if (type->is_record()) {
2628      ir_constant *field_constant;
2629
2630      field_constant = (ir_constant *)val->components.get_head();
2631
2632      for (unsigned int i = 0; i < type->length; i++) {
2633         const glsl_type *field_type = type->fields.structure[i].type;
2634         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2635        				    type->fields.structure[i].name);
2636         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2637        			 field_type, field_constant);
2638         field_constant = (ir_constant *)field_constant->next;
2639      }
2640      return;
2641   }
2642
2643   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2644
2645   if (loc == -1) {
2646      fail_link(shader_program,
2647        	"Couldn't find uniform for initializer %s\n", name);
2648      return;
2649   }
2650
2651   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2652      ir_constant *element;
2653      const glsl_type *element_type;
2654      if (type->is_array()) {
2655         element = val->array_elements[i];
2656         element_type = type->fields.array;
2657      } else {
2658         element = val;
2659         element_type = type;
2660      }
2661
2662      void *values;
2663
2664      if (element_type->base_type == GLSL_TYPE_BOOL) {
2665         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2666         for (unsigned int j = 0; j < element_type->components(); j++) {
2667            conv[j] = element->value.b[j];
2668         }
2669         values = (void *)conv;
2670         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2671        					element_type->vector_elements,
2672        					1);
2673      } else {
2674         values = &element->value;
2675      }
2676
2677      if (element_type->is_matrix()) {
2678         _mesa_uniform_matrix(ctx, shader_program,
2679        		      element_type->matrix_columns,
2680        		      element_type->vector_elements,
2681        		      loc, 1, GL_FALSE, (GLfloat *)values);
2682         loc += element_type->matrix_columns;
2683      } else {
2684         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2685        	       values, element_type->gl_type);
2686         loc += type_size(element_type);
2687      }
2688   }
2689}
2690
2691static void
2692set_uniform_initializers(struct gl_context *ctx,
2693        		 struct gl_shader_program *shader_program)
2694{
2695   void *mem_ctx = NULL;
2696
2697   for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2698      struct gl_shader *shader = shader_program->_LinkedShaders[i];
2699
2700      if (shader == NULL)
2701         continue;
2702
2703      foreach_iter(exec_list_iterator, iter, *shader->ir) {
2704         ir_instruction *ir = (ir_instruction *)iter.get();
2705         ir_variable *var = ir->as_variable();
2706
2707         if (!var || var->mode != ir_var_uniform || !var->constant_value)
2708            continue;
2709
2710         if (!mem_ctx)
2711            mem_ctx = ralloc_context(NULL);
2712
2713         set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2714        			 var->type, var->constant_value);
2715      }
2716   }
2717
2718   ralloc_free(mem_ctx);
2719}
2720
2721/*
2722 * Scan/rewrite program to remove reads of custom (output) registers.
2723 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2724 * (for vertex shaders).
2725 * In GLSL shaders, varying vars can be read and written.
2726 * On some hardware, trying to read an output register causes trouble.
2727 * So, rewrite the program to use a temporary register in this case.
2728 *
2729 * Based on _mesa_remove_output_reads from programopt.c.
2730 */
2731void
2732glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2733{
2734   GLuint i;
2735   GLint outputMap[VERT_RESULT_MAX];
2736   GLint outputTypes[VERT_RESULT_MAX];
2737   GLuint numVaryingReads = 0;
2738   GLboolean usedTemps[MAX_PROGRAM_TEMPS];
2739   GLuint firstTemp = 0;
2740
2741   _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2742                             usedTemps, MAX_PROGRAM_TEMPS);
2743
2744   assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2745   assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2746
2747   for (i = 0; i < VERT_RESULT_MAX; i++)
2748      outputMap[i] = -1;
2749
2750   /* look for instructions which read from varying vars */
2751   foreach_iter(exec_list_iterator, iter, this->instructions) {
2752      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2753      const GLuint numSrc = num_inst_src_regs(inst->op);
2754      GLuint j;
2755      for (j = 0; j < numSrc; j++) {
2756         if (inst->src[j].file == type) {
2757            /* replace the read with a temp reg */
2758            const GLuint var = inst->src[j].index;
2759            if (outputMap[var] == -1) {
2760               numVaryingReads++;
2761               outputMap[var] = _mesa_find_free_register(usedTemps,
2762                                                         MAX_PROGRAM_TEMPS,
2763                                                         firstTemp);
2764               outputTypes[var] = inst->src[j].type;
2765               firstTemp = outputMap[var] + 1;
2766            }
2767            inst->src[j].file = PROGRAM_TEMPORARY;
2768            inst->src[j].index = outputMap[var];
2769         }
2770      }
2771   }
2772
2773   if (numVaryingReads == 0)
2774      return; /* nothing to be done */
2775
2776   /* look for instructions which write to the varying vars identified above */
2777   foreach_iter(exec_list_iterator, iter, this->instructions) {
2778      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2779      if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2780         /* change inst to write to the temp reg, instead of the varying */
2781         inst->dst.file = PROGRAM_TEMPORARY;
2782         inst->dst.index = outputMap[inst->dst.index];
2783      }
2784   }
2785
2786   /* insert new MOV instructions at the end */
2787   for (i = 0; i < VERT_RESULT_MAX; i++) {
2788      if (outputMap[i] >= 0) {
2789         /* MOV VAR[i], TEMP[tmp]; */
2790         st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2791         st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2792         dst.index = i;
2793         this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2794      }
2795   }
2796}
2797
2798/**
2799 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2800 * are read from the given src in this instruction
2801 */
2802static int
2803get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2804{
2805   int read_mask = 0, comp;
2806
2807   /* Now, given the src swizzle and the written channels, find which
2808    * components are actually read
2809    */
2810   for (comp = 0; comp < 4; ++comp) {
2811      const unsigned coord = GET_SWZ(src.swizzle, comp);
2812      ASSERT(coord < 4);
2813      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2814         read_mask |= 1 << coord;
2815   }
2816
2817   return read_mask;
2818}
2819
2820/**
2821 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2822 * instruction is the first instruction to write to register T0.  There are
2823 * several lowering passes done in GLSL IR (e.g. branches and
2824 * relative addressing) that create a large number of conditional assignments
2825 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2826 *
2827 * Here is why this conversion is safe:
2828 * CMP T0, T1 T2 T0 can be expanded to:
2829 * if (T1 < 0.0)
2830 * 	MOV T0, T2;
2831 * else
2832 * 	MOV T0, T0;
2833 *
2834 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2835 * as the original program.  If (T1 < 0.0) evaluates to false, executing
2836 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2837 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2838 * because any instruction that was going to read from T0 after this was going
2839 * to read a garbage value anyway.
2840 */
2841void
2842glsl_to_tgsi_visitor::simplify_cmp(void)
2843{
2844   unsigned tempWrites[MAX_PROGRAM_TEMPS];
2845   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2846
2847   memset(tempWrites, 0, sizeof(tempWrites));
2848   memset(outputWrites, 0, sizeof(outputWrites));
2849
2850   foreach_iter(exec_list_iterator, iter, this->instructions) {
2851      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2852      unsigned prevWriteMask = 0;
2853
2854      /* Give up if we encounter relative addressing or flow control. */
2855      if (inst->dst.reladdr ||
2856          tgsi_get_opcode_info(inst->op)->is_branch ||
2857          inst->op == TGSI_OPCODE_BGNSUB ||
2858          inst->op == TGSI_OPCODE_CONT ||
2859          inst->op == TGSI_OPCODE_END ||
2860          inst->op == TGSI_OPCODE_ENDSUB ||
2861          inst->op == TGSI_OPCODE_RET) {
2862         return;
2863      }
2864
2865      if (inst->dst.file == PROGRAM_OUTPUT) {
2866         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2867         prevWriteMask = outputWrites[inst->dst.index];
2868         outputWrites[inst->dst.index] |= inst->dst.writemask;
2869      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
2870         assert(inst->dst.index < MAX_PROGRAM_TEMPS);
2871         prevWriteMask = tempWrites[inst->dst.index];
2872         tempWrites[inst->dst.index] |= inst->dst.writemask;
2873      }
2874
2875      /* For a CMP to be considered a conditional write, the destination
2876       * register and source register two must be the same. */
2877      if (inst->op == TGSI_OPCODE_CMP
2878          && !(inst->dst.writemask & prevWriteMask)
2879          && inst->src[2].file == inst->dst.file
2880          && inst->src[2].index == inst->dst.index
2881          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
2882
2883         inst->op = TGSI_OPCODE_MOV;
2884         inst->src[0] = inst->src[1];
2885      }
2886   }
2887}
2888
2889/* Replaces all references to a temporary register index with another index. */
2890void
2891glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
2892{
2893   foreach_iter(exec_list_iterator, iter, this->instructions) {
2894      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2895      unsigned j;
2896
2897      for (j=0; j < num_inst_src_regs(inst->op); j++) {
2898         if (inst->src[j].file == PROGRAM_TEMPORARY &&
2899             inst->src[j].index == index) {
2900            inst->src[j].index = new_index;
2901         }
2902      }
2903
2904      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
2905         inst->dst.index = new_index;
2906      }
2907   }
2908}
2909
2910int
2911glsl_to_tgsi_visitor::get_first_temp_read(int index)
2912{
2913   int depth = 0; /* loop depth */
2914   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
2915   unsigned i = 0, j;
2916
2917   foreach_iter(exec_list_iterator, iter, this->instructions) {
2918      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2919
2920      for (j=0; j < num_inst_src_regs(inst->op); j++) {
2921         if (inst->src[j].file == PROGRAM_TEMPORARY &&
2922             inst->src[j].index == index) {
2923            return (depth == 0) ? i : loop_start;
2924         }
2925      }
2926
2927      if (inst->op == TGSI_OPCODE_BGNLOOP) {
2928         if(depth++ == 0)
2929            loop_start = i;
2930      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
2931         if (--depth == 0)
2932            loop_start = -1;
2933      }
2934      assert(depth >= 0);
2935
2936      i++;
2937   }
2938
2939   return -1;
2940}
2941
2942int
2943glsl_to_tgsi_visitor::get_first_temp_write(int index)
2944{
2945   int depth = 0; /* loop depth */
2946   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
2947   int i = 0;
2948
2949   foreach_iter(exec_list_iterator, iter, this->instructions) {
2950      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2951
2952      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
2953         return (depth == 0) ? i : loop_start;
2954      }
2955
2956      if (inst->op == TGSI_OPCODE_BGNLOOP) {
2957         if(depth++ == 0)
2958            loop_start = i;
2959      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
2960         if (--depth == 0)
2961            loop_start = -1;
2962      }
2963      assert(depth >= 0);
2964
2965      i++;
2966   }
2967
2968   return -1;
2969}
2970
2971int
2972glsl_to_tgsi_visitor::get_last_temp_read(int index)
2973{
2974   int depth = 0; /* loop depth */
2975   int last = -1; /* index of last instruction that reads the temporary */
2976   unsigned i = 0, j;
2977
2978   foreach_iter(exec_list_iterator, iter, this->instructions) {
2979      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2980
2981      for (j=0; j < num_inst_src_regs(inst->op); j++) {
2982         if (inst->src[j].file == PROGRAM_TEMPORARY &&
2983             inst->src[j].index == index) {
2984            last = (depth == 0) ? i : -2;
2985         }
2986      }
2987
2988      if (inst->op == TGSI_OPCODE_BGNLOOP)
2989         depth++;
2990      else if (inst->op == TGSI_OPCODE_ENDLOOP)
2991         if (--depth == 0 && last == -2)
2992            last = i;
2993      assert(depth >= 0);
2994
2995      i++;
2996   }
2997
2998   assert(last >= -1);
2999   return last;
3000}
3001
3002int
3003glsl_to_tgsi_visitor::get_last_temp_write(int index)
3004{
3005   int depth = 0; /* loop depth */
3006   int last = -1; /* index of last instruction that writes to the temporary */
3007   int i = 0;
3008
3009   foreach_iter(exec_list_iterator, iter, this->instructions) {
3010      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3011
3012      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3013         last = (depth == 0) ? i : -2;
3014
3015      if (inst->op == TGSI_OPCODE_BGNLOOP)
3016         depth++;
3017      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3018         if (--depth == 0 && last == -2)
3019            last = i;
3020      assert(depth >= 0);
3021
3022      i++;
3023   }
3024
3025   assert(last >= -1);
3026   return last;
3027}
3028
3029/*
3030 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3031 * channels for copy propagation and updates following instructions to
3032 * use the original versions.
3033 *
3034 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3035 * will occur.  As an example, a TXP production before this pass:
3036 *
3037 * 0: MOV TEMP[1], INPUT[4].xyyy;
3038 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3039 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3040 *
3041 * and after:
3042 *
3043 * 0: MOV TEMP[1], INPUT[4].xyyy;
3044 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3045 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3046 *
3047 * which allows for dead code elimination on TEMP[1]'s writes.
3048 */
3049void
3050glsl_to_tgsi_visitor::copy_propagate(void)
3051{
3052   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3053        					    glsl_to_tgsi_instruction *,
3054        					    this->next_temp * 4);
3055   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3056   int level = 0;
3057
3058   foreach_iter(exec_list_iterator, iter, this->instructions) {
3059      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3060
3061      assert(inst->dst.file != PROGRAM_TEMPORARY
3062             || inst->dst.index < this->next_temp);
3063
3064      /* First, do any copy propagation possible into the src regs. */
3065      for (int r = 0; r < 3; r++) {
3066         glsl_to_tgsi_instruction *first = NULL;
3067         bool good = true;
3068         int acp_base = inst->src[r].index * 4;
3069
3070         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3071             inst->src[r].reladdr)
3072            continue;
3073
3074         /* See if we can find entries in the ACP consisting of MOVs
3075          * from the same src register for all the swizzled channels
3076          * of this src register reference.
3077          */
3078         for (int i = 0; i < 4; i++) {
3079            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3080            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3081
3082            if (!copy_chan) {
3083               good = false;
3084               break;
3085            }
3086
3087            assert(acp_level[acp_base + src_chan] <= level);
3088
3089            if (!first) {
3090               first = copy_chan;
3091            } else {
3092               if (first->src[0].file != copy_chan->src[0].file ||
3093        	   first->src[0].index != copy_chan->src[0].index) {
3094        	  good = false;
3095        	  break;
3096               }
3097            }
3098         }
3099
3100         if (good) {
3101            /* We've now validated that we can copy-propagate to
3102             * replace this src register reference.  Do it.
3103             */
3104            inst->src[r].file = first->src[0].file;
3105            inst->src[r].index = first->src[0].index;
3106
3107            int swizzle = 0;
3108            for (int i = 0; i < 4; i++) {
3109               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3110               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3111               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3112        		   (3 * i));
3113            }
3114            inst->src[r].swizzle = swizzle;
3115         }
3116      }
3117
3118      switch (inst->op) {
3119      case TGSI_OPCODE_BGNLOOP:
3120      case TGSI_OPCODE_ENDLOOP:
3121         /* End of a basic block, clear the ACP entirely. */
3122         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3123         break;
3124
3125      case TGSI_OPCODE_IF:
3126         ++level;
3127         break;
3128
3129      case TGSI_OPCODE_ENDIF:
3130      case TGSI_OPCODE_ELSE:
3131         /* Clear all channels written inside the block from the ACP, but
3132          * leaving those that were not touched.
3133          */
3134         for (int r = 0; r < this->next_temp; r++) {
3135            for (int c = 0; c < 4; c++) {
3136               if (!acp[4 * r + c])
3137        	  continue;
3138
3139               if (acp_level[4 * r + c] >= level)
3140        	  acp[4 * r + c] = NULL;
3141            }
3142         }
3143         if (inst->op == TGSI_OPCODE_ENDIF)
3144            --level;
3145         break;
3146
3147      default:
3148         /* Continuing the block, clear any written channels from
3149          * the ACP.
3150          */
3151         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3152            /* Any temporary might be written, so no copy propagation
3153             * across this instruction.
3154             */
3155            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3156         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3157        	    inst->dst.reladdr) {
3158            /* Any output might be written, so no copy propagation
3159             * from outputs across this instruction.
3160             */
3161            for (int r = 0; r < this->next_temp; r++) {
3162               for (int c = 0; c < 4; c++) {
3163        	  if (!acp[4 * r + c])
3164        	     continue;
3165
3166        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3167        	     acp[4 * r + c] = NULL;
3168               }
3169            }
3170         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3171        	    inst->dst.file == PROGRAM_OUTPUT) {
3172            /* Clear where it's used as dst. */
3173            if (inst->dst.file == PROGRAM_TEMPORARY) {
3174               for (int c = 0; c < 4; c++) {
3175        	  if (inst->dst.writemask & (1 << c)) {
3176        	     acp[4 * inst->dst.index + c] = NULL;
3177        	  }
3178               }
3179            }
3180
3181            /* Clear where it's used as src. */
3182            for (int r = 0; r < this->next_temp; r++) {
3183               for (int c = 0; c < 4; c++) {
3184        	  if (!acp[4 * r + c])
3185        	     continue;
3186
3187        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3188
3189        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3190        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3191        	      inst->dst.writemask & (1 << src_chan))
3192        	  {
3193        	     acp[4 * r + c] = NULL;
3194        	  }
3195               }
3196            }
3197         }
3198         break;
3199      }
3200
3201      /* If this is a copy, add it to the ACP. */
3202      if (inst->op == TGSI_OPCODE_MOV &&
3203          inst->dst.file == PROGRAM_TEMPORARY &&
3204          !inst->dst.reladdr &&
3205          !inst->saturate &&
3206          !inst->src[0].reladdr &&
3207          !inst->src[0].negate) {
3208         for (int i = 0; i < 4; i++) {
3209            if (inst->dst.writemask & (1 << i)) {
3210               acp[4 * inst->dst.index + i] = inst;
3211               acp_level[4 * inst->dst.index + i] = level;
3212            }
3213         }
3214      }
3215   }
3216
3217   ralloc_free(acp_level);
3218   ralloc_free(acp);
3219}
3220
3221/*
3222 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3223 *
3224 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3225 * will occur.  As an example, a TXP production after copy propagation but
3226 * before this pass:
3227 *
3228 * 0: MOV TEMP[1], INPUT[4].xyyy;
3229 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3230 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3231 *
3232 * and after this pass:
3233 *
3234 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3235 *
3236 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3237 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3238 */
3239void
3240glsl_to_tgsi_visitor::eliminate_dead_code(void)
3241{
3242   int i;
3243
3244   for (i=0; i < this->next_temp; i++) {
3245      int last_read = get_last_temp_read(i);
3246      int j = 0;
3247
3248      foreach_iter(exec_list_iterator, iter, this->instructions) {
3249         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3250
3251         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3252             j > last_read)
3253         {
3254            iter.remove();
3255            delete inst;
3256         }
3257
3258         j++;
3259      }
3260   }
3261}
3262
3263/*
3264 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3265 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3266 * is per-channel and can detect consecutive writes without a read between them
3267 * as dead code.  However, there is some dead code that can be eliminated by
3268 * eliminate_dead_code() but not this function - for example, this function
3269 * cannot eliminate an instruction writing to a register that is never read and
3270 * is the only instruction writing to that register.
3271 *
3272 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3273 * will occur.
3274 */
3275int
3276glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3277{
3278   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3279                                                     glsl_to_tgsi_instruction *,
3280                                                     this->next_temp * 4);
3281   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3282   int level = 0;
3283   int removed = 0;
3284
3285   foreach_iter(exec_list_iterator, iter, this->instructions) {
3286      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3287
3288      assert(inst->dst.file != PROGRAM_TEMPORARY
3289             || inst->dst.index < this->next_temp);
3290
3291      switch (inst->op) {
3292      case TGSI_OPCODE_BGNLOOP:
3293      case TGSI_OPCODE_ENDLOOP:
3294         /* End of a basic block, clear the write array entirely.
3295          * FIXME: This keeps us from killing dead code when the writes are
3296          * on either side of a loop, even when the register isn't touched
3297          * inside the loop.
3298          */
3299         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3300         break;
3301
3302      case TGSI_OPCODE_IF:
3303         ++level;
3304         break;
3305
3306      case TGSI_OPCODE_ENDIF:
3307         --level;
3308         break;
3309
3310      case TGSI_OPCODE_ELSE:
3311         /* Clear all channels written inside the preceding if block from the
3312          * write array, but leave those that were not touched.
3313          *
3314          * FIXME: This destroys opportunities to remove dead code inside of
3315          * IF blocks that are followed by an ELSE block.
3316          */
3317         for (int r = 0; r < this->next_temp; r++) {
3318            for (int c = 0; c < 4; c++) {
3319               if (!writes[4 * r + c])
3320        	         continue;
3321
3322               if (write_level[4 * r + c] >= level)
3323        	         writes[4 * r + c] = NULL;
3324            }
3325         }
3326         break;
3327
3328      default:
3329         /* Continuing the block, clear any channels from the write array that
3330          * are read by this instruction.
3331          */
3332         for (int i = 0; i < 4; i++) {
3333            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3334               /* Any temporary might be read, so no dead code elimination
3335                * across this instruction.
3336                */
3337               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3338            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3339               /* Clear where it's used as src. */
3340               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3341               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3342               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3343               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3344
3345               for (int c = 0; c < 4; c++) {
3346              	   if (src_chans & (1 << c)) {
3347              	      writes[4 * inst->src[i].index + c] = NULL;
3348              	   }
3349               }
3350            }
3351         }
3352         break;
3353      }
3354
3355      /* If this instruction writes to a temporary, add it to the write array.
3356       * If there is already an instruction in the write array for one or more
3357       * of the channels, flag that channel write as dead.
3358       */
3359      if (inst->dst.file == PROGRAM_TEMPORARY &&
3360          !inst->dst.reladdr &&
3361          !inst->saturate) {
3362         for (int c = 0; c < 4; c++) {
3363            if (inst->dst.writemask & (1 << c)) {
3364               if (writes[4 * inst->dst.index + c]) {
3365                  if (write_level[4 * inst->dst.index + c] < level)
3366                     continue;
3367                  else
3368                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3369               }
3370               writes[4 * inst->dst.index + c] = inst;
3371               write_level[4 * inst->dst.index + c] = level;
3372            }
3373         }
3374      }
3375   }
3376
3377   /* Now actually remove the instructions that are completely dead and update
3378    * the writemask of other instructions with dead channels.
3379    */
3380   foreach_iter(exec_list_iterator, iter, this->instructions) {
3381      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3382
3383      if (!inst->dead_mask || !inst->dst.writemask)
3384         continue;
3385      else if (inst->dead_mask == inst->dst.writemask) {
3386         iter.remove();
3387         delete inst;
3388         removed++;
3389      } else
3390         inst->dst.writemask &= ~(inst->dead_mask);
3391   }
3392
3393   ralloc_free(write_level);
3394   ralloc_free(writes);
3395
3396   return removed;
3397}
3398
3399/* Merges temporary registers together where possible to reduce the number of
3400 * registers needed to run a program.
3401 *
3402 * Produces optimal code only after copy propagation and dead code elimination
3403 * have been run. */
3404void
3405glsl_to_tgsi_visitor::merge_registers(void)
3406{
3407   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3408   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3409   int i, j;
3410
3411   /* Read the indices of the last read and first write to each temp register
3412    * into an array so that we don't have to traverse the instruction list as
3413    * much. */
3414   for (i=0; i < this->next_temp; i++) {
3415      last_reads[i] = get_last_temp_read(i);
3416      first_writes[i] = get_first_temp_write(i);
3417   }
3418
3419   /* Start looking for registers with non-overlapping usages that can be
3420    * merged together. */
3421   for (i=0; i < this->next_temp; i++) {
3422      /* Don't touch unused registers. */
3423      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3424
3425      for (j=0; j < this->next_temp; j++) {
3426         /* Don't touch unused registers. */
3427         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3428
3429         /* We can merge the two registers if the first write to j is after or
3430          * in the same instruction as the last read from i.  Note that the
3431          * register at index i will always be used earlier or at the same time
3432          * as the register at index j. */
3433         if (first_writes[i] <= first_writes[j] &&
3434             last_reads[i] <= first_writes[j])
3435         {
3436            rename_temp_register(j, i); /* Replace all references to j with i.*/
3437
3438            /* Update the first_writes and last_reads arrays with the new
3439             * values for the merged register index, and mark the newly unused
3440             * register index as such. */
3441            last_reads[i] = last_reads[j];
3442            first_writes[j] = -1;
3443            last_reads[j] = -1;
3444         }
3445      }
3446   }
3447
3448   ralloc_free(last_reads);
3449   ralloc_free(first_writes);
3450}
3451
3452/* Reassign indices to temporary registers by reusing unused indices created
3453 * by optimization passes. */
3454void
3455glsl_to_tgsi_visitor::renumber_registers(void)
3456{
3457   int i = 0;
3458   int new_index = 0;
3459
3460   for (i=0; i < this->next_temp; i++) {
3461      if (get_first_temp_read(i) < 0) continue;
3462      if (i != new_index)
3463         rename_temp_register(i, new_index);
3464      new_index++;
3465   }
3466
3467   this->next_temp = new_index;
3468}
3469
3470/* ------------------------- TGSI conversion stuff -------------------------- */
3471struct label {
3472   unsigned branch_target;
3473   unsigned token;
3474};
3475
3476/**
3477 * Intermediate state used during shader translation.
3478 */
3479struct st_translate {
3480   struct ureg_program *ureg;
3481
3482   struct ureg_dst temps[MAX_PROGRAM_TEMPS];
3483   struct ureg_src *constants;
3484   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3485   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3486   struct ureg_dst address[1];
3487   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3488   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3489
3490   /* Extra info for handling point size clamping in vertex shader */
3491   struct ureg_dst pointSizeResult; /**< Actual point size output register */
3492   struct ureg_src pointSizeConst;  /**< Point size range constant register */
3493   GLint pointSizeOutIndex;         /**< Temp point size output register */
3494   GLboolean prevInstWrotePointSize;
3495
3496   const GLuint *inputMapping;
3497   const GLuint *outputMapping;
3498
3499   /* For every instruction that contains a label (eg CALL), keep
3500    * details so that we can go back afterwards and emit the correct
3501    * tgsi instruction number for each label.
3502    */
3503   struct label *labels;
3504   unsigned labels_size;
3505   unsigned labels_count;
3506
3507   /* Keep a record of the tgsi instruction number that each mesa
3508    * instruction starts at, will be used to fix up labels after
3509    * translation.
3510    */
3511   unsigned *insn;
3512   unsigned insn_size;
3513   unsigned insn_count;
3514
3515   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3516
3517   boolean error;
3518};
3519
3520/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3521static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3522   TGSI_SEMANTIC_FACE,
3523   TGSI_SEMANTIC_INSTANCEID
3524};
3525
3526/**
3527 * Make note of a branch to a label in the TGSI code.
3528 * After we've emitted all instructions, we'll go over the list
3529 * of labels built here and patch the TGSI code with the actual
3530 * location of each label.
3531 */
3532static unsigned *get_label( struct st_translate *t,
3533                            unsigned branch_target )
3534{
3535   unsigned i;
3536
3537   if (t->labels_count + 1 >= t->labels_size) {
3538      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3539      t->labels = (struct label *)realloc(t->labels,
3540                                          t->labels_size * sizeof t->labels[0]);
3541      if (t->labels == NULL) {
3542         static unsigned dummy;
3543         t->error = TRUE;
3544         return &dummy;
3545      }
3546   }
3547
3548   i = t->labels_count++;
3549   t->labels[i].branch_target = branch_target;
3550   return &t->labels[i].token;
3551}
3552
3553/**
3554 * Called prior to emitting the TGSI code for each Mesa instruction.
3555 * Allocate additional space for instructions if needed.
3556 * Update the insn[] array so the next Mesa instruction points to
3557 * the next TGSI instruction.
3558 */
3559static void set_insn_start( struct st_translate *t,
3560                            unsigned start )
3561{
3562   if (t->insn_count + 1 >= t->insn_size) {
3563      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3564      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof t->insn[0]);
3565      if (t->insn == NULL) {
3566         t->error = TRUE;
3567         return;
3568      }
3569   }
3570
3571   t->insn[t->insn_count++] = start;
3572}
3573
3574/**
3575 * Map a Mesa dst register to a TGSI ureg_dst register.
3576 */
3577static struct ureg_dst
3578dst_register( struct st_translate *t,
3579              gl_register_file file,
3580              GLuint index )
3581{
3582   switch( file ) {
3583   case PROGRAM_UNDEFINED:
3584      return ureg_dst_undef();
3585
3586   case PROGRAM_TEMPORARY:
3587      if (ureg_dst_is_undef(t->temps[index]))
3588         t->temps[index] = ureg_DECL_temporary( t->ureg );
3589
3590      return t->temps[index];
3591
3592   case PROGRAM_OUTPUT:
3593      if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3594         t->prevInstWrotePointSize = GL_TRUE;
3595
3596      if (t->procType == TGSI_PROCESSOR_VERTEX)
3597         assert(index < VERT_RESULT_MAX);
3598      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3599         assert(index < FRAG_RESULT_MAX);
3600      else
3601         assert(index < GEOM_RESULT_MAX);
3602
3603      assert(t->outputMapping[index] < Elements(t->outputs));
3604
3605      return t->outputs[t->outputMapping[index]];
3606
3607   case PROGRAM_ADDRESS:
3608      return t->address[index];
3609
3610   default:
3611      debug_assert( 0 );
3612      return ureg_dst_undef();
3613   }
3614}
3615
3616/**
3617 * Map a Mesa src register to a TGSI ureg_src register.
3618 */
3619static struct ureg_src
3620src_register( struct st_translate *t,
3621              gl_register_file file,
3622              GLuint index )
3623{
3624   switch( file ) {
3625   case PROGRAM_UNDEFINED:
3626      return ureg_src_undef();
3627
3628   case PROGRAM_TEMPORARY:
3629      assert(index >= 0);
3630      assert(index < Elements(t->temps));
3631      if (ureg_dst_is_undef(t->temps[index]))
3632         t->temps[index] = ureg_DECL_temporary( t->ureg );
3633      return ureg_src(t->temps[index]);
3634
3635   case PROGRAM_NAMED_PARAM:
3636   case PROGRAM_ENV_PARAM:
3637   case PROGRAM_LOCAL_PARAM:
3638   case PROGRAM_UNIFORM:
3639      assert(index >= 0);
3640      return t->constants[index];
3641   case PROGRAM_STATE_VAR:
3642   case PROGRAM_CONSTANT:       /* ie, immediate */
3643      if (index < 0)
3644         return ureg_DECL_constant( t->ureg, 0 );
3645      else
3646         return t->constants[index];
3647
3648   case PROGRAM_INPUT:
3649      assert(t->inputMapping[index] < Elements(t->inputs));
3650      return t->inputs[t->inputMapping[index]];
3651
3652   case PROGRAM_OUTPUT:
3653      assert(t->outputMapping[index] < Elements(t->outputs));
3654      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
3655
3656   case PROGRAM_ADDRESS:
3657      return ureg_src(t->address[index]);
3658
3659   case PROGRAM_SYSTEM_VALUE:
3660      assert(index < Elements(t->systemValues));
3661      return t->systemValues[index];
3662
3663   default:
3664      debug_assert( 0 );
3665      return ureg_src_undef();
3666   }
3667}
3668
3669/**
3670 * Create a TGSI ureg_dst register from an st_dst_reg.
3671 */
3672static struct ureg_dst
3673translate_dst( struct st_translate *t,
3674               const st_dst_reg *dst_reg,
3675               boolean saturate )
3676{
3677   struct ureg_dst dst = dst_register( t,
3678                                       dst_reg->file,
3679                                       dst_reg->index );
3680
3681   dst = ureg_writemask( dst,
3682                         dst_reg->writemask );
3683
3684   if (saturate)
3685      dst = ureg_saturate( dst );
3686
3687   if (dst_reg->reladdr != NULL)
3688      dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
3689
3690   return dst;
3691}
3692
3693/**
3694 * Create a TGSI ureg_src register from an st_src_reg.
3695 */
3696static struct ureg_src
3697translate_src( struct st_translate *t,
3698               const st_src_reg *src_reg )
3699{
3700   struct ureg_src src = src_register( t, src_reg->file, src_reg->index );
3701
3702   src = ureg_swizzle( src,
3703                       GET_SWZ( src_reg->swizzle, 0 ) & 0x3,
3704                       GET_SWZ( src_reg->swizzle, 1 ) & 0x3,
3705                       GET_SWZ( src_reg->swizzle, 2 ) & 0x3,
3706                       GET_SWZ( src_reg->swizzle, 3 ) & 0x3);
3707
3708   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
3709      src = ureg_negate(src);
3710
3711   if (src_reg->reladdr != NULL) {
3712      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
3713       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
3714       * set the bit for src.Negate.  So we have to do the operation manually
3715       * here to work around the compiler's problems. */
3716      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
3717      struct ureg_src addr = ureg_src(t->address[0]);
3718      src.Indirect = 1;
3719      src.IndirectFile = addr.File;
3720      src.IndirectIndex = addr.Index;
3721      src.IndirectSwizzle = addr.SwizzleX;
3722
3723      if (src_reg->file != PROGRAM_INPUT &&
3724          src_reg->file != PROGRAM_OUTPUT) {
3725         /* If src_reg->index was negative, it was set to zero in
3726          * src_register().  Reassign it now.  But don't do this
3727          * for input/output regs since they get remapped while
3728          * const buffers don't.
3729          */
3730         src.Index = src_reg->index;
3731      }
3732   }
3733
3734   return src;
3735}
3736
3737static void
3738compile_tgsi_instruction(struct st_translate *t,
3739        			     const struct glsl_to_tgsi_instruction *inst)
3740{
3741   struct ureg_program *ureg = t->ureg;
3742   GLuint i;
3743   struct ureg_dst dst[1];
3744   struct ureg_src src[4];
3745   unsigned num_dst;
3746   unsigned num_src;
3747
3748   num_dst = num_inst_dst_regs( inst->op );
3749   num_src = num_inst_src_regs( inst->op );
3750
3751   if (num_dst)
3752      dst[0] = translate_dst( t,
3753                              &inst->dst,
3754                              inst->saturate);
3755
3756   for (i = 0; i < num_src; i++)
3757      src[i] = translate_src( t, &inst->src[i] );
3758
3759   switch( inst->op ) {
3760   case TGSI_OPCODE_BGNLOOP:
3761   case TGSI_OPCODE_CAL:
3762   case TGSI_OPCODE_ELSE:
3763   case TGSI_OPCODE_ENDLOOP:
3764   case TGSI_OPCODE_IF:
3765      debug_assert(num_dst == 0);
3766      ureg_label_insn( ureg,
3767                       inst->op,
3768                       src, num_src,
3769                       get_label( t,
3770                                  inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0 ));
3771      return;
3772
3773   case TGSI_OPCODE_TEX:
3774   case TGSI_OPCODE_TXB:
3775   case TGSI_OPCODE_TXD:
3776   case TGSI_OPCODE_TXL:
3777   case TGSI_OPCODE_TXP:
3778      src[num_src++] = t->samplers[inst->sampler];
3779      ureg_tex_insn( ureg,
3780                     inst->op,
3781                     dst, num_dst,
3782                     translate_texture_target( inst->tex_target,
3783                                               inst->tex_shadow ),
3784                     src, num_src );
3785      return;
3786
3787   case TGSI_OPCODE_SCS:
3788      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
3789      ureg_insn( ureg,
3790                 inst->op,
3791                 dst, num_dst,
3792                 src, num_src );
3793      break;
3794
3795   default:
3796      ureg_insn( ureg,
3797                 inst->op,
3798                 dst, num_dst,
3799                 src, num_src );
3800      break;
3801   }
3802}
3803
3804/**
3805 * Emit the TGSI instructions to adjust the WPOS pixel center convention
3806 * Basically, add (adjX, adjY) to the fragment position.
3807 */
3808static void
3809emit_adjusted_wpos( struct st_translate *t,
3810                    const struct gl_program *program,
3811                    GLfloat adjX, GLfloat adjY)
3812{
3813   struct ureg_program *ureg = t->ureg;
3814   struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
3815   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
3816
3817   /* Note that we bias X and Y and pass Z and W through unchanged.
3818    * The shader might also use gl_FragCoord.w and .z.
3819    */
3820   ureg_ADD(ureg, wpos_temp, wpos_input,
3821            ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
3822
3823   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
3824}
3825
3826
3827/**
3828 * Emit the TGSI instructions for inverting the WPOS y coordinate.
3829 * This code is unavoidable because it also depends on whether
3830 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
3831 */
3832static void
3833emit_wpos_inversion( struct st_translate *t,
3834                     const struct gl_program *program,
3835                     boolean invert)
3836{
3837   struct ureg_program *ureg = t->ureg;
3838
3839   /* Fragment program uses fragment position input.
3840    * Need to replace instances of INPUT[WPOS] with temp T
3841    * where T = INPUT[WPOS] by y is inverted.
3842    */
3843   static const gl_state_index wposTransformState[STATE_LENGTH]
3844      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
3845          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
3846
3847   /* XXX: note we are modifying the incoming shader here!  Need to
3848    * do this before emitting the constant decls below, or this
3849    * will be missed:
3850    */
3851   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
3852                                                       wposTransformState);
3853
3854   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
3855   struct ureg_dst wpos_temp;
3856   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
3857
3858   /* MOV wpos_temp, input[wpos]
3859    */
3860   if (wpos_input.File == TGSI_FILE_TEMPORARY)
3861      wpos_temp = ureg_dst(wpos_input);
3862   else {
3863      wpos_temp = ureg_DECL_temporary( ureg );
3864      ureg_MOV( ureg, wpos_temp, wpos_input );
3865   }
3866
3867   if (invert) {
3868      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
3869       */
3870      ureg_MAD( ureg,
3871                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
3872                wpos_input,
3873                ureg_scalar(wpostrans, 0),
3874                ureg_scalar(wpostrans, 1));
3875   } else {
3876      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
3877       */
3878      ureg_MAD( ureg,
3879                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
3880                wpos_input,
3881                ureg_scalar(wpostrans, 2),
3882                ureg_scalar(wpostrans, 3));
3883   }
3884
3885   /* Use wpos_temp as position input from here on:
3886    */
3887   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
3888}
3889
3890
3891/**
3892 * Emit fragment position/ooordinate code.
3893 */
3894static void
3895emit_wpos(struct st_context *st,
3896          struct st_translate *t,
3897          const struct gl_program *program,
3898          struct ureg_program *ureg)
3899{
3900   const struct gl_fragment_program *fp =
3901      (const struct gl_fragment_program *) program;
3902   struct pipe_screen *pscreen = st->pipe->screen;
3903   boolean invert = FALSE;
3904
3905   if (fp->OriginUpperLeft) {
3906      /* Fragment shader wants origin in upper-left */
3907      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
3908         /* the driver supports upper-left origin */
3909      }
3910      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
3911         /* the driver supports lower-left origin, need to invert Y */
3912         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
3913         invert = TRUE;
3914      }
3915      else
3916         assert(0);
3917   }
3918   else {
3919      /* Fragment shader wants origin in lower-left */
3920      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
3921         /* the driver supports lower-left origin */
3922         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
3923      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
3924         /* the driver supports upper-left origin, need to invert Y */
3925         invert = TRUE;
3926      else
3927         assert(0);
3928   }
3929
3930   if (fp->PixelCenterInteger) {
3931      /* Fragment shader wants pixel center integer */
3932      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
3933         /* the driver supports pixel center integer */
3934         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
3935      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
3936         /* the driver supports pixel center half integer, need to bias X,Y */
3937         emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
3938      else
3939         assert(0);
3940   }
3941   else {
3942      /* Fragment shader wants pixel center half integer */
3943      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
3944         /* the driver supports pixel center half integer */
3945      }
3946      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
3947         /* the driver supports pixel center integer, need to bias X,Y */
3948         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
3949         emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
3950      }
3951      else
3952         assert(0);
3953   }
3954
3955   /* we invert after adjustment so that we avoid the MOV to temporary,
3956    * and reuse the adjustment ADD instead */
3957   emit_wpos_inversion(t, program, invert);
3958}
3959
3960/**
3961 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
3962 * TGSI uses +1 for front, -1 for back.
3963 * This function converts the TGSI value to the GL value.  Simply clamping/
3964 * saturating the value to [0,1] does the job.
3965 */
3966static void
3967emit_face_var(struct st_translate *t)
3968{
3969   struct ureg_program *ureg = t->ureg;
3970   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
3971   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
3972
3973   /* MOV_SAT face_temp, input[face] */
3974   face_temp = ureg_saturate(face_temp);
3975   ureg_MOV(ureg, face_temp, face_input);
3976
3977   /* Use face_temp as face input from here on: */
3978   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
3979}
3980
3981static void
3982emit_edgeflags(struct st_translate *t)
3983{
3984   struct ureg_program *ureg = t->ureg;
3985   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
3986   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
3987
3988   ureg_MOV(ureg, edge_dst, edge_src);
3989}
3990
3991/**
3992 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
3993 * \param program  the program to translate
3994 * \param numInputs  number of input registers used
3995 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
3996 *                      input indexes
3997 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
3998 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
3999 *                            each input
4000 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4001 * \param numOutputs  number of output registers used
4002 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4003 *                       generic outputs
4004 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4005 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4006 *                             each output
4007 *
4008 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4009 */
4010extern "C" enum pipe_error
4011st_translate_program(
4012   struct gl_context *ctx,
4013   uint procType,
4014   struct ureg_program *ureg,
4015   glsl_to_tgsi_visitor *program,
4016   const struct gl_program *proginfo,
4017   GLuint numInputs,
4018   const GLuint inputMapping[],
4019   const ubyte inputSemanticName[],
4020   const ubyte inputSemanticIndex[],
4021   const GLuint interpMode[],
4022   GLuint numOutputs,
4023   const GLuint outputMapping[],
4024   const ubyte outputSemanticName[],
4025   const ubyte outputSemanticIndex[],
4026   boolean passthrough_edgeflags )
4027{
4028   struct st_translate translate, *t;
4029   unsigned i;
4030   enum pipe_error ret = PIPE_OK;
4031
4032   assert(numInputs <= Elements(t->inputs));
4033   assert(numOutputs <= Elements(t->outputs));
4034
4035   t = &translate;
4036   memset(t, 0, sizeof *t);
4037
4038   t->procType = procType;
4039   t->inputMapping = inputMapping;
4040   t->outputMapping = outputMapping;
4041   t->ureg = ureg;
4042   t->pointSizeOutIndex = -1;
4043   t->prevInstWrotePointSize = GL_FALSE;
4044
4045   /*
4046    * Declare input attributes.
4047    */
4048   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4049      for (i = 0; i < numInputs; i++) {
4050         t->inputs[i] = ureg_DECL_fs_input(ureg,
4051                                           inputSemanticName[i],
4052                                           inputSemanticIndex[i],
4053                                           interpMode[i]);
4054      }
4055
4056      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4057         /* Must do this after setting up t->inputs, and before
4058          * emitting constant references, below:
4059          */
4060          emit_wpos(st_context(ctx), t, proginfo, ureg);
4061      }
4062
4063      if (proginfo->InputsRead & FRAG_BIT_FACE)
4064         emit_face_var(t);
4065
4066      /*
4067       * Declare output attributes.
4068       */
4069      for (i = 0; i < numOutputs; i++) {
4070         switch (outputSemanticName[i]) {
4071         case TGSI_SEMANTIC_POSITION:
4072            t->outputs[i] = ureg_DECL_output( ureg,
4073                                              TGSI_SEMANTIC_POSITION, /* Z / Depth */
4074                                              outputSemanticIndex[i] );
4075
4076            t->outputs[i] = ureg_writemask( t->outputs[i],
4077                                            TGSI_WRITEMASK_Z );
4078            break;
4079         case TGSI_SEMANTIC_STENCIL:
4080            t->outputs[i] = ureg_DECL_output( ureg,
4081                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
4082                                              outputSemanticIndex[i] );
4083            t->outputs[i] = ureg_writemask( t->outputs[i],
4084                                            TGSI_WRITEMASK_Y );
4085            break;
4086         case TGSI_SEMANTIC_COLOR:
4087            t->outputs[i] = ureg_DECL_output( ureg,
4088                                              TGSI_SEMANTIC_COLOR,
4089                                              outputSemanticIndex[i] );
4090            break;
4091         default:
4092            debug_assert(0);
4093            return PIPE_ERROR_BAD_INPUT;
4094         }
4095      }
4096   }
4097   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4098      for (i = 0; i < numInputs; i++) {
4099         t->inputs[i] = ureg_DECL_gs_input(ureg,
4100                                           i,
4101                                           inputSemanticName[i],
4102                                           inputSemanticIndex[i]);
4103      }
4104
4105      for (i = 0; i < numOutputs; i++) {
4106         t->outputs[i] = ureg_DECL_output( ureg,
4107                                           outputSemanticName[i],
4108                                           outputSemanticIndex[i] );
4109      }
4110   }
4111   else {
4112      assert(procType == TGSI_PROCESSOR_VERTEX);
4113
4114      for (i = 0; i < numInputs; i++) {
4115         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4116      }
4117
4118      for (i = 0; i < numOutputs; i++) {
4119         t->outputs[i] = ureg_DECL_output( ureg,
4120                                           outputSemanticName[i],
4121                                           outputSemanticIndex[i] );
4122         if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4123            /* Writing to the point size result register requires special
4124             * handling to implement clamping.
4125             */
4126            static const gl_state_index pointSizeClampState[STATE_LENGTH]
4127               = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4128               /* XXX: note we are modifying the incoming shader here!  Need to
4129               * do this before emitting the constant decls below, or this
4130               * will be missed.
4131               */
4132            unsigned pointSizeClampConst =
4133               _mesa_add_state_reference(proginfo->Parameters,
4134                                         pointSizeClampState);
4135            struct ureg_dst psizregtemp = ureg_DECL_temporary( ureg );
4136            t->pointSizeConst = ureg_DECL_constant( ureg, pointSizeClampConst );
4137            t->pointSizeResult = t->outputs[i];
4138            t->pointSizeOutIndex = i;
4139            t->outputs[i] = psizregtemp;
4140         }
4141      }
4142      if (passthrough_edgeflags)
4143         emit_edgeflags(t);
4144   }
4145
4146   /* Declare address register.
4147    */
4148   if (program->num_address_regs > 0) {
4149      debug_assert( program->num_address_regs == 1 );
4150      t->address[0] = ureg_DECL_address( ureg );
4151   }
4152
4153   /* Declare misc input registers
4154    */
4155   {
4156      GLbitfield sysInputs = proginfo->SystemValuesRead;
4157      unsigned numSys = 0;
4158      for (i = 0; sysInputs; i++) {
4159         if (sysInputs & (1 << i)) {
4160            unsigned semName = mesa_sysval_to_semantic[i];
4161            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4162            numSys++;
4163            sysInputs &= ~(1 << i);
4164         }
4165      }
4166   }
4167
4168   if (program->indirect_addr_temps) {
4169      /* If temps are accessed with indirect addressing, declare temporaries
4170       * in sequential order.  Else, we declare them on demand elsewhere.
4171       * (Note: the number of temporaries is equal to program->next_temp)
4172       */
4173      for (i = 0; i < (unsigned)program->next_temp; i++) {
4174         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4175         t->temps[i] = ureg_DECL_temporary( t->ureg );
4176      }
4177   }
4178
4179   /* Emit constants and immediates.  Mesa uses a single index space
4180    * for these, so we put all the translated regs in t->constants.
4181    * XXX: this entire if block depends on proginfo->Parameters from Mesa IR
4182    */
4183   if (proginfo->Parameters) {
4184      t->constants = (struct ureg_src *)CALLOC( proginfo->Parameters->NumParameters * sizeof t->constants[0] );
4185      if (t->constants == NULL) {
4186         ret = PIPE_ERROR_OUT_OF_MEMORY;
4187         goto out;
4188      }
4189
4190      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4191         switch (proginfo->Parameters->Parameters[i].Type) {
4192         case PROGRAM_ENV_PARAM:
4193         case PROGRAM_LOCAL_PARAM:
4194         case PROGRAM_STATE_VAR:
4195         case PROGRAM_NAMED_PARAM:
4196         case PROGRAM_UNIFORM:
4197            t->constants[i] = ureg_DECL_constant( ureg, i );
4198            break;
4199
4200            /* Emit immediates only when there's no indirect addressing of
4201             * the const buffer.
4202             * FIXME: Be smarter and recognize param arrays:
4203             * indirect addressing is only valid within the referenced
4204             * array.
4205             */
4206         case PROGRAM_CONSTANT:
4207            if (program->indirect_addr_consts)
4208               t->constants[i] = ureg_DECL_constant( ureg, i );
4209            else
4210               switch(proginfo->Parameters->Parameters[i].DataType)
4211               {
4212               case GL_FLOAT:
4213               case GL_FLOAT_VEC2:
4214               case GL_FLOAT_VEC3:
4215               case GL_FLOAT_VEC4:
4216                  t->constants[i] = ureg_DECL_immediate(ureg, (float *)proginfo->Parameters->ParameterValues[i], 4);
4217                  break;
4218               case GL_INT:
4219               case GL_INT_VEC2:
4220               case GL_INT_VEC3:
4221               case GL_INT_VEC4:
4222                  t->constants[i] = ureg_DECL_immediate_int(ureg, (int *)proginfo->Parameters->ParameterValues[i], 4);
4223                  break;
4224               case GL_UNSIGNED_INT:
4225               case GL_UNSIGNED_INT_VEC2:
4226               case GL_UNSIGNED_INT_VEC3:
4227               case GL_UNSIGNED_INT_VEC4:
4228               case GL_BOOL:
4229               case GL_BOOL_VEC2:
4230               case GL_BOOL_VEC3:
4231               case GL_BOOL_VEC4:
4232                  t->constants[i] = ureg_DECL_immediate_uint(ureg, (unsigned *)proginfo->Parameters->ParameterValues[i], 4);
4233                  break;
4234               default:
4235                  assert(!"should not get here");
4236               }
4237            break;
4238         default:
4239            break;
4240         }
4241      }
4242   }
4243
4244   /* texture samplers */
4245   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4246      if (program->samplers_used & (1 << i)) {
4247         t->samplers[i] = ureg_DECL_sampler( ureg, i );
4248      }
4249   }
4250
4251   /* Emit each instruction in turn:
4252    */
4253   foreach_iter(exec_list_iterator, iter, program->instructions) {
4254      set_insn_start( t, ureg_get_instruction_number( ureg ));
4255      compile_tgsi_instruction( t, (glsl_to_tgsi_instruction *)iter.get() );
4256
4257      if (t->prevInstWrotePointSize && proginfo->Id) {
4258         /* The previous instruction wrote to the (fake) vertex point size
4259          * result register.  Now we need to clamp that value to the min/max
4260          * point size range, putting the result into the real point size
4261          * register.
4262          * Note that we can't do this easily at the end of program due to
4263          * possible early return.
4264          */
4265         set_insn_start( t, ureg_get_instruction_number( ureg ));
4266         ureg_MAX( t->ureg,
4267                   ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4268                   ureg_src(t->outputs[t->pointSizeOutIndex]),
4269                   ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4270         ureg_MIN( t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4271                   ureg_src(t->outputs[t->pointSizeOutIndex]),
4272                   ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4273      }
4274      t->prevInstWrotePointSize = GL_FALSE;
4275   }
4276
4277   /* Fix up all emitted labels:
4278    */
4279   for (i = 0; i < t->labels_count; i++) {
4280      ureg_fixup_label( ureg,
4281                        t->labels[i].token,
4282                        t->insn[t->labels[i].branch_target] );
4283   }
4284
4285out:
4286   FREE(t->insn);
4287   FREE(t->labels);
4288   FREE(t->constants);
4289
4290   if (t->error) {
4291      debug_printf("%s: translate error flag set\n", __FUNCTION__);
4292   }
4293
4294   return ret;
4295}
4296/* ----------------------------- End TGSI code ------------------------------ */
4297
4298/**
4299 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4300 * generating Mesa IR.
4301 */
4302static struct gl_program *
4303get_mesa_program(struct gl_context *ctx,
4304                 struct gl_shader_program *shader_program,
4305        	 struct gl_shader *shader)
4306{
4307   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4308   struct gl_program *prog;
4309   GLenum target;
4310   const char *target_string;
4311   GLboolean progress;
4312   struct gl_shader_compiler_options *options =
4313         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4314
4315   switch (shader->Type) {
4316   case GL_VERTEX_SHADER:
4317      target = GL_VERTEX_PROGRAM_ARB;
4318      target_string = "vertex";
4319      break;
4320   case GL_FRAGMENT_SHADER:
4321      target = GL_FRAGMENT_PROGRAM_ARB;
4322      target_string = "fragment";
4323      break;
4324   case GL_GEOMETRY_SHADER:
4325      target = GL_GEOMETRY_PROGRAM_NV;
4326      target_string = "geometry";
4327      break;
4328   default:
4329      assert(!"should not be reached");
4330      return NULL;
4331   }
4332
4333   validate_ir_tree(shader->ir);
4334
4335   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4336   if (!prog)
4337      return NULL;
4338   prog->Parameters = _mesa_new_parameter_list();
4339   prog->Varying = _mesa_new_parameter_list();
4340   prog->Attributes = _mesa_new_parameter_list();
4341   v->ctx = ctx;
4342   v->prog = prog;
4343   v->shader_program = shader_program;
4344   v->options = options;
4345   v->glsl_version = ctx->Const.GLSLVersion;
4346
4347   add_uniforms_to_parameters_list(shader_program, shader, prog);
4348
4349   /* Emit intermediate IR for main(). */
4350   visit_exec_list(shader->ir, v);
4351
4352   /* Now emit bodies for any functions that were used. */
4353   do {
4354      progress = GL_FALSE;
4355
4356      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4357         function_entry *entry = (function_entry *)iter.get();
4358
4359         if (!entry->bgn_inst) {
4360            v->current_function = entry;
4361
4362            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4363            entry->bgn_inst->function = entry;
4364
4365            visit_exec_list(&entry->sig->body, v);
4366
4367            glsl_to_tgsi_instruction *last;
4368            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4369            if (last->op != TGSI_OPCODE_RET)
4370               v->emit(NULL, TGSI_OPCODE_RET);
4371
4372            glsl_to_tgsi_instruction *end;
4373            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4374            end->function = entry;
4375
4376            progress = GL_TRUE;
4377         }
4378      }
4379   } while (progress);
4380
4381#if 0
4382   /* Print out some information (for debugging purposes) used by the
4383    * optimization passes. */
4384   for (i=0; i < v->next_temp; i++) {
4385      int fr = v->get_first_temp_read(i);
4386      int fw = v->get_first_temp_write(i);
4387      int lr = v->get_last_temp_read(i);
4388      int lw = v->get_last_temp_write(i);
4389
4390      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4391      assert(fw <= fr);
4392   }
4393#endif
4394
4395   /* Remove reads to output registers, and to varyings in vertex shaders. */
4396   v->remove_output_reads(PROGRAM_OUTPUT);
4397   if (target == GL_VERTEX_PROGRAM_ARB)
4398      v->remove_output_reads(PROGRAM_VARYING);
4399
4400   /* Perform the simplify_cmp optimization, which is required by r300g. */
4401   v->simplify_cmp();
4402
4403   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor.
4404    * FIXME: These passes to optimize temporary registers don't work when there
4405    * is indirect addressing of the temporary register space.  We need proper
4406    * array support so that we don't have to give up these passes in every
4407    * shader that uses arrays.
4408    */
4409   if (!v->indirect_addr_temps) {
4410      v->copy_propagate();
4411      while (v->eliminate_dead_code_advanced());
4412      v->eliminate_dead_code();
4413      v->merge_registers();
4414      v->renumber_registers();
4415   }
4416
4417   /* Write the END instruction. */
4418   v->emit(NULL, TGSI_OPCODE_END);
4419
4420   if (ctx->Shader.Flags & GLSL_DUMP) {
4421      printf("\n");
4422      printf("GLSL IR for linked %s program %d:\n", target_string,
4423             shader_program->Name);
4424      _mesa_print_ir(shader->ir, NULL);
4425      printf("\n");
4426      printf("\n");
4427   }
4428
4429   prog->Instructions = NULL;
4430   prog->NumInstructions = 0;
4431
4432   do_set_program_inouts(shader->ir, prog);
4433   count_resources(v, prog);
4434
4435   check_resources(ctx, shader_program, v, prog);
4436
4437   _mesa_reference_program(ctx, &shader->Program, prog);
4438
4439   struct st_vertex_program *stvp;
4440   struct st_fragment_program *stfp;
4441   struct st_geometry_program *stgp;
4442
4443   switch (shader->Type) {
4444   case GL_VERTEX_SHADER:
4445      stvp = (struct st_vertex_program *)prog;
4446      stvp->glsl_to_tgsi = v;
4447      break;
4448   case GL_FRAGMENT_SHADER:
4449      stfp = (struct st_fragment_program *)prog;
4450      stfp->glsl_to_tgsi = v;
4451      break;
4452   case GL_GEOMETRY_SHADER:
4453      stgp = (struct st_geometry_program *)prog;
4454      stgp->glsl_to_tgsi = v;
4455      break;
4456   default:
4457      assert(!"should not be reached");
4458      return NULL;
4459   }
4460
4461   return prog;
4462}
4463
4464extern "C" {
4465
4466struct gl_shader *
4467st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4468{
4469   struct gl_shader *shader;
4470   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4471          type == GL_GEOMETRY_SHADER_ARB);
4472   shader = rzalloc(NULL, struct gl_shader);
4473   if (shader) {
4474      shader->Type = type;
4475      shader->Name = name;
4476      _mesa_init_shader(ctx, shader);
4477   }
4478   return shader;
4479}
4480
4481struct gl_shader_program *
4482st_new_shader_program(struct gl_context *ctx, GLuint name)
4483{
4484   struct gl_shader_program *shProg;
4485   shProg = rzalloc(NULL, struct gl_shader_program);
4486   if (shProg) {
4487      shProg->Name = name;
4488      _mesa_init_shader_program(ctx, shProg);
4489   }
4490   return shProg;
4491}
4492
4493/**
4494 * Link a shader.
4495 * Called via ctx->Driver.LinkShader()
4496 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4497 * with code lowering and other optimizations.
4498 */
4499GLboolean
4500st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4501{
4502   assert(prog->LinkStatus);
4503
4504   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4505      if (prog->_LinkedShaders[i] == NULL)
4506         continue;
4507
4508      bool progress;
4509      exec_list *ir = prog->_LinkedShaders[i]->ir;
4510      const struct gl_shader_compiler_options *options =
4511            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4512
4513      do {
4514         progress = false;
4515
4516         /* Lowering */
4517         do_mat_op_to_vec(ir);
4518         lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4519        			 | LOG_TO_LOG2
4520        			 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4521
4522         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4523
4524         progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4525
4526         progress = lower_quadop_vector(ir, true) || progress;
4527
4528         if (options->EmitNoIfs) {
4529            progress = lower_discard(ir) || progress;
4530            progress = lower_if_to_cond_assign(ir) || progress;
4531         }
4532
4533         if (options->EmitNoNoise)
4534            progress = lower_noise(ir) || progress;
4535
4536         /* If there are forms of indirect addressing that the driver
4537          * cannot handle, perform the lowering pass.
4538          */
4539         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4540             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4541           progress =
4542             lower_variable_index_to_cond_assign(ir,
4543        					 options->EmitNoIndirectInput,
4544        					 options->EmitNoIndirectOutput,
4545        					 options->EmitNoIndirectTemp,
4546        					 options->EmitNoIndirectUniform)
4547             || progress;
4548
4549         progress = do_vec_index_to_cond_assign(ir) || progress;
4550      } while (progress);
4551
4552      validate_ir_tree(ir);
4553   }
4554
4555   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4556      struct gl_program *linked_prog;
4557
4558      if (prog->_LinkedShaders[i] == NULL)
4559         continue;
4560
4561      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4562
4563      if (linked_prog) {
4564         bool ok = true;
4565
4566         switch (prog->_LinkedShaders[i]->Type) {
4567         case GL_VERTEX_SHADER:
4568            _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4569                                     (struct gl_vertex_program *)linked_prog);
4570            ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4571                                                 linked_prog);
4572            break;
4573         case GL_FRAGMENT_SHADER:
4574            _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4575                                     (struct gl_fragment_program *)linked_prog);
4576            ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4577                                                 linked_prog);
4578            break;
4579         case GL_GEOMETRY_SHADER:
4580            _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4581                                     (struct gl_geometry_program *)linked_prog);
4582            ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4583                                                 linked_prog);
4584            break;
4585         }
4586         if (!ok) {
4587            return GL_FALSE;
4588         }
4589      }
4590
4591      _mesa_reference_program(ctx, &linked_prog, NULL);
4592   }
4593
4594   return GL_TRUE;
4595}
4596
4597
4598/**
4599 * Link a GLSL shader program.  Called via glLinkProgram().
4600 */
4601void
4602st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4603{
4604   unsigned int i;
4605
4606   _mesa_clear_shader_program_data(ctx, prog);
4607
4608   prog->LinkStatus = GL_TRUE;
4609
4610   for (i = 0; i < prog->NumShaders; i++) {
4611      if (!prog->Shaders[i]->CompileStatus) {
4612         fail_link(prog, "linking with uncompiled shader");
4613         prog->LinkStatus = GL_FALSE;
4614      }
4615   }
4616
4617   prog->Varying = _mesa_new_parameter_list();
4618   _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
4619   _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
4620   _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
4621
4622   if (prog->LinkStatus) {
4623      link_shaders(ctx, prog);
4624   }
4625
4626   if (prog->LinkStatus) {
4627      if (!ctx->Driver.LinkShader(ctx, prog)) {
4628         prog->LinkStatus = GL_FALSE;
4629      }
4630   }
4631
4632   set_uniform_initializers(ctx, prog);
4633
4634   if (ctx->Shader.Flags & GLSL_DUMP) {
4635      if (!prog->LinkStatus) {
4636         printf("GLSL shader program %d failed to link\n", prog->Name);
4637      }
4638
4639      if (prog->InfoLog && prog->InfoLog[0] != 0) {
4640         printf("GLSL shader program %d info log:\n", prog->Name);
4641         printf("%s\n", prog->InfoLog);
4642      }
4643   }
4644}
4645
4646} /* extern "C" */
4647