st_glsl_to_tgsi.cpp revision c4529d10bed098b8d3d694f2a333f9afabbabbf9
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45#include "main/mtypes.h"
46#include "main/shaderobj.h"
47#include "program/hash_table.h"
48
49extern "C" {
50#include "main/shaderapi.h"
51#include "main/uniforms.h"
52#include "program/prog_instruction.h"
53#include "program/prog_optimize.h"
54#include "program/prog_print.h"
55#include "program/program.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
75                           (1 << PROGRAM_ENV_PARAM) |    \
76                           (1 << PROGRAM_STATE_VAR) |    \
77                           (1 << PROGRAM_NAMED_PARAM) |  \
78                           (1 << PROGRAM_CONSTANT) |     \
79                           (1 << PROGRAM_UNIFORM))
80
81/**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87#define MAX_TEMPS         4096
88
89/* will be 4 for GLSL 4.00 */
90#define MAX_GLSL_TEXTURE_OFFSET 1
91
92class st_src_reg;
93class st_dst_reg;
94
95static int swizzle_for_size(int size);
96
97/**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100class st_src_reg {
101public:
102   st_src_reg(gl_register_file file, int index, const glsl_type *type)
103   {
104      this->file = file;
105      this->index = index;
106      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107         this->swizzle = swizzle_for_size(type->vector_elements);
108      else
109         this->swizzle = SWIZZLE_XYZW;
110      this->negate = 0;
111      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112      this->reladdr = NULL;
113   }
114
115   st_src_reg(gl_register_file file, int index, int type)
116   {
117      this->type = type;
118      this->file = file;
119      this->index = index;
120      this->swizzle = SWIZZLE_XYZW;
121      this->negate = 0;
122      this->reladdr = NULL;
123   }
124
125   st_src_reg()
126   {
127      this->type = GLSL_TYPE_ERROR;
128      this->file = PROGRAM_UNDEFINED;
129      this->index = 0;
130      this->swizzle = 0;
131      this->negate = 0;
132      this->reladdr = NULL;
133   }
134
135   explicit st_src_reg(st_dst_reg reg);
136
137   gl_register_file file; /**< PROGRAM_* from Mesa */
138   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140   int negate; /**< NEGATE_XYZW mask from mesa */
141   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142   /** Register index should be offset by the integer in this reg. */
143   st_src_reg *reladdr;
144};
145
146class st_dst_reg {
147public:
148   st_dst_reg(gl_register_file file, int writemask, int type)
149   {
150      this->file = file;
151      this->index = 0;
152      this->writemask = writemask;
153      this->cond_mask = COND_TR;
154      this->reladdr = NULL;
155      this->type = type;
156   }
157
158   st_dst_reg()
159   {
160      this->type = GLSL_TYPE_ERROR;
161      this->file = PROGRAM_UNDEFINED;
162      this->index = 0;
163      this->writemask = 0;
164      this->cond_mask = COND_TR;
165      this->reladdr = NULL;
166   }
167
168   explicit st_dst_reg(st_src_reg reg);
169
170   gl_register_file file; /**< PROGRAM_* from Mesa */
171   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173   GLuint cond_mask:4;
174   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175   /** Register index should be offset by the integer in this reg. */
176   st_src_reg *reladdr;
177};
178
179st_src_reg::st_src_reg(st_dst_reg reg)
180{
181   this->type = reg.type;
182   this->file = reg.file;
183   this->index = reg.index;
184   this->swizzle = SWIZZLE_XYZW;
185   this->negate = 0;
186   this->reladdr = reg.reladdr;
187}
188
189st_dst_reg::st_dst_reg(st_src_reg reg)
190{
191   this->type = reg.type;
192   this->file = reg.file;
193   this->index = reg.index;
194   this->writemask = WRITEMASK_XYZW;
195   this->cond_mask = COND_TR;
196   this->reladdr = reg.reladdr;
197}
198
199class glsl_to_tgsi_instruction : public exec_node {
200public:
201   /* Callers of this ralloc-based new need not call delete. It's
202    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203   static void* operator new(size_t size, void *ctx)
204   {
205      void *node;
206
207      node = rzalloc_size(ctx, size);
208      assert(node != NULL);
209
210      return node;
211   }
212
213   unsigned op;
214   st_dst_reg dst;
215   st_src_reg src[3];
216   /** Pointer to the ir source this tree came from for debugging */
217   ir_instruction *ir;
218   GLboolean cond_update;
219   bool saturate;
220   int sampler; /**< sampler index */
221   int tex_target; /**< One of TEXTURE_*_INDEX */
222   GLboolean tex_shadow;
223   struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224   unsigned tex_offset_num_offset;
225   int dead_mask; /**< Used in dead code elimination */
226
227   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228};
229
230class variable_storage : public exec_node {
231public:
232   variable_storage(ir_variable *var, gl_register_file file, int index)
233      : file(file), index(index), var(var)
234   {
235      /* empty */
236   }
237
238   gl_register_file file;
239   int index;
240   ir_variable *var; /* variable that maps to this, if any */
241};
242
243class immediate_storage : public exec_node {
244public:
245   immediate_storage(gl_constant_value *values, int size, int type)
246   {
247      memcpy(this->values, values, size * sizeof(gl_constant_value));
248      this->size = size;
249      this->type = type;
250   }
251
252   gl_constant_value values[4];
253   int size; /**< Number of components (1-4) */
254   int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255};
256
257class function_entry : public exec_node {
258public:
259   ir_function_signature *sig;
260
261   /**
262    * identifier of this function signature used by the program.
263    *
264    * At the point that TGSI instructions for function calls are
265    * generated, we don't know the address of the first instruction of
266    * the function body.  So we make the BranchTarget that is called a
267    * small integer and rewrite them during set_branchtargets().
268    */
269   int sig_id;
270
271   /**
272    * Pointer to first instruction of the function body.
273    *
274    * Set during function body emits after main() is processed.
275    */
276   glsl_to_tgsi_instruction *bgn_inst;
277
278   /**
279    * Index of the first instruction of the function body in actual TGSI.
280    *
281    * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282    */
283   int inst;
284
285   /** Storage for the return value. */
286   st_src_reg return_reg;
287};
288
289class glsl_to_tgsi_visitor : public ir_visitor {
290public:
291   glsl_to_tgsi_visitor();
292   ~glsl_to_tgsi_visitor();
293
294   function_entry *current_function;
295
296   struct gl_context *ctx;
297   struct gl_program *prog;
298   struct gl_shader_program *shader_program;
299   struct gl_shader_compiler_options *options;
300
301   int next_temp;
302
303   int num_address_regs;
304   int samplers_used;
305   bool indirect_addr_temps;
306   bool indirect_addr_consts;
307   int num_clip_distances;
308
309   int glsl_version;
310   bool native_integers;
311
312   variable_storage *find_variable_storage(ir_variable *var);
313
314   int add_constant(gl_register_file file, gl_constant_value values[4],
315                    int size, int datatype, GLuint *swizzle_out);
316
317   function_entry *get_function_signature(ir_function_signature *sig);
318
319   st_src_reg get_temp(const glsl_type *type);
320   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
321
322   st_src_reg st_src_reg_for_float(float val);
323   st_src_reg st_src_reg_for_int(int val);
324   st_src_reg st_src_reg_for_type(int type, int val);
325
326   /**
327    * \name Visit methods
328    *
329    * As typical for the visitor pattern, there must be one \c visit method for
330    * each concrete subclass of \c ir_instruction.  Virtual base classes within
331    * the hierarchy should not have \c visit methods.
332    */
333   /*@{*/
334   virtual void visit(ir_variable *);
335   virtual void visit(ir_loop *);
336   virtual void visit(ir_loop_jump *);
337   virtual void visit(ir_function_signature *);
338   virtual void visit(ir_function *);
339   virtual void visit(ir_expression *);
340   virtual void visit(ir_swizzle *);
341   virtual void visit(ir_dereference_variable  *);
342   virtual void visit(ir_dereference_array *);
343   virtual void visit(ir_dereference_record *);
344   virtual void visit(ir_assignment *);
345   virtual void visit(ir_constant *);
346   virtual void visit(ir_call *);
347   virtual void visit(ir_return *);
348   virtual void visit(ir_discard *);
349   virtual void visit(ir_texture *);
350   virtual void visit(ir_if *);
351   /*@}*/
352
353   st_src_reg result;
354
355   /** List of variable_storage */
356   exec_list variables;
357
358   /** List of immediate_storage */
359   exec_list immediates;
360   int num_immediates;
361
362   /** List of function_entry */
363   exec_list function_signatures;
364   int next_signature_id;
365
366   /** List of glsl_to_tgsi_instruction */
367   exec_list instructions;
368
369   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
370
371   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
372        		        st_dst_reg dst, st_src_reg src0);
373
374   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
375        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
376
377   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
378        		        st_dst_reg dst,
379        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
380
381   unsigned get_opcode(ir_instruction *ir, unsigned op,
382                    st_dst_reg dst,
383                    st_src_reg src0, st_src_reg src1);
384
385   /**
386    * Emit the correct dot-product instruction for the type of arguments
387    */
388   glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
389                                     st_dst_reg dst,
390                                     st_src_reg src0,
391                                     st_src_reg src1,
392                                     unsigned elements);
393
394   void emit_scalar(ir_instruction *ir, unsigned op,
395        	    st_dst_reg dst, st_src_reg src0);
396
397   void emit_scalar(ir_instruction *ir, unsigned op,
398        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
399
400   void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
401
402   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
403
404   void emit_scs(ir_instruction *ir, unsigned op,
405        	 st_dst_reg dst, const st_src_reg &src);
406
407   bool try_emit_mad(ir_expression *ir,
408              int mul_operand);
409   bool try_emit_mad_for_and_not(ir_expression *ir,
410              int mul_operand);
411   bool try_emit_sat(ir_expression *ir);
412
413   void emit_swz(ir_expression *ir);
414
415   bool process_move_condition(ir_rvalue *ir);
416
417   void simplify_cmp(void);
418
419   void rename_temp_register(int index, int new_index);
420   int get_first_temp_read(int index);
421   int get_first_temp_write(int index);
422   int get_last_temp_read(int index);
423   int get_last_temp_write(int index);
424
425   void copy_propagate(void);
426   void eliminate_dead_code(void);
427   int eliminate_dead_code_advanced(void);
428   void merge_registers(void);
429   void renumber_registers(void);
430
431   void *mem_ctx;
432};
433
434static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
435
436static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
437
438static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
439
440static void
441fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
442
443static void
444fail_link(struct gl_shader_program *prog, const char *fmt, ...)
445{
446   va_list args;
447   va_start(args, fmt);
448   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
449   va_end(args);
450
451   prog->LinkStatus = GL_FALSE;
452}
453
454static int
455swizzle_for_size(int size)
456{
457   int size_swizzles[4] = {
458      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
459      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
460      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
461      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
462   };
463
464   assert((size >= 1) && (size <= 4));
465   return size_swizzles[size - 1];
466}
467
468static bool
469is_tex_instruction(unsigned opcode)
470{
471   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
472   return info->is_tex;
473}
474
475static unsigned
476num_inst_dst_regs(unsigned opcode)
477{
478   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
479   return info->num_dst;
480}
481
482static unsigned
483num_inst_src_regs(unsigned opcode)
484{
485   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486   return info->is_tex ? info->num_src - 1 : info->num_src;
487}
488
489glsl_to_tgsi_instruction *
490glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
491        		 st_dst_reg dst,
492        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
493{
494   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
495   int num_reladdr = 0, i;
496
497   op = get_opcode(ir, op, dst, src0, src1);
498
499   /* If we have to do relative addressing, we want to load the ARL
500    * reg directly for one of the regs, and preload the other reladdr
501    * sources into temps.
502    */
503   num_reladdr += dst.reladdr != NULL;
504   num_reladdr += src0.reladdr != NULL;
505   num_reladdr += src1.reladdr != NULL;
506   num_reladdr += src2.reladdr != NULL;
507
508   reladdr_to_temp(ir, &src2, &num_reladdr);
509   reladdr_to_temp(ir, &src1, &num_reladdr);
510   reladdr_to_temp(ir, &src0, &num_reladdr);
511
512   if (dst.reladdr) {
513      emit_arl(ir, address_reg, *dst.reladdr);
514      num_reladdr--;
515   }
516   assert(num_reladdr == 0);
517
518   inst->op = op;
519   inst->dst = dst;
520   inst->src[0] = src0;
521   inst->src[1] = src1;
522   inst->src[2] = src2;
523   inst->ir = ir;
524   inst->dead_mask = 0;
525
526   inst->function = NULL;
527
528   if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
529      this->num_address_regs = 1;
530
531   /* Update indirect addressing status used by TGSI */
532   if (dst.reladdr) {
533      switch(dst.file) {
534      case PROGRAM_TEMPORARY:
535         this->indirect_addr_temps = true;
536         break;
537      case PROGRAM_LOCAL_PARAM:
538      case PROGRAM_ENV_PARAM:
539      case PROGRAM_STATE_VAR:
540      case PROGRAM_NAMED_PARAM:
541      case PROGRAM_CONSTANT:
542      case PROGRAM_UNIFORM:
543         this->indirect_addr_consts = true;
544         break;
545      case PROGRAM_IMMEDIATE:
546         assert(!"immediates should not have indirect addressing");
547         break;
548      default:
549         break;
550      }
551   }
552   else {
553      for (i=0; i<3; i++) {
554         if(inst->src[i].reladdr) {
555            switch(inst->src[i].file) {
556            case PROGRAM_TEMPORARY:
557               this->indirect_addr_temps = true;
558               break;
559            case PROGRAM_LOCAL_PARAM:
560            case PROGRAM_ENV_PARAM:
561            case PROGRAM_STATE_VAR:
562            case PROGRAM_NAMED_PARAM:
563            case PROGRAM_CONSTANT:
564            case PROGRAM_UNIFORM:
565               this->indirect_addr_consts = true;
566               break;
567            case PROGRAM_IMMEDIATE:
568               assert(!"immediates should not have indirect addressing");
569               break;
570            default:
571               break;
572            }
573         }
574      }
575   }
576
577   this->instructions.push_tail(inst);
578
579   if (native_integers)
580      try_emit_float_set(ir, op, dst);
581
582   return inst;
583}
584
585
586glsl_to_tgsi_instruction *
587glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
588        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
589{
590   return emit(ir, op, dst, src0, src1, undef_src);
591}
592
593glsl_to_tgsi_instruction *
594glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
595        		 st_dst_reg dst, st_src_reg src0)
596{
597   assert(dst.writemask != 0);
598   return emit(ir, op, dst, src0, undef_src, undef_src);
599}
600
601glsl_to_tgsi_instruction *
602glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
603{
604   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
605}
606
607 /**
608 * Emits the code to convert the result of float SET instructions to integers.
609 */
610void
611glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
612        		 st_dst_reg dst)
613{
614   if ((op == TGSI_OPCODE_SEQ ||
615        op == TGSI_OPCODE_SNE ||
616        op == TGSI_OPCODE_SGE ||
617        op == TGSI_OPCODE_SLT))
618   {
619      st_src_reg src = st_src_reg(dst);
620      src.negate = ~src.negate;
621      dst.type = GLSL_TYPE_FLOAT;
622      emit(ir, TGSI_OPCODE_F2I, dst, src);
623   }
624}
625
626/**
627 * Determines whether to use an integer, unsigned integer, or float opcode
628 * based on the operands and input opcode, then emits the result.
629 */
630unsigned
631glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
632        		 st_dst_reg dst,
633        		 st_src_reg src0, st_src_reg src1)
634{
635   int type = GLSL_TYPE_FLOAT;
636
637   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
638      type = GLSL_TYPE_FLOAT;
639   else if (native_integers)
640      type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
641
642#define case4(c, f, i, u) \
643   case TGSI_OPCODE_##c: \
644      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
645      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
646      else op = TGSI_OPCODE_##f; \
647      break;
648#define case3(f, i, u)  case4(f, f, i, u)
649#define case2fi(f, i)   case4(f, f, i, i)
650#define case2iu(i, u)   case4(i, LAST, i, u)
651
652   switch(op) {
653      case2fi(ADD, UADD);
654      case2fi(MUL, UMUL);
655      case2fi(MAD, UMAD);
656      case3(DIV, IDIV, UDIV);
657      case3(MAX, IMAX, UMAX);
658      case3(MIN, IMIN, UMIN);
659      case2iu(MOD, UMOD);
660
661      case2fi(SEQ, USEQ);
662      case2fi(SNE, USNE);
663      case3(SGE, ISGE, USGE);
664      case3(SLT, ISLT, USLT);
665
666      case2iu(ISHR, USHR);
667
668      default: break;
669   }
670
671   assert(op != TGSI_OPCODE_LAST);
672   return op;
673}
674
675glsl_to_tgsi_instruction *
676glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
677        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
678        		    unsigned elements)
679{
680   static const unsigned dot_opcodes[] = {
681      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
682   };
683
684   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
685}
686
687/**
688 * Emits TGSI scalar opcodes to produce unique answers across channels.
689 *
690 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
691 * channel determines the result across all channels.  So to do a vec4
692 * of this operation, we want to emit a scalar per source channel used
693 * to produce dest channels.
694 */
695void
696glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
697        		        st_dst_reg dst,
698        			st_src_reg orig_src0, st_src_reg orig_src1)
699{
700   int i, j;
701   int done_mask = ~dst.writemask;
702
703   /* TGSI RCP is a scalar operation splatting results to all channels,
704    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
705    * dst channels.
706    */
707   for (i = 0; i < 4; i++) {
708      GLuint this_mask = (1 << i);
709      glsl_to_tgsi_instruction *inst;
710      st_src_reg src0 = orig_src0;
711      st_src_reg src1 = orig_src1;
712
713      if (done_mask & this_mask)
714         continue;
715
716      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
717      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
718      for (j = i + 1; j < 4; j++) {
719         /* If there is another enabled component in the destination that is
720          * derived from the same inputs, generate its value on this pass as
721          * well.
722          */
723         if (!(done_mask & (1 << j)) &&
724             GET_SWZ(src0.swizzle, j) == src0_swiz &&
725             GET_SWZ(src1.swizzle, j) == src1_swiz) {
726            this_mask |= (1 << j);
727         }
728      }
729      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
730        			   src0_swiz, src0_swiz);
731      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
732        			  src1_swiz, src1_swiz);
733
734      inst = emit(ir, op, dst, src0, src1);
735      inst->dst.writemask = this_mask;
736      done_mask |= this_mask;
737   }
738}
739
740void
741glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
742        		        st_dst_reg dst, st_src_reg src0)
743{
744   st_src_reg undef = undef_src;
745
746   undef.swizzle = SWIZZLE_XXXX;
747
748   emit_scalar(ir, op, dst, src0, undef);
749}
750
751void
752glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
753        		        st_dst_reg dst, st_src_reg src0)
754{
755   int op = TGSI_OPCODE_ARL;
756
757   if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
758      op = TGSI_OPCODE_UARL;
759
760   emit(NULL, op, dst, src0);
761}
762
763/**
764 * Emit an TGSI_OPCODE_SCS instruction
765 *
766 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
767 * Instead of splatting its result across all four components of the
768 * destination, it writes one value to the \c x component and another value to
769 * the \c y component.
770 *
771 * \param ir        IR instruction being processed
772 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
773 *                  on which value is desired.
774 * \param dst       Destination register
775 * \param src       Source register
776 */
777void
778glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
779        		     st_dst_reg dst,
780        		     const st_src_reg &src)
781{
782   /* Vertex programs cannot use the SCS opcode.
783    */
784   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
785      emit_scalar(ir, op, dst, src);
786      return;
787   }
788
789   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
790   const unsigned scs_mask = (1U << component);
791   int done_mask = ~dst.writemask;
792   st_src_reg tmp;
793
794   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
795
796   /* If there are compnents in the destination that differ from the component
797    * that will be written by the SCS instrution, we'll need a temporary.
798    */
799   if (scs_mask != unsigned(dst.writemask)) {
800      tmp = get_temp(glsl_type::vec4_type);
801   }
802
803   for (unsigned i = 0; i < 4; i++) {
804      unsigned this_mask = (1U << i);
805      st_src_reg src0 = src;
806
807      if ((done_mask & this_mask) != 0)
808         continue;
809
810      /* The source swizzle specified which component of the source generates
811       * sine / cosine for the current component in the destination.  The SCS
812       * instruction requires that this value be swizzle to the X component.
813       * Replace the current swizzle with a swizzle that puts the source in
814       * the X component.
815       */
816      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
817
818      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
819        			   src0_swiz, src0_swiz);
820      for (unsigned j = i + 1; j < 4; j++) {
821         /* If there is another enabled component in the destination that is
822          * derived from the same inputs, generate its value on this pass as
823          * well.
824          */
825         if (!(done_mask & (1 << j)) &&
826             GET_SWZ(src0.swizzle, j) == src0_swiz) {
827            this_mask |= (1 << j);
828         }
829      }
830
831      if (this_mask != scs_mask) {
832         glsl_to_tgsi_instruction *inst;
833         st_dst_reg tmp_dst = st_dst_reg(tmp);
834
835         /* Emit the SCS instruction.
836          */
837         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
838         inst->dst.writemask = scs_mask;
839
840         /* Move the result of the SCS instruction to the desired location in
841          * the destination.
842          */
843         tmp.swizzle = MAKE_SWIZZLE4(component, component,
844        			     component, component);
845         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
846         inst->dst.writemask = this_mask;
847      } else {
848         /* Emit the SCS instruction to write directly to the destination.
849          */
850         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
851         inst->dst.writemask = scs_mask;
852      }
853
854      done_mask |= this_mask;
855   }
856}
857
858int
859glsl_to_tgsi_visitor::add_constant(gl_register_file file,
860        		     gl_constant_value values[4], int size, int datatype,
861        		     GLuint *swizzle_out)
862{
863   if (file == PROGRAM_CONSTANT) {
864      return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
865                                              size, datatype, swizzle_out);
866   } else {
867      int index = 0;
868      immediate_storage *entry;
869      assert(file == PROGRAM_IMMEDIATE);
870
871      /* Search immediate storage to see if we already have an identical
872       * immediate that we can use instead of adding a duplicate entry.
873       */
874      foreach_iter(exec_list_iterator, iter, this->immediates) {
875         entry = (immediate_storage *)iter.get();
876
877         if (entry->size == size &&
878             entry->type == datatype &&
879             !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
880             return index;
881         }
882         index++;
883      }
884
885      /* Add this immediate to the list. */
886      entry = new(mem_ctx) immediate_storage(values, size, datatype);
887      this->immediates.push_tail(entry);
888      this->num_immediates++;
889      return index;
890   }
891}
892
893st_src_reg
894glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
895{
896   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
897   union gl_constant_value uval;
898
899   uval.f = val;
900   src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
901
902   return src;
903}
904
905st_src_reg
906glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
907{
908   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
909   union gl_constant_value uval;
910
911   assert(native_integers);
912
913   uval.i = val;
914   src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
915
916   return src;
917}
918
919st_src_reg
920glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
921{
922   if (native_integers)
923      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
924                                       st_src_reg_for_int(val);
925   else
926      return st_src_reg_for_float(val);
927}
928
929static int
930type_size(const struct glsl_type *type)
931{
932   unsigned int i;
933   int size;
934
935   switch (type->base_type) {
936   case GLSL_TYPE_UINT:
937   case GLSL_TYPE_INT:
938   case GLSL_TYPE_FLOAT:
939   case GLSL_TYPE_BOOL:
940      if (type->is_matrix()) {
941         return type->matrix_columns;
942      } else {
943         /* Regardless of size of vector, it gets a vec4. This is bad
944          * packing for things like floats, but otherwise arrays become a
945          * mess.  Hopefully a later pass over the code can pack scalars
946          * down if appropriate.
947          */
948         return 1;
949      }
950   case GLSL_TYPE_ARRAY:
951      assert(type->length > 0);
952      return type_size(type->fields.array) * type->length;
953   case GLSL_TYPE_STRUCT:
954      size = 0;
955      for (i = 0; i < type->length; i++) {
956         size += type_size(type->fields.structure[i].type);
957      }
958      return size;
959   case GLSL_TYPE_SAMPLER:
960      /* Samplers take up one slot in UNIFORMS[], but they're baked in
961       * at link time.
962       */
963      return 1;
964   default:
965      assert(0);
966      return 0;
967   }
968}
969
970/**
971 * In the initial pass of codegen, we assign temporary numbers to
972 * intermediate results.  (not SSA -- variable assignments will reuse
973 * storage).
974 */
975st_src_reg
976glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
977{
978   st_src_reg src;
979
980   src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
981   src.file = PROGRAM_TEMPORARY;
982   src.index = next_temp;
983   src.reladdr = NULL;
984   next_temp += type_size(type);
985
986   if (type->is_array() || type->is_record()) {
987      src.swizzle = SWIZZLE_NOOP;
988   } else {
989      src.swizzle = swizzle_for_size(type->vector_elements);
990   }
991   src.negate = 0;
992
993   return src;
994}
995
996variable_storage *
997glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
998{
999
1000   variable_storage *entry;
1001
1002   foreach_iter(exec_list_iterator, iter, this->variables) {
1003      entry = (variable_storage *)iter.get();
1004
1005      if (entry->var == var)
1006         return entry;
1007   }
1008
1009   return NULL;
1010}
1011
1012void
1013glsl_to_tgsi_visitor::visit(ir_variable *ir)
1014{
1015   if (strcmp(ir->name, "gl_FragCoord") == 0) {
1016      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1017
1018      fp->OriginUpperLeft = ir->origin_upper_left;
1019      fp->PixelCenterInteger = ir->pixel_center_integer;
1020   }
1021
1022   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1023      unsigned int i;
1024      const ir_state_slot *const slots = ir->state_slots;
1025      assert(ir->state_slots != NULL);
1026
1027      /* Check if this statevar's setup in the STATE file exactly
1028       * matches how we'll want to reference it as a
1029       * struct/array/whatever.  If not, then we need to move it into
1030       * temporary storage and hope that it'll get copy-propagated
1031       * out.
1032       */
1033      for (i = 0; i < ir->num_state_slots; i++) {
1034         if (slots[i].swizzle != SWIZZLE_XYZW) {
1035            break;
1036         }
1037      }
1038
1039      variable_storage *storage;
1040      st_dst_reg dst;
1041      if (i == ir->num_state_slots) {
1042         /* We'll set the index later. */
1043         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1044         this->variables.push_tail(storage);
1045
1046         dst = undef_dst;
1047      } else {
1048         /* The variable_storage constructor allocates slots based on the size
1049          * of the type.  However, this had better match the number of state
1050          * elements that we're going to copy into the new temporary.
1051          */
1052         assert((int) ir->num_state_slots == type_size(ir->type));
1053
1054         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1055        					 this->next_temp);
1056         this->variables.push_tail(storage);
1057         this->next_temp += type_size(ir->type);
1058
1059         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1060               native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1061      }
1062
1063
1064      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1065         int index = _mesa_add_state_reference(this->prog->Parameters,
1066        				       (gl_state_index *)slots[i].tokens);
1067
1068         if (storage->file == PROGRAM_STATE_VAR) {
1069            if (storage->index == -1) {
1070               storage->index = index;
1071            } else {
1072               assert(index == storage->index + (int)i);
1073            }
1074         } else {
1075            st_src_reg src(PROGRAM_STATE_VAR, index,
1076                  native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1077            src.swizzle = slots[i].swizzle;
1078            emit(ir, TGSI_OPCODE_MOV, dst, src);
1079            /* even a float takes up a whole vec4 reg in a struct/array. */
1080            dst.index++;
1081         }
1082      }
1083
1084      if (storage->file == PROGRAM_TEMPORARY &&
1085          dst.index != storage->index + (int) ir->num_state_slots) {
1086         fail_link(this->shader_program,
1087        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1088        	   ir->name, dst.index - storage->index,
1089        	   type_size(ir->type));
1090      }
1091   }
1092}
1093
1094void
1095glsl_to_tgsi_visitor::visit(ir_loop *ir)
1096{
1097   ir_dereference_variable *counter = NULL;
1098
1099   if (ir->counter != NULL)
1100      counter = new(ir) ir_dereference_variable(ir->counter);
1101
1102   if (ir->from != NULL) {
1103      assert(ir->counter != NULL);
1104
1105      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1106
1107      a->accept(this);
1108      delete a;
1109   }
1110
1111   emit(NULL, TGSI_OPCODE_BGNLOOP);
1112
1113   if (ir->to) {
1114      ir_expression *e =
1115         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1116        		       counter, ir->to);
1117      ir_if *if_stmt =  new(ir) ir_if(e);
1118
1119      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1120
1121      if_stmt->then_instructions.push_tail(brk);
1122
1123      if_stmt->accept(this);
1124
1125      delete if_stmt;
1126      delete e;
1127      delete brk;
1128   }
1129
1130   visit_exec_list(&ir->body_instructions, this);
1131
1132   if (ir->increment) {
1133      ir_expression *e =
1134         new(ir) ir_expression(ir_binop_add, counter->type,
1135        		       counter, ir->increment);
1136
1137      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1138
1139      a->accept(this);
1140      delete a;
1141      delete e;
1142   }
1143
1144   emit(NULL, TGSI_OPCODE_ENDLOOP);
1145}
1146
1147void
1148glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1149{
1150   switch (ir->mode) {
1151   case ir_loop_jump::jump_break:
1152      emit(NULL, TGSI_OPCODE_BRK);
1153      break;
1154   case ir_loop_jump::jump_continue:
1155      emit(NULL, TGSI_OPCODE_CONT);
1156      break;
1157   }
1158}
1159
1160
1161void
1162glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1163{
1164   assert(0);
1165   (void)ir;
1166}
1167
1168void
1169glsl_to_tgsi_visitor::visit(ir_function *ir)
1170{
1171   /* Ignore function bodies other than main() -- we shouldn't see calls to
1172    * them since they should all be inlined before we get to glsl_to_tgsi.
1173    */
1174   if (strcmp(ir->name, "main") == 0) {
1175      const ir_function_signature *sig;
1176      exec_list empty;
1177
1178      sig = ir->matching_signature(&empty);
1179
1180      assert(sig);
1181
1182      foreach_iter(exec_list_iterator, iter, sig->body) {
1183         ir_instruction *ir = (ir_instruction *)iter.get();
1184
1185         ir->accept(this);
1186      }
1187   }
1188}
1189
1190bool
1191glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1192{
1193   int nonmul_operand = 1 - mul_operand;
1194   st_src_reg a, b, c;
1195   st_dst_reg result_dst;
1196
1197   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1198   if (!expr || expr->operation != ir_binop_mul)
1199      return false;
1200
1201   expr->operands[0]->accept(this);
1202   a = this->result;
1203   expr->operands[1]->accept(this);
1204   b = this->result;
1205   ir->operands[nonmul_operand]->accept(this);
1206   c = this->result;
1207
1208   this->result = get_temp(ir->type);
1209   result_dst = st_dst_reg(this->result);
1210   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1211   emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1212
1213   return true;
1214}
1215
1216/**
1217 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1218 *
1219 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1220 * implemented using multiplication, and logical-or is implemented using
1221 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1222 * As result, the logical expression (a & !b) can be rewritten as:
1223 *
1224 *     - a * !b
1225 *     - a * (1 - b)
1226 *     - (a * 1) - (a * b)
1227 *     - a + -(a * b)
1228 *     - a + (a * -b)
1229 *
1230 * This final expression can be implemented as a single MAD(a, -b, a)
1231 * instruction.
1232 */
1233bool
1234glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1235{
1236   const int other_operand = 1 - try_operand;
1237   st_src_reg a, b;
1238
1239   ir_expression *expr = ir->operands[try_operand]->as_expression();
1240   if (!expr || expr->operation != ir_unop_logic_not)
1241      return false;
1242
1243   ir->operands[other_operand]->accept(this);
1244   a = this->result;
1245   expr->operands[0]->accept(this);
1246   b = this->result;
1247
1248   b.negate = ~b.negate;
1249
1250   this->result = get_temp(ir->type);
1251   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1252
1253   return true;
1254}
1255
1256bool
1257glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1258{
1259   /* Saturates were only introduced to vertex programs in
1260    * NV_vertex_program3, so don't give them to drivers in the VP.
1261    */
1262   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1263      return false;
1264
1265   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1266   if (!sat_src)
1267      return false;
1268
1269   sat_src->accept(this);
1270   st_src_reg src = this->result;
1271
1272   /* If we generated an expression instruction into a temporary in
1273    * processing the saturate's operand, apply the saturate to that
1274    * instruction.  Otherwise, generate a MOV to do the saturate.
1275    *
1276    * Note that we have to be careful to only do this optimization if
1277    * the instruction in question was what generated src->result.  For
1278    * example, ir_dereference_array might generate a MUL instruction
1279    * to create the reladdr, and return us a src reg using that
1280    * reladdr.  That MUL result is not the value we're trying to
1281    * saturate.
1282    */
1283   ir_expression *sat_src_expr = sat_src->as_expression();
1284   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1285			sat_src_expr->operation == ir_binop_add ||
1286			sat_src_expr->operation == ir_binop_dot)) {
1287      glsl_to_tgsi_instruction *new_inst;
1288      new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1289      new_inst->saturate = true;
1290   } else {
1291      this->result = get_temp(ir->type);
1292      st_dst_reg result_dst = st_dst_reg(this->result);
1293      result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1294      glsl_to_tgsi_instruction *inst;
1295      inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1296      inst->saturate = true;
1297   }
1298
1299   return true;
1300}
1301
1302void
1303glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1304        			    st_src_reg *reg, int *num_reladdr)
1305{
1306   if (!reg->reladdr)
1307      return;
1308
1309   emit_arl(ir, address_reg, *reg->reladdr);
1310
1311   if (*num_reladdr != 1) {
1312      st_src_reg temp = get_temp(glsl_type::vec4_type);
1313
1314      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1315      *reg = temp;
1316   }
1317
1318   (*num_reladdr)--;
1319}
1320
1321void
1322glsl_to_tgsi_visitor::visit(ir_expression *ir)
1323{
1324   unsigned int operand;
1325   st_src_reg op[Elements(ir->operands)];
1326   st_src_reg result_src;
1327   st_dst_reg result_dst;
1328
1329   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1330    */
1331   if (ir->operation == ir_binop_add) {
1332      if (try_emit_mad(ir, 1))
1333         return;
1334      if (try_emit_mad(ir, 0))
1335         return;
1336   }
1337
1338   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1339    */
1340   if (ir->operation == ir_binop_logic_and) {
1341      if (try_emit_mad_for_and_not(ir, 1))
1342	 return;
1343      if (try_emit_mad_for_and_not(ir, 0))
1344	 return;
1345   }
1346
1347   if (try_emit_sat(ir))
1348      return;
1349
1350   if (ir->operation == ir_quadop_vector)
1351      assert(!"ir_quadop_vector should have been lowered");
1352
1353   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1354      this->result.file = PROGRAM_UNDEFINED;
1355      ir->operands[operand]->accept(this);
1356      if (this->result.file == PROGRAM_UNDEFINED) {
1357         ir_print_visitor v;
1358         printf("Failed to get tree for expression operand:\n");
1359         ir->operands[operand]->accept(&v);
1360         exit(1);
1361      }
1362      op[operand] = this->result;
1363
1364      /* Matrix expression operands should have been broken down to vector
1365       * operations already.
1366       */
1367      assert(!ir->operands[operand]->type->is_matrix());
1368   }
1369
1370   int vector_elements = ir->operands[0]->type->vector_elements;
1371   if (ir->operands[1]) {
1372      vector_elements = MAX2(vector_elements,
1373        		     ir->operands[1]->type->vector_elements);
1374   }
1375
1376   this->result.file = PROGRAM_UNDEFINED;
1377
1378   /* Storage for our result.  Ideally for an assignment we'd be using
1379    * the actual storage for the result here, instead.
1380    */
1381   result_src = get_temp(ir->type);
1382   /* convenience for the emit functions below. */
1383   result_dst = st_dst_reg(result_src);
1384   /* Limit writes to the channels that will be used by result_src later.
1385    * This does limit this temp's use as a temporary for multi-instruction
1386    * sequences.
1387    */
1388   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1389
1390   switch (ir->operation) {
1391   case ir_unop_logic_not:
1392      if (result_dst.type != GLSL_TYPE_FLOAT)
1393         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1394      else {
1395         /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1396          * older GPUs implement SEQ using multiple instructions (i915 uses two
1397          * SGE instructions and a MUL instruction).  Since our logic values are
1398          * 0.0 and 1.0, 1-x also implements !x.
1399          */
1400         op[0].negate = ~op[0].negate;
1401         emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1402      }
1403      break;
1404   case ir_unop_neg:
1405      if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1406         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1407      else {
1408         op[0].negate = ~op[0].negate;
1409         result_src = op[0];
1410      }
1411      break;
1412   case ir_unop_abs:
1413      assert(result_dst.type == GLSL_TYPE_FLOAT);
1414      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1415      break;
1416   case ir_unop_sign:
1417      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1418      break;
1419   case ir_unop_rcp:
1420      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1421      break;
1422
1423   case ir_unop_exp2:
1424      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1425      break;
1426   case ir_unop_exp:
1427   case ir_unop_log:
1428      assert(!"not reached: should be handled by ir_explog_to_explog2");
1429      break;
1430   case ir_unop_log2:
1431      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1432      break;
1433   case ir_unop_sin:
1434      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1435      break;
1436   case ir_unop_cos:
1437      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1438      break;
1439   case ir_unop_sin_reduced:
1440      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1441      break;
1442   case ir_unop_cos_reduced:
1443      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1444      break;
1445
1446   case ir_unop_dFdx:
1447      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1448      break;
1449   case ir_unop_dFdy:
1450      op[0].negate = ~op[0].negate;
1451      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1452      break;
1453
1454   case ir_unop_noise: {
1455      /* At some point, a motivated person could add a better
1456       * implementation of noise.  Currently not even the nvidia
1457       * binary drivers do anything more than this.  In any case, the
1458       * place to do this is in the GL state tracker, not the poor
1459       * driver.
1460       */
1461      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1462      break;
1463   }
1464
1465   case ir_binop_add:
1466      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1467      break;
1468   case ir_binop_sub:
1469      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1470      break;
1471
1472   case ir_binop_mul:
1473      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1474      break;
1475   case ir_binop_div:
1476      if (result_dst.type == GLSL_TYPE_FLOAT)
1477         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1478      else
1479         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1480      break;
1481   case ir_binop_mod:
1482      if (result_dst.type == GLSL_TYPE_FLOAT)
1483         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1484      else
1485         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1486      break;
1487
1488   case ir_binop_less:
1489      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1490      break;
1491   case ir_binop_greater:
1492      emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1493      break;
1494   case ir_binop_lequal:
1495      emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1496      break;
1497   case ir_binop_gequal:
1498      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1499      break;
1500   case ir_binop_equal:
1501      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1502      break;
1503   case ir_binop_nequal:
1504      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1505      break;
1506   case ir_binop_all_equal:
1507      /* "==" operator producing a scalar boolean. */
1508      if (ir->operands[0]->type->is_vector() ||
1509          ir->operands[1]->type->is_vector()) {
1510         st_src_reg temp = get_temp(native_integers ?
1511               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1512               glsl_type::vec4_type);
1513
1514         if (native_integers) {
1515            st_dst_reg temp_dst = st_dst_reg(temp);
1516            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1517
1518            emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1519
1520            /* Emit 1-3 AND operations to combine the SEQ results. */
1521            switch (ir->operands[0]->type->vector_elements) {
1522            case 2:
1523               break;
1524            case 3:
1525               temp_dst.writemask = WRITEMASK_Y;
1526               temp1.swizzle = SWIZZLE_YYYY;
1527               temp2.swizzle = SWIZZLE_ZZZZ;
1528               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1529               break;
1530            case 4:
1531               temp_dst.writemask = WRITEMASK_X;
1532               temp1.swizzle = SWIZZLE_XXXX;
1533               temp2.swizzle = SWIZZLE_YYYY;
1534               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1535               temp_dst.writemask = WRITEMASK_Y;
1536               temp1.swizzle = SWIZZLE_ZZZZ;
1537               temp2.swizzle = SWIZZLE_WWWW;
1538               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1539            }
1540
1541            temp1.swizzle = SWIZZLE_XXXX;
1542            temp2.swizzle = SWIZZLE_YYYY;
1543            emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1544         } else {
1545            emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1546
1547            /* After the dot-product, the value will be an integer on the
1548             * range [0,4].  Zero becomes 1.0, and positive values become zero.
1549             */
1550            emit_dp(ir, result_dst, temp, temp, vector_elements);
1551
1552            /* Negating the result of the dot-product gives values on the range
1553             * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1554             * This is achieved using SGE.
1555             */
1556            st_src_reg sge_src = result_src;
1557            sge_src.negate = ~sge_src.negate;
1558            emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1559         }
1560      } else {
1561         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1562      }
1563      break;
1564   case ir_binop_any_nequal:
1565      /* "!=" operator producing a scalar boolean. */
1566      if (ir->operands[0]->type->is_vector() ||
1567          ir->operands[1]->type->is_vector()) {
1568         st_src_reg temp = get_temp(native_integers ?
1569               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1570               glsl_type::vec4_type);
1571         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1572
1573         if (native_integers) {
1574            st_dst_reg temp_dst = st_dst_reg(temp);
1575            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1576
1577            /* Emit 1-3 OR operations to combine the SNE results. */
1578            switch (ir->operands[0]->type->vector_elements) {
1579            case 2:
1580               break;
1581            case 3:
1582               temp_dst.writemask = WRITEMASK_Y;
1583               temp1.swizzle = SWIZZLE_YYYY;
1584               temp2.swizzle = SWIZZLE_ZZZZ;
1585               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1586               break;
1587            case 4:
1588               temp_dst.writemask = WRITEMASK_X;
1589               temp1.swizzle = SWIZZLE_XXXX;
1590               temp2.swizzle = SWIZZLE_YYYY;
1591               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1592               temp_dst.writemask = WRITEMASK_Y;
1593               temp1.swizzle = SWIZZLE_ZZZZ;
1594               temp2.swizzle = SWIZZLE_WWWW;
1595               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1596            }
1597
1598            temp1.swizzle = SWIZZLE_XXXX;
1599            temp2.swizzle = SWIZZLE_YYYY;
1600            emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1601         } else {
1602            /* After the dot-product, the value will be an integer on the
1603             * range [0,4].  Zero stays zero, and positive values become 1.0.
1604             */
1605            glsl_to_tgsi_instruction *const dp =
1606                  emit_dp(ir, result_dst, temp, temp, vector_elements);
1607            if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1608               /* The clamping to [0,1] can be done for free in the fragment
1609                * shader with a saturate.
1610                */
1611               dp->saturate = true;
1612            } else {
1613               /* Negating the result of the dot-product gives values on the range
1614                * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1615                * achieved using SLT.
1616                */
1617               st_src_reg slt_src = result_src;
1618               slt_src.negate = ~slt_src.negate;
1619               emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1620            }
1621         }
1622      } else {
1623         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1624      }
1625      break;
1626
1627   case ir_unop_any: {
1628      assert(ir->operands[0]->type->is_vector());
1629
1630      /* After the dot-product, the value will be an integer on the
1631       * range [0,4].  Zero stays zero, and positive values become 1.0.
1632       */
1633      glsl_to_tgsi_instruction *const dp =
1634         emit_dp(ir, result_dst, op[0], op[0],
1635                 ir->operands[0]->type->vector_elements);
1636      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1637          result_dst.type == GLSL_TYPE_FLOAT) {
1638	      /* The clamping to [0,1] can be done for free in the fragment
1639	       * shader with a saturate.
1640	       */
1641	      dp->saturate = true;
1642      } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1643	      /* Negating the result of the dot-product gives values on the range
1644	       * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1645	       * is achieved using SLT.
1646	       */
1647	      st_src_reg slt_src = result_src;
1648	      slt_src.negate = ~slt_src.negate;
1649	      emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1650      }
1651      else {
1652         /* Use SNE 0 if integers are being used as boolean values. */
1653         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1654      }
1655      break;
1656   }
1657
1658   case ir_binop_logic_xor:
1659      if (native_integers)
1660         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1661      else
1662         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1663      break;
1664
1665   case ir_binop_logic_or: {
1666      if (native_integers) {
1667         /* If integers are used as booleans, we can use an actual "or"
1668          * instruction.
1669          */
1670         assert(native_integers);
1671         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1672      } else {
1673         /* After the addition, the value will be an integer on the
1674          * range [0,2].  Zero stays zero, and positive values become 1.0.
1675          */
1676         glsl_to_tgsi_instruction *add =
1677            emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1678         if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1679            /* The clamping to [0,1] can be done for free in the fragment
1680             * shader with a saturate if floats are being used as boolean values.
1681             */
1682            add->saturate = true;
1683         } else {
1684            /* Negating the result of the addition gives values on the range
1685             * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1686             * is achieved using SLT.
1687             */
1688            st_src_reg slt_src = result_src;
1689            slt_src.negate = ~slt_src.negate;
1690            emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1691         }
1692      }
1693      break;
1694   }
1695
1696   case ir_binop_logic_and:
1697      /* If native integers are disabled, the bool args are stored as float 0.0
1698       * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1699       * actual AND opcode.
1700       */
1701      if (native_integers)
1702         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1703      else
1704         emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1705      break;
1706
1707   case ir_binop_dot:
1708      assert(ir->operands[0]->type->is_vector());
1709      assert(ir->operands[0]->type == ir->operands[1]->type);
1710      emit_dp(ir, result_dst, op[0], op[1],
1711              ir->operands[0]->type->vector_elements);
1712      break;
1713
1714   case ir_unop_sqrt:
1715      /* sqrt(x) = x * rsq(x). */
1716      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1717      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1718      /* For incoming channels <= 0, set the result to 0. */
1719      op[0].negate = ~op[0].negate;
1720      emit(ir, TGSI_OPCODE_CMP, result_dst,
1721        		  op[0], result_src, st_src_reg_for_float(0.0));
1722      break;
1723   case ir_unop_rsq:
1724      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1725      break;
1726   case ir_unop_i2f:
1727      if (native_integers) {
1728         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1729         break;
1730      }
1731      /* fallthrough to next case otherwise */
1732   case ir_unop_b2f:
1733      if (native_integers) {
1734         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1735         break;
1736      }
1737      /* fallthrough to next case otherwise */
1738   case ir_unop_i2u:
1739   case ir_unop_u2i:
1740      /* Converting between signed and unsigned integers is a no-op. */
1741      result_src = op[0];
1742      break;
1743   case ir_unop_b2i:
1744      if (native_integers) {
1745         /* Booleans are stored as integers using ~0 for true and 0 for false.
1746          * GLSL requires that int(bool) return 1 for true and 0 for false.
1747          * This conversion is done with AND, but it could be done with NEG.
1748          */
1749         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1750      } else {
1751         /* Booleans and integers are both stored as floats when native
1752          * integers are disabled.
1753          */
1754         result_src = op[0];
1755      }
1756      break;
1757   case ir_unop_f2i:
1758      if (native_integers)
1759         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1760      else
1761         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1762      break;
1763   case ir_unop_f2b:
1764      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1765      break;
1766   case ir_unop_i2b:
1767      if (native_integers)
1768         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1769      else
1770         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1771      break;
1772   case ir_unop_trunc:
1773      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1774      break;
1775   case ir_unop_ceil:
1776      op[0].negate = ~op[0].negate;
1777      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1778      result_src.negate = ~result_src.negate;
1779      break;
1780   case ir_unop_floor:
1781      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1782      break;
1783   case ir_unop_round_even:
1784      emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1785      break;
1786   case ir_unop_fract:
1787      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1788      break;
1789
1790   case ir_binop_min:
1791      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1792      break;
1793   case ir_binop_max:
1794      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1795      break;
1796   case ir_binop_pow:
1797      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1798      break;
1799
1800   case ir_unop_bit_not:
1801      if (native_integers) {
1802         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1803         break;
1804      }
1805   case ir_unop_u2f:
1806      if (native_integers) {
1807         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1808         break;
1809      }
1810   case ir_binop_lshift:
1811      if (native_integers) {
1812         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1813         break;
1814      }
1815   case ir_binop_rshift:
1816      if (native_integers) {
1817         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1818         break;
1819      }
1820   case ir_binop_bit_and:
1821      if (native_integers) {
1822         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1823         break;
1824      }
1825   case ir_binop_bit_xor:
1826      if (native_integers) {
1827         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1828         break;
1829      }
1830   case ir_binop_bit_or:
1831      if (native_integers) {
1832         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1833         break;
1834      }
1835
1836      assert(!"GLSL 1.30 features unsupported");
1837      break;
1838
1839   case ir_quadop_vector:
1840      /* This operation should have already been handled.
1841       */
1842      assert(!"Should not get here.");
1843      break;
1844   }
1845
1846   this->result = result_src;
1847}
1848
1849
1850void
1851glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1852{
1853   st_src_reg src;
1854   int i;
1855   int swizzle[4];
1856
1857   /* Note that this is only swizzles in expressions, not those on the left
1858    * hand side of an assignment, which do write masking.  See ir_assignment
1859    * for that.
1860    */
1861
1862   ir->val->accept(this);
1863   src = this->result;
1864   assert(src.file != PROGRAM_UNDEFINED);
1865
1866   for (i = 0; i < 4; i++) {
1867      if (i < ir->type->vector_elements) {
1868         switch (i) {
1869         case 0:
1870            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1871            break;
1872         case 1:
1873            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1874            break;
1875         case 2:
1876            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1877            break;
1878         case 3:
1879            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1880            break;
1881         }
1882      } else {
1883         /* If the type is smaller than a vec4, replicate the last
1884          * channel out.
1885          */
1886         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1887      }
1888   }
1889
1890   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1891
1892   this->result = src;
1893}
1894
1895void
1896glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1897{
1898   variable_storage *entry = find_variable_storage(ir->var);
1899   ir_variable *var = ir->var;
1900
1901   if (!entry) {
1902      switch (var->mode) {
1903      case ir_var_uniform:
1904         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1905        				       var->location);
1906         this->variables.push_tail(entry);
1907         break;
1908      case ir_var_in:
1909      case ir_var_inout:
1910         /* The linker assigns locations for varyings and attributes,
1911          * including deprecated builtins (like gl_Color), user-assign
1912          * generic attributes (glBindVertexLocation), and
1913          * user-defined varyings.
1914          *
1915          * FINISHME: We would hit this path for function arguments.  Fix!
1916          */
1917         assert(var->location != -1);
1918         entry = new(mem_ctx) variable_storage(var,
1919                                               PROGRAM_INPUT,
1920                                               var->location);
1921         break;
1922      case ir_var_out:
1923         assert(var->location != -1);
1924         entry = new(mem_ctx) variable_storage(var,
1925                                               PROGRAM_OUTPUT,
1926                                               var->location);
1927         break;
1928      case ir_var_system_value:
1929         entry = new(mem_ctx) variable_storage(var,
1930                                               PROGRAM_SYSTEM_VALUE,
1931                                               var->location);
1932         break;
1933      case ir_var_auto:
1934      case ir_var_temporary:
1935         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1936        				       this->next_temp);
1937         this->variables.push_tail(entry);
1938
1939         next_temp += type_size(var->type);
1940         break;
1941      }
1942
1943      if (!entry) {
1944         printf("Failed to make storage for %s\n", var->name);
1945         exit(1);
1946      }
1947   }
1948
1949   this->result = st_src_reg(entry->file, entry->index, var->type);
1950   if (!native_integers)
1951      this->result.type = GLSL_TYPE_FLOAT;
1952}
1953
1954void
1955glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1956{
1957   ir_constant *index;
1958   st_src_reg src;
1959   int element_size = type_size(ir->type);
1960
1961   index = ir->array_index->constant_expression_value();
1962
1963   ir->array->accept(this);
1964   src = this->result;
1965
1966   if (index) {
1967      src.index += index->value.i[0] * element_size;
1968   } else {
1969      /* Variable index array dereference.  It eats the "vec4" of the
1970       * base of the array and an index that offsets the TGSI register
1971       * index.
1972       */
1973      ir->array_index->accept(this);
1974
1975      st_src_reg index_reg;
1976
1977      if (element_size == 1) {
1978         index_reg = this->result;
1979      } else {
1980         index_reg = get_temp(native_integers ?
1981                              glsl_type::int_type : glsl_type::float_type);
1982
1983         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1984              this->result, st_src_reg_for_type(index_reg.type, element_size));
1985      }
1986
1987      /* If there was already a relative address register involved, add the
1988       * new and the old together to get the new offset.
1989       */
1990      if (src.reladdr != NULL) {
1991         st_src_reg accum_reg = get_temp(native_integers ?
1992                                glsl_type::int_type : glsl_type::float_type);
1993
1994         emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1995              index_reg, *src.reladdr);
1996
1997         index_reg = accum_reg;
1998      }
1999
2000      src.reladdr = ralloc(mem_ctx, st_src_reg);
2001      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2002   }
2003
2004   /* If the type is smaller than a vec4, replicate the last channel out. */
2005   if (ir->type->is_scalar() || ir->type->is_vector())
2006      src.swizzle = swizzle_for_size(ir->type->vector_elements);
2007   else
2008      src.swizzle = SWIZZLE_NOOP;
2009
2010   this->result = src;
2011}
2012
2013void
2014glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2015{
2016   unsigned int i;
2017   const glsl_type *struct_type = ir->record->type;
2018   int offset = 0;
2019
2020   ir->record->accept(this);
2021
2022   for (i = 0; i < struct_type->length; i++) {
2023      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2024         break;
2025      offset += type_size(struct_type->fields.structure[i].type);
2026   }
2027
2028   /* If the type is smaller than a vec4, replicate the last channel out. */
2029   if (ir->type->is_scalar() || ir->type->is_vector())
2030      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2031   else
2032      this->result.swizzle = SWIZZLE_NOOP;
2033
2034   this->result.index += offset;
2035}
2036
2037/**
2038 * We want to be careful in assignment setup to hit the actual storage
2039 * instead of potentially using a temporary like we might with the
2040 * ir_dereference handler.
2041 */
2042static st_dst_reg
2043get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2044{
2045   /* The LHS must be a dereference.  If the LHS is a variable indexed array
2046    * access of a vector, it must be separated into a series conditional moves
2047    * before reaching this point (see ir_vec_index_to_cond_assign).
2048    */
2049   assert(ir->as_dereference());
2050   ir_dereference_array *deref_array = ir->as_dereference_array();
2051   if (deref_array) {
2052      assert(!deref_array->array->type->is_vector());
2053   }
2054
2055   /* Use the rvalue deref handler for the most part.  We'll ignore
2056    * swizzles in it and write swizzles using writemask, though.
2057    */
2058   ir->accept(v);
2059   return st_dst_reg(v->result);
2060}
2061
2062/**
2063 * Process the condition of a conditional assignment
2064 *
2065 * Examines the condition of a conditional assignment to generate the optimal
2066 * first operand of a \c CMP instruction.  If the condition is a relational
2067 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2068 * used as the source for the \c CMP instruction.  Otherwise the comparison
2069 * is processed to a boolean result, and the boolean result is used as the
2070 * operand to the CMP instruction.
2071 */
2072bool
2073glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2074{
2075   ir_rvalue *src_ir = ir;
2076   bool negate = true;
2077   bool switch_order = false;
2078
2079   ir_expression *const expr = ir->as_expression();
2080   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2081      bool zero_on_left = false;
2082
2083      if (expr->operands[0]->is_zero()) {
2084         src_ir = expr->operands[1];
2085         zero_on_left = true;
2086      } else if (expr->operands[1]->is_zero()) {
2087         src_ir = expr->operands[0];
2088         zero_on_left = false;
2089      }
2090
2091      /*      a is -  0  +            -  0  +
2092       * (a <  0)  T  F  F  ( a < 0)  T  F  F
2093       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2094       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2095       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2096       * (a >  0)  F  F  T  (-a < 0)  F  F  T
2097       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2098       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2099       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2100       *
2101       * Note that exchanging the order of 0 and 'a' in the comparison simply
2102       * means that the value of 'a' should be negated.
2103       */
2104      if (src_ir != ir) {
2105         switch (expr->operation) {
2106         case ir_binop_less:
2107            switch_order = false;
2108            negate = zero_on_left;
2109            break;
2110
2111         case ir_binop_greater:
2112            switch_order = false;
2113            negate = !zero_on_left;
2114            break;
2115
2116         case ir_binop_lequal:
2117            switch_order = true;
2118            negate = !zero_on_left;
2119            break;
2120
2121         case ir_binop_gequal:
2122            switch_order = true;
2123            negate = zero_on_left;
2124            break;
2125
2126         default:
2127            /* This isn't the right kind of comparison afterall, so make sure
2128             * the whole condition is visited.
2129             */
2130            src_ir = ir;
2131            break;
2132         }
2133      }
2134   }
2135
2136   src_ir->accept(this);
2137
2138   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2139    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2140    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2141    * computing the condition.
2142    */
2143   if (negate)
2144      this->result.negate = ~this->result.negate;
2145
2146   return switch_order;
2147}
2148
2149void
2150glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2151{
2152   st_dst_reg l;
2153   st_src_reg r;
2154   int i;
2155
2156   ir->rhs->accept(this);
2157   r = this->result;
2158
2159   l = get_assignment_lhs(ir->lhs, this);
2160
2161   /* FINISHME: This should really set to the correct maximal writemask for each
2162    * FINISHME: component written (in the loops below).  This case can only
2163    * FINISHME: occur for matrices, arrays, and structures.
2164    */
2165   if (ir->write_mask == 0) {
2166      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2167      l.writemask = WRITEMASK_XYZW;
2168   } else if (ir->lhs->type->is_scalar() &&
2169              ir->lhs->variable_referenced()->mode == ir_var_out) {
2170      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2171       * FINISHME: W component of fragment shader output zero, work correctly.
2172       */
2173      l.writemask = WRITEMASK_XYZW;
2174   } else {
2175      int swizzles[4];
2176      int first_enabled_chan = 0;
2177      int rhs_chan = 0;
2178
2179      l.writemask = ir->write_mask;
2180
2181      for (int i = 0; i < 4; i++) {
2182         if (l.writemask & (1 << i)) {
2183            first_enabled_chan = GET_SWZ(r.swizzle, i);
2184            break;
2185         }
2186      }
2187
2188      /* Swizzle a small RHS vector into the channels being written.
2189       *
2190       * glsl ir treats write_mask as dictating how many channels are
2191       * present on the RHS while TGSI treats write_mask as just
2192       * showing which channels of the vec4 RHS get written.
2193       */
2194      for (int i = 0; i < 4; i++) {
2195         if (l.writemask & (1 << i))
2196            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2197         else
2198            swizzles[i] = first_enabled_chan;
2199      }
2200      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2201        			swizzles[2], swizzles[3]);
2202   }
2203
2204   assert(l.file != PROGRAM_UNDEFINED);
2205   assert(r.file != PROGRAM_UNDEFINED);
2206
2207   if (ir->condition) {
2208      const bool switch_order = this->process_move_condition(ir->condition);
2209      st_src_reg condition = this->result;
2210
2211      for (i = 0; i < type_size(ir->lhs->type); i++) {
2212         st_src_reg l_src = st_src_reg(l);
2213         st_src_reg condition_temp = condition;
2214         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2215
2216         if (native_integers) {
2217            /* This is necessary because TGSI's CMP instruction expects the
2218             * condition to be a float, and we store booleans as integers.
2219             * If TGSI had a UCMP instruction or similar, this extra
2220             * instruction would not be necessary.
2221             */
2222            condition_temp = get_temp(glsl_type::vec4_type);
2223            condition.negate = 0;
2224            emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2225            condition_temp.swizzle = condition.swizzle;
2226         }
2227
2228         if (switch_order) {
2229            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2230         } else {
2231            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2232         }
2233
2234         l.index++;
2235         r.index++;
2236      }
2237   } else if (ir->rhs->as_expression() &&
2238              this->instructions.get_tail() &&
2239              ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2240              type_size(ir->lhs->type) == 1 &&
2241              l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2242      /* To avoid emitting an extra MOV when assigning an expression to a
2243       * variable, emit the last instruction of the expression again, but
2244       * replace the destination register with the target of the assignment.
2245       * Dead code elimination will remove the original instruction.
2246       */
2247      glsl_to_tgsi_instruction *inst, *new_inst;
2248      inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2249      new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2250      new_inst->saturate = inst->saturate;
2251      inst->dead_mask = inst->dst.writemask;
2252   } else {
2253      for (i = 0; i < type_size(ir->lhs->type); i++) {
2254         emit(ir, TGSI_OPCODE_MOV, l, r);
2255         l.index++;
2256         r.index++;
2257      }
2258   }
2259}
2260
2261
2262void
2263glsl_to_tgsi_visitor::visit(ir_constant *ir)
2264{
2265   st_src_reg src;
2266   GLfloat stack_vals[4] = { 0 };
2267   gl_constant_value *values = (gl_constant_value *) stack_vals;
2268   GLenum gl_type = GL_NONE;
2269   unsigned int i;
2270   static int in_array = 0;
2271   gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2272
2273   /* Unfortunately, 4 floats is all we can get into
2274    * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
2275    * aggregate constant and move each constant value into it.  If we
2276    * get lucky, copy propagation will eliminate the extra moves.
2277    */
2278   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2279      st_src_reg temp_base = get_temp(ir->type);
2280      st_dst_reg temp = st_dst_reg(temp_base);
2281
2282      foreach_iter(exec_list_iterator, iter, ir->components) {
2283         ir_constant *field_value = (ir_constant *)iter.get();
2284         int size = type_size(field_value->type);
2285
2286         assert(size > 0);
2287
2288         field_value->accept(this);
2289         src = this->result;
2290
2291         for (i = 0; i < (unsigned int)size; i++) {
2292            emit(ir, TGSI_OPCODE_MOV, temp, src);
2293
2294            src.index++;
2295            temp.index++;
2296         }
2297      }
2298      this->result = temp_base;
2299      return;
2300   }
2301
2302   if (ir->type->is_array()) {
2303      st_src_reg temp_base = get_temp(ir->type);
2304      st_dst_reg temp = st_dst_reg(temp_base);
2305      int size = type_size(ir->type->fields.array);
2306
2307      assert(size > 0);
2308      in_array++;
2309
2310      for (i = 0; i < ir->type->length; i++) {
2311         ir->array_elements[i]->accept(this);
2312         src = this->result;
2313         for (int j = 0; j < size; j++) {
2314            emit(ir, TGSI_OPCODE_MOV, temp, src);
2315
2316            src.index++;
2317            temp.index++;
2318         }
2319      }
2320      this->result = temp_base;
2321      in_array--;
2322      return;
2323   }
2324
2325   if (ir->type->is_matrix()) {
2326      st_src_reg mat = get_temp(ir->type);
2327      st_dst_reg mat_column = st_dst_reg(mat);
2328
2329      for (i = 0; i < ir->type->matrix_columns; i++) {
2330         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2331         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2332
2333         src = st_src_reg(file, -1, ir->type->base_type);
2334         src.index = add_constant(file,
2335                                  values,
2336                                  ir->type->vector_elements,
2337                                  GL_FLOAT,
2338                                  &src.swizzle);
2339         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2340
2341         mat_column.index++;
2342      }
2343
2344      this->result = mat;
2345      return;
2346   }
2347
2348   switch (ir->type->base_type) {
2349   case GLSL_TYPE_FLOAT:
2350      gl_type = GL_FLOAT;
2351      for (i = 0; i < ir->type->vector_elements; i++) {
2352         values[i].f = ir->value.f[i];
2353      }
2354      break;
2355   case GLSL_TYPE_UINT:
2356      gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2357      for (i = 0; i < ir->type->vector_elements; i++) {
2358         if (native_integers)
2359            values[i].u = ir->value.u[i];
2360         else
2361            values[i].f = ir->value.u[i];
2362      }
2363      break;
2364   case GLSL_TYPE_INT:
2365      gl_type = native_integers ? GL_INT : GL_FLOAT;
2366      for (i = 0; i < ir->type->vector_elements; i++) {
2367         if (native_integers)
2368            values[i].i = ir->value.i[i];
2369         else
2370            values[i].f = ir->value.i[i];
2371      }
2372      break;
2373   case GLSL_TYPE_BOOL:
2374      gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2375      for (i = 0; i < ir->type->vector_elements; i++) {
2376         if (native_integers)
2377            values[i].b = ir->value.b[i];
2378         else
2379            values[i].f = ir->value.b[i];
2380      }
2381      break;
2382   default:
2383      assert(!"Non-float/uint/int/bool constant");
2384   }
2385
2386   this->result = st_src_reg(file, -1, ir->type);
2387   this->result.index = add_constant(file,
2388                                     values,
2389                                     ir->type->vector_elements,
2390                                     gl_type,
2391                                     &this->result.swizzle);
2392}
2393
2394function_entry *
2395glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2396{
2397   function_entry *entry;
2398
2399   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2400      entry = (function_entry *)iter.get();
2401
2402      if (entry->sig == sig)
2403         return entry;
2404   }
2405
2406   entry = ralloc(mem_ctx, function_entry);
2407   entry->sig = sig;
2408   entry->sig_id = this->next_signature_id++;
2409   entry->bgn_inst = NULL;
2410
2411   /* Allocate storage for all the parameters. */
2412   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2413      ir_variable *param = (ir_variable *)iter.get();
2414      variable_storage *storage;
2415
2416      storage = find_variable_storage(param);
2417      assert(!storage);
2418
2419      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2420        				      this->next_temp);
2421      this->variables.push_tail(storage);
2422
2423      this->next_temp += type_size(param->type);
2424   }
2425
2426   if (!sig->return_type->is_void()) {
2427      entry->return_reg = get_temp(sig->return_type);
2428   } else {
2429      entry->return_reg = undef_src;
2430   }
2431
2432   this->function_signatures.push_tail(entry);
2433   return entry;
2434}
2435
2436void
2437glsl_to_tgsi_visitor::visit(ir_call *ir)
2438{
2439   glsl_to_tgsi_instruction *call_inst;
2440   ir_function_signature *sig = ir->get_callee();
2441   function_entry *entry = get_function_signature(sig);
2442   int i;
2443
2444   /* Process in parameters. */
2445   exec_list_iterator sig_iter = sig->parameters.iterator();
2446   foreach_iter(exec_list_iterator, iter, *ir) {
2447      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2448      ir_variable *param = (ir_variable *)sig_iter.get();
2449
2450      if (param->mode == ir_var_in ||
2451          param->mode == ir_var_inout) {
2452         variable_storage *storage = find_variable_storage(param);
2453         assert(storage);
2454
2455         param_rval->accept(this);
2456         st_src_reg r = this->result;
2457
2458         st_dst_reg l;
2459         l.file = storage->file;
2460         l.index = storage->index;
2461         l.reladdr = NULL;
2462         l.writemask = WRITEMASK_XYZW;
2463         l.cond_mask = COND_TR;
2464
2465         for (i = 0; i < type_size(param->type); i++) {
2466            emit(ir, TGSI_OPCODE_MOV, l, r);
2467            l.index++;
2468            r.index++;
2469         }
2470      }
2471
2472      sig_iter.next();
2473   }
2474   assert(!sig_iter.has_next());
2475
2476   /* Emit call instruction */
2477   call_inst = emit(ir, TGSI_OPCODE_CAL);
2478   call_inst->function = entry;
2479
2480   /* Process out parameters. */
2481   sig_iter = sig->parameters.iterator();
2482   foreach_iter(exec_list_iterator, iter, *ir) {
2483      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2484      ir_variable *param = (ir_variable *)sig_iter.get();
2485
2486      if (param->mode == ir_var_out ||
2487          param->mode == ir_var_inout) {
2488         variable_storage *storage = find_variable_storage(param);
2489         assert(storage);
2490
2491         st_src_reg r;
2492         r.file = storage->file;
2493         r.index = storage->index;
2494         r.reladdr = NULL;
2495         r.swizzle = SWIZZLE_NOOP;
2496         r.negate = 0;
2497
2498         param_rval->accept(this);
2499         st_dst_reg l = st_dst_reg(this->result);
2500
2501         for (i = 0; i < type_size(param->type); i++) {
2502            emit(ir, TGSI_OPCODE_MOV, l, r);
2503            l.index++;
2504            r.index++;
2505         }
2506      }
2507
2508      sig_iter.next();
2509   }
2510   assert(!sig_iter.has_next());
2511
2512   /* Process return value. */
2513   this->result = entry->return_reg;
2514}
2515
2516void
2517glsl_to_tgsi_visitor::visit(ir_texture *ir)
2518{
2519   st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2520   st_dst_reg result_dst, coord_dst;
2521   glsl_to_tgsi_instruction *inst = NULL;
2522   unsigned opcode = TGSI_OPCODE_NOP;
2523
2524   if (ir->coordinate) {
2525      ir->coordinate->accept(this);
2526
2527      /* Put our coords in a temp.  We'll need to modify them for shadow,
2528       * projection, or LOD, so the only case we'd use it as is is if
2529       * we're doing plain old texturing.  The optimization passes on
2530       * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2531       */
2532      coord = get_temp(glsl_type::vec4_type);
2533      coord_dst = st_dst_reg(coord);
2534      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2535   }
2536
2537   if (ir->projector) {
2538      ir->projector->accept(this);
2539      projector = this->result;
2540   }
2541
2542   /* Storage for our result.  Ideally for an assignment we'd be using
2543    * the actual storage for the result here, instead.
2544    */
2545   result_src = get_temp(glsl_type::vec4_type);
2546   result_dst = st_dst_reg(result_src);
2547
2548   switch (ir->op) {
2549   case ir_tex:
2550      opcode = TGSI_OPCODE_TEX;
2551      break;
2552   case ir_txb:
2553      opcode = TGSI_OPCODE_TXB;
2554      ir->lod_info.bias->accept(this);
2555      lod_info = this->result;
2556      break;
2557   case ir_txl:
2558      opcode = TGSI_OPCODE_TXL;
2559      ir->lod_info.lod->accept(this);
2560      lod_info = this->result;
2561      break;
2562   case ir_txd:
2563      opcode = TGSI_OPCODE_TXD;
2564      ir->lod_info.grad.dPdx->accept(this);
2565      dx = this->result;
2566      ir->lod_info.grad.dPdy->accept(this);
2567      dy = this->result;
2568      break;
2569   case ir_txs:
2570      opcode = TGSI_OPCODE_TXQ;
2571      ir->lod_info.lod->accept(this);
2572      lod_info = this->result;
2573      break;
2574   case ir_txf:
2575      opcode = TGSI_OPCODE_TXF;
2576      ir->lod_info.lod->accept(this);
2577      lod_info = this->result;
2578      if (ir->offset) {
2579	 ir->offset->accept(this);
2580	 offset = this->result;
2581      }
2582      break;
2583   }
2584
2585   const glsl_type *sampler_type = ir->sampler->type;
2586
2587   if (ir->projector) {
2588      if (opcode == TGSI_OPCODE_TEX) {
2589         /* Slot the projector in as the last component of the coord. */
2590         coord_dst.writemask = WRITEMASK_W;
2591         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2592         coord_dst.writemask = WRITEMASK_XYZW;
2593         opcode = TGSI_OPCODE_TXP;
2594      } else {
2595         st_src_reg coord_w = coord;
2596         coord_w.swizzle = SWIZZLE_WWWW;
2597
2598         /* For the other TEX opcodes there's no projective version
2599          * since the last slot is taken up by LOD info.  Do the
2600          * projective divide now.
2601          */
2602         coord_dst.writemask = WRITEMASK_W;
2603         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2604
2605         /* In the case where we have to project the coordinates "by hand,"
2606          * the shadow comparator value must also be projected.
2607          */
2608         st_src_reg tmp_src = coord;
2609         if (ir->shadow_comparitor) {
2610            /* Slot the shadow value in as the second to last component of the
2611             * coord.
2612             */
2613            ir->shadow_comparitor->accept(this);
2614
2615            tmp_src = get_temp(glsl_type::vec4_type);
2616            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2617
2618	    /* Projective division not allowed for array samplers. */
2619	    assert(!sampler_type->sampler_array);
2620
2621            tmp_dst.writemask = WRITEMASK_Z;
2622            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2623
2624            tmp_dst.writemask = WRITEMASK_XY;
2625            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2626         }
2627
2628         coord_dst.writemask = WRITEMASK_XYZ;
2629         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2630
2631         coord_dst.writemask = WRITEMASK_XYZW;
2632         coord.swizzle = SWIZZLE_XYZW;
2633      }
2634   }
2635
2636   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2637    * comparator was put in the correct place (and projected) by the code,
2638    * above, that handles by-hand projection.
2639    */
2640   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2641      /* Slot the shadow value in as the second to last component of the
2642       * coord.
2643       */
2644      ir->shadow_comparitor->accept(this);
2645
2646      /* XXX This will need to be updated for cubemap array samplers. */
2647      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2648          sampler_type->sampler_array) {
2649         coord_dst.writemask = WRITEMASK_W;
2650      } else {
2651         coord_dst.writemask = WRITEMASK_Z;
2652      }
2653
2654      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2655      coord_dst.writemask = WRITEMASK_XYZW;
2656   }
2657
2658   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2659       opcode == TGSI_OPCODE_TXF) {
2660      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2661      coord_dst.writemask = WRITEMASK_W;
2662      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2663      coord_dst.writemask = WRITEMASK_XYZW;
2664   }
2665
2666   if (opcode == TGSI_OPCODE_TXD)
2667      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2668   else if (opcode == TGSI_OPCODE_TXQ)
2669      inst = emit(ir, opcode, result_dst, lod_info);
2670   else if (opcode == TGSI_OPCODE_TXF) {
2671      inst = emit(ir, opcode, result_dst, coord);
2672   } else
2673      inst = emit(ir, opcode, result_dst, coord);
2674
2675   if (ir->shadow_comparitor)
2676      inst->tex_shadow = GL_TRUE;
2677
2678   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2679        					   this->shader_program,
2680        					   this->prog);
2681
2682   if (ir->offset) {
2683       inst->tex_offset_num_offset = 1;
2684       inst->tex_offsets[0].Index = offset.index;
2685       inst->tex_offsets[0].File = offset.file;
2686       inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2687       inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2688       inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2689   }
2690
2691   switch (sampler_type->sampler_dimensionality) {
2692   case GLSL_SAMPLER_DIM_1D:
2693      inst->tex_target = (sampler_type->sampler_array)
2694         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2695      break;
2696   case GLSL_SAMPLER_DIM_2D:
2697      inst->tex_target = (sampler_type->sampler_array)
2698         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2699      break;
2700   case GLSL_SAMPLER_DIM_3D:
2701      inst->tex_target = TEXTURE_3D_INDEX;
2702      break;
2703   case GLSL_SAMPLER_DIM_CUBE:
2704      inst->tex_target = TEXTURE_CUBE_INDEX;
2705      break;
2706   case GLSL_SAMPLER_DIM_RECT:
2707      inst->tex_target = TEXTURE_RECT_INDEX;
2708      break;
2709   case GLSL_SAMPLER_DIM_BUF:
2710      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2711      break;
2712   case GLSL_SAMPLER_DIM_EXTERNAL:
2713      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2714      break;
2715   default:
2716      assert(!"Should not get here.");
2717   }
2718
2719   this->result = result_src;
2720}
2721
2722void
2723glsl_to_tgsi_visitor::visit(ir_return *ir)
2724{
2725   if (ir->get_value()) {
2726      st_dst_reg l;
2727      int i;
2728
2729      assert(current_function);
2730
2731      ir->get_value()->accept(this);
2732      st_src_reg r = this->result;
2733
2734      l = st_dst_reg(current_function->return_reg);
2735
2736      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2737         emit(ir, TGSI_OPCODE_MOV, l, r);
2738         l.index++;
2739         r.index++;
2740      }
2741   }
2742
2743   emit(ir, TGSI_OPCODE_RET);
2744}
2745
2746void
2747glsl_to_tgsi_visitor::visit(ir_discard *ir)
2748{
2749   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2750
2751   if (ir->condition) {
2752      ir->condition->accept(this);
2753      this->result.negate = ~this->result.negate;
2754      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2755   } else {
2756      emit(ir, TGSI_OPCODE_KILP);
2757   }
2758
2759   fp->UsesKill = GL_TRUE;
2760}
2761
2762void
2763glsl_to_tgsi_visitor::visit(ir_if *ir)
2764{
2765   glsl_to_tgsi_instruction *cond_inst, *if_inst;
2766   glsl_to_tgsi_instruction *prev_inst;
2767
2768   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2769
2770   ir->condition->accept(this);
2771   assert(this->result.file != PROGRAM_UNDEFINED);
2772
2773   if (this->options->EmitCondCodes) {
2774      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2775
2776      /* See if we actually generated any instruction for generating
2777       * the condition.  If not, then cook up a move to a temp so we
2778       * have something to set cond_update on.
2779       */
2780      if (cond_inst == prev_inst) {
2781         st_src_reg temp = get_temp(glsl_type::bool_type);
2782         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2783      }
2784      cond_inst->cond_update = GL_TRUE;
2785
2786      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2787      if_inst->dst.cond_mask = COND_NE;
2788   } else {
2789      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2790   }
2791
2792   this->instructions.push_tail(if_inst);
2793
2794   visit_exec_list(&ir->then_instructions, this);
2795
2796   if (!ir->else_instructions.is_empty()) {
2797      emit(ir->condition, TGSI_OPCODE_ELSE);
2798      visit_exec_list(&ir->else_instructions, this);
2799   }
2800
2801   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2802}
2803
2804glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2805{
2806   result.file = PROGRAM_UNDEFINED;
2807   next_temp = 1;
2808   next_signature_id = 1;
2809   num_immediates = 0;
2810   current_function = NULL;
2811   num_address_regs = 0;
2812   indirect_addr_temps = false;
2813   indirect_addr_consts = false;
2814   mem_ctx = ralloc_context(NULL);
2815}
2816
2817glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2818{
2819   ralloc_free(mem_ctx);
2820}
2821
2822extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2823{
2824   delete v;
2825}
2826
2827
2828/**
2829 * Count resources used by the given gpu program (number of texture
2830 * samplers, etc).
2831 */
2832static void
2833count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2834{
2835   v->samplers_used = 0;
2836
2837   foreach_iter(exec_list_iterator, iter, v->instructions) {
2838      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2839
2840      if (is_tex_instruction(inst->op)) {
2841         v->samplers_used |= 1 << inst->sampler;
2842
2843         prog->SamplerTargets[inst->sampler] =
2844            (gl_texture_index)inst->tex_target;
2845         if (inst->tex_shadow) {
2846            prog->ShadowSamplers |= 1 << inst->sampler;
2847         }
2848      }
2849   }
2850
2851   prog->SamplersUsed = v->samplers_used;
2852   _mesa_update_shader_textures_used(prog);
2853}
2854
2855static void
2856set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2857        		struct gl_shader_program *shader_program,
2858        		const char *name, const glsl_type *type,
2859        		ir_constant *val)
2860{
2861   if (type->is_record()) {
2862      ir_constant *field_constant;
2863
2864      field_constant = (ir_constant *)val->components.get_head();
2865
2866      for (unsigned int i = 0; i < type->length; i++) {
2867         const glsl_type *field_type = type->fields.structure[i].type;
2868         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2869        				    type->fields.structure[i].name);
2870         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2871        			 field_type, field_constant);
2872         field_constant = (ir_constant *)field_constant->next;
2873      }
2874      return;
2875   }
2876
2877   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2878
2879   if (loc == -1) {
2880      fail_link(shader_program,
2881        	"Couldn't find uniform for initializer %s\n", name);
2882      return;
2883   }
2884
2885   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2886      ir_constant *element;
2887      const glsl_type *element_type;
2888      if (type->is_array()) {
2889         element = val->array_elements[i];
2890         element_type = type->fields.array;
2891      } else {
2892         element = val;
2893         element_type = type;
2894      }
2895
2896      void *values;
2897
2898      if (element_type->base_type == GLSL_TYPE_BOOL) {
2899         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2900         for (unsigned int j = 0; j < element_type->components(); j++) {
2901            conv[j] = element->value.b[j];
2902         }
2903         values = (void *)conv;
2904         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2905        					element_type->vector_elements,
2906        					1);
2907      } else {
2908         values = &element->value;
2909      }
2910
2911      if (element_type->is_matrix()) {
2912         _mesa_uniform_matrix(ctx, shader_program,
2913        		      element_type->matrix_columns,
2914        		      element_type->vector_elements,
2915        		      loc, 1, GL_FALSE, (GLfloat *)values);
2916      } else {
2917         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2918        	       values, element_type->gl_type);
2919      }
2920
2921      loc++;
2922   }
2923}
2924
2925/**
2926 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2927 * are read from the given src in this instruction
2928 */
2929static int
2930get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2931{
2932   int read_mask = 0, comp;
2933
2934   /* Now, given the src swizzle and the written channels, find which
2935    * components are actually read
2936    */
2937   for (comp = 0; comp < 4; ++comp) {
2938      const unsigned coord = GET_SWZ(src.swizzle, comp);
2939      ASSERT(coord < 4);
2940      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2941         read_mask |= 1 << coord;
2942   }
2943
2944   return read_mask;
2945}
2946
2947/**
2948 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2949 * instruction is the first instruction to write to register T0.  There are
2950 * several lowering passes done in GLSL IR (e.g. branches and
2951 * relative addressing) that create a large number of conditional assignments
2952 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2953 *
2954 * Here is why this conversion is safe:
2955 * CMP T0, T1 T2 T0 can be expanded to:
2956 * if (T1 < 0.0)
2957 * 	MOV T0, T2;
2958 * else
2959 * 	MOV T0, T0;
2960 *
2961 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2962 * as the original program.  If (T1 < 0.0) evaluates to false, executing
2963 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2964 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2965 * because any instruction that was going to read from T0 after this was going
2966 * to read a garbage value anyway.
2967 */
2968void
2969glsl_to_tgsi_visitor::simplify_cmp(void)
2970{
2971   unsigned *tempWrites;
2972   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2973
2974   tempWrites = new unsigned[MAX_TEMPS];
2975   if (!tempWrites) {
2976      return;
2977   }
2978   memset(tempWrites, 0, sizeof(tempWrites));
2979   memset(outputWrites, 0, sizeof(outputWrites));
2980
2981   foreach_iter(exec_list_iterator, iter, this->instructions) {
2982      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2983      unsigned prevWriteMask = 0;
2984
2985      /* Give up if we encounter relative addressing or flow control. */
2986      if (inst->dst.reladdr ||
2987          tgsi_get_opcode_info(inst->op)->is_branch ||
2988          inst->op == TGSI_OPCODE_BGNSUB ||
2989          inst->op == TGSI_OPCODE_CONT ||
2990          inst->op == TGSI_OPCODE_END ||
2991          inst->op == TGSI_OPCODE_ENDSUB ||
2992          inst->op == TGSI_OPCODE_RET) {
2993         break;
2994      }
2995
2996      if (inst->dst.file == PROGRAM_OUTPUT) {
2997         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2998         prevWriteMask = outputWrites[inst->dst.index];
2999         outputWrites[inst->dst.index] |= inst->dst.writemask;
3000      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3001         assert(inst->dst.index < MAX_TEMPS);
3002         prevWriteMask = tempWrites[inst->dst.index];
3003         tempWrites[inst->dst.index] |= inst->dst.writemask;
3004      }
3005
3006      /* For a CMP to be considered a conditional write, the destination
3007       * register and source register two must be the same. */
3008      if (inst->op == TGSI_OPCODE_CMP
3009          && !(inst->dst.writemask & prevWriteMask)
3010          && inst->src[2].file == inst->dst.file
3011          && inst->src[2].index == inst->dst.index
3012          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3013
3014         inst->op = TGSI_OPCODE_MOV;
3015         inst->src[0] = inst->src[1];
3016      }
3017   }
3018
3019   delete [] tempWrites;
3020}
3021
3022/* Replaces all references to a temporary register index with another index. */
3023void
3024glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3025{
3026   foreach_iter(exec_list_iterator, iter, this->instructions) {
3027      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3028      unsigned j;
3029
3030      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3031         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3032             inst->src[j].index == index) {
3033            inst->src[j].index = new_index;
3034         }
3035      }
3036
3037      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3038         inst->dst.index = new_index;
3039      }
3040   }
3041}
3042
3043int
3044glsl_to_tgsi_visitor::get_first_temp_read(int index)
3045{
3046   int depth = 0; /* loop depth */
3047   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3048   unsigned i = 0, j;
3049
3050   foreach_iter(exec_list_iterator, iter, this->instructions) {
3051      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3052
3053      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3054         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3055             inst->src[j].index == index) {
3056            return (depth == 0) ? i : loop_start;
3057         }
3058      }
3059
3060      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3061         if(depth++ == 0)
3062            loop_start = i;
3063      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3064         if (--depth == 0)
3065            loop_start = -1;
3066      }
3067      assert(depth >= 0);
3068
3069      i++;
3070   }
3071
3072   return -1;
3073}
3074
3075int
3076glsl_to_tgsi_visitor::get_first_temp_write(int index)
3077{
3078   int depth = 0; /* loop depth */
3079   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3080   int i = 0;
3081
3082   foreach_iter(exec_list_iterator, iter, this->instructions) {
3083      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3084
3085      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3086         return (depth == 0) ? i : loop_start;
3087      }
3088
3089      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3090         if(depth++ == 0)
3091            loop_start = i;
3092      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3093         if (--depth == 0)
3094            loop_start = -1;
3095      }
3096      assert(depth >= 0);
3097
3098      i++;
3099   }
3100
3101   return -1;
3102}
3103
3104int
3105glsl_to_tgsi_visitor::get_last_temp_read(int index)
3106{
3107   int depth = 0; /* loop depth */
3108   int last = -1; /* index of last instruction that reads the temporary */
3109   unsigned i = 0, j;
3110
3111   foreach_iter(exec_list_iterator, iter, this->instructions) {
3112      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3113
3114      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3115         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3116             inst->src[j].index == index) {
3117            last = (depth == 0) ? i : -2;
3118         }
3119      }
3120
3121      if (inst->op == TGSI_OPCODE_BGNLOOP)
3122         depth++;
3123      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3124         if (--depth == 0 && last == -2)
3125            last = i;
3126      assert(depth >= 0);
3127
3128      i++;
3129   }
3130
3131   assert(last >= -1);
3132   return last;
3133}
3134
3135int
3136glsl_to_tgsi_visitor::get_last_temp_write(int index)
3137{
3138   int depth = 0; /* loop depth */
3139   int last = -1; /* index of last instruction that writes to the temporary */
3140   int i = 0;
3141
3142   foreach_iter(exec_list_iterator, iter, this->instructions) {
3143      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3144
3145      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3146         last = (depth == 0) ? i : -2;
3147
3148      if (inst->op == TGSI_OPCODE_BGNLOOP)
3149         depth++;
3150      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3151         if (--depth == 0 && last == -2)
3152            last = i;
3153      assert(depth >= 0);
3154
3155      i++;
3156   }
3157
3158   assert(last >= -1);
3159   return last;
3160}
3161
3162/*
3163 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3164 * channels for copy propagation and updates following instructions to
3165 * use the original versions.
3166 *
3167 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3168 * will occur.  As an example, a TXP production before this pass:
3169 *
3170 * 0: MOV TEMP[1], INPUT[4].xyyy;
3171 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3172 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3173 *
3174 * and after:
3175 *
3176 * 0: MOV TEMP[1], INPUT[4].xyyy;
3177 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3178 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3179 *
3180 * which allows for dead code elimination on TEMP[1]'s writes.
3181 */
3182void
3183glsl_to_tgsi_visitor::copy_propagate(void)
3184{
3185   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3186        					    glsl_to_tgsi_instruction *,
3187        					    this->next_temp * 4);
3188   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3189   int level = 0;
3190
3191   foreach_iter(exec_list_iterator, iter, this->instructions) {
3192      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3193
3194      assert(inst->dst.file != PROGRAM_TEMPORARY
3195             || inst->dst.index < this->next_temp);
3196
3197      /* First, do any copy propagation possible into the src regs. */
3198      for (int r = 0; r < 3; r++) {
3199         glsl_to_tgsi_instruction *first = NULL;
3200         bool good = true;
3201         int acp_base = inst->src[r].index * 4;
3202
3203         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3204             inst->src[r].reladdr)
3205            continue;
3206
3207         /* See if we can find entries in the ACP consisting of MOVs
3208          * from the same src register for all the swizzled channels
3209          * of this src register reference.
3210          */
3211         for (int i = 0; i < 4; i++) {
3212            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3213            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3214
3215            if (!copy_chan) {
3216               good = false;
3217               break;
3218            }
3219
3220            assert(acp_level[acp_base + src_chan] <= level);
3221
3222            if (!first) {
3223               first = copy_chan;
3224            } else {
3225               if (first->src[0].file != copy_chan->src[0].file ||
3226        	   first->src[0].index != copy_chan->src[0].index) {
3227        	  good = false;
3228        	  break;
3229               }
3230            }
3231         }
3232
3233         if (good) {
3234            /* We've now validated that we can copy-propagate to
3235             * replace this src register reference.  Do it.
3236             */
3237            inst->src[r].file = first->src[0].file;
3238            inst->src[r].index = first->src[0].index;
3239
3240            int swizzle = 0;
3241            for (int i = 0; i < 4; i++) {
3242               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3243               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3244               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3245        		   (3 * i));
3246            }
3247            inst->src[r].swizzle = swizzle;
3248         }
3249      }
3250
3251      switch (inst->op) {
3252      case TGSI_OPCODE_BGNLOOP:
3253      case TGSI_OPCODE_ENDLOOP:
3254         /* End of a basic block, clear the ACP entirely. */
3255         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3256         break;
3257
3258      case TGSI_OPCODE_IF:
3259         ++level;
3260         break;
3261
3262      case TGSI_OPCODE_ENDIF:
3263      case TGSI_OPCODE_ELSE:
3264         /* Clear all channels written inside the block from the ACP, but
3265          * leaving those that were not touched.
3266          */
3267         for (int r = 0; r < this->next_temp; r++) {
3268            for (int c = 0; c < 4; c++) {
3269               if (!acp[4 * r + c])
3270        	  continue;
3271
3272               if (acp_level[4 * r + c] >= level)
3273        	  acp[4 * r + c] = NULL;
3274            }
3275         }
3276         if (inst->op == TGSI_OPCODE_ENDIF)
3277            --level;
3278         break;
3279
3280      default:
3281         /* Continuing the block, clear any written channels from
3282          * the ACP.
3283          */
3284         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3285            /* Any temporary might be written, so no copy propagation
3286             * across this instruction.
3287             */
3288            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3289         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3290        	    inst->dst.reladdr) {
3291            /* Any output might be written, so no copy propagation
3292             * from outputs across this instruction.
3293             */
3294            for (int r = 0; r < this->next_temp; r++) {
3295               for (int c = 0; c < 4; c++) {
3296        	  if (!acp[4 * r + c])
3297        	     continue;
3298
3299        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3300        	     acp[4 * r + c] = NULL;
3301               }
3302            }
3303         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3304        	    inst->dst.file == PROGRAM_OUTPUT) {
3305            /* Clear where it's used as dst. */
3306            if (inst->dst.file == PROGRAM_TEMPORARY) {
3307               for (int c = 0; c < 4; c++) {
3308        	  if (inst->dst.writemask & (1 << c)) {
3309        	     acp[4 * inst->dst.index + c] = NULL;
3310        	  }
3311               }
3312            }
3313
3314            /* Clear where it's used as src. */
3315            for (int r = 0; r < this->next_temp; r++) {
3316               for (int c = 0; c < 4; c++) {
3317        	  if (!acp[4 * r + c])
3318        	     continue;
3319
3320        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3321
3322        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3323        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3324        	      inst->dst.writemask & (1 << src_chan))
3325        	  {
3326        	     acp[4 * r + c] = NULL;
3327        	  }
3328               }
3329            }
3330         }
3331         break;
3332      }
3333
3334      /* If this is a copy, add it to the ACP. */
3335      if (inst->op == TGSI_OPCODE_MOV &&
3336          inst->dst.file == PROGRAM_TEMPORARY &&
3337          !inst->dst.reladdr &&
3338          !inst->saturate &&
3339          !inst->src[0].reladdr &&
3340          !inst->src[0].negate) {
3341         for (int i = 0; i < 4; i++) {
3342            if (inst->dst.writemask & (1 << i)) {
3343               acp[4 * inst->dst.index + i] = inst;
3344               acp_level[4 * inst->dst.index + i] = level;
3345            }
3346         }
3347      }
3348   }
3349
3350   ralloc_free(acp_level);
3351   ralloc_free(acp);
3352}
3353
3354/*
3355 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3356 *
3357 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3358 * will occur.  As an example, a TXP production after copy propagation but
3359 * before this pass:
3360 *
3361 * 0: MOV TEMP[1], INPUT[4].xyyy;
3362 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3363 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3364 *
3365 * and after this pass:
3366 *
3367 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3368 *
3369 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3370 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3371 */
3372void
3373glsl_to_tgsi_visitor::eliminate_dead_code(void)
3374{
3375   int i;
3376
3377   for (i=0; i < this->next_temp; i++) {
3378      int last_read = get_last_temp_read(i);
3379      int j = 0;
3380
3381      foreach_iter(exec_list_iterator, iter, this->instructions) {
3382         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3383
3384         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3385             j > last_read)
3386         {
3387            iter.remove();
3388            delete inst;
3389         }
3390
3391         j++;
3392      }
3393   }
3394}
3395
3396/*
3397 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3398 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3399 * is per-channel and can detect consecutive writes without a read between them
3400 * as dead code.  However, there is some dead code that can be eliminated by
3401 * eliminate_dead_code() but not this function - for example, this function
3402 * cannot eliminate an instruction writing to a register that is never read and
3403 * is the only instruction writing to that register.
3404 *
3405 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3406 * will occur.
3407 */
3408int
3409glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3410{
3411   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3412                                                     glsl_to_tgsi_instruction *,
3413                                                     this->next_temp * 4);
3414   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3415   int level = 0;
3416   int removed = 0;
3417
3418   foreach_iter(exec_list_iterator, iter, this->instructions) {
3419      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3420
3421      assert(inst->dst.file != PROGRAM_TEMPORARY
3422             || inst->dst.index < this->next_temp);
3423
3424      switch (inst->op) {
3425      case TGSI_OPCODE_BGNLOOP:
3426      case TGSI_OPCODE_ENDLOOP:
3427      case TGSI_OPCODE_CONT:
3428      case TGSI_OPCODE_BRK:
3429         /* End of a basic block, clear the write array entirely.
3430          *
3431          * This keeps us from killing dead code when the writes are
3432          * on either side of a loop, even when the register isn't touched
3433          * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
3434          * dead code of this type, so it shouldn't make a difference as long as
3435          * the dead code elimination pass in the GLSL compiler does its job.
3436          */
3437         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3438         break;
3439
3440      case TGSI_OPCODE_ENDIF:
3441      case TGSI_OPCODE_ELSE:
3442         /* Promote the recorded level of all channels written inside the
3443          * preceding if or else block to the level above the if/else block.
3444          */
3445         for (int r = 0; r < this->next_temp; r++) {
3446            for (int c = 0; c < 4; c++) {
3447               if (!writes[4 * r + c])
3448        	         continue;
3449
3450               if (write_level[4 * r + c] == level)
3451        	         write_level[4 * r + c] = level-1;
3452            }
3453         }
3454
3455         if(inst->op == TGSI_OPCODE_ENDIF)
3456            --level;
3457
3458         break;
3459
3460      case TGSI_OPCODE_IF:
3461         ++level;
3462         /* fallthrough to default case to mark the condition as read */
3463
3464      default:
3465         /* Continuing the block, clear any channels from the write array that
3466          * are read by this instruction.
3467          */
3468         for (unsigned i = 0; i < Elements(inst->src); i++) {
3469            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3470               /* Any temporary might be read, so no dead code elimination
3471                * across this instruction.
3472                */
3473               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3474            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3475               /* Clear where it's used as src. */
3476               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3477               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3478               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3479               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3480
3481               for (int c = 0; c < 4; c++) {
3482              	   if (src_chans & (1 << c)) {
3483              	      writes[4 * inst->src[i].index + c] = NULL;
3484              	   }
3485               }
3486            }
3487         }
3488         break;
3489      }
3490
3491      /* If this instruction writes to a temporary, add it to the write array.
3492       * If there is already an instruction in the write array for one or more
3493       * of the channels, flag that channel write as dead.
3494       */
3495      if (inst->dst.file == PROGRAM_TEMPORARY &&
3496          !inst->dst.reladdr &&
3497          !inst->saturate) {
3498         for (int c = 0; c < 4; c++) {
3499            if (inst->dst.writemask & (1 << c)) {
3500               if (writes[4 * inst->dst.index + c]) {
3501                  if (write_level[4 * inst->dst.index + c] < level)
3502                     continue;
3503                  else
3504                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3505               }
3506               writes[4 * inst->dst.index + c] = inst;
3507               write_level[4 * inst->dst.index + c] = level;
3508            }
3509         }
3510      }
3511   }
3512
3513   /* Anything still in the write array at this point is dead code. */
3514   for (int r = 0; r < this->next_temp; r++) {
3515      for (int c = 0; c < 4; c++) {
3516         glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3517         if (inst)
3518            inst->dead_mask |= (1 << c);
3519      }
3520   }
3521
3522   /* Now actually remove the instructions that are completely dead and update
3523    * the writemask of other instructions with dead channels.
3524    */
3525   foreach_iter(exec_list_iterator, iter, this->instructions) {
3526      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3527
3528      if (!inst->dead_mask || !inst->dst.writemask)
3529         continue;
3530      else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3531         iter.remove();
3532         delete inst;
3533         removed++;
3534      } else
3535         inst->dst.writemask &= ~(inst->dead_mask);
3536   }
3537
3538   ralloc_free(write_level);
3539   ralloc_free(writes);
3540
3541   return removed;
3542}
3543
3544/* Merges temporary registers together where possible to reduce the number of
3545 * registers needed to run a program.
3546 *
3547 * Produces optimal code only after copy propagation and dead code elimination
3548 * have been run. */
3549void
3550glsl_to_tgsi_visitor::merge_registers(void)
3551{
3552   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3553   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3554   int i, j;
3555
3556   /* Read the indices of the last read and first write to each temp register
3557    * into an array so that we don't have to traverse the instruction list as
3558    * much. */
3559   for (i=0; i < this->next_temp; i++) {
3560      last_reads[i] = get_last_temp_read(i);
3561      first_writes[i] = get_first_temp_write(i);
3562   }
3563
3564   /* Start looking for registers with non-overlapping usages that can be
3565    * merged together. */
3566   for (i=0; i < this->next_temp; i++) {
3567      /* Don't touch unused registers. */
3568      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3569
3570      for (j=0; j < this->next_temp; j++) {
3571         /* Don't touch unused registers. */
3572         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3573
3574         /* We can merge the two registers if the first write to j is after or
3575          * in the same instruction as the last read from i.  Note that the
3576          * register at index i will always be used earlier or at the same time
3577          * as the register at index j. */
3578         if (first_writes[i] <= first_writes[j] &&
3579             last_reads[i] <= first_writes[j])
3580         {
3581            rename_temp_register(j, i); /* Replace all references to j with i.*/
3582
3583            /* Update the first_writes and last_reads arrays with the new
3584             * values for the merged register index, and mark the newly unused
3585             * register index as such. */
3586            last_reads[i] = last_reads[j];
3587            first_writes[j] = -1;
3588            last_reads[j] = -1;
3589         }
3590      }
3591   }
3592
3593   ralloc_free(last_reads);
3594   ralloc_free(first_writes);
3595}
3596
3597/* Reassign indices to temporary registers by reusing unused indices created
3598 * by optimization passes. */
3599void
3600glsl_to_tgsi_visitor::renumber_registers(void)
3601{
3602   int i = 0;
3603   int new_index = 0;
3604
3605   for (i=0; i < this->next_temp; i++) {
3606      if (get_first_temp_read(i) < 0) continue;
3607      if (i != new_index)
3608         rename_temp_register(i, new_index);
3609      new_index++;
3610   }
3611
3612   this->next_temp = new_index;
3613}
3614
3615/**
3616 * Returns a fragment program which implements the current pixel transfer ops.
3617 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3618 */
3619extern "C" void
3620get_pixel_transfer_visitor(struct st_fragment_program *fp,
3621                           glsl_to_tgsi_visitor *original,
3622                           int scale_and_bias, int pixel_maps)
3623{
3624   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3625   struct st_context *st = st_context(original->ctx);
3626   struct gl_program *prog = &fp->Base.Base;
3627   struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3628   st_src_reg coord, src0;
3629   st_dst_reg dst0;
3630   glsl_to_tgsi_instruction *inst;
3631
3632   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3633   v->ctx = original->ctx;
3634   v->prog = prog;
3635   v->shader_program = NULL;
3636   v->glsl_version = original->glsl_version;
3637   v->native_integers = original->native_integers;
3638   v->options = original->options;
3639   v->next_temp = original->next_temp;
3640   v->num_address_regs = original->num_address_regs;
3641   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3642   v->indirect_addr_temps = original->indirect_addr_temps;
3643   v->indirect_addr_consts = original->indirect_addr_consts;
3644   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3645
3646   /*
3647    * Get initial pixel color from the texture.
3648    * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3649    */
3650   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3651   src0 = v->get_temp(glsl_type::vec4_type);
3652   dst0 = st_dst_reg(src0);
3653   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3654   inst->sampler = 0;
3655   inst->tex_target = TEXTURE_2D_INDEX;
3656
3657   prog->InputsRead |= FRAG_BIT_TEX0;
3658   prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3659   v->samplers_used |= (1 << 0);
3660
3661   if (scale_and_bias) {
3662      static const gl_state_index scale_state[STATE_LENGTH] =
3663         { STATE_INTERNAL, STATE_PT_SCALE,
3664           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3665      static const gl_state_index bias_state[STATE_LENGTH] =
3666         { STATE_INTERNAL, STATE_PT_BIAS,
3667           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3668      GLint scale_p, bias_p;
3669      st_src_reg scale, bias;
3670
3671      scale_p = _mesa_add_state_reference(params, scale_state);
3672      bias_p = _mesa_add_state_reference(params, bias_state);
3673
3674      /* MAD colorTemp, colorTemp, scale, bias; */
3675      scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3676      bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3677      inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3678   }
3679
3680   if (pixel_maps) {
3681      st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3682      st_dst_reg temp_dst = st_dst_reg(temp);
3683
3684      assert(st->pixel_xfer.pixelmap_texture);
3685
3686      /* With a little effort, we can do four pixel map look-ups with
3687       * two TEX instructions:
3688       */
3689
3690      /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3691      temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3692      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3693      inst->sampler = 1;
3694      inst->tex_target = TEXTURE_2D_INDEX;
3695
3696      /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3697      src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3698      temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3699      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3700      inst->sampler = 1;
3701      inst->tex_target = TEXTURE_2D_INDEX;
3702
3703      prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3704      v->samplers_used |= (1 << 1);
3705
3706      /* MOV colorTemp, temp; */
3707      inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3708   }
3709
3710   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3711    * new visitor. */
3712   foreach_iter(exec_list_iterator, iter, original->instructions) {
3713      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3714      glsl_to_tgsi_instruction *newinst;
3715      st_src_reg src_regs[3];
3716
3717      if (inst->dst.file == PROGRAM_OUTPUT)
3718         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3719
3720      for (int i=0; i<3; i++) {
3721         src_regs[i] = inst->src[i];
3722         if (src_regs[i].file == PROGRAM_INPUT &&
3723             src_regs[i].index == FRAG_ATTRIB_COL0)
3724         {
3725            src_regs[i].file = PROGRAM_TEMPORARY;
3726            src_regs[i].index = src0.index;
3727         }
3728         else if (src_regs[i].file == PROGRAM_INPUT)
3729            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3730      }
3731
3732      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3733      newinst->tex_target = inst->tex_target;
3734   }
3735
3736   /* Make modifications to fragment program info. */
3737   prog->Parameters = _mesa_combine_parameter_lists(params,
3738                                                    original->prog->Parameters);
3739   _mesa_free_parameter_list(params);
3740   count_resources(v, prog);
3741   fp->glsl_to_tgsi = v;
3742}
3743
3744/**
3745 * Make fragment program for glBitmap:
3746 *   Sample the texture and kill the fragment if the bit is 0.
3747 * This program will be combined with the user's fragment program.
3748 *
3749 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3750 */
3751extern "C" void
3752get_bitmap_visitor(struct st_fragment_program *fp,
3753                   glsl_to_tgsi_visitor *original, int samplerIndex)
3754{
3755   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3756   struct st_context *st = st_context(original->ctx);
3757   struct gl_program *prog = &fp->Base.Base;
3758   st_src_reg coord, src0;
3759   st_dst_reg dst0;
3760   glsl_to_tgsi_instruction *inst;
3761
3762   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3763   v->ctx = original->ctx;
3764   v->prog = prog;
3765   v->shader_program = NULL;
3766   v->glsl_version = original->glsl_version;
3767   v->native_integers = original->native_integers;
3768   v->options = original->options;
3769   v->next_temp = original->next_temp;
3770   v->num_address_regs = original->num_address_regs;
3771   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3772   v->indirect_addr_temps = original->indirect_addr_temps;
3773   v->indirect_addr_consts = original->indirect_addr_consts;
3774   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3775
3776   /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3777   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3778   src0 = v->get_temp(glsl_type::vec4_type);
3779   dst0 = st_dst_reg(src0);
3780   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3781   inst->sampler = samplerIndex;
3782   inst->tex_target = TEXTURE_2D_INDEX;
3783
3784   prog->InputsRead |= FRAG_BIT_TEX0;
3785   prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3786   v->samplers_used |= (1 << samplerIndex);
3787
3788   /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3789   src0.negate = NEGATE_XYZW;
3790   if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3791      src0.swizzle = SWIZZLE_XXXX;
3792   inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3793
3794   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3795    * new visitor. */
3796   foreach_iter(exec_list_iterator, iter, original->instructions) {
3797      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3798      glsl_to_tgsi_instruction *newinst;
3799      st_src_reg src_regs[3];
3800
3801      if (inst->dst.file == PROGRAM_OUTPUT)
3802         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3803
3804      for (int i=0; i<3; i++) {
3805         src_regs[i] = inst->src[i];
3806         if (src_regs[i].file == PROGRAM_INPUT)
3807            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3808      }
3809
3810      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3811      newinst->tex_target = inst->tex_target;
3812   }
3813
3814   /* Make modifications to fragment program info. */
3815   prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3816   count_resources(v, prog);
3817   fp->glsl_to_tgsi = v;
3818}
3819
3820/* ------------------------- TGSI conversion stuff -------------------------- */
3821struct label {
3822   unsigned branch_target;
3823   unsigned token;
3824};
3825
3826/**
3827 * Intermediate state used during shader translation.
3828 */
3829struct st_translate {
3830   struct ureg_program *ureg;
3831
3832   struct ureg_dst temps[MAX_TEMPS];
3833   struct ureg_src *constants;
3834   struct ureg_src *immediates;
3835   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3836   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3837   struct ureg_dst address[1];
3838   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3839   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3840
3841   /* Extra info for handling point size clamping in vertex shader */
3842   struct ureg_dst pointSizeResult; /**< Actual point size output register */
3843   struct ureg_src pointSizeConst;  /**< Point size range constant register */
3844   GLint pointSizeOutIndex;         /**< Temp point size output register */
3845   GLboolean prevInstWrotePointSize;
3846
3847   const GLuint *inputMapping;
3848   const GLuint *outputMapping;
3849
3850   /* For every instruction that contains a label (eg CALL), keep
3851    * details so that we can go back afterwards and emit the correct
3852    * tgsi instruction number for each label.
3853    */
3854   struct label *labels;
3855   unsigned labels_size;
3856   unsigned labels_count;
3857
3858   /* Keep a record of the tgsi instruction number that each mesa
3859    * instruction starts at, will be used to fix up labels after
3860    * translation.
3861    */
3862   unsigned *insn;
3863   unsigned insn_size;
3864   unsigned insn_count;
3865
3866   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3867
3868   boolean error;
3869};
3870
3871/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3872static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3873   TGSI_SEMANTIC_FACE,
3874   TGSI_SEMANTIC_VERTEXID,
3875   TGSI_SEMANTIC_INSTANCEID
3876};
3877
3878/**
3879 * Make note of a branch to a label in the TGSI code.
3880 * After we've emitted all instructions, we'll go over the list
3881 * of labels built here and patch the TGSI code with the actual
3882 * location of each label.
3883 */
3884static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3885{
3886   unsigned i;
3887
3888   if (t->labels_count + 1 >= t->labels_size) {
3889      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3890      t->labels = (struct label *)realloc(t->labels,
3891                                          t->labels_size * sizeof(struct label));
3892      if (t->labels == NULL) {
3893         static unsigned dummy;
3894         t->error = TRUE;
3895         return &dummy;
3896      }
3897   }
3898
3899   i = t->labels_count++;
3900   t->labels[i].branch_target = branch_target;
3901   return &t->labels[i].token;
3902}
3903
3904/**
3905 * Called prior to emitting the TGSI code for each instruction.
3906 * Allocate additional space for instructions if needed.
3907 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3908 * the next TGSI instruction.
3909 */
3910static void set_insn_start(struct st_translate *t, unsigned start)
3911{
3912   if (t->insn_count + 1 >= t->insn_size) {
3913      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3914      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3915      if (t->insn == NULL) {
3916         t->error = TRUE;
3917         return;
3918      }
3919   }
3920
3921   t->insn[t->insn_count++] = start;
3922}
3923
3924/**
3925 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3926 */
3927static struct ureg_src
3928emit_immediate(struct st_translate *t,
3929               gl_constant_value values[4],
3930               int type, int size)
3931{
3932   struct ureg_program *ureg = t->ureg;
3933
3934   switch(type)
3935   {
3936   case GL_FLOAT:
3937      return ureg_DECL_immediate(ureg, &values[0].f, size);
3938   case GL_INT:
3939      return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3940   case GL_UNSIGNED_INT:
3941   case GL_BOOL:
3942      return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3943   default:
3944      assert(!"should not get here - type must be float, int, uint, or bool");
3945      return ureg_src_undef();
3946   }
3947}
3948
3949/**
3950 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3951 */
3952static struct ureg_dst
3953dst_register(struct st_translate *t,
3954             gl_register_file file,
3955             GLuint index)
3956{
3957   switch(file) {
3958   case PROGRAM_UNDEFINED:
3959      return ureg_dst_undef();
3960
3961   case PROGRAM_TEMPORARY:
3962      if (ureg_dst_is_undef(t->temps[index]))
3963         t->temps[index] = ureg_DECL_temporary(t->ureg);
3964
3965      return t->temps[index];
3966
3967   case PROGRAM_OUTPUT:
3968      if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3969         t->prevInstWrotePointSize = GL_TRUE;
3970
3971      if (t->procType == TGSI_PROCESSOR_VERTEX)
3972         assert(index < VERT_RESULT_MAX);
3973      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3974         assert(index < FRAG_RESULT_MAX);
3975      else
3976         assert(index < GEOM_RESULT_MAX);
3977
3978      assert(t->outputMapping[index] < Elements(t->outputs));
3979
3980      return t->outputs[t->outputMapping[index]];
3981
3982   case PROGRAM_ADDRESS:
3983      return t->address[index];
3984
3985   default:
3986      assert(!"unknown dst register file");
3987      return ureg_dst_undef();
3988   }
3989}
3990
3991/**
3992 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3993 */
3994static struct ureg_src
3995src_register(struct st_translate *t,
3996             gl_register_file file,
3997             GLuint index)
3998{
3999   switch(file) {
4000   case PROGRAM_UNDEFINED:
4001      return ureg_src_undef();
4002
4003   case PROGRAM_TEMPORARY:
4004      assert(index >= 0);
4005      assert(index < Elements(t->temps));
4006      if (ureg_dst_is_undef(t->temps[index]))
4007         t->temps[index] = ureg_DECL_temporary(t->ureg);
4008      return ureg_src(t->temps[index]);
4009
4010   case PROGRAM_NAMED_PARAM:
4011   case PROGRAM_ENV_PARAM:
4012   case PROGRAM_LOCAL_PARAM:
4013   case PROGRAM_UNIFORM:
4014      assert(index >= 0);
4015      return t->constants[index];
4016   case PROGRAM_STATE_VAR:
4017   case PROGRAM_CONSTANT:       /* ie, immediate */
4018      if (index < 0)
4019         return ureg_DECL_constant(t->ureg, 0);
4020      else
4021         return t->constants[index];
4022
4023   case PROGRAM_IMMEDIATE:
4024      return t->immediates[index];
4025
4026   case PROGRAM_INPUT:
4027      assert(t->inputMapping[index] < Elements(t->inputs));
4028      return t->inputs[t->inputMapping[index]];
4029
4030   case PROGRAM_OUTPUT:
4031      assert(t->outputMapping[index] < Elements(t->outputs));
4032      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4033
4034   case PROGRAM_ADDRESS:
4035      return ureg_src(t->address[index]);
4036
4037   case PROGRAM_SYSTEM_VALUE:
4038      assert(index < Elements(t->systemValues));
4039      return t->systemValues[index];
4040
4041   default:
4042      assert(!"unknown src register file");
4043      return ureg_src_undef();
4044   }
4045}
4046
4047/**
4048 * Create a TGSI ureg_dst register from an st_dst_reg.
4049 */
4050static struct ureg_dst
4051translate_dst(struct st_translate *t,
4052              const st_dst_reg *dst_reg,
4053              bool saturate)
4054{
4055   struct ureg_dst dst = dst_register(t,
4056                                      dst_reg->file,
4057                                      dst_reg->index);
4058
4059   dst = ureg_writemask(dst, dst_reg->writemask);
4060
4061   if (saturate)
4062      dst = ureg_saturate(dst);
4063
4064   if (dst_reg->reladdr != NULL)
4065      dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4066
4067   return dst;
4068}
4069
4070/**
4071 * Create a TGSI ureg_src register from an st_src_reg.
4072 */
4073static struct ureg_src
4074translate_src(struct st_translate *t, const st_src_reg *src_reg)
4075{
4076   struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4077
4078   src = ureg_swizzle(src,
4079                      GET_SWZ(src_reg->swizzle, 0) & 0x3,
4080                      GET_SWZ(src_reg->swizzle, 1) & 0x3,
4081                      GET_SWZ(src_reg->swizzle, 2) & 0x3,
4082                      GET_SWZ(src_reg->swizzle, 3) & 0x3);
4083
4084   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4085      src = ureg_negate(src);
4086
4087   if (src_reg->reladdr != NULL) {
4088      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4089       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4090       * set the bit for src.Negate.  So we have to do the operation manually
4091       * here to work around the compiler's problems. */
4092      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4093      struct ureg_src addr = ureg_src(t->address[0]);
4094      src.Indirect = 1;
4095      src.IndirectFile = addr.File;
4096      src.IndirectIndex = addr.Index;
4097      src.IndirectSwizzle = addr.SwizzleX;
4098
4099      if (src_reg->file != PROGRAM_INPUT &&
4100          src_reg->file != PROGRAM_OUTPUT) {
4101         /* If src_reg->index was negative, it was set to zero in
4102          * src_register().  Reassign it now.  But don't do this
4103          * for input/output regs since they get remapped while
4104          * const buffers don't.
4105          */
4106         src.Index = src_reg->index;
4107      }
4108   }
4109
4110   return src;
4111}
4112
4113static struct tgsi_texture_offset
4114translate_tex_offset(struct st_translate *t,
4115                     const struct tgsi_texture_offset *in_offset)
4116{
4117   struct tgsi_texture_offset offset;
4118
4119   assert(in_offset->File == PROGRAM_IMMEDIATE);
4120
4121   offset.File = TGSI_FILE_IMMEDIATE;
4122   offset.Index = in_offset->Index;
4123   offset.SwizzleX = in_offset->SwizzleX;
4124   offset.SwizzleY = in_offset->SwizzleY;
4125   offset.SwizzleZ = in_offset->SwizzleZ;
4126
4127   return offset;
4128}
4129
4130static void
4131compile_tgsi_instruction(struct st_translate *t,
4132                         const glsl_to_tgsi_instruction *inst)
4133{
4134   struct ureg_program *ureg = t->ureg;
4135   GLuint i;
4136   struct ureg_dst dst[1];
4137   struct ureg_src src[4];
4138   struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4139
4140   unsigned num_dst;
4141   unsigned num_src;
4142
4143   num_dst = num_inst_dst_regs(inst->op);
4144   num_src = num_inst_src_regs(inst->op);
4145
4146   if (num_dst)
4147      dst[0] = translate_dst(t,
4148                             &inst->dst,
4149                             inst->saturate);
4150
4151   for (i = 0; i < num_src; i++)
4152      src[i] = translate_src(t, &inst->src[i]);
4153
4154   switch(inst->op) {
4155   case TGSI_OPCODE_BGNLOOP:
4156   case TGSI_OPCODE_CAL:
4157   case TGSI_OPCODE_ELSE:
4158   case TGSI_OPCODE_ENDLOOP:
4159   case TGSI_OPCODE_IF:
4160      assert(num_dst == 0);
4161      ureg_label_insn(ureg,
4162                      inst->op,
4163                      src, num_src,
4164                      get_label(t,
4165                                inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4166      return;
4167
4168   case TGSI_OPCODE_TEX:
4169   case TGSI_OPCODE_TXB:
4170   case TGSI_OPCODE_TXD:
4171   case TGSI_OPCODE_TXL:
4172   case TGSI_OPCODE_TXP:
4173   case TGSI_OPCODE_TXQ:
4174   case TGSI_OPCODE_TXF:
4175      src[num_src++] = t->samplers[inst->sampler];
4176      for (i = 0; i < inst->tex_offset_num_offset; i++) {
4177         texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4178      }
4179      ureg_tex_insn(ureg,
4180                    inst->op,
4181                    dst, num_dst,
4182                    translate_texture_target(inst->tex_target, inst->tex_shadow),
4183                    texoffsets, inst->tex_offset_num_offset,
4184                    src, num_src);
4185      return;
4186
4187   case TGSI_OPCODE_SCS:
4188      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4189      ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4190      break;
4191
4192   default:
4193      ureg_insn(ureg,
4194                inst->op,
4195                dst, num_dst,
4196                src, num_src);
4197      break;
4198   }
4199}
4200
4201/**
4202 * Emit the TGSI instructions for inverting and adjusting WPOS.
4203 * This code is unavoidable because it also depends on whether
4204 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4205 */
4206static void
4207emit_wpos_adjustment( struct st_translate *t,
4208                      const struct gl_program *program,
4209                      boolean invert,
4210                      GLfloat adjX, GLfloat adjY[2])
4211{
4212   struct ureg_program *ureg = t->ureg;
4213
4214   /* Fragment program uses fragment position input.
4215    * Need to replace instances of INPUT[WPOS] with temp T
4216    * where T = INPUT[WPOS] by y is inverted.
4217    */
4218   static const gl_state_index wposTransformState[STATE_LENGTH]
4219      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4220          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4221
4222   /* XXX: note we are modifying the incoming shader here!  Need to
4223    * do this before emitting the constant decls below, or this
4224    * will be missed:
4225    */
4226   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4227                                                       wposTransformState);
4228
4229   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4230   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4231   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4232
4233   /* First, apply the coordinate shift: */
4234   if (adjX || adjY[0] || adjY[1]) {
4235      if (adjY[0] != adjY[1]) {
4236         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4237          * depending on whether inversion is actually going to be applied
4238          * or not, which is determined by testing against the inversion
4239          * state variable used below, which will be either +1 or -1.
4240          */
4241         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4242
4243         ureg_CMP(ureg, adj_temp,
4244                  ureg_scalar(wpostrans, invert ? 2 : 0),
4245                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4246                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4247         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4248      } else {
4249         ureg_ADD(ureg, wpos_temp, wpos_input,
4250                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4251      }
4252      wpos_input = ureg_src(wpos_temp);
4253   } else {
4254      /* MOV wpos_temp, input[wpos]
4255       */
4256      ureg_MOV( ureg, wpos_temp, wpos_input );
4257   }
4258
4259   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4260    * inversion/identity, or the other way around if we're drawing to an FBO.
4261    */
4262   if (invert) {
4263      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4264       */
4265      ureg_MAD( ureg,
4266                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4267                wpos_input,
4268                ureg_scalar(wpostrans, 0),
4269                ureg_scalar(wpostrans, 1));
4270   } else {
4271      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4272       */
4273      ureg_MAD( ureg,
4274                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4275                wpos_input,
4276                ureg_scalar(wpostrans, 2),
4277                ureg_scalar(wpostrans, 3));
4278   }
4279
4280   /* Use wpos_temp as position input from here on:
4281    */
4282   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4283}
4284
4285
4286/**
4287 * Emit fragment position/ooordinate code.
4288 */
4289static void
4290emit_wpos(struct st_context *st,
4291          struct st_translate *t,
4292          const struct gl_program *program,
4293          struct ureg_program *ureg)
4294{
4295   const struct gl_fragment_program *fp =
4296      (const struct gl_fragment_program *) program;
4297   struct pipe_screen *pscreen = st->pipe->screen;
4298   GLfloat adjX = 0.0f;
4299   GLfloat adjY[2] = { 0.0f, 0.0f };
4300   boolean invert = FALSE;
4301
4302   /* Query the pixel center conventions supported by the pipe driver and set
4303    * adjX, adjY to help out if it cannot handle the requested one internally.
4304    *
4305    * The bias of the y-coordinate depends on whether y-inversion takes place
4306    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4307    * drawing to an FBO (causes additional inversion), and whether the the pipe
4308    * driver origin and the requested origin differ (the latter condition is
4309    * stored in the 'invert' variable).
4310    *
4311    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4312    *
4313    * center shift only:
4314    * i -> h: +0.5
4315    * h -> i: -0.5
4316    *
4317    * inversion only:
4318    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4319    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4320    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4321    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4322    *
4323    * inversion and center shift:
4324    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4325    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4326    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4327    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4328    */
4329   if (fp->OriginUpperLeft) {
4330      /* Fragment shader wants origin in upper-left */
4331      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4332         /* the driver supports upper-left origin */
4333      }
4334      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4335         /* the driver supports lower-left origin, need to invert Y */
4336         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4337         invert = TRUE;
4338      }
4339      else
4340         assert(0);
4341   }
4342   else {
4343      /* Fragment shader wants origin in lower-left */
4344      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4345         /* the driver supports lower-left origin */
4346         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4347      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4348         /* the driver supports upper-left origin, need to invert Y */
4349         invert = TRUE;
4350      else
4351         assert(0);
4352   }
4353
4354   if (fp->PixelCenterInteger) {
4355      /* Fragment shader wants pixel center integer */
4356      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4357         /* the driver supports pixel center integer */
4358         adjY[1] = 1.0f;
4359         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4360      }
4361      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4362         /* the driver supports pixel center half integer, need to bias X,Y */
4363         adjX = -0.5f;
4364         adjY[0] = -0.5f;
4365         adjY[1] = 0.5f;
4366      }
4367      else
4368         assert(0);
4369   }
4370   else {
4371      /* Fragment shader wants pixel center half integer */
4372      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4373         /* the driver supports pixel center half integer */
4374      }
4375      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4376         /* the driver supports pixel center integer, need to bias X,Y */
4377         adjX = adjY[0] = adjY[1] = 0.5f;
4378         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4379      }
4380      else
4381         assert(0);
4382   }
4383
4384   /* we invert after adjustment so that we avoid the MOV to temporary,
4385    * and reuse the adjustment ADD instead */
4386   emit_wpos_adjustment(t, program, invert, adjX, adjY);
4387}
4388
4389/**
4390 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4391 * TGSI uses +1 for front, -1 for back.
4392 * This function converts the TGSI value to the GL value.  Simply clamping/
4393 * saturating the value to [0,1] does the job.
4394 */
4395static void
4396emit_face_var(struct st_translate *t)
4397{
4398   struct ureg_program *ureg = t->ureg;
4399   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4400   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4401
4402   /* MOV_SAT face_temp, input[face] */
4403   face_temp = ureg_saturate(face_temp);
4404   ureg_MOV(ureg, face_temp, face_input);
4405
4406   /* Use face_temp as face input from here on: */
4407   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4408}
4409
4410static void
4411emit_edgeflags(struct st_translate *t)
4412{
4413   struct ureg_program *ureg = t->ureg;
4414   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4415   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4416
4417   ureg_MOV(ureg, edge_dst, edge_src);
4418}
4419
4420/**
4421 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4422 * \param program  the program to translate
4423 * \param numInputs  number of input registers used
4424 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
4425 *                      input indexes
4426 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
4427 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
4428 *                            each input
4429 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4430 * \param numOutputs  number of output registers used
4431 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4432 *                       generic outputs
4433 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4434 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4435 *                             each output
4436 *
4437 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4438 */
4439extern "C" enum pipe_error
4440st_translate_program(
4441   struct gl_context *ctx,
4442   uint procType,
4443   struct ureg_program *ureg,
4444   glsl_to_tgsi_visitor *program,
4445   const struct gl_program *proginfo,
4446   GLuint numInputs,
4447   const GLuint inputMapping[],
4448   const ubyte inputSemanticName[],
4449   const ubyte inputSemanticIndex[],
4450   const GLuint interpMode[],
4451   GLuint numOutputs,
4452   const GLuint outputMapping[],
4453   const ubyte outputSemanticName[],
4454   const ubyte outputSemanticIndex[],
4455   boolean passthrough_edgeflags)
4456{
4457   struct st_translate *t;
4458   unsigned i;
4459   enum pipe_error ret = PIPE_OK;
4460
4461   assert(numInputs <= Elements(t->inputs));
4462   assert(numOutputs <= Elements(t->outputs));
4463
4464   t = CALLOC_STRUCT(st_translate);
4465   if (!t) {
4466      ret = PIPE_ERROR_OUT_OF_MEMORY;
4467      goto out;
4468   }
4469
4470   memset(t, 0, sizeof *t);
4471
4472   t->procType = procType;
4473   t->inputMapping = inputMapping;
4474   t->outputMapping = outputMapping;
4475   t->ureg = ureg;
4476   t->pointSizeOutIndex = -1;
4477   t->prevInstWrotePointSize = GL_FALSE;
4478
4479   if (program->shader_program) {
4480      for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4481         struct gl_uniform_storage *const storage =
4482               &program->shader_program->UniformStorage[i];
4483
4484         _mesa_uniform_detach_all_driver_storage(storage);
4485      }
4486   }
4487
4488   /*
4489    * Declare input attributes.
4490    */
4491   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4492      for (i = 0; i < numInputs; i++) {
4493         t->inputs[i] = ureg_DECL_fs_input(ureg,
4494                                           inputSemanticName[i],
4495                                           inputSemanticIndex[i],
4496                                           interpMode[i]);
4497      }
4498
4499      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4500         /* Must do this after setting up t->inputs, and before
4501          * emitting constant references, below:
4502          */
4503          emit_wpos(st_context(ctx), t, proginfo, ureg);
4504      }
4505
4506      if (proginfo->InputsRead & FRAG_BIT_FACE)
4507         emit_face_var(t);
4508
4509      /*
4510       * Declare output attributes.
4511       */
4512      for (i = 0; i < numOutputs; i++) {
4513         switch (outputSemanticName[i]) {
4514         case TGSI_SEMANTIC_POSITION:
4515            t->outputs[i] = ureg_DECL_output(ureg,
4516                                             TGSI_SEMANTIC_POSITION, /* Z/Depth */
4517                                             outputSemanticIndex[i]);
4518            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4519            break;
4520         case TGSI_SEMANTIC_STENCIL:
4521            t->outputs[i] = ureg_DECL_output(ureg,
4522                                             TGSI_SEMANTIC_STENCIL, /* Stencil */
4523                                             outputSemanticIndex[i]);
4524            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4525            break;
4526         case TGSI_SEMANTIC_COLOR:
4527            t->outputs[i] = ureg_DECL_output(ureg,
4528                                             TGSI_SEMANTIC_COLOR,
4529                                             outputSemanticIndex[i]);
4530            break;
4531         default:
4532            assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4533            ret = PIPE_ERROR_BAD_INPUT;
4534            goto out;
4535         }
4536      }
4537   }
4538   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4539      for (i = 0; i < numInputs; i++) {
4540         t->inputs[i] = ureg_DECL_gs_input(ureg,
4541                                           i,
4542                                           inputSemanticName[i],
4543                                           inputSemanticIndex[i]);
4544      }
4545
4546      for (i = 0; i < numOutputs; i++) {
4547         t->outputs[i] = ureg_DECL_output(ureg,
4548                                          outputSemanticName[i],
4549                                          outputSemanticIndex[i]);
4550      }
4551   }
4552   else {
4553      assert(procType == TGSI_PROCESSOR_VERTEX);
4554
4555      for (i = 0; i < numInputs; i++) {
4556         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4557      }
4558
4559      for (i = 0; i < numOutputs; i++) {
4560         if (outputSemanticName[i] == TGSI_SEMANTIC_CLIPDIST) {
4561            int mask = ((1 << (program->num_clip_distances - 4*outputSemanticIndex[i])) - 1) & TGSI_WRITEMASK_XYZW;
4562            t->outputs[i] = ureg_DECL_output_masked(ureg,
4563                                                    outputSemanticName[i],
4564                                                    outputSemanticIndex[i],
4565                                                    mask);
4566         } else {
4567            t->outputs[i] = ureg_DECL_output(ureg,
4568                                             outputSemanticName[i],
4569                                             outputSemanticIndex[i]);
4570         }
4571         if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4572            /* Writing to the point size result register requires special
4573             * handling to implement clamping.
4574             */
4575            static const gl_state_index pointSizeClampState[STATE_LENGTH]
4576               = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4577               /* XXX: note we are modifying the incoming shader here!  Need to
4578               * do this before emitting the constant decls below, or this
4579               * will be missed.
4580               */
4581            unsigned pointSizeClampConst =
4582               _mesa_add_state_reference(proginfo->Parameters,
4583                                         pointSizeClampState);
4584            struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4585            t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4586            t->pointSizeResult = t->outputs[i];
4587            t->pointSizeOutIndex = i;
4588            t->outputs[i] = psizregtemp;
4589         }
4590      }
4591      if (passthrough_edgeflags)
4592         emit_edgeflags(t);
4593   }
4594
4595   /* Declare address register.
4596    */
4597   if (program->num_address_regs > 0) {
4598      assert(program->num_address_regs == 1);
4599      t->address[0] = ureg_DECL_address(ureg);
4600   }
4601
4602   /* Declare misc input registers
4603    */
4604   {
4605      GLbitfield sysInputs = proginfo->SystemValuesRead;
4606      unsigned numSys = 0;
4607      for (i = 0; sysInputs; i++) {
4608         if (sysInputs & (1 << i)) {
4609            unsigned semName = mesa_sysval_to_semantic[i];
4610            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4611            numSys++;
4612            sysInputs &= ~(1 << i);
4613         }
4614      }
4615   }
4616
4617   if (program->indirect_addr_temps) {
4618      /* If temps are accessed with indirect addressing, declare temporaries
4619       * in sequential order.  Else, we declare them on demand elsewhere.
4620       * (Note: the number of temporaries is equal to program->next_temp)
4621       */
4622      for (i = 0; i < (unsigned)program->next_temp; i++) {
4623         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4624         t->temps[i] = ureg_DECL_temporary(t->ureg);
4625      }
4626   }
4627
4628   /* Emit constants and uniforms.  TGSI uses a single index space for these,
4629    * so we put all the translated regs in t->constants.
4630    */
4631   if (proginfo->Parameters) {
4632      t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4633      if (t->constants == NULL) {
4634         ret = PIPE_ERROR_OUT_OF_MEMORY;
4635         goto out;
4636      }
4637
4638      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4639         switch (proginfo->Parameters->Parameters[i].Type) {
4640         case PROGRAM_ENV_PARAM:
4641         case PROGRAM_LOCAL_PARAM:
4642         case PROGRAM_STATE_VAR:
4643         case PROGRAM_NAMED_PARAM:
4644         case PROGRAM_UNIFORM:
4645            t->constants[i] = ureg_DECL_constant(ureg, i);
4646            break;
4647
4648         /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4649          * addressing of the const buffer.
4650          * FIXME: Be smarter and recognize param arrays:
4651          * indirect addressing is only valid within the referenced
4652          * array.
4653          */
4654         case PROGRAM_CONSTANT:
4655            if (program->indirect_addr_consts)
4656               t->constants[i] = ureg_DECL_constant(ureg, i);
4657            else
4658               t->constants[i] = emit_immediate(t,
4659                                                proginfo->Parameters->ParameterValues[i],
4660                                                proginfo->Parameters->Parameters[i].DataType,
4661                                                4);
4662            break;
4663         default:
4664            break;
4665         }
4666      }
4667   }
4668
4669   /* Emit immediate values.
4670    */
4671   t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4672   if (t->immediates == NULL) {
4673      ret = PIPE_ERROR_OUT_OF_MEMORY;
4674      goto out;
4675   }
4676   i = 0;
4677   foreach_iter(exec_list_iterator, iter, program->immediates) {
4678      immediate_storage *imm = (immediate_storage *)iter.get();
4679      t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4680   }
4681
4682   /* texture samplers */
4683   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4684      if (program->samplers_used & (1 << i)) {
4685         t->samplers[i] = ureg_DECL_sampler(ureg, i);
4686      }
4687   }
4688
4689   /* Emit each instruction in turn:
4690    */
4691   foreach_iter(exec_list_iterator, iter, program->instructions) {
4692      set_insn_start(t, ureg_get_instruction_number(ureg));
4693      compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4694
4695      if (t->prevInstWrotePointSize && proginfo->Id) {
4696         /* The previous instruction wrote to the (fake) vertex point size
4697          * result register.  Now we need to clamp that value to the min/max
4698          * point size range, putting the result into the real point size
4699          * register.
4700          * Note that we can't do this easily at the end of program due to
4701          * possible early return.
4702          */
4703         set_insn_start(t, ureg_get_instruction_number(ureg));
4704         ureg_MAX(t->ureg,
4705                  ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4706                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4707                  ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4708         ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4709                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4710                  ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4711      }
4712      t->prevInstWrotePointSize = GL_FALSE;
4713   }
4714
4715   /* Fix up all emitted labels:
4716    */
4717   for (i = 0; i < t->labels_count; i++) {
4718      ureg_fixup_label(ureg, t->labels[i].token,
4719                       t->insn[t->labels[i].branch_target]);
4720   }
4721
4722   if (program->shader_program) {
4723      /* This has to be done last.  Any operation the can cause
4724       * prog->ParameterValues to get reallocated (e.g., anything that adds a
4725       * program constant) has to happen before creating this linkage.
4726       */
4727      for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4728         if (program->shader_program->_LinkedShaders[i] == NULL)
4729            continue;
4730
4731         _mesa_associate_uniform_storage(ctx, program->shader_program,
4732               program->shader_program->_LinkedShaders[i]->Program->Parameters);
4733      }
4734   }
4735
4736out:
4737   if (t) {
4738      FREE(t->insn);
4739      FREE(t->labels);
4740      FREE(t->constants);
4741      FREE(t->immediates);
4742
4743      if (t->error) {
4744         debug_printf("%s: translate error flag set\n", __FUNCTION__);
4745      }
4746
4747      FREE(t);
4748   }
4749
4750   return ret;
4751}
4752/* ----------------------------- End TGSI code ------------------------------ */
4753
4754/**
4755 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4756 * generating Mesa IR.
4757 */
4758static struct gl_program *
4759get_mesa_program(struct gl_context *ctx,
4760                 struct gl_shader_program *shader_program,
4761                 struct gl_shader *shader,
4762                 int num_clip_distances)
4763{
4764   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4765   struct gl_program *prog;
4766   struct pipe_screen * screen = st_context(ctx)->pipe->screen;
4767   unsigned pipe_shader_type;
4768   GLenum target;
4769   const char *target_string;
4770   bool progress;
4771   struct gl_shader_compiler_options *options =
4772         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4773
4774   switch (shader->Type) {
4775   case GL_VERTEX_SHADER:
4776      target = GL_VERTEX_PROGRAM_ARB;
4777      target_string = "vertex";
4778      pipe_shader_type = PIPE_SHADER_VERTEX;
4779      break;
4780   case GL_FRAGMENT_SHADER:
4781      target = GL_FRAGMENT_PROGRAM_ARB;
4782      target_string = "fragment";
4783      pipe_shader_type = PIPE_SHADER_FRAGMENT;
4784      break;
4785   case GL_GEOMETRY_SHADER:
4786      target = GL_GEOMETRY_PROGRAM_NV;
4787      target_string = "geometry";
4788      pipe_shader_type = PIPE_SHADER_GEOMETRY;
4789      break;
4790   default:
4791      assert(!"should not be reached");
4792      return NULL;
4793   }
4794
4795   validate_ir_tree(shader->ir);
4796
4797   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4798   if (!prog)
4799      return NULL;
4800   prog->Parameters = _mesa_new_parameter_list();
4801   v->ctx = ctx;
4802   v->prog = prog;
4803   v->shader_program = shader_program;
4804   v->options = options;
4805   v->glsl_version = ctx->Const.GLSLVersion;
4806   v->native_integers = ctx->Const.NativeIntegers;
4807   v->num_clip_distances = num_clip_distances;
4808
4809   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4810					       prog->Parameters);
4811
4812   if (!screen->get_shader_param(screen, pipe_shader_type,
4813                                 PIPE_SHADER_CAP_OUTPUT_READ)) {
4814      /* Remove reads to output registers, and to varyings in vertex shaders. */
4815      lower_output_reads(shader->ir);
4816   }
4817
4818
4819   /* Emit intermediate IR for main(). */
4820   visit_exec_list(shader->ir, v);
4821
4822   /* Now emit bodies for any functions that were used. */
4823   do {
4824      progress = GL_FALSE;
4825
4826      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4827         function_entry *entry = (function_entry *)iter.get();
4828
4829         if (!entry->bgn_inst) {
4830            v->current_function = entry;
4831
4832            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4833            entry->bgn_inst->function = entry;
4834
4835            visit_exec_list(&entry->sig->body, v);
4836
4837            glsl_to_tgsi_instruction *last;
4838            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4839            if (last->op != TGSI_OPCODE_RET)
4840               v->emit(NULL, TGSI_OPCODE_RET);
4841
4842            glsl_to_tgsi_instruction *end;
4843            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4844            end->function = entry;
4845
4846            progress = GL_TRUE;
4847         }
4848      }
4849   } while (progress);
4850
4851#if 0
4852   /* Print out some information (for debugging purposes) used by the
4853    * optimization passes. */
4854   for (i=0; i < v->next_temp; i++) {
4855      int fr = v->get_first_temp_read(i);
4856      int fw = v->get_first_temp_write(i);
4857      int lr = v->get_last_temp_read(i);
4858      int lw = v->get_last_temp_write(i);
4859
4860      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4861      assert(fw <= fr);
4862   }
4863#endif
4864
4865   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4866   v->simplify_cmp();
4867   v->copy_propagate();
4868   while (v->eliminate_dead_code_advanced());
4869
4870   /* FIXME: These passes to optimize temporary registers don't work when there
4871    * is indirect addressing of the temporary register space.  We need proper
4872    * array support so that we don't have to give up these passes in every
4873    * shader that uses arrays.
4874    */
4875   if (!v->indirect_addr_temps) {
4876      v->eliminate_dead_code();
4877      v->merge_registers();
4878      v->renumber_registers();
4879   }
4880
4881   /* Write the END instruction. */
4882   v->emit(NULL, TGSI_OPCODE_END);
4883
4884   if (ctx->Shader.Flags & GLSL_DUMP) {
4885      printf("\n");
4886      printf("GLSL IR for linked %s program %d:\n", target_string,
4887             shader_program->Name);
4888      _mesa_print_ir(shader->ir, NULL);
4889      printf("\n");
4890      printf("\n");
4891      fflush(stdout);
4892   }
4893
4894   prog->Instructions = NULL;
4895   prog->NumInstructions = 0;
4896
4897   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4898   count_resources(v, prog);
4899
4900   _mesa_reference_program(ctx, &shader->Program, prog);
4901
4902   /* This has to be done last.  Any operation the can cause
4903    * prog->ParameterValues to get reallocated (e.g., anything that adds a
4904    * program constant) has to happen before creating this linkage.
4905    */
4906   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4907   if (!shader_program->LinkStatus) {
4908      return NULL;
4909   }
4910
4911   struct st_vertex_program *stvp;
4912   struct st_fragment_program *stfp;
4913   struct st_geometry_program *stgp;
4914
4915   switch (shader->Type) {
4916   case GL_VERTEX_SHADER:
4917      stvp = (struct st_vertex_program *)prog;
4918      stvp->glsl_to_tgsi = v;
4919      break;
4920   case GL_FRAGMENT_SHADER:
4921      stfp = (struct st_fragment_program *)prog;
4922      stfp->glsl_to_tgsi = v;
4923      break;
4924   case GL_GEOMETRY_SHADER:
4925      stgp = (struct st_geometry_program *)prog;
4926      stgp->glsl_to_tgsi = v;
4927      break;
4928   default:
4929      assert(!"should not be reached");
4930      return NULL;
4931   }
4932
4933   return prog;
4934}
4935
4936/**
4937 * Searches through the IR for a declaration of gl_ClipDistance and returns the
4938 * declared size of the gl_ClipDistance array.  Returns 0 if gl_ClipDistance is
4939 * not declared in the IR.
4940 */
4941int get_clip_distance_size(exec_list *ir)
4942{
4943   foreach_iter (exec_list_iterator, iter, *ir) {
4944      ir_instruction *inst = (ir_instruction *)iter.get();
4945      ir_variable *var = inst->as_variable();
4946      if (var == NULL) continue;
4947      if (!strcmp(var->name, "gl_ClipDistance")) {
4948         return var->type->length;
4949      }
4950   }
4951
4952   return 0;
4953}
4954
4955extern "C" {
4956
4957struct gl_shader *
4958st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4959{
4960   struct gl_shader *shader;
4961   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4962          type == GL_GEOMETRY_SHADER_ARB);
4963   shader = rzalloc(NULL, struct gl_shader);
4964   if (shader) {
4965      shader->Type = type;
4966      shader->Name = name;
4967      _mesa_init_shader(ctx, shader);
4968   }
4969   return shader;
4970}
4971
4972struct gl_shader_program *
4973st_new_shader_program(struct gl_context *ctx, GLuint name)
4974{
4975   struct gl_shader_program *shProg;
4976   shProg = rzalloc(NULL, struct gl_shader_program);
4977   if (shProg) {
4978      shProg->Name = name;
4979      _mesa_init_shader_program(ctx, shProg);
4980   }
4981   return shProg;
4982}
4983
4984/**
4985 * Link a shader.
4986 * Called via ctx->Driver.LinkShader()
4987 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4988 * with code lowering and other optimizations.
4989 */
4990GLboolean
4991st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4992{
4993   int num_clip_distances[MESA_SHADER_TYPES];
4994   assert(prog->LinkStatus);
4995
4996   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4997      if (prog->_LinkedShaders[i] == NULL)
4998         continue;
4999
5000      bool progress;
5001      exec_list *ir = prog->_LinkedShaders[i]->ir;
5002      const struct gl_shader_compiler_options *options =
5003            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5004
5005      /* We have to determine the length of the gl_ClipDistance array before
5006       * the array is lowered to two vec4s by lower_clip_distance().
5007       */
5008      num_clip_distances[i] = get_clip_distance_size(ir);
5009
5010      do {
5011         progress = false;
5012
5013         /* Lowering */
5014         do_mat_op_to_vec(ir);
5015         lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5016				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5017        			 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5018
5019         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5020
5021         progress = do_common_optimization(ir, true, true,
5022					   options->MaxUnrollIterations)
5023	   || progress;
5024
5025         progress = lower_quadop_vector(ir, false) || progress;
5026         progress = lower_clip_distance(ir) || progress;
5027
5028         if (options->MaxIfDepth == 0)
5029            progress = lower_discard(ir) || progress;
5030
5031         progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5032
5033         if (options->EmitNoNoise)
5034            progress = lower_noise(ir) || progress;
5035
5036         /* If there are forms of indirect addressing that the driver
5037          * cannot handle, perform the lowering pass.
5038          */
5039         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5040             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5041           progress =
5042             lower_variable_index_to_cond_assign(ir,
5043        					 options->EmitNoIndirectInput,
5044        					 options->EmitNoIndirectOutput,
5045        					 options->EmitNoIndirectTemp,
5046        					 options->EmitNoIndirectUniform)
5047             || progress;
5048
5049         progress = do_vec_index_to_cond_assign(ir) || progress;
5050      } while (progress);
5051
5052      validate_ir_tree(ir);
5053   }
5054
5055   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5056      struct gl_program *linked_prog;
5057
5058      if (prog->_LinkedShaders[i] == NULL)
5059         continue;
5060
5061      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i],
5062                                     num_clip_distances[i]);
5063
5064      if (linked_prog) {
5065	 static const GLenum targets[] = {
5066	    GL_VERTEX_PROGRAM_ARB,
5067	    GL_FRAGMENT_PROGRAM_ARB,
5068	    GL_GEOMETRY_PROGRAM_NV
5069	 };
5070
5071	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5072				 linked_prog);
5073         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5074	    _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5075				    NULL);
5076            _mesa_reference_program(ctx, &linked_prog, NULL);
5077            return GL_FALSE;
5078         }
5079      }
5080
5081      _mesa_reference_program(ctx, &linked_prog, NULL);
5082   }
5083
5084   return GL_TRUE;
5085}
5086
5087void
5088st_translate_stream_output_info(struct glsl_to_tgsi_visitor *glsl_to_tgsi,
5089                                const GLuint outputMapping[],
5090                                struct pipe_stream_output_info *so)
5091{
5092   static unsigned comps_to_mask[] = {
5093      0,
5094      TGSI_WRITEMASK_X,
5095      TGSI_WRITEMASK_XY,
5096      TGSI_WRITEMASK_XYZ,
5097      TGSI_WRITEMASK_XYZW
5098   };
5099   unsigned i;
5100   struct gl_transform_feedback_info *info =
5101      &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5102
5103   for (i = 0; i < info->NumOutputs; i++) {
5104      assert(info->Outputs[i].NumComponents < Elements(comps_to_mask));
5105      so->output[i].register_index =
5106         outputMapping[info->Outputs[i].OutputRegister];
5107      so->output[i].register_mask =
5108         comps_to_mask[info->Outputs[i].NumComponents]
5109         << info->Outputs[i].ComponentOffset;
5110      so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5111   }
5112   so->num_outputs = info->NumOutputs;
5113}
5114
5115} /* extern "C" */
5116