st_glsl_to_tgsi.cpp revision c62e02000d11e29e70a1000d32cb08d9a450485f
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45#include "main/mtypes.h"
46#include "main/shaderobj.h"
47#include "program/hash_table.h"
48
49extern "C" {
50#include "main/shaderapi.h"
51#include "main/uniforms.h"
52#include "program/prog_instruction.h"
53#include "program/prog_optimize.h"
54#include "program/prog_print.h"
55#include "program/program.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
75                           (1 << PROGRAM_ENV_PARAM) |    \
76                           (1 << PROGRAM_STATE_VAR) |    \
77                           (1 << PROGRAM_NAMED_PARAM) |  \
78                           (1 << PROGRAM_CONSTANT) |     \
79                           (1 << PROGRAM_UNIFORM))
80
81/**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87#define MAX_TEMPS         4096
88
89/* will be 4 for GLSL 4.00 */
90#define MAX_GLSL_TEXTURE_OFFSET 1
91
92class st_src_reg;
93class st_dst_reg;
94
95static int swizzle_for_size(int size);
96
97/**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100class st_src_reg {
101public:
102   st_src_reg(gl_register_file file, int index, const glsl_type *type)
103   {
104      this->file = file;
105      this->index = index;
106      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107         this->swizzle = swizzle_for_size(type->vector_elements);
108      else
109         this->swizzle = SWIZZLE_XYZW;
110      this->negate = 0;
111      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112      this->reladdr = NULL;
113   }
114
115   st_src_reg(gl_register_file file, int index, int type)
116   {
117      this->type = type;
118      this->file = file;
119      this->index = index;
120      this->swizzle = SWIZZLE_XYZW;
121      this->negate = 0;
122      this->reladdr = NULL;
123   }
124
125   st_src_reg()
126   {
127      this->type = GLSL_TYPE_ERROR;
128      this->file = PROGRAM_UNDEFINED;
129      this->index = 0;
130      this->swizzle = 0;
131      this->negate = 0;
132      this->reladdr = NULL;
133   }
134
135   explicit st_src_reg(st_dst_reg reg);
136
137   gl_register_file file; /**< PROGRAM_* from Mesa */
138   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140   int negate; /**< NEGATE_XYZW mask from mesa */
141   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142   /** Register index should be offset by the integer in this reg. */
143   st_src_reg *reladdr;
144};
145
146class st_dst_reg {
147public:
148   st_dst_reg(gl_register_file file, int writemask, int type)
149   {
150      this->file = file;
151      this->index = 0;
152      this->writemask = writemask;
153      this->cond_mask = COND_TR;
154      this->reladdr = NULL;
155      this->type = type;
156   }
157
158   st_dst_reg()
159   {
160      this->type = GLSL_TYPE_ERROR;
161      this->file = PROGRAM_UNDEFINED;
162      this->index = 0;
163      this->writemask = 0;
164      this->cond_mask = COND_TR;
165      this->reladdr = NULL;
166   }
167
168   explicit st_dst_reg(st_src_reg reg);
169
170   gl_register_file file; /**< PROGRAM_* from Mesa */
171   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173   GLuint cond_mask:4;
174   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175   /** Register index should be offset by the integer in this reg. */
176   st_src_reg *reladdr;
177};
178
179st_src_reg::st_src_reg(st_dst_reg reg)
180{
181   this->type = reg.type;
182   this->file = reg.file;
183   this->index = reg.index;
184   this->swizzle = SWIZZLE_XYZW;
185   this->negate = 0;
186   this->reladdr = reg.reladdr;
187}
188
189st_dst_reg::st_dst_reg(st_src_reg reg)
190{
191   this->type = reg.type;
192   this->file = reg.file;
193   this->index = reg.index;
194   this->writemask = WRITEMASK_XYZW;
195   this->cond_mask = COND_TR;
196   this->reladdr = reg.reladdr;
197}
198
199class glsl_to_tgsi_instruction : public exec_node {
200public:
201   /* Callers of this ralloc-based new need not call delete. It's
202    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203   static void* operator new(size_t size, void *ctx)
204   {
205      void *node;
206
207      node = rzalloc_size(ctx, size);
208      assert(node != NULL);
209
210      return node;
211   }
212
213   unsigned op;
214   st_dst_reg dst;
215   st_src_reg src[3];
216   /** Pointer to the ir source this tree came from for debugging */
217   ir_instruction *ir;
218   GLboolean cond_update;
219   bool saturate;
220   int sampler; /**< sampler index */
221   int tex_target; /**< One of TEXTURE_*_INDEX */
222   GLboolean tex_shadow;
223   struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224   unsigned tex_offset_num_offset;
225   int dead_mask; /**< Used in dead code elimination */
226
227   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228};
229
230class variable_storage : public exec_node {
231public:
232   variable_storage(ir_variable *var, gl_register_file file, int index)
233      : file(file), index(index), var(var)
234   {
235      /* empty */
236   }
237
238   gl_register_file file;
239   int index;
240   ir_variable *var; /* variable that maps to this, if any */
241};
242
243class immediate_storage : public exec_node {
244public:
245   immediate_storage(gl_constant_value *values, int size, int type)
246   {
247      memcpy(this->values, values, size * sizeof(gl_constant_value));
248      this->size = size;
249      this->type = type;
250   }
251
252   gl_constant_value values[4];
253   int size; /**< Number of components (1-4) */
254   int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255};
256
257class function_entry : public exec_node {
258public:
259   ir_function_signature *sig;
260
261   /**
262    * identifier of this function signature used by the program.
263    *
264    * At the point that TGSI instructions for function calls are
265    * generated, we don't know the address of the first instruction of
266    * the function body.  So we make the BranchTarget that is called a
267    * small integer and rewrite them during set_branchtargets().
268    */
269   int sig_id;
270
271   /**
272    * Pointer to first instruction of the function body.
273    *
274    * Set during function body emits after main() is processed.
275    */
276   glsl_to_tgsi_instruction *bgn_inst;
277
278   /**
279    * Index of the first instruction of the function body in actual TGSI.
280    *
281    * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282    */
283   int inst;
284
285   /** Storage for the return value. */
286   st_src_reg return_reg;
287};
288
289class glsl_to_tgsi_visitor : public ir_visitor {
290public:
291   glsl_to_tgsi_visitor();
292   ~glsl_to_tgsi_visitor();
293
294   function_entry *current_function;
295
296   struct gl_context *ctx;
297   struct gl_program *prog;
298   struct gl_shader_program *shader_program;
299   struct gl_shader_compiler_options *options;
300
301   int next_temp;
302
303   int num_address_regs;
304   int samplers_used;
305   bool indirect_addr_temps;
306   bool indirect_addr_consts;
307   int num_clip_distances;
308
309   int glsl_version;
310   bool native_integers;
311
312   variable_storage *find_variable_storage(ir_variable *var);
313
314   int add_constant(gl_register_file file, gl_constant_value values[4],
315                    int size, int datatype, GLuint *swizzle_out);
316
317   function_entry *get_function_signature(ir_function_signature *sig);
318
319   st_src_reg get_temp(const glsl_type *type);
320   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
321
322   st_src_reg st_src_reg_for_float(float val);
323   st_src_reg st_src_reg_for_int(int val);
324   st_src_reg st_src_reg_for_type(int type, int val);
325
326   /**
327    * \name Visit methods
328    *
329    * As typical for the visitor pattern, there must be one \c visit method for
330    * each concrete subclass of \c ir_instruction.  Virtual base classes within
331    * the hierarchy should not have \c visit methods.
332    */
333   /*@{*/
334   virtual void visit(ir_variable *);
335   virtual void visit(ir_loop *);
336   virtual void visit(ir_loop_jump *);
337   virtual void visit(ir_function_signature *);
338   virtual void visit(ir_function *);
339   virtual void visit(ir_expression *);
340   virtual void visit(ir_swizzle *);
341   virtual void visit(ir_dereference_variable  *);
342   virtual void visit(ir_dereference_array *);
343   virtual void visit(ir_dereference_record *);
344   virtual void visit(ir_assignment *);
345   virtual void visit(ir_constant *);
346   virtual void visit(ir_call *);
347   virtual void visit(ir_return *);
348   virtual void visit(ir_discard *);
349   virtual void visit(ir_texture *);
350   virtual void visit(ir_if *);
351   /*@}*/
352
353   st_src_reg result;
354
355   /** List of variable_storage */
356   exec_list variables;
357
358   /** List of immediate_storage */
359   exec_list immediates;
360   int num_immediates;
361
362   /** List of function_entry */
363   exec_list function_signatures;
364   int next_signature_id;
365
366   /** List of glsl_to_tgsi_instruction */
367   exec_list instructions;
368
369   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
370
371   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
372        		        st_dst_reg dst, st_src_reg src0);
373
374   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
375        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
376
377   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
378        		        st_dst_reg dst,
379        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
380
381   unsigned get_opcode(ir_instruction *ir, unsigned op,
382                    st_dst_reg dst,
383                    st_src_reg src0, st_src_reg src1);
384
385   /**
386    * Emit the correct dot-product instruction for the type of arguments
387    */
388   glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
389                                     st_dst_reg dst,
390                                     st_src_reg src0,
391                                     st_src_reg src1,
392                                     unsigned elements);
393
394   void emit_scalar(ir_instruction *ir, unsigned op,
395        	    st_dst_reg dst, st_src_reg src0);
396
397   void emit_scalar(ir_instruction *ir, unsigned op,
398        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
399
400   void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
401
402   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
403
404   void emit_scs(ir_instruction *ir, unsigned op,
405        	 st_dst_reg dst, const st_src_reg &src);
406
407   bool try_emit_mad(ir_expression *ir,
408              int mul_operand);
409   bool try_emit_mad_for_and_not(ir_expression *ir,
410              int mul_operand);
411   bool try_emit_sat(ir_expression *ir);
412
413   void emit_swz(ir_expression *ir);
414
415   bool process_move_condition(ir_rvalue *ir);
416
417   void simplify_cmp(void);
418
419   void rename_temp_register(int index, int new_index);
420   int get_first_temp_read(int index);
421   int get_first_temp_write(int index);
422   int get_last_temp_read(int index);
423   int get_last_temp_write(int index);
424
425   void copy_propagate(void);
426   void eliminate_dead_code(void);
427   int eliminate_dead_code_advanced(void);
428   void merge_registers(void);
429   void renumber_registers(void);
430
431   void *mem_ctx;
432};
433
434static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
435
436static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
437
438static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
439
440static void
441fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
442
443static void
444fail_link(struct gl_shader_program *prog, const char *fmt, ...)
445{
446   va_list args;
447   va_start(args, fmt);
448   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
449   va_end(args);
450
451   prog->LinkStatus = GL_FALSE;
452}
453
454static int
455swizzle_for_size(int size)
456{
457   int size_swizzles[4] = {
458      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
459      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
460      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
461      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
462   };
463
464   assert((size >= 1) && (size <= 4));
465   return size_swizzles[size - 1];
466}
467
468static bool
469is_tex_instruction(unsigned opcode)
470{
471   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
472   return info->is_tex;
473}
474
475static unsigned
476num_inst_dst_regs(unsigned opcode)
477{
478   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
479   return info->num_dst;
480}
481
482static unsigned
483num_inst_src_regs(unsigned opcode)
484{
485   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486   return info->is_tex ? info->num_src - 1 : info->num_src;
487}
488
489glsl_to_tgsi_instruction *
490glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
491        		 st_dst_reg dst,
492        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
493{
494   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
495   int num_reladdr = 0, i;
496
497   op = get_opcode(ir, op, dst, src0, src1);
498
499   /* If we have to do relative addressing, we want to load the ARL
500    * reg directly for one of the regs, and preload the other reladdr
501    * sources into temps.
502    */
503   num_reladdr += dst.reladdr != NULL;
504   num_reladdr += src0.reladdr != NULL;
505   num_reladdr += src1.reladdr != NULL;
506   num_reladdr += src2.reladdr != NULL;
507
508   reladdr_to_temp(ir, &src2, &num_reladdr);
509   reladdr_to_temp(ir, &src1, &num_reladdr);
510   reladdr_to_temp(ir, &src0, &num_reladdr);
511
512   if (dst.reladdr) {
513      emit_arl(ir, address_reg, *dst.reladdr);
514      num_reladdr--;
515   }
516   assert(num_reladdr == 0);
517
518   inst->op = op;
519   inst->dst = dst;
520   inst->src[0] = src0;
521   inst->src[1] = src1;
522   inst->src[2] = src2;
523   inst->ir = ir;
524   inst->dead_mask = 0;
525
526   inst->function = NULL;
527
528   if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
529      this->num_address_regs = 1;
530
531   /* Update indirect addressing status used by TGSI */
532   if (dst.reladdr) {
533      switch(dst.file) {
534      case PROGRAM_TEMPORARY:
535         this->indirect_addr_temps = true;
536         break;
537      case PROGRAM_LOCAL_PARAM:
538      case PROGRAM_ENV_PARAM:
539      case PROGRAM_STATE_VAR:
540      case PROGRAM_NAMED_PARAM:
541      case PROGRAM_CONSTANT:
542      case PROGRAM_UNIFORM:
543         this->indirect_addr_consts = true;
544         break;
545      case PROGRAM_IMMEDIATE:
546         assert(!"immediates should not have indirect addressing");
547         break;
548      default:
549         break;
550      }
551   }
552   else {
553      for (i=0; i<3; i++) {
554         if(inst->src[i].reladdr) {
555            switch(inst->src[i].file) {
556            case PROGRAM_TEMPORARY:
557               this->indirect_addr_temps = true;
558               break;
559            case PROGRAM_LOCAL_PARAM:
560            case PROGRAM_ENV_PARAM:
561            case PROGRAM_STATE_VAR:
562            case PROGRAM_NAMED_PARAM:
563            case PROGRAM_CONSTANT:
564            case PROGRAM_UNIFORM:
565               this->indirect_addr_consts = true;
566               break;
567            case PROGRAM_IMMEDIATE:
568               assert(!"immediates should not have indirect addressing");
569               break;
570            default:
571               break;
572            }
573         }
574      }
575   }
576
577   this->instructions.push_tail(inst);
578
579   if (native_integers)
580      try_emit_float_set(ir, op, dst);
581
582   return inst;
583}
584
585
586glsl_to_tgsi_instruction *
587glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
588        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
589{
590   return emit(ir, op, dst, src0, src1, undef_src);
591}
592
593glsl_to_tgsi_instruction *
594glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
595        		 st_dst_reg dst, st_src_reg src0)
596{
597   assert(dst.writemask != 0);
598   return emit(ir, op, dst, src0, undef_src, undef_src);
599}
600
601glsl_to_tgsi_instruction *
602glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
603{
604   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
605}
606
607 /**
608 * Emits the code to convert the result of float SET instructions to integers.
609 */
610void
611glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
612        		 st_dst_reg dst)
613{
614   if ((op == TGSI_OPCODE_SEQ ||
615        op == TGSI_OPCODE_SNE ||
616        op == TGSI_OPCODE_SGE ||
617        op == TGSI_OPCODE_SLT))
618   {
619      st_src_reg src = st_src_reg(dst);
620      src.negate = ~src.negate;
621      dst.type = GLSL_TYPE_FLOAT;
622      emit(ir, TGSI_OPCODE_F2I, dst, src);
623   }
624}
625
626/**
627 * Determines whether to use an integer, unsigned integer, or float opcode
628 * based on the operands and input opcode, then emits the result.
629 */
630unsigned
631glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
632        		 st_dst_reg dst,
633        		 st_src_reg src0, st_src_reg src1)
634{
635   int type = GLSL_TYPE_FLOAT;
636
637   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
638      type = GLSL_TYPE_FLOAT;
639   else if (native_integers)
640      type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
641
642#define case4(c, f, i, u) \
643   case TGSI_OPCODE_##c: \
644      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
645      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
646      else op = TGSI_OPCODE_##f; \
647      break;
648#define case3(f, i, u)  case4(f, f, i, u)
649#define case2fi(f, i)   case4(f, f, i, i)
650#define case2iu(i, u)   case4(i, LAST, i, u)
651
652   switch(op) {
653      case2fi(ADD, UADD);
654      case2fi(MUL, UMUL);
655      case2fi(MAD, UMAD);
656      case3(DIV, IDIV, UDIV);
657      case3(MAX, IMAX, UMAX);
658      case3(MIN, IMIN, UMIN);
659      case2iu(MOD, UMOD);
660
661      case2fi(SEQ, USEQ);
662      case2fi(SNE, USNE);
663      case3(SGE, ISGE, USGE);
664      case3(SLT, ISLT, USLT);
665
666      case2iu(ISHR, USHR);
667
668      case2fi(SSG, ISSG);
669      case3(ABS, IABS, IABS);
670
671      default: break;
672   }
673
674   assert(op != TGSI_OPCODE_LAST);
675   return op;
676}
677
678glsl_to_tgsi_instruction *
679glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
680        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
681        		    unsigned elements)
682{
683   static const unsigned dot_opcodes[] = {
684      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
685   };
686
687   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
688}
689
690/**
691 * Emits TGSI scalar opcodes to produce unique answers across channels.
692 *
693 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
694 * channel determines the result across all channels.  So to do a vec4
695 * of this operation, we want to emit a scalar per source channel used
696 * to produce dest channels.
697 */
698void
699glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
700        		        st_dst_reg dst,
701        			st_src_reg orig_src0, st_src_reg orig_src1)
702{
703   int i, j;
704   int done_mask = ~dst.writemask;
705
706   /* TGSI RCP is a scalar operation splatting results to all channels,
707    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
708    * dst channels.
709    */
710   for (i = 0; i < 4; i++) {
711      GLuint this_mask = (1 << i);
712      glsl_to_tgsi_instruction *inst;
713      st_src_reg src0 = orig_src0;
714      st_src_reg src1 = orig_src1;
715
716      if (done_mask & this_mask)
717         continue;
718
719      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
720      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
721      for (j = i + 1; j < 4; j++) {
722         /* If there is another enabled component in the destination that is
723          * derived from the same inputs, generate its value on this pass as
724          * well.
725          */
726         if (!(done_mask & (1 << j)) &&
727             GET_SWZ(src0.swizzle, j) == src0_swiz &&
728             GET_SWZ(src1.swizzle, j) == src1_swiz) {
729            this_mask |= (1 << j);
730         }
731      }
732      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
733        			   src0_swiz, src0_swiz);
734      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
735        			  src1_swiz, src1_swiz);
736
737      inst = emit(ir, op, dst, src0, src1);
738      inst->dst.writemask = this_mask;
739      done_mask |= this_mask;
740   }
741}
742
743void
744glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
745        		        st_dst_reg dst, st_src_reg src0)
746{
747   st_src_reg undef = undef_src;
748
749   undef.swizzle = SWIZZLE_XXXX;
750
751   emit_scalar(ir, op, dst, src0, undef);
752}
753
754void
755glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
756        		        st_dst_reg dst, st_src_reg src0)
757{
758   int op = TGSI_OPCODE_ARL;
759
760   if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
761      op = TGSI_OPCODE_UARL;
762
763   emit(NULL, op, dst, src0);
764}
765
766/**
767 * Emit an TGSI_OPCODE_SCS instruction
768 *
769 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
770 * Instead of splatting its result across all four components of the
771 * destination, it writes one value to the \c x component and another value to
772 * the \c y component.
773 *
774 * \param ir        IR instruction being processed
775 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
776 *                  on which value is desired.
777 * \param dst       Destination register
778 * \param src       Source register
779 */
780void
781glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
782        		     st_dst_reg dst,
783        		     const st_src_reg &src)
784{
785   /* Vertex programs cannot use the SCS opcode.
786    */
787   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
788      emit_scalar(ir, op, dst, src);
789      return;
790   }
791
792   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
793   const unsigned scs_mask = (1U << component);
794   int done_mask = ~dst.writemask;
795   st_src_reg tmp;
796
797   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
798
799   /* If there are compnents in the destination that differ from the component
800    * that will be written by the SCS instrution, we'll need a temporary.
801    */
802   if (scs_mask != unsigned(dst.writemask)) {
803      tmp = get_temp(glsl_type::vec4_type);
804   }
805
806   for (unsigned i = 0; i < 4; i++) {
807      unsigned this_mask = (1U << i);
808      st_src_reg src0 = src;
809
810      if ((done_mask & this_mask) != 0)
811         continue;
812
813      /* The source swizzle specified which component of the source generates
814       * sine / cosine for the current component in the destination.  The SCS
815       * instruction requires that this value be swizzle to the X component.
816       * Replace the current swizzle with a swizzle that puts the source in
817       * the X component.
818       */
819      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
820
821      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
822        			   src0_swiz, src0_swiz);
823      for (unsigned j = i + 1; j < 4; j++) {
824         /* If there is another enabled component in the destination that is
825          * derived from the same inputs, generate its value on this pass as
826          * well.
827          */
828         if (!(done_mask & (1 << j)) &&
829             GET_SWZ(src0.swizzle, j) == src0_swiz) {
830            this_mask |= (1 << j);
831         }
832      }
833
834      if (this_mask != scs_mask) {
835         glsl_to_tgsi_instruction *inst;
836         st_dst_reg tmp_dst = st_dst_reg(tmp);
837
838         /* Emit the SCS instruction.
839          */
840         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
841         inst->dst.writemask = scs_mask;
842
843         /* Move the result of the SCS instruction to the desired location in
844          * the destination.
845          */
846         tmp.swizzle = MAKE_SWIZZLE4(component, component,
847        			     component, component);
848         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
849         inst->dst.writemask = this_mask;
850      } else {
851         /* Emit the SCS instruction to write directly to the destination.
852          */
853         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
854         inst->dst.writemask = scs_mask;
855      }
856
857      done_mask |= this_mask;
858   }
859}
860
861int
862glsl_to_tgsi_visitor::add_constant(gl_register_file file,
863        		     gl_constant_value values[4], int size, int datatype,
864        		     GLuint *swizzle_out)
865{
866   if (file == PROGRAM_CONSTANT) {
867      return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
868                                              size, datatype, swizzle_out);
869   } else {
870      int index = 0;
871      immediate_storage *entry;
872      assert(file == PROGRAM_IMMEDIATE);
873
874      /* Search immediate storage to see if we already have an identical
875       * immediate that we can use instead of adding a duplicate entry.
876       */
877      foreach_iter(exec_list_iterator, iter, this->immediates) {
878         entry = (immediate_storage *)iter.get();
879
880         if (entry->size == size &&
881             entry->type == datatype &&
882             !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
883             return index;
884         }
885         index++;
886      }
887
888      /* Add this immediate to the list. */
889      entry = new(mem_ctx) immediate_storage(values, size, datatype);
890      this->immediates.push_tail(entry);
891      this->num_immediates++;
892      return index;
893   }
894}
895
896st_src_reg
897glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
898{
899   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
900   union gl_constant_value uval;
901
902   uval.f = val;
903   src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
904
905   return src;
906}
907
908st_src_reg
909glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
910{
911   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
912   union gl_constant_value uval;
913
914   assert(native_integers);
915
916   uval.i = val;
917   src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
918
919   return src;
920}
921
922st_src_reg
923glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
924{
925   if (native_integers)
926      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
927                                       st_src_reg_for_int(val);
928   else
929      return st_src_reg_for_float(val);
930}
931
932static int
933type_size(const struct glsl_type *type)
934{
935   unsigned int i;
936   int size;
937
938   switch (type->base_type) {
939   case GLSL_TYPE_UINT:
940   case GLSL_TYPE_INT:
941   case GLSL_TYPE_FLOAT:
942   case GLSL_TYPE_BOOL:
943      if (type->is_matrix()) {
944         return type->matrix_columns;
945      } else {
946         /* Regardless of size of vector, it gets a vec4. This is bad
947          * packing for things like floats, but otherwise arrays become a
948          * mess.  Hopefully a later pass over the code can pack scalars
949          * down if appropriate.
950          */
951         return 1;
952      }
953   case GLSL_TYPE_ARRAY:
954      assert(type->length > 0);
955      return type_size(type->fields.array) * type->length;
956   case GLSL_TYPE_STRUCT:
957      size = 0;
958      for (i = 0; i < type->length; i++) {
959         size += type_size(type->fields.structure[i].type);
960      }
961      return size;
962   case GLSL_TYPE_SAMPLER:
963      /* Samplers take up one slot in UNIFORMS[], but they're baked in
964       * at link time.
965       */
966      return 1;
967   default:
968      assert(0);
969      return 0;
970   }
971}
972
973/**
974 * In the initial pass of codegen, we assign temporary numbers to
975 * intermediate results.  (not SSA -- variable assignments will reuse
976 * storage).
977 */
978st_src_reg
979glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
980{
981   st_src_reg src;
982
983   src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
984   src.file = PROGRAM_TEMPORARY;
985   src.index = next_temp;
986   src.reladdr = NULL;
987   next_temp += type_size(type);
988
989   if (type->is_array() || type->is_record()) {
990      src.swizzle = SWIZZLE_NOOP;
991   } else {
992      src.swizzle = swizzle_for_size(type->vector_elements);
993   }
994   src.negate = 0;
995
996   return src;
997}
998
999variable_storage *
1000glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1001{
1002
1003   variable_storage *entry;
1004
1005   foreach_iter(exec_list_iterator, iter, this->variables) {
1006      entry = (variable_storage *)iter.get();
1007
1008      if (entry->var == var)
1009         return entry;
1010   }
1011
1012   return NULL;
1013}
1014
1015void
1016glsl_to_tgsi_visitor::visit(ir_variable *ir)
1017{
1018   if (strcmp(ir->name, "gl_FragCoord") == 0) {
1019      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1020
1021      fp->OriginUpperLeft = ir->origin_upper_left;
1022      fp->PixelCenterInteger = ir->pixel_center_integer;
1023   }
1024
1025   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1026      unsigned int i;
1027      const ir_state_slot *const slots = ir->state_slots;
1028      assert(ir->state_slots != NULL);
1029
1030      /* Check if this statevar's setup in the STATE file exactly
1031       * matches how we'll want to reference it as a
1032       * struct/array/whatever.  If not, then we need to move it into
1033       * temporary storage and hope that it'll get copy-propagated
1034       * out.
1035       */
1036      for (i = 0; i < ir->num_state_slots; i++) {
1037         if (slots[i].swizzle != SWIZZLE_XYZW) {
1038            break;
1039         }
1040      }
1041
1042      variable_storage *storage;
1043      st_dst_reg dst;
1044      if (i == ir->num_state_slots) {
1045         /* We'll set the index later. */
1046         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1047         this->variables.push_tail(storage);
1048
1049         dst = undef_dst;
1050      } else {
1051         /* The variable_storage constructor allocates slots based on the size
1052          * of the type.  However, this had better match the number of state
1053          * elements that we're going to copy into the new temporary.
1054          */
1055         assert((int) ir->num_state_slots == type_size(ir->type));
1056
1057         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1058        					 this->next_temp);
1059         this->variables.push_tail(storage);
1060         this->next_temp += type_size(ir->type);
1061
1062         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1063               native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1064      }
1065
1066
1067      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1068         int index = _mesa_add_state_reference(this->prog->Parameters,
1069        				       (gl_state_index *)slots[i].tokens);
1070
1071         if (storage->file == PROGRAM_STATE_VAR) {
1072            if (storage->index == -1) {
1073               storage->index = index;
1074            } else {
1075               assert(index == storage->index + (int)i);
1076            }
1077         } else {
1078            st_src_reg src(PROGRAM_STATE_VAR, index,
1079                  native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1080            src.swizzle = slots[i].swizzle;
1081            emit(ir, TGSI_OPCODE_MOV, dst, src);
1082            /* even a float takes up a whole vec4 reg in a struct/array. */
1083            dst.index++;
1084         }
1085      }
1086
1087      if (storage->file == PROGRAM_TEMPORARY &&
1088          dst.index != storage->index + (int) ir->num_state_slots) {
1089         fail_link(this->shader_program,
1090        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1091        	   ir->name, dst.index - storage->index,
1092        	   type_size(ir->type));
1093      }
1094   }
1095}
1096
1097void
1098glsl_to_tgsi_visitor::visit(ir_loop *ir)
1099{
1100   ir_dereference_variable *counter = NULL;
1101
1102   if (ir->counter != NULL)
1103      counter = new(ir) ir_dereference_variable(ir->counter);
1104
1105   if (ir->from != NULL) {
1106      assert(ir->counter != NULL);
1107
1108      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1109
1110      a->accept(this);
1111      delete a;
1112   }
1113
1114   emit(NULL, TGSI_OPCODE_BGNLOOP);
1115
1116   if (ir->to) {
1117      ir_expression *e =
1118         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1119        		       counter, ir->to);
1120      ir_if *if_stmt =  new(ir) ir_if(e);
1121
1122      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1123
1124      if_stmt->then_instructions.push_tail(brk);
1125
1126      if_stmt->accept(this);
1127
1128      delete if_stmt;
1129      delete e;
1130      delete brk;
1131   }
1132
1133   visit_exec_list(&ir->body_instructions, this);
1134
1135   if (ir->increment) {
1136      ir_expression *e =
1137         new(ir) ir_expression(ir_binop_add, counter->type,
1138        		       counter, ir->increment);
1139
1140      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1141
1142      a->accept(this);
1143      delete a;
1144      delete e;
1145   }
1146
1147   emit(NULL, TGSI_OPCODE_ENDLOOP);
1148}
1149
1150void
1151glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1152{
1153   switch (ir->mode) {
1154   case ir_loop_jump::jump_break:
1155      emit(NULL, TGSI_OPCODE_BRK);
1156      break;
1157   case ir_loop_jump::jump_continue:
1158      emit(NULL, TGSI_OPCODE_CONT);
1159      break;
1160   }
1161}
1162
1163
1164void
1165glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1166{
1167   assert(0);
1168   (void)ir;
1169}
1170
1171void
1172glsl_to_tgsi_visitor::visit(ir_function *ir)
1173{
1174   /* Ignore function bodies other than main() -- we shouldn't see calls to
1175    * them since they should all be inlined before we get to glsl_to_tgsi.
1176    */
1177   if (strcmp(ir->name, "main") == 0) {
1178      const ir_function_signature *sig;
1179      exec_list empty;
1180
1181      sig = ir->matching_signature(&empty);
1182
1183      assert(sig);
1184
1185      foreach_iter(exec_list_iterator, iter, sig->body) {
1186         ir_instruction *ir = (ir_instruction *)iter.get();
1187
1188         ir->accept(this);
1189      }
1190   }
1191}
1192
1193bool
1194glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1195{
1196   int nonmul_operand = 1 - mul_operand;
1197   st_src_reg a, b, c;
1198   st_dst_reg result_dst;
1199
1200   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1201   if (!expr || expr->operation != ir_binop_mul)
1202      return false;
1203
1204   expr->operands[0]->accept(this);
1205   a = this->result;
1206   expr->operands[1]->accept(this);
1207   b = this->result;
1208   ir->operands[nonmul_operand]->accept(this);
1209   c = this->result;
1210
1211   this->result = get_temp(ir->type);
1212   result_dst = st_dst_reg(this->result);
1213   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1214   emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1215
1216   return true;
1217}
1218
1219/**
1220 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1221 *
1222 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1223 * implemented using multiplication, and logical-or is implemented using
1224 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1225 * As result, the logical expression (a & !b) can be rewritten as:
1226 *
1227 *     - a * !b
1228 *     - a * (1 - b)
1229 *     - (a * 1) - (a * b)
1230 *     - a + -(a * b)
1231 *     - a + (a * -b)
1232 *
1233 * This final expression can be implemented as a single MAD(a, -b, a)
1234 * instruction.
1235 */
1236bool
1237glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1238{
1239   const int other_operand = 1 - try_operand;
1240   st_src_reg a, b;
1241
1242   ir_expression *expr = ir->operands[try_operand]->as_expression();
1243   if (!expr || expr->operation != ir_unop_logic_not)
1244      return false;
1245
1246   ir->operands[other_operand]->accept(this);
1247   a = this->result;
1248   expr->operands[0]->accept(this);
1249   b = this->result;
1250
1251   b.negate = ~b.negate;
1252
1253   this->result = get_temp(ir->type);
1254   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1255
1256   return true;
1257}
1258
1259bool
1260glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1261{
1262   /* Saturates were only introduced to vertex programs in
1263    * NV_vertex_program3, so don't give them to drivers in the VP.
1264    */
1265   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1266      return false;
1267
1268   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1269   if (!sat_src)
1270      return false;
1271
1272   sat_src->accept(this);
1273   st_src_reg src = this->result;
1274
1275   /* If we generated an expression instruction into a temporary in
1276    * processing the saturate's operand, apply the saturate to that
1277    * instruction.  Otherwise, generate a MOV to do the saturate.
1278    *
1279    * Note that we have to be careful to only do this optimization if
1280    * the instruction in question was what generated src->result.  For
1281    * example, ir_dereference_array might generate a MUL instruction
1282    * to create the reladdr, and return us a src reg using that
1283    * reladdr.  That MUL result is not the value we're trying to
1284    * saturate.
1285    */
1286   ir_expression *sat_src_expr = sat_src->as_expression();
1287   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1288			sat_src_expr->operation == ir_binop_add ||
1289			sat_src_expr->operation == ir_binop_dot)) {
1290      glsl_to_tgsi_instruction *new_inst;
1291      new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1292      new_inst->saturate = true;
1293   } else {
1294      this->result = get_temp(ir->type);
1295      st_dst_reg result_dst = st_dst_reg(this->result);
1296      result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1297      glsl_to_tgsi_instruction *inst;
1298      inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1299      inst->saturate = true;
1300   }
1301
1302   return true;
1303}
1304
1305void
1306glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1307        			    st_src_reg *reg, int *num_reladdr)
1308{
1309   if (!reg->reladdr)
1310      return;
1311
1312   emit_arl(ir, address_reg, *reg->reladdr);
1313
1314   if (*num_reladdr != 1) {
1315      st_src_reg temp = get_temp(glsl_type::vec4_type);
1316
1317      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1318      *reg = temp;
1319   }
1320
1321   (*num_reladdr)--;
1322}
1323
1324void
1325glsl_to_tgsi_visitor::visit(ir_expression *ir)
1326{
1327   unsigned int operand;
1328   st_src_reg op[Elements(ir->operands)];
1329   st_src_reg result_src;
1330   st_dst_reg result_dst;
1331
1332   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1333    */
1334   if (ir->operation == ir_binop_add) {
1335      if (try_emit_mad(ir, 1))
1336         return;
1337      if (try_emit_mad(ir, 0))
1338         return;
1339   }
1340
1341   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1342    */
1343   if (ir->operation == ir_binop_logic_and) {
1344      if (try_emit_mad_for_and_not(ir, 1))
1345	 return;
1346      if (try_emit_mad_for_and_not(ir, 0))
1347	 return;
1348   }
1349
1350   if (try_emit_sat(ir))
1351      return;
1352
1353   if (ir->operation == ir_quadop_vector)
1354      assert(!"ir_quadop_vector should have been lowered");
1355
1356   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1357      this->result.file = PROGRAM_UNDEFINED;
1358      ir->operands[operand]->accept(this);
1359      if (this->result.file == PROGRAM_UNDEFINED) {
1360         ir_print_visitor v;
1361         printf("Failed to get tree for expression operand:\n");
1362         ir->operands[operand]->accept(&v);
1363         exit(1);
1364      }
1365      op[operand] = this->result;
1366
1367      /* Matrix expression operands should have been broken down to vector
1368       * operations already.
1369       */
1370      assert(!ir->operands[operand]->type->is_matrix());
1371   }
1372
1373   int vector_elements = ir->operands[0]->type->vector_elements;
1374   if (ir->operands[1]) {
1375      vector_elements = MAX2(vector_elements,
1376        		     ir->operands[1]->type->vector_elements);
1377   }
1378
1379   this->result.file = PROGRAM_UNDEFINED;
1380
1381   /* Storage for our result.  Ideally for an assignment we'd be using
1382    * the actual storage for the result here, instead.
1383    */
1384   result_src = get_temp(ir->type);
1385   /* convenience for the emit functions below. */
1386   result_dst = st_dst_reg(result_src);
1387   /* Limit writes to the channels that will be used by result_src later.
1388    * This does limit this temp's use as a temporary for multi-instruction
1389    * sequences.
1390    */
1391   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1392
1393   switch (ir->operation) {
1394   case ir_unop_logic_not:
1395      if (result_dst.type != GLSL_TYPE_FLOAT)
1396         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1397      else {
1398         /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1399          * older GPUs implement SEQ using multiple instructions (i915 uses two
1400          * SGE instructions and a MUL instruction).  Since our logic values are
1401          * 0.0 and 1.0, 1-x also implements !x.
1402          */
1403         op[0].negate = ~op[0].negate;
1404         emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1405      }
1406      break;
1407   case ir_unop_neg:
1408      if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1409         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1410      else {
1411         op[0].negate = ~op[0].negate;
1412         result_src = op[0];
1413      }
1414      break;
1415   case ir_unop_abs:
1416      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1417      break;
1418   case ir_unop_sign:
1419      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1420      break;
1421   case ir_unop_rcp:
1422      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1423      break;
1424
1425   case ir_unop_exp2:
1426      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1427      break;
1428   case ir_unop_exp:
1429   case ir_unop_log:
1430      assert(!"not reached: should be handled by ir_explog_to_explog2");
1431      break;
1432   case ir_unop_log2:
1433      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1434      break;
1435   case ir_unop_sin:
1436      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1437      break;
1438   case ir_unop_cos:
1439      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1440      break;
1441   case ir_unop_sin_reduced:
1442      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1443      break;
1444   case ir_unop_cos_reduced:
1445      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1446      break;
1447
1448   case ir_unop_dFdx:
1449      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1450      break;
1451   case ir_unop_dFdy:
1452      op[0].negate = ~op[0].negate;
1453      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1454      break;
1455
1456   case ir_unop_noise: {
1457      /* At some point, a motivated person could add a better
1458       * implementation of noise.  Currently not even the nvidia
1459       * binary drivers do anything more than this.  In any case, the
1460       * place to do this is in the GL state tracker, not the poor
1461       * driver.
1462       */
1463      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1464      break;
1465   }
1466
1467   case ir_binop_add:
1468      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1469      break;
1470   case ir_binop_sub:
1471      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1472      break;
1473
1474   case ir_binop_mul:
1475      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1476      break;
1477   case ir_binop_div:
1478      if (result_dst.type == GLSL_TYPE_FLOAT)
1479         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1480      else
1481         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1482      break;
1483   case ir_binop_mod:
1484      if (result_dst.type == GLSL_TYPE_FLOAT)
1485         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1486      else
1487         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1488      break;
1489
1490   case ir_binop_less:
1491      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1492      break;
1493   case ir_binop_greater:
1494      emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1495      break;
1496   case ir_binop_lequal:
1497      emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1498      break;
1499   case ir_binop_gequal:
1500      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1501      break;
1502   case ir_binop_equal:
1503      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1504      break;
1505   case ir_binop_nequal:
1506      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1507      break;
1508   case ir_binop_all_equal:
1509      /* "==" operator producing a scalar boolean. */
1510      if (ir->operands[0]->type->is_vector() ||
1511          ir->operands[1]->type->is_vector()) {
1512         st_src_reg temp = get_temp(native_integers ?
1513               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1514               glsl_type::vec4_type);
1515
1516         if (native_integers) {
1517            st_dst_reg temp_dst = st_dst_reg(temp);
1518            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1519
1520            emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1521
1522            /* Emit 1-3 AND operations to combine the SEQ results. */
1523            switch (ir->operands[0]->type->vector_elements) {
1524            case 2:
1525               break;
1526            case 3:
1527               temp_dst.writemask = WRITEMASK_Y;
1528               temp1.swizzle = SWIZZLE_YYYY;
1529               temp2.swizzle = SWIZZLE_ZZZZ;
1530               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1531               break;
1532            case 4:
1533               temp_dst.writemask = WRITEMASK_X;
1534               temp1.swizzle = SWIZZLE_XXXX;
1535               temp2.swizzle = SWIZZLE_YYYY;
1536               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1537               temp_dst.writemask = WRITEMASK_Y;
1538               temp1.swizzle = SWIZZLE_ZZZZ;
1539               temp2.swizzle = SWIZZLE_WWWW;
1540               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1541            }
1542
1543            temp1.swizzle = SWIZZLE_XXXX;
1544            temp2.swizzle = SWIZZLE_YYYY;
1545            emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1546         } else {
1547            emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1548
1549            /* After the dot-product, the value will be an integer on the
1550             * range [0,4].  Zero becomes 1.0, and positive values become zero.
1551             */
1552            emit_dp(ir, result_dst, temp, temp, vector_elements);
1553
1554            /* Negating the result of the dot-product gives values on the range
1555             * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1556             * This is achieved using SGE.
1557             */
1558            st_src_reg sge_src = result_src;
1559            sge_src.negate = ~sge_src.negate;
1560            emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1561         }
1562      } else {
1563         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1564      }
1565      break;
1566   case ir_binop_any_nequal:
1567      /* "!=" operator producing a scalar boolean. */
1568      if (ir->operands[0]->type->is_vector() ||
1569          ir->operands[1]->type->is_vector()) {
1570         st_src_reg temp = get_temp(native_integers ?
1571               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1572               glsl_type::vec4_type);
1573         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1574
1575         if (native_integers) {
1576            st_dst_reg temp_dst = st_dst_reg(temp);
1577            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1578
1579            /* Emit 1-3 OR operations to combine the SNE results. */
1580            switch (ir->operands[0]->type->vector_elements) {
1581            case 2:
1582               break;
1583            case 3:
1584               temp_dst.writemask = WRITEMASK_Y;
1585               temp1.swizzle = SWIZZLE_YYYY;
1586               temp2.swizzle = SWIZZLE_ZZZZ;
1587               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1588               break;
1589            case 4:
1590               temp_dst.writemask = WRITEMASK_X;
1591               temp1.swizzle = SWIZZLE_XXXX;
1592               temp2.swizzle = SWIZZLE_YYYY;
1593               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1594               temp_dst.writemask = WRITEMASK_Y;
1595               temp1.swizzle = SWIZZLE_ZZZZ;
1596               temp2.swizzle = SWIZZLE_WWWW;
1597               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1598            }
1599
1600            temp1.swizzle = SWIZZLE_XXXX;
1601            temp2.swizzle = SWIZZLE_YYYY;
1602            emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1603         } else {
1604            /* After the dot-product, the value will be an integer on the
1605             * range [0,4].  Zero stays zero, and positive values become 1.0.
1606             */
1607            glsl_to_tgsi_instruction *const dp =
1608                  emit_dp(ir, result_dst, temp, temp, vector_elements);
1609            if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1610               /* The clamping to [0,1] can be done for free in the fragment
1611                * shader with a saturate.
1612                */
1613               dp->saturate = true;
1614            } else {
1615               /* Negating the result of the dot-product gives values on the range
1616                * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1617                * achieved using SLT.
1618                */
1619               st_src_reg slt_src = result_src;
1620               slt_src.negate = ~slt_src.negate;
1621               emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1622            }
1623         }
1624      } else {
1625         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1626      }
1627      break;
1628
1629   case ir_unop_any: {
1630      assert(ir->operands[0]->type->is_vector());
1631
1632      /* After the dot-product, the value will be an integer on the
1633       * range [0,4].  Zero stays zero, and positive values become 1.0.
1634       */
1635      glsl_to_tgsi_instruction *const dp =
1636         emit_dp(ir, result_dst, op[0], op[0],
1637                 ir->operands[0]->type->vector_elements);
1638      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1639          result_dst.type == GLSL_TYPE_FLOAT) {
1640	      /* The clamping to [0,1] can be done for free in the fragment
1641	       * shader with a saturate.
1642	       */
1643	      dp->saturate = true;
1644      } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1645	      /* Negating the result of the dot-product gives values on the range
1646	       * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1647	       * is achieved using SLT.
1648	       */
1649	      st_src_reg slt_src = result_src;
1650	      slt_src.negate = ~slt_src.negate;
1651	      emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1652      }
1653      else {
1654         /* Use SNE 0 if integers are being used as boolean values. */
1655         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1656      }
1657      break;
1658   }
1659
1660   case ir_binop_logic_xor:
1661      if (native_integers)
1662         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1663      else
1664         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1665      break;
1666
1667   case ir_binop_logic_or: {
1668      if (native_integers) {
1669         /* If integers are used as booleans, we can use an actual "or"
1670          * instruction.
1671          */
1672         assert(native_integers);
1673         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1674      } else {
1675         /* After the addition, the value will be an integer on the
1676          * range [0,2].  Zero stays zero, and positive values become 1.0.
1677          */
1678         glsl_to_tgsi_instruction *add =
1679            emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1680         if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1681            /* The clamping to [0,1] can be done for free in the fragment
1682             * shader with a saturate if floats are being used as boolean values.
1683             */
1684            add->saturate = true;
1685         } else {
1686            /* Negating the result of the addition gives values on the range
1687             * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1688             * is achieved using SLT.
1689             */
1690            st_src_reg slt_src = result_src;
1691            slt_src.negate = ~slt_src.negate;
1692            emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1693         }
1694      }
1695      break;
1696   }
1697
1698   case ir_binop_logic_and:
1699      /* If native integers are disabled, the bool args are stored as float 0.0
1700       * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1701       * actual AND opcode.
1702       */
1703      if (native_integers)
1704         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1705      else
1706         emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1707      break;
1708
1709   case ir_binop_dot:
1710      assert(ir->operands[0]->type->is_vector());
1711      assert(ir->operands[0]->type == ir->operands[1]->type);
1712      emit_dp(ir, result_dst, op[0], op[1],
1713              ir->operands[0]->type->vector_elements);
1714      break;
1715
1716   case ir_unop_sqrt:
1717      /* sqrt(x) = x * rsq(x). */
1718      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1719      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1720      /* For incoming channels <= 0, set the result to 0. */
1721      op[0].negate = ~op[0].negate;
1722      emit(ir, TGSI_OPCODE_CMP, result_dst,
1723        		  op[0], result_src, st_src_reg_for_float(0.0));
1724      break;
1725   case ir_unop_rsq:
1726      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1727      break;
1728   case ir_unop_i2f:
1729      if (native_integers) {
1730         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1731         break;
1732      }
1733      /* fallthrough to next case otherwise */
1734   case ir_unop_b2f:
1735      if (native_integers) {
1736         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1737         break;
1738      }
1739      /* fallthrough to next case otherwise */
1740   case ir_unop_i2u:
1741   case ir_unop_u2i:
1742      /* Converting between signed and unsigned integers is a no-op. */
1743      result_src = op[0];
1744      break;
1745   case ir_unop_b2i:
1746      if (native_integers) {
1747         /* Booleans are stored as integers using ~0 for true and 0 for false.
1748          * GLSL requires that int(bool) return 1 for true and 0 for false.
1749          * This conversion is done with AND, but it could be done with NEG.
1750          */
1751         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1752      } else {
1753         /* Booleans and integers are both stored as floats when native
1754          * integers are disabled.
1755          */
1756         result_src = op[0];
1757      }
1758      break;
1759   case ir_unop_f2i:
1760      if (native_integers)
1761         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1762      else
1763         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1764      break;
1765   case ir_unop_f2b:
1766      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1767      break;
1768   case ir_unop_i2b:
1769      if (native_integers)
1770         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1771      else
1772         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1773      break;
1774   case ir_unop_trunc:
1775      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1776      break;
1777   case ir_unop_ceil:
1778      op[0].negate = ~op[0].negate;
1779      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1780      result_src.negate = ~result_src.negate;
1781      break;
1782   case ir_unop_floor:
1783      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1784      break;
1785   case ir_unop_round_even:
1786      emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1787      break;
1788   case ir_unop_fract:
1789      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1790      break;
1791
1792   case ir_binop_min:
1793      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1794      break;
1795   case ir_binop_max:
1796      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1797      break;
1798   case ir_binop_pow:
1799      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1800      break;
1801
1802   case ir_unop_bit_not:
1803      if (native_integers) {
1804         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1805         break;
1806      }
1807   case ir_unop_u2f:
1808      if (native_integers) {
1809         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1810         break;
1811      }
1812   case ir_binop_lshift:
1813      if (native_integers) {
1814         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1815         break;
1816      }
1817   case ir_binop_rshift:
1818      if (native_integers) {
1819         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1820         break;
1821      }
1822   case ir_binop_bit_and:
1823      if (native_integers) {
1824         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1825         break;
1826      }
1827   case ir_binop_bit_xor:
1828      if (native_integers) {
1829         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1830         break;
1831      }
1832   case ir_binop_bit_or:
1833      if (native_integers) {
1834         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1835         break;
1836      }
1837
1838      assert(!"GLSL 1.30 features unsupported");
1839      break;
1840
1841   case ir_quadop_vector:
1842      /* This operation should have already been handled.
1843       */
1844      assert(!"Should not get here.");
1845      break;
1846   }
1847
1848   this->result = result_src;
1849}
1850
1851
1852void
1853glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1854{
1855   st_src_reg src;
1856   int i;
1857   int swizzle[4];
1858
1859   /* Note that this is only swizzles in expressions, not those on the left
1860    * hand side of an assignment, which do write masking.  See ir_assignment
1861    * for that.
1862    */
1863
1864   ir->val->accept(this);
1865   src = this->result;
1866   assert(src.file != PROGRAM_UNDEFINED);
1867
1868   for (i = 0; i < 4; i++) {
1869      if (i < ir->type->vector_elements) {
1870         switch (i) {
1871         case 0:
1872            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1873            break;
1874         case 1:
1875            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1876            break;
1877         case 2:
1878            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1879            break;
1880         case 3:
1881            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1882            break;
1883         }
1884      } else {
1885         /* If the type is smaller than a vec4, replicate the last
1886          * channel out.
1887          */
1888         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1889      }
1890   }
1891
1892   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1893
1894   this->result = src;
1895}
1896
1897void
1898glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1899{
1900   variable_storage *entry = find_variable_storage(ir->var);
1901   ir_variable *var = ir->var;
1902
1903   if (!entry) {
1904      switch (var->mode) {
1905      case ir_var_uniform:
1906         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1907        				       var->location);
1908         this->variables.push_tail(entry);
1909         break;
1910      case ir_var_in:
1911      case ir_var_inout:
1912         /* The linker assigns locations for varyings and attributes,
1913          * including deprecated builtins (like gl_Color), user-assign
1914          * generic attributes (glBindVertexLocation), and
1915          * user-defined varyings.
1916          *
1917          * FINISHME: We would hit this path for function arguments.  Fix!
1918          */
1919         assert(var->location != -1);
1920         entry = new(mem_ctx) variable_storage(var,
1921                                               PROGRAM_INPUT,
1922                                               var->location);
1923         break;
1924      case ir_var_out:
1925         assert(var->location != -1);
1926         entry = new(mem_ctx) variable_storage(var,
1927                                               PROGRAM_OUTPUT,
1928                                               var->location);
1929         break;
1930      case ir_var_system_value:
1931         entry = new(mem_ctx) variable_storage(var,
1932                                               PROGRAM_SYSTEM_VALUE,
1933                                               var->location);
1934         break;
1935      case ir_var_auto:
1936      case ir_var_temporary:
1937         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1938        				       this->next_temp);
1939         this->variables.push_tail(entry);
1940
1941         next_temp += type_size(var->type);
1942         break;
1943      }
1944
1945      if (!entry) {
1946         printf("Failed to make storage for %s\n", var->name);
1947         exit(1);
1948      }
1949   }
1950
1951   this->result = st_src_reg(entry->file, entry->index, var->type);
1952   if (!native_integers)
1953      this->result.type = GLSL_TYPE_FLOAT;
1954}
1955
1956void
1957glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1958{
1959   ir_constant *index;
1960   st_src_reg src;
1961   int element_size = type_size(ir->type);
1962
1963   index = ir->array_index->constant_expression_value();
1964
1965   ir->array->accept(this);
1966   src = this->result;
1967
1968   if (index) {
1969      src.index += index->value.i[0] * element_size;
1970   } else {
1971      /* Variable index array dereference.  It eats the "vec4" of the
1972       * base of the array and an index that offsets the TGSI register
1973       * index.
1974       */
1975      ir->array_index->accept(this);
1976
1977      st_src_reg index_reg;
1978
1979      if (element_size == 1) {
1980         index_reg = this->result;
1981      } else {
1982         index_reg = get_temp(native_integers ?
1983                              glsl_type::int_type : glsl_type::float_type);
1984
1985         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1986              this->result, st_src_reg_for_type(index_reg.type, element_size));
1987      }
1988
1989      /* If there was already a relative address register involved, add the
1990       * new and the old together to get the new offset.
1991       */
1992      if (src.reladdr != NULL) {
1993         st_src_reg accum_reg = get_temp(native_integers ?
1994                                glsl_type::int_type : glsl_type::float_type);
1995
1996         emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1997              index_reg, *src.reladdr);
1998
1999         index_reg = accum_reg;
2000      }
2001
2002      src.reladdr = ralloc(mem_ctx, st_src_reg);
2003      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2004   }
2005
2006   /* If the type is smaller than a vec4, replicate the last channel out. */
2007   if (ir->type->is_scalar() || ir->type->is_vector())
2008      src.swizzle = swizzle_for_size(ir->type->vector_elements);
2009   else
2010      src.swizzle = SWIZZLE_NOOP;
2011
2012   this->result = src;
2013}
2014
2015void
2016glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2017{
2018   unsigned int i;
2019   const glsl_type *struct_type = ir->record->type;
2020   int offset = 0;
2021
2022   ir->record->accept(this);
2023
2024   for (i = 0; i < struct_type->length; i++) {
2025      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2026         break;
2027      offset += type_size(struct_type->fields.structure[i].type);
2028   }
2029
2030   /* If the type is smaller than a vec4, replicate the last channel out. */
2031   if (ir->type->is_scalar() || ir->type->is_vector())
2032      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2033   else
2034      this->result.swizzle = SWIZZLE_NOOP;
2035
2036   this->result.index += offset;
2037}
2038
2039/**
2040 * We want to be careful in assignment setup to hit the actual storage
2041 * instead of potentially using a temporary like we might with the
2042 * ir_dereference handler.
2043 */
2044static st_dst_reg
2045get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2046{
2047   /* The LHS must be a dereference.  If the LHS is a variable indexed array
2048    * access of a vector, it must be separated into a series conditional moves
2049    * before reaching this point (see ir_vec_index_to_cond_assign).
2050    */
2051   assert(ir->as_dereference());
2052   ir_dereference_array *deref_array = ir->as_dereference_array();
2053   if (deref_array) {
2054      assert(!deref_array->array->type->is_vector());
2055   }
2056
2057   /* Use the rvalue deref handler for the most part.  We'll ignore
2058    * swizzles in it and write swizzles using writemask, though.
2059    */
2060   ir->accept(v);
2061   return st_dst_reg(v->result);
2062}
2063
2064/**
2065 * Process the condition of a conditional assignment
2066 *
2067 * Examines the condition of a conditional assignment to generate the optimal
2068 * first operand of a \c CMP instruction.  If the condition is a relational
2069 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2070 * used as the source for the \c CMP instruction.  Otherwise the comparison
2071 * is processed to a boolean result, and the boolean result is used as the
2072 * operand to the CMP instruction.
2073 */
2074bool
2075glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2076{
2077   ir_rvalue *src_ir = ir;
2078   bool negate = true;
2079   bool switch_order = false;
2080
2081   ir_expression *const expr = ir->as_expression();
2082   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2083      bool zero_on_left = false;
2084
2085      if (expr->operands[0]->is_zero()) {
2086         src_ir = expr->operands[1];
2087         zero_on_left = true;
2088      } else if (expr->operands[1]->is_zero()) {
2089         src_ir = expr->operands[0];
2090         zero_on_left = false;
2091      }
2092
2093      /*      a is -  0  +            -  0  +
2094       * (a <  0)  T  F  F  ( a < 0)  T  F  F
2095       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2096       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2097       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2098       * (a >  0)  F  F  T  (-a < 0)  F  F  T
2099       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2100       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2101       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2102       *
2103       * Note that exchanging the order of 0 and 'a' in the comparison simply
2104       * means that the value of 'a' should be negated.
2105       */
2106      if (src_ir != ir) {
2107         switch (expr->operation) {
2108         case ir_binop_less:
2109            switch_order = false;
2110            negate = zero_on_left;
2111            break;
2112
2113         case ir_binop_greater:
2114            switch_order = false;
2115            negate = !zero_on_left;
2116            break;
2117
2118         case ir_binop_lequal:
2119            switch_order = true;
2120            negate = !zero_on_left;
2121            break;
2122
2123         case ir_binop_gequal:
2124            switch_order = true;
2125            negate = zero_on_left;
2126            break;
2127
2128         default:
2129            /* This isn't the right kind of comparison afterall, so make sure
2130             * the whole condition is visited.
2131             */
2132            src_ir = ir;
2133            break;
2134         }
2135      }
2136   }
2137
2138   src_ir->accept(this);
2139
2140   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2141    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2142    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2143    * computing the condition.
2144    */
2145   if (negate)
2146      this->result.negate = ~this->result.negate;
2147
2148   return switch_order;
2149}
2150
2151void
2152glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2153{
2154   st_dst_reg l;
2155   st_src_reg r;
2156   int i;
2157
2158   ir->rhs->accept(this);
2159   r = this->result;
2160
2161   l = get_assignment_lhs(ir->lhs, this);
2162
2163   /* FINISHME: This should really set to the correct maximal writemask for each
2164    * FINISHME: component written (in the loops below).  This case can only
2165    * FINISHME: occur for matrices, arrays, and structures.
2166    */
2167   if (ir->write_mask == 0) {
2168      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2169      l.writemask = WRITEMASK_XYZW;
2170   } else if (ir->lhs->type->is_scalar() &&
2171              ir->lhs->variable_referenced()->mode == ir_var_out) {
2172      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2173       * FINISHME: W component of fragment shader output zero, work correctly.
2174       */
2175      l.writemask = WRITEMASK_XYZW;
2176   } else {
2177      int swizzles[4];
2178      int first_enabled_chan = 0;
2179      int rhs_chan = 0;
2180
2181      l.writemask = ir->write_mask;
2182
2183      for (int i = 0; i < 4; i++) {
2184         if (l.writemask & (1 << i)) {
2185            first_enabled_chan = GET_SWZ(r.swizzle, i);
2186            break;
2187         }
2188      }
2189
2190      /* Swizzle a small RHS vector into the channels being written.
2191       *
2192       * glsl ir treats write_mask as dictating how many channels are
2193       * present on the RHS while TGSI treats write_mask as just
2194       * showing which channels of the vec4 RHS get written.
2195       */
2196      for (int i = 0; i < 4; i++) {
2197         if (l.writemask & (1 << i))
2198            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2199         else
2200            swizzles[i] = first_enabled_chan;
2201      }
2202      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2203        			swizzles[2], swizzles[3]);
2204   }
2205
2206   assert(l.file != PROGRAM_UNDEFINED);
2207   assert(r.file != PROGRAM_UNDEFINED);
2208
2209   if (ir->condition) {
2210      const bool switch_order = this->process_move_condition(ir->condition);
2211      st_src_reg condition = this->result;
2212
2213      for (i = 0; i < type_size(ir->lhs->type); i++) {
2214         st_src_reg l_src = st_src_reg(l);
2215         st_src_reg condition_temp = condition;
2216         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2217
2218         if (native_integers) {
2219            /* This is necessary because TGSI's CMP instruction expects the
2220             * condition to be a float, and we store booleans as integers.
2221             * If TGSI had a UCMP instruction or similar, this extra
2222             * instruction would not be necessary.
2223             */
2224            condition_temp = get_temp(glsl_type::vec4_type);
2225            condition.negate = 0;
2226            emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2227            condition_temp.swizzle = condition.swizzle;
2228         }
2229
2230         if (switch_order) {
2231            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2232         } else {
2233            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2234         }
2235
2236         l.index++;
2237         r.index++;
2238      }
2239   } else if (ir->rhs->as_expression() &&
2240              this->instructions.get_tail() &&
2241              ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2242              type_size(ir->lhs->type) == 1 &&
2243              l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2244      /* To avoid emitting an extra MOV when assigning an expression to a
2245       * variable, emit the last instruction of the expression again, but
2246       * replace the destination register with the target of the assignment.
2247       * Dead code elimination will remove the original instruction.
2248       */
2249      glsl_to_tgsi_instruction *inst, *new_inst;
2250      inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2251      new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2252      new_inst->saturate = inst->saturate;
2253      inst->dead_mask = inst->dst.writemask;
2254   } else {
2255      for (i = 0; i < type_size(ir->lhs->type); i++) {
2256         emit(ir, TGSI_OPCODE_MOV, l, r);
2257         l.index++;
2258         r.index++;
2259      }
2260   }
2261}
2262
2263
2264void
2265glsl_to_tgsi_visitor::visit(ir_constant *ir)
2266{
2267   st_src_reg src;
2268   GLfloat stack_vals[4] = { 0 };
2269   gl_constant_value *values = (gl_constant_value *) stack_vals;
2270   GLenum gl_type = GL_NONE;
2271   unsigned int i;
2272   static int in_array = 0;
2273   gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2274
2275   /* Unfortunately, 4 floats is all we can get into
2276    * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
2277    * aggregate constant and move each constant value into it.  If we
2278    * get lucky, copy propagation will eliminate the extra moves.
2279    */
2280   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2281      st_src_reg temp_base = get_temp(ir->type);
2282      st_dst_reg temp = st_dst_reg(temp_base);
2283
2284      foreach_iter(exec_list_iterator, iter, ir->components) {
2285         ir_constant *field_value = (ir_constant *)iter.get();
2286         int size = type_size(field_value->type);
2287
2288         assert(size > 0);
2289
2290         field_value->accept(this);
2291         src = this->result;
2292
2293         for (i = 0; i < (unsigned int)size; i++) {
2294            emit(ir, TGSI_OPCODE_MOV, temp, src);
2295
2296            src.index++;
2297            temp.index++;
2298         }
2299      }
2300      this->result = temp_base;
2301      return;
2302   }
2303
2304   if (ir->type->is_array()) {
2305      st_src_reg temp_base = get_temp(ir->type);
2306      st_dst_reg temp = st_dst_reg(temp_base);
2307      int size = type_size(ir->type->fields.array);
2308
2309      assert(size > 0);
2310      in_array++;
2311
2312      for (i = 0; i < ir->type->length; i++) {
2313         ir->array_elements[i]->accept(this);
2314         src = this->result;
2315         for (int j = 0; j < size; j++) {
2316            emit(ir, TGSI_OPCODE_MOV, temp, src);
2317
2318            src.index++;
2319            temp.index++;
2320         }
2321      }
2322      this->result = temp_base;
2323      in_array--;
2324      return;
2325   }
2326
2327   if (ir->type->is_matrix()) {
2328      st_src_reg mat = get_temp(ir->type);
2329      st_dst_reg mat_column = st_dst_reg(mat);
2330
2331      for (i = 0; i < ir->type->matrix_columns; i++) {
2332         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2333         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2334
2335         src = st_src_reg(file, -1, ir->type->base_type);
2336         src.index = add_constant(file,
2337                                  values,
2338                                  ir->type->vector_elements,
2339                                  GL_FLOAT,
2340                                  &src.swizzle);
2341         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2342
2343         mat_column.index++;
2344      }
2345
2346      this->result = mat;
2347      return;
2348   }
2349
2350   switch (ir->type->base_type) {
2351   case GLSL_TYPE_FLOAT:
2352      gl_type = GL_FLOAT;
2353      for (i = 0; i < ir->type->vector_elements; i++) {
2354         values[i].f = ir->value.f[i];
2355      }
2356      break;
2357   case GLSL_TYPE_UINT:
2358      gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2359      for (i = 0; i < ir->type->vector_elements; i++) {
2360         if (native_integers)
2361            values[i].u = ir->value.u[i];
2362         else
2363            values[i].f = ir->value.u[i];
2364      }
2365      break;
2366   case GLSL_TYPE_INT:
2367      gl_type = native_integers ? GL_INT : GL_FLOAT;
2368      for (i = 0; i < ir->type->vector_elements; i++) {
2369         if (native_integers)
2370            values[i].i = ir->value.i[i];
2371         else
2372            values[i].f = ir->value.i[i];
2373      }
2374      break;
2375   case GLSL_TYPE_BOOL:
2376      gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2377      for (i = 0; i < ir->type->vector_elements; i++) {
2378         if (native_integers)
2379            values[i].u = ir->value.b[i] ? ~0 : 0;
2380         else
2381            values[i].f = ir->value.b[i];
2382      }
2383      break;
2384   default:
2385      assert(!"Non-float/uint/int/bool constant");
2386   }
2387
2388   this->result = st_src_reg(file, -1, ir->type);
2389   this->result.index = add_constant(file,
2390                                     values,
2391                                     ir->type->vector_elements,
2392                                     gl_type,
2393                                     &this->result.swizzle);
2394}
2395
2396function_entry *
2397glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2398{
2399   function_entry *entry;
2400
2401   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2402      entry = (function_entry *)iter.get();
2403
2404      if (entry->sig == sig)
2405         return entry;
2406   }
2407
2408   entry = ralloc(mem_ctx, function_entry);
2409   entry->sig = sig;
2410   entry->sig_id = this->next_signature_id++;
2411   entry->bgn_inst = NULL;
2412
2413   /* Allocate storage for all the parameters. */
2414   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2415      ir_variable *param = (ir_variable *)iter.get();
2416      variable_storage *storage;
2417
2418      storage = find_variable_storage(param);
2419      assert(!storage);
2420
2421      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2422        				      this->next_temp);
2423      this->variables.push_tail(storage);
2424
2425      this->next_temp += type_size(param->type);
2426   }
2427
2428   if (!sig->return_type->is_void()) {
2429      entry->return_reg = get_temp(sig->return_type);
2430   } else {
2431      entry->return_reg = undef_src;
2432   }
2433
2434   this->function_signatures.push_tail(entry);
2435   return entry;
2436}
2437
2438void
2439glsl_to_tgsi_visitor::visit(ir_call *ir)
2440{
2441   glsl_to_tgsi_instruction *call_inst;
2442   ir_function_signature *sig = ir->get_callee();
2443   function_entry *entry = get_function_signature(sig);
2444   int i;
2445
2446   /* Process in parameters. */
2447   exec_list_iterator sig_iter = sig->parameters.iterator();
2448   foreach_iter(exec_list_iterator, iter, *ir) {
2449      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2450      ir_variable *param = (ir_variable *)sig_iter.get();
2451
2452      if (param->mode == ir_var_in ||
2453          param->mode == ir_var_inout) {
2454         variable_storage *storage = find_variable_storage(param);
2455         assert(storage);
2456
2457         param_rval->accept(this);
2458         st_src_reg r = this->result;
2459
2460         st_dst_reg l;
2461         l.file = storage->file;
2462         l.index = storage->index;
2463         l.reladdr = NULL;
2464         l.writemask = WRITEMASK_XYZW;
2465         l.cond_mask = COND_TR;
2466
2467         for (i = 0; i < type_size(param->type); i++) {
2468            emit(ir, TGSI_OPCODE_MOV, l, r);
2469            l.index++;
2470            r.index++;
2471         }
2472      }
2473
2474      sig_iter.next();
2475   }
2476   assert(!sig_iter.has_next());
2477
2478   /* Emit call instruction */
2479   call_inst = emit(ir, TGSI_OPCODE_CAL);
2480   call_inst->function = entry;
2481
2482   /* Process out parameters. */
2483   sig_iter = sig->parameters.iterator();
2484   foreach_iter(exec_list_iterator, iter, *ir) {
2485      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2486      ir_variable *param = (ir_variable *)sig_iter.get();
2487
2488      if (param->mode == ir_var_out ||
2489          param->mode == ir_var_inout) {
2490         variable_storage *storage = find_variable_storage(param);
2491         assert(storage);
2492
2493         st_src_reg r;
2494         r.file = storage->file;
2495         r.index = storage->index;
2496         r.reladdr = NULL;
2497         r.swizzle = SWIZZLE_NOOP;
2498         r.negate = 0;
2499
2500         param_rval->accept(this);
2501         st_dst_reg l = st_dst_reg(this->result);
2502
2503         for (i = 0; i < type_size(param->type); i++) {
2504            emit(ir, TGSI_OPCODE_MOV, l, r);
2505            l.index++;
2506            r.index++;
2507         }
2508      }
2509
2510      sig_iter.next();
2511   }
2512   assert(!sig_iter.has_next());
2513
2514   /* Process return value. */
2515   this->result = entry->return_reg;
2516}
2517
2518void
2519glsl_to_tgsi_visitor::visit(ir_texture *ir)
2520{
2521   st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2522   st_dst_reg result_dst, coord_dst;
2523   glsl_to_tgsi_instruction *inst = NULL;
2524   unsigned opcode = TGSI_OPCODE_NOP;
2525
2526   if (ir->coordinate) {
2527      ir->coordinate->accept(this);
2528
2529      /* Put our coords in a temp.  We'll need to modify them for shadow,
2530       * projection, or LOD, so the only case we'd use it as is is if
2531       * we're doing plain old texturing.  The optimization passes on
2532       * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2533       */
2534      coord = get_temp(glsl_type::vec4_type);
2535      coord_dst = st_dst_reg(coord);
2536      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2537   }
2538
2539   if (ir->projector) {
2540      ir->projector->accept(this);
2541      projector = this->result;
2542   }
2543
2544   /* Storage for our result.  Ideally for an assignment we'd be using
2545    * the actual storage for the result here, instead.
2546    */
2547   result_src = get_temp(glsl_type::vec4_type);
2548   result_dst = st_dst_reg(result_src);
2549
2550   switch (ir->op) {
2551   case ir_tex:
2552      opcode = TGSI_OPCODE_TEX;
2553      break;
2554   case ir_txb:
2555      opcode = TGSI_OPCODE_TXB;
2556      ir->lod_info.bias->accept(this);
2557      lod_info = this->result;
2558      break;
2559   case ir_txl:
2560      opcode = TGSI_OPCODE_TXL;
2561      ir->lod_info.lod->accept(this);
2562      lod_info = this->result;
2563      break;
2564   case ir_txd:
2565      opcode = TGSI_OPCODE_TXD;
2566      ir->lod_info.grad.dPdx->accept(this);
2567      dx = this->result;
2568      ir->lod_info.grad.dPdy->accept(this);
2569      dy = this->result;
2570      break;
2571   case ir_txs:
2572      opcode = TGSI_OPCODE_TXQ;
2573      ir->lod_info.lod->accept(this);
2574      lod_info = this->result;
2575      break;
2576   case ir_txf:
2577      opcode = TGSI_OPCODE_TXF;
2578      ir->lod_info.lod->accept(this);
2579      lod_info = this->result;
2580      if (ir->offset) {
2581	 ir->offset->accept(this);
2582	 offset = this->result;
2583      }
2584      break;
2585   }
2586
2587   const glsl_type *sampler_type = ir->sampler->type;
2588
2589   if (ir->projector) {
2590      if (opcode == TGSI_OPCODE_TEX) {
2591         /* Slot the projector in as the last component of the coord. */
2592         coord_dst.writemask = WRITEMASK_W;
2593         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2594         coord_dst.writemask = WRITEMASK_XYZW;
2595         opcode = TGSI_OPCODE_TXP;
2596      } else {
2597         st_src_reg coord_w = coord;
2598         coord_w.swizzle = SWIZZLE_WWWW;
2599
2600         /* For the other TEX opcodes there's no projective version
2601          * since the last slot is taken up by LOD info.  Do the
2602          * projective divide now.
2603          */
2604         coord_dst.writemask = WRITEMASK_W;
2605         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2606
2607         /* In the case where we have to project the coordinates "by hand,"
2608          * the shadow comparator value must also be projected.
2609          */
2610         st_src_reg tmp_src = coord;
2611         if (ir->shadow_comparitor) {
2612            /* Slot the shadow value in as the second to last component of the
2613             * coord.
2614             */
2615            ir->shadow_comparitor->accept(this);
2616
2617            tmp_src = get_temp(glsl_type::vec4_type);
2618            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2619
2620	    /* Projective division not allowed for array samplers. */
2621	    assert(!sampler_type->sampler_array);
2622
2623            tmp_dst.writemask = WRITEMASK_Z;
2624            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2625
2626            tmp_dst.writemask = WRITEMASK_XY;
2627            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2628         }
2629
2630         coord_dst.writemask = WRITEMASK_XYZ;
2631         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2632
2633         coord_dst.writemask = WRITEMASK_XYZW;
2634         coord.swizzle = SWIZZLE_XYZW;
2635      }
2636   }
2637
2638   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2639    * comparator was put in the correct place (and projected) by the code,
2640    * above, that handles by-hand projection.
2641    */
2642   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2643      /* Slot the shadow value in as the second to last component of the
2644       * coord.
2645       */
2646      ir->shadow_comparitor->accept(this);
2647
2648      /* XXX This will need to be updated for cubemap array samplers. */
2649      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2650          sampler_type->sampler_array) {
2651         coord_dst.writemask = WRITEMASK_W;
2652      } else {
2653         coord_dst.writemask = WRITEMASK_Z;
2654      }
2655
2656      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2657      coord_dst.writemask = WRITEMASK_XYZW;
2658   }
2659
2660   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2661       opcode == TGSI_OPCODE_TXF) {
2662      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2663      coord_dst.writemask = WRITEMASK_W;
2664      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2665      coord_dst.writemask = WRITEMASK_XYZW;
2666   }
2667
2668   if (opcode == TGSI_OPCODE_TXD)
2669      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2670   else if (opcode == TGSI_OPCODE_TXQ)
2671      inst = emit(ir, opcode, result_dst, lod_info);
2672   else if (opcode == TGSI_OPCODE_TXF) {
2673      inst = emit(ir, opcode, result_dst, coord);
2674   } else
2675      inst = emit(ir, opcode, result_dst, coord);
2676
2677   if (ir->shadow_comparitor)
2678      inst->tex_shadow = GL_TRUE;
2679
2680   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2681        					   this->shader_program,
2682        					   this->prog);
2683
2684   if (ir->offset) {
2685       inst->tex_offset_num_offset = 1;
2686       inst->tex_offsets[0].Index = offset.index;
2687       inst->tex_offsets[0].File = offset.file;
2688       inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2689       inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2690       inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2691   }
2692
2693   switch (sampler_type->sampler_dimensionality) {
2694   case GLSL_SAMPLER_DIM_1D:
2695      inst->tex_target = (sampler_type->sampler_array)
2696         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2697      break;
2698   case GLSL_SAMPLER_DIM_2D:
2699      inst->tex_target = (sampler_type->sampler_array)
2700         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2701      break;
2702   case GLSL_SAMPLER_DIM_3D:
2703      inst->tex_target = TEXTURE_3D_INDEX;
2704      break;
2705   case GLSL_SAMPLER_DIM_CUBE:
2706      inst->tex_target = TEXTURE_CUBE_INDEX;
2707      break;
2708   case GLSL_SAMPLER_DIM_RECT:
2709      inst->tex_target = TEXTURE_RECT_INDEX;
2710      break;
2711   case GLSL_SAMPLER_DIM_BUF:
2712      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2713      break;
2714   case GLSL_SAMPLER_DIM_EXTERNAL:
2715      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2716      break;
2717   default:
2718      assert(!"Should not get here.");
2719   }
2720
2721   this->result = result_src;
2722}
2723
2724void
2725glsl_to_tgsi_visitor::visit(ir_return *ir)
2726{
2727   if (ir->get_value()) {
2728      st_dst_reg l;
2729      int i;
2730
2731      assert(current_function);
2732
2733      ir->get_value()->accept(this);
2734      st_src_reg r = this->result;
2735
2736      l = st_dst_reg(current_function->return_reg);
2737
2738      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2739         emit(ir, TGSI_OPCODE_MOV, l, r);
2740         l.index++;
2741         r.index++;
2742      }
2743   }
2744
2745   emit(ir, TGSI_OPCODE_RET);
2746}
2747
2748void
2749glsl_to_tgsi_visitor::visit(ir_discard *ir)
2750{
2751   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2752
2753   if (ir->condition) {
2754      ir->condition->accept(this);
2755      this->result.negate = ~this->result.negate;
2756      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2757   } else {
2758      emit(ir, TGSI_OPCODE_KILP);
2759   }
2760
2761   fp->UsesKill = GL_TRUE;
2762}
2763
2764void
2765glsl_to_tgsi_visitor::visit(ir_if *ir)
2766{
2767   glsl_to_tgsi_instruction *cond_inst, *if_inst;
2768   glsl_to_tgsi_instruction *prev_inst;
2769
2770   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2771
2772   ir->condition->accept(this);
2773   assert(this->result.file != PROGRAM_UNDEFINED);
2774
2775   if (this->options->EmitCondCodes) {
2776      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2777
2778      /* See if we actually generated any instruction for generating
2779       * the condition.  If not, then cook up a move to a temp so we
2780       * have something to set cond_update on.
2781       */
2782      if (cond_inst == prev_inst) {
2783         st_src_reg temp = get_temp(glsl_type::bool_type);
2784         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2785      }
2786      cond_inst->cond_update = GL_TRUE;
2787
2788      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2789      if_inst->dst.cond_mask = COND_NE;
2790   } else {
2791      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2792   }
2793
2794   this->instructions.push_tail(if_inst);
2795
2796   visit_exec_list(&ir->then_instructions, this);
2797
2798   if (!ir->else_instructions.is_empty()) {
2799      emit(ir->condition, TGSI_OPCODE_ELSE);
2800      visit_exec_list(&ir->else_instructions, this);
2801   }
2802
2803   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2804}
2805
2806glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2807{
2808   result.file = PROGRAM_UNDEFINED;
2809   next_temp = 1;
2810   next_signature_id = 1;
2811   num_immediates = 0;
2812   current_function = NULL;
2813   num_address_regs = 0;
2814   indirect_addr_temps = false;
2815   indirect_addr_consts = false;
2816   mem_ctx = ralloc_context(NULL);
2817}
2818
2819glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2820{
2821   ralloc_free(mem_ctx);
2822}
2823
2824extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2825{
2826   delete v;
2827}
2828
2829
2830/**
2831 * Count resources used by the given gpu program (number of texture
2832 * samplers, etc).
2833 */
2834static void
2835count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2836{
2837   v->samplers_used = 0;
2838
2839   foreach_iter(exec_list_iterator, iter, v->instructions) {
2840      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2841
2842      if (is_tex_instruction(inst->op)) {
2843         v->samplers_used |= 1 << inst->sampler;
2844
2845         prog->SamplerTargets[inst->sampler] =
2846            (gl_texture_index)inst->tex_target;
2847         if (inst->tex_shadow) {
2848            prog->ShadowSamplers |= 1 << inst->sampler;
2849         }
2850      }
2851   }
2852
2853   prog->SamplersUsed = v->samplers_used;
2854   _mesa_update_shader_textures_used(prog);
2855}
2856
2857static void
2858set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2859        		struct gl_shader_program *shader_program,
2860        		const char *name, const glsl_type *type,
2861        		ir_constant *val)
2862{
2863   if (type->is_record()) {
2864      ir_constant *field_constant;
2865
2866      field_constant = (ir_constant *)val->components.get_head();
2867
2868      for (unsigned int i = 0; i < type->length; i++) {
2869         const glsl_type *field_type = type->fields.structure[i].type;
2870         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2871        				    type->fields.structure[i].name);
2872         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2873        			 field_type, field_constant);
2874         field_constant = (ir_constant *)field_constant->next;
2875      }
2876      return;
2877   }
2878
2879   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2880
2881   if (loc == -1) {
2882      fail_link(shader_program,
2883        	"Couldn't find uniform for initializer %s\n", name);
2884      return;
2885   }
2886
2887   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2888      ir_constant *element;
2889      const glsl_type *element_type;
2890      if (type->is_array()) {
2891         element = val->array_elements[i];
2892         element_type = type->fields.array;
2893      } else {
2894         element = val;
2895         element_type = type;
2896      }
2897
2898      void *values;
2899
2900      if (element_type->base_type == GLSL_TYPE_BOOL) {
2901         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2902         for (unsigned int j = 0; j < element_type->components(); j++) {
2903            conv[j] = element->value.b[j];
2904         }
2905         values = (void *)conv;
2906         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2907        					element_type->vector_elements,
2908        					1);
2909      } else {
2910         values = &element->value;
2911      }
2912
2913      if (element_type->is_matrix()) {
2914         _mesa_uniform_matrix(ctx, shader_program,
2915        		      element_type->matrix_columns,
2916        		      element_type->vector_elements,
2917        		      loc, 1, GL_FALSE, (GLfloat *)values);
2918      } else {
2919         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2920        	       values, element_type->gl_type);
2921      }
2922
2923      loc++;
2924   }
2925}
2926
2927/**
2928 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2929 * are read from the given src in this instruction
2930 */
2931static int
2932get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2933{
2934   int read_mask = 0, comp;
2935
2936   /* Now, given the src swizzle and the written channels, find which
2937    * components are actually read
2938    */
2939   for (comp = 0; comp < 4; ++comp) {
2940      const unsigned coord = GET_SWZ(src.swizzle, comp);
2941      ASSERT(coord < 4);
2942      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2943         read_mask |= 1 << coord;
2944   }
2945
2946   return read_mask;
2947}
2948
2949/**
2950 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2951 * instruction is the first instruction to write to register T0.  There are
2952 * several lowering passes done in GLSL IR (e.g. branches and
2953 * relative addressing) that create a large number of conditional assignments
2954 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2955 *
2956 * Here is why this conversion is safe:
2957 * CMP T0, T1 T2 T0 can be expanded to:
2958 * if (T1 < 0.0)
2959 * 	MOV T0, T2;
2960 * else
2961 * 	MOV T0, T0;
2962 *
2963 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2964 * as the original program.  If (T1 < 0.0) evaluates to false, executing
2965 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2966 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2967 * because any instruction that was going to read from T0 after this was going
2968 * to read a garbage value anyway.
2969 */
2970void
2971glsl_to_tgsi_visitor::simplify_cmp(void)
2972{
2973   unsigned *tempWrites;
2974   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2975
2976   tempWrites = new unsigned[MAX_TEMPS];
2977   if (!tempWrites) {
2978      return;
2979   }
2980   memset(tempWrites, 0, sizeof(tempWrites));
2981   memset(outputWrites, 0, sizeof(outputWrites));
2982
2983   foreach_iter(exec_list_iterator, iter, this->instructions) {
2984      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2985      unsigned prevWriteMask = 0;
2986
2987      /* Give up if we encounter relative addressing or flow control. */
2988      if (inst->dst.reladdr ||
2989          tgsi_get_opcode_info(inst->op)->is_branch ||
2990          inst->op == TGSI_OPCODE_BGNSUB ||
2991          inst->op == TGSI_OPCODE_CONT ||
2992          inst->op == TGSI_OPCODE_END ||
2993          inst->op == TGSI_OPCODE_ENDSUB ||
2994          inst->op == TGSI_OPCODE_RET) {
2995         break;
2996      }
2997
2998      if (inst->dst.file == PROGRAM_OUTPUT) {
2999         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3000         prevWriteMask = outputWrites[inst->dst.index];
3001         outputWrites[inst->dst.index] |= inst->dst.writemask;
3002      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3003         assert(inst->dst.index < MAX_TEMPS);
3004         prevWriteMask = tempWrites[inst->dst.index];
3005         tempWrites[inst->dst.index] |= inst->dst.writemask;
3006      }
3007
3008      /* For a CMP to be considered a conditional write, the destination
3009       * register and source register two must be the same. */
3010      if (inst->op == TGSI_OPCODE_CMP
3011          && !(inst->dst.writemask & prevWriteMask)
3012          && inst->src[2].file == inst->dst.file
3013          && inst->src[2].index == inst->dst.index
3014          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3015
3016         inst->op = TGSI_OPCODE_MOV;
3017         inst->src[0] = inst->src[1];
3018      }
3019   }
3020
3021   delete [] tempWrites;
3022}
3023
3024/* Replaces all references to a temporary register index with another index. */
3025void
3026glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3027{
3028   foreach_iter(exec_list_iterator, iter, this->instructions) {
3029      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3030      unsigned j;
3031
3032      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3033         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3034             inst->src[j].index == index) {
3035            inst->src[j].index = new_index;
3036         }
3037      }
3038
3039      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3040         inst->dst.index = new_index;
3041      }
3042   }
3043}
3044
3045int
3046glsl_to_tgsi_visitor::get_first_temp_read(int index)
3047{
3048   int depth = 0; /* loop depth */
3049   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3050   unsigned i = 0, j;
3051
3052   foreach_iter(exec_list_iterator, iter, this->instructions) {
3053      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3054
3055      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3056         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3057             inst->src[j].index == index) {
3058            return (depth == 0) ? i : loop_start;
3059         }
3060      }
3061
3062      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3063         if(depth++ == 0)
3064            loop_start = i;
3065      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3066         if (--depth == 0)
3067            loop_start = -1;
3068      }
3069      assert(depth >= 0);
3070
3071      i++;
3072   }
3073
3074   return -1;
3075}
3076
3077int
3078glsl_to_tgsi_visitor::get_first_temp_write(int index)
3079{
3080   int depth = 0; /* loop depth */
3081   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3082   int i = 0;
3083
3084   foreach_iter(exec_list_iterator, iter, this->instructions) {
3085      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3086
3087      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3088         return (depth == 0) ? i : loop_start;
3089      }
3090
3091      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3092         if(depth++ == 0)
3093            loop_start = i;
3094      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3095         if (--depth == 0)
3096            loop_start = -1;
3097      }
3098      assert(depth >= 0);
3099
3100      i++;
3101   }
3102
3103   return -1;
3104}
3105
3106int
3107glsl_to_tgsi_visitor::get_last_temp_read(int index)
3108{
3109   int depth = 0; /* loop depth */
3110   int last = -1; /* index of last instruction that reads the temporary */
3111   unsigned i = 0, j;
3112
3113   foreach_iter(exec_list_iterator, iter, this->instructions) {
3114      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3115
3116      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3117         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3118             inst->src[j].index == index) {
3119            last = (depth == 0) ? i : -2;
3120         }
3121      }
3122
3123      if (inst->op == TGSI_OPCODE_BGNLOOP)
3124         depth++;
3125      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3126         if (--depth == 0 && last == -2)
3127            last = i;
3128      assert(depth >= 0);
3129
3130      i++;
3131   }
3132
3133   assert(last >= -1);
3134   return last;
3135}
3136
3137int
3138glsl_to_tgsi_visitor::get_last_temp_write(int index)
3139{
3140   int depth = 0; /* loop depth */
3141   int last = -1; /* index of last instruction that writes to the temporary */
3142   int i = 0;
3143
3144   foreach_iter(exec_list_iterator, iter, this->instructions) {
3145      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3146
3147      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3148         last = (depth == 0) ? i : -2;
3149
3150      if (inst->op == TGSI_OPCODE_BGNLOOP)
3151         depth++;
3152      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3153         if (--depth == 0 && last == -2)
3154            last = i;
3155      assert(depth >= 0);
3156
3157      i++;
3158   }
3159
3160   assert(last >= -1);
3161   return last;
3162}
3163
3164/*
3165 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3166 * channels for copy propagation and updates following instructions to
3167 * use the original versions.
3168 *
3169 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3170 * will occur.  As an example, a TXP production before this pass:
3171 *
3172 * 0: MOV TEMP[1], INPUT[4].xyyy;
3173 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3174 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3175 *
3176 * and after:
3177 *
3178 * 0: MOV TEMP[1], INPUT[4].xyyy;
3179 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3180 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3181 *
3182 * which allows for dead code elimination on TEMP[1]'s writes.
3183 */
3184void
3185glsl_to_tgsi_visitor::copy_propagate(void)
3186{
3187   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3188        					    glsl_to_tgsi_instruction *,
3189        					    this->next_temp * 4);
3190   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3191   int level = 0;
3192
3193   foreach_iter(exec_list_iterator, iter, this->instructions) {
3194      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3195
3196      assert(inst->dst.file != PROGRAM_TEMPORARY
3197             || inst->dst.index < this->next_temp);
3198
3199      /* First, do any copy propagation possible into the src regs. */
3200      for (int r = 0; r < 3; r++) {
3201         glsl_to_tgsi_instruction *first = NULL;
3202         bool good = true;
3203         int acp_base = inst->src[r].index * 4;
3204
3205         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3206             inst->src[r].reladdr)
3207            continue;
3208
3209         /* See if we can find entries in the ACP consisting of MOVs
3210          * from the same src register for all the swizzled channels
3211          * of this src register reference.
3212          */
3213         for (int i = 0; i < 4; i++) {
3214            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3215            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3216
3217            if (!copy_chan) {
3218               good = false;
3219               break;
3220            }
3221
3222            assert(acp_level[acp_base + src_chan] <= level);
3223
3224            if (!first) {
3225               first = copy_chan;
3226            } else {
3227               if (first->src[0].file != copy_chan->src[0].file ||
3228        	   first->src[0].index != copy_chan->src[0].index) {
3229        	  good = false;
3230        	  break;
3231               }
3232            }
3233         }
3234
3235         if (good) {
3236            /* We've now validated that we can copy-propagate to
3237             * replace this src register reference.  Do it.
3238             */
3239            inst->src[r].file = first->src[0].file;
3240            inst->src[r].index = first->src[0].index;
3241
3242            int swizzle = 0;
3243            for (int i = 0; i < 4; i++) {
3244               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3245               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3246               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3247        		   (3 * i));
3248            }
3249            inst->src[r].swizzle = swizzle;
3250         }
3251      }
3252
3253      switch (inst->op) {
3254      case TGSI_OPCODE_BGNLOOP:
3255      case TGSI_OPCODE_ENDLOOP:
3256         /* End of a basic block, clear the ACP entirely. */
3257         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3258         break;
3259
3260      case TGSI_OPCODE_IF:
3261         ++level;
3262         break;
3263
3264      case TGSI_OPCODE_ENDIF:
3265      case TGSI_OPCODE_ELSE:
3266         /* Clear all channels written inside the block from the ACP, but
3267          * leaving those that were not touched.
3268          */
3269         for (int r = 0; r < this->next_temp; r++) {
3270            for (int c = 0; c < 4; c++) {
3271               if (!acp[4 * r + c])
3272        	  continue;
3273
3274               if (acp_level[4 * r + c] >= level)
3275        	  acp[4 * r + c] = NULL;
3276            }
3277         }
3278         if (inst->op == TGSI_OPCODE_ENDIF)
3279            --level;
3280         break;
3281
3282      default:
3283         /* Continuing the block, clear any written channels from
3284          * the ACP.
3285          */
3286         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3287            /* Any temporary might be written, so no copy propagation
3288             * across this instruction.
3289             */
3290            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3291         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3292        	    inst->dst.reladdr) {
3293            /* Any output might be written, so no copy propagation
3294             * from outputs across this instruction.
3295             */
3296            for (int r = 0; r < this->next_temp; r++) {
3297               for (int c = 0; c < 4; c++) {
3298        	  if (!acp[4 * r + c])
3299        	     continue;
3300
3301        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3302        	     acp[4 * r + c] = NULL;
3303               }
3304            }
3305         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3306        	    inst->dst.file == PROGRAM_OUTPUT) {
3307            /* Clear where it's used as dst. */
3308            if (inst->dst.file == PROGRAM_TEMPORARY) {
3309               for (int c = 0; c < 4; c++) {
3310        	  if (inst->dst.writemask & (1 << c)) {
3311        	     acp[4 * inst->dst.index + c] = NULL;
3312        	  }
3313               }
3314            }
3315
3316            /* Clear where it's used as src. */
3317            for (int r = 0; r < this->next_temp; r++) {
3318               for (int c = 0; c < 4; c++) {
3319        	  if (!acp[4 * r + c])
3320        	     continue;
3321
3322        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3323
3324        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3325        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3326        	      inst->dst.writemask & (1 << src_chan))
3327        	  {
3328        	     acp[4 * r + c] = NULL;
3329        	  }
3330               }
3331            }
3332         }
3333         break;
3334      }
3335
3336      /* If this is a copy, add it to the ACP. */
3337      if (inst->op == TGSI_OPCODE_MOV &&
3338          inst->dst.file == PROGRAM_TEMPORARY &&
3339          !inst->dst.reladdr &&
3340          !inst->saturate &&
3341          !inst->src[0].reladdr &&
3342          !inst->src[0].negate) {
3343         for (int i = 0; i < 4; i++) {
3344            if (inst->dst.writemask & (1 << i)) {
3345               acp[4 * inst->dst.index + i] = inst;
3346               acp_level[4 * inst->dst.index + i] = level;
3347            }
3348         }
3349      }
3350   }
3351
3352   ralloc_free(acp_level);
3353   ralloc_free(acp);
3354}
3355
3356/*
3357 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3358 *
3359 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3360 * will occur.  As an example, a TXP production after copy propagation but
3361 * before this pass:
3362 *
3363 * 0: MOV TEMP[1], INPUT[4].xyyy;
3364 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3365 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3366 *
3367 * and after this pass:
3368 *
3369 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3370 *
3371 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3372 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3373 */
3374void
3375glsl_to_tgsi_visitor::eliminate_dead_code(void)
3376{
3377   int i;
3378
3379   for (i=0; i < this->next_temp; i++) {
3380      int last_read = get_last_temp_read(i);
3381      int j = 0;
3382
3383      foreach_iter(exec_list_iterator, iter, this->instructions) {
3384         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3385
3386         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3387             j > last_read)
3388         {
3389            iter.remove();
3390            delete inst;
3391         }
3392
3393         j++;
3394      }
3395   }
3396}
3397
3398/*
3399 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3400 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3401 * is per-channel and can detect consecutive writes without a read between them
3402 * as dead code.  However, there is some dead code that can be eliminated by
3403 * eliminate_dead_code() but not this function - for example, this function
3404 * cannot eliminate an instruction writing to a register that is never read and
3405 * is the only instruction writing to that register.
3406 *
3407 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3408 * will occur.
3409 */
3410int
3411glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3412{
3413   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3414                                                     glsl_to_tgsi_instruction *,
3415                                                     this->next_temp * 4);
3416   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3417   int level = 0;
3418   int removed = 0;
3419
3420   foreach_iter(exec_list_iterator, iter, this->instructions) {
3421      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3422
3423      assert(inst->dst.file != PROGRAM_TEMPORARY
3424             || inst->dst.index < this->next_temp);
3425
3426      switch (inst->op) {
3427      case TGSI_OPCODE_BGNLOOP:
3428      case TGSI_OPCODE_ENDLOOP:
3429      case TGSI_OPCODE_CONT:
3430      case TGSI_OPCODE_BRK:
3431         /* End of a basic block, clear the write array entirely.
3432          *
3433          * This keeps us from killing dead code when the writes are
3434          * on either side of a loop, even when the register isn't touched
3435          * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
3436          * dead code of this type, so it shouldn't make a difference as long as
3437          * the dead code elimination pass in the GLSL compiler does its job.
3438          */
3439         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3440         break;
3441
3442      case TGSI_OPCODE_ENDIF:
3443      case TGSI_OPCODE_ELSE:
3444         /* Promote the recorded level of all channels written inside the
3445          * preceding if or else block to the level above the if/else block.
3446          */
3447         for (int r = 0; r < this->next_temp; r++) {
3448            for (int c = 0; c < 4; c++) {
3449               if (!writes[4 * r + c])
3450        	         continue;
3451
3452               if (write_level[4 * r + c] == level)
3453        	         write_level[4 * r + c] = level-1;
3454            }
3455         }
3456
3457         if(inst->op == TGSI_OPCODE_ENDIF)
3458            --level;
3459
3460         break;
3461
3462      case TGSI_OPCODE_IF:
3463         ++level;
3464         /* fallthrough to default case to mark the condition as read */
3465
3466      default:
3467         /* Continuing the block, clear any channels from the write array that
3468          * are read by this instruction.
3469          */
3470         for (unsigned i = 0; i < Elements(inst->src); i++) {
3471            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3472               /* Any temporary might be read, so no dead code elimination
3473                * across this instruction.
3474                */
3475               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3476            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3477               /* Clear where it's used as src. */
3478               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3479               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3480               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3481               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3482
3483               for (int c = 0; c < 4; c++) {
3484              	   if (src_chans & (1 << c)) {
3485              	      writes[4 * inst->src[i].index + c] = NULL;
3486              	   }
3487               }
3488            }
3489         }
3490         break;
3491      }
3492
3493      /* If this instruction writes to a temporary, add it to the write array.
3494       * If there is already an instruction in the write array for one or more
3495       * of the channels, flag that channel write as dead.
3496       */
3497      if (inst->dst.file == PROGRAM_TEMPORARY &&
3498          !inst->dst.reladdr &&
3499          !inst->saturate) {
3500         for (int c = 0; c < 4; c++) {
3501            if (inst->dst.writemask & (1 << c)) {
3502               if (writes[4 * inst->dst.index + c]) {
3503                  if (write_level[4 * inst->dst.index + c] < level)
3504                     continue;
3505                  else
3506                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3507               }
3508               writes[4 * inst->dst.index + c] = inst;
3509               write_level[4 * inst->dst.index + c] = level;
3510            }
3511         }
3512      }
3513   }
3514
3515   /* Anything still in the write array at this point is dead code. */
3516   for (int r = 0; r < this->next_temp; r++) {
3517      for (int c = 0; c < 4; c++) {
3518         glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3519         if (inst)
3520            inst->dead_mask |= (1 << c);
3521      }
3522   }
3523
3524   /* Now actually remove the instructions that are completely dead and update
3525    * the writemask of other instructions with dead channels.
3526    */
3527   foreach_iter(exec_list_iterator, iter, this->instructions) {
3528      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3529
3530      if (!inst->dead_mask || !inst->dst.writemask)
3531         continue;
3532      else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3533         iter.remove();
3534         delete inst;
3535         removed++;
3536      } else
3537         inst->dst.writemask &= ~(inst->dead_mask);
3538   }
3539
3540   ralloc_free(write_level);
3541   ralloc_free(writes);
3542
3543   return removed;
3544}
3545
3546/* Merges temporary registers together where possible to reduce the number of
3547 * registers needed to run a program.
3548 *
3549 * Produces optimal code only after copy propagation and dead code elimination
3550 * have been run. */
3551void
3552glsl_to_tgsi_visitor::merge_registers(void)
3553{
3554   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3555   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3556   int i, j;
3557
3558   /* Read the indices of the last read and first write to each temp register
3559    * into an array so that we don't have to traverse the instruction list as
3560    * much. */
3561   for (i=0; i < this->next_temp; i++) {
3562      last_reads[i] = get_last_temp_read(i);
3563      first_writes[i] = get_first_temp_write(i);
3564   }
3565
3566   /* Start looking for registers with non-overlapping usages that can be
3567    * merged together. */
3568   for (i=0; i < this->next_temp; i++) {
3569      /* Don't touch unused registers. */
3570      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3571
3572      for (j=0; j < this->next_temp; j++) {
3573         /* Don't touch unused registers. */
3574         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3575
3576         /* We can merge the two registers if the first write to j is after or
3577          * in the same instruction as the last read from i.  Note that the
3578          * register at index i will always be used earlier or at the same time
3579          * as the register at index j. */
3580         if (first_writes[i] <= first_writes[j] &&
3581             last_reads[i] <= first_writes[j])
3582         {
3583            rename_temp_register(j, i); /* Replace all references to j with i.*/
3584
3585            /* Update the first_writes and last_reads arrays with the new
3586             * values for the merged register index, and mark the newly unused
3587             * register index as such. */
3588            last_reads[i] = last_reads[j];
3589            first_writes[j] = -1;
3590            last_reads[j] = -1;
3591         }
3592      }
3593   }
3594
3595   ralloc_free(last_reads);
3596   ralloc_free(first_writes);
3597}
3598
3599/* Reassign indices to temporary registers by reusing unused indices created
3600 * by optimization passes. */
3601void
3602glsl_to_tgsi_visitor::renumber_registers(void)
3603{
3604   int i = 0;
3605   int new_index = 0;
3606
3607   for (i=0; i < this->next_temp; i++) {
3608      if (get_first_temp_read(i) < 0) continue;
3609      if (i != new_index)
3610         rename_temp_register(i, new_index);
3611      new_index++;
3612   }
3613
3614   this->next_temp = new_index;
3615}
3616
3617/**
3618 * Returns a fragment program which implements the current pixel transfer ops.
3619 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3620 */
3621extern "C" void
3622get_pixel_transfer_visitor(struct st_fragment_program *fp,
3623                           glsl_to_tgsi_visitor *original,
3624                           int scale_and_bias, int pixel_maps)
3625{
3626   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3627   struct st_context *st = st_context(original->ctx);
3628   struct gl_program *prog = &fp->Base.Base;
3629   struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3630   st_src_reg coord, src0;
3631   st_dst_reg dst0;
3632   glsl_to_tgsi_instruction *inst;
3633
3634   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3635   v->ctx = original->ctx;
3636   v->prog = prog;
3637   v->shader_program = NULL;
3638   v->glsl_version = original->glsl_version;
3639   v->native_integers = original->native_integers;
3640   v->options = original->options;
3641   v->next_temp = original->next_temp;
3642   v->num_address_regs = original->num_address_regs;
3643   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3644   v->indirect_addr_temps = original->indirect_addr_temps;
3645   v->indirect_addr_consts = original->indirect_addr_consts;
3646   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3647
3648   /*
3649    * Get initial pixel color from the texture.
3650    * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3651    */
3652   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3653   src0 = v->get_temp(glsl_type::vec4_type);
3654   dst0 = st_dst_reg(src0);
3655   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3656   inst->sampler = 0;
3657   inst->tex_target = TEXTURE_2D_INDEX;
3658
3659   prog->InputsRead |= FRAG_BIT_TEX0;
3660   prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3661   v->samplers_used |= (1 << 0);
3662
3663   if (scale_and_bias) {
3664      static const gl_state_index scale_state[STATE_LENGTH] =
3665         { STATE_INTERNAL, STATE_PT_SCALE,
3666           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3667      static const gl_state_index bias_state[STATE_LENGTH] =
3668         { STATE_INTERNAL, STATE_PT_BIAS,
3669           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3670      GLint scale_p, bias_p;
3671      st_src_reg scale, bias;
3672
3673      scale_p = _mesa_add_state_reference(params, scale_state);
3674      bias_p = _mesa_add_state_reference(params, bias_state);
3675
3676      /* MAD colorTemp, colorTemp, scale, bias; */
3677      scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3678      bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3679      inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3680   }
3681
3682   if (pixel_maps) {
3683      st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3684      st_dst_reg temp_dst = st_dst_reg(temp);
3685
3686      assert(st->pixel_xfer.pixelmap_texture);
3687
3688      /* With a little effort, we can do four pixel map look-ups with
3689       * two TEX instructions:
3690       */
3691
3692      /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3693      temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3694      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3695      inst->sampler = 1;
3696      inst->tex_target = TEXTURE_2D_INDEX;
3697
3698      /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3699      src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3700      temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3701      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3702      inst->sampler = 1;
3703      inst->tex_target = TEXTURE_2D_INDEX;
3704
3705      prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3706      v->samplers_used |= (1 << 1);
3707
3708      /* MOV colorTemp, temp; */
3709      inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3710   }
3711
3712   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3713    * new visitor. */
3714   foreach_iter(exec_list_iterator, iter, original->instructions) {
3715      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3716      glsl_to_tgsi_instruction *newinst;
3717      st_src_reg src_regs[3];
3718
3719      if (inst->dst.file == PROGRAM_OUTPUT)
3720         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3721
3722      for (int i=0; i<3; i++) {
3723         src_regs[i] = inst->src[i];
3724         if (src_regs[i].file == PROGRAM_INPUT &&
3725             src_regs[i].index == FRAG_ATTRIB_COL0)
3726         {
3727            src_regs[i].file = PROGRAM_TEMPORARY;
3728            src_regs[i].index = src0.index;
3729         }
3730         else if (src_regs[i].file == PROGRAM_INPUT)
3731            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3732      }
3733
3734      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3735      newinst->tex_target = inst->tex_target;
3736   }
3737
3738   /* Make modifications to fragment program info. */
3739   prog->Parameters = _mesa_combine_parameter_lists(params,
3740                                                    original->prog->Parameters);
3741   _mesa_free_parameter_list(params);
3742   count_resources(v, prog);
3743   fp->glsl_to_tgsi = v;
3744}
3745
3746/**
3747 * Make fragment program for glBitmap:
3748 *   Sample the texture and kill the fragment if the bit is 0.
3749 * This program will be combined with the user's fragment program.
3750 *
3751 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3752 */
3753extern "C" void
3754get_bitmap_visitor(struct st_fragment_program *fp,
3755                   glsl_to_tgsi_visitor *original, int samplerIndex)
3756{
3757   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3758   struct st_context *st = st_context(original->ctx);
3759   struct gl_program *prog = &fp->Base.Base;
3760   st_src_reg coord, src0;
3761   st_dst_reg dst0;
3762   glsl_to_tgsi_instruction *inst;
3763
3764   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3765   v->ctx = original->ctx;
3766   v->prog = prog;
3767   v->shader_program = NULL;
3768   v->glsl_version = original->glsl_version;
3769   v->native_integers = original->native_integers;
3770   v->options = original->options;
3771   v->next_temp = original->next_temp;
3772   v->num_address_regs = original->num_address_regs;
3773   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3774   v->indirect_addr_temps = original->indirect_addr_temps;
3775   v->indirect_addr_consts = original->indirect_addr_consts;
3776   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3777
3778   /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3779   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3780   src0 = v->get_temp(glsl_type::vec4_type);
3781   dst0 = st_dst_reg(src0);
3782   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3783   inst->sampler = samplerIndex;
3784   inst->tex_target = TEXTURE_2D_INDEX;
3785
3786   prog->InputsRead |= FRAG_BIT_TEX0;
3787   prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3788   v->samplers_used |= (1 << samplerIndex);
3789
3790   /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3791   src0.negate = NEGATE_XYZW;
3792   if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3793      src0.swizzle = SWIZZLE_XXXX;
3794   inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3795
3796   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3797    * new visitor. */
3798   foreach_iter(exec_list_iterator, iter, original->instructions) {
3799      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3800      glsl_to_tgsi_instruction *newinst;
3801      st_src_reg src_regs[3];
3802
3803      if (inst->dst.file == PROGRAM_OUTPUT)
3804         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3805
3806      for (int i=0; i<3; i++) {
3807         src_regs[i] = inst->src[i];
3808         if (src_regs[i].file == PROGRAM_INPUT)
3809            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3810      }
3811
3812      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3813      newinst->tex_target = inst->tex_target;
3814   }
3815
3816   /* Make modifications to fragment program info. */
3817   prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3818   count_resources(v, prog);
3819   fp->glsl_to_tgsi = v;
3820}
3821
3822/* ------------------------- TGSI conversion stuff -------------------------- */
3823struct label {
3824   unsigned branch_target;
3825   unsigned token;
3826};
3827
3828/**
3829 * Intermediate state used during shader translation.
3830 */
3831struct st_translate {
3832   struct ureg_program *ureg;
3833
3834   struct ureg_dst temps[MAX_TEMPS];
3835   struct ureg_src *constants;
3836   struct ureg_src *immediates;
3837   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3838   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3839   struct ureg_dst address[1];
3840   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3841   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3842
3843   /* Extra info for handling point size clamping in vertex shader */
3844   struct ureg_dst pointSizeResult; /**< Actual point size output register */
3845   struct ureg_src pointSizeConst;  /**< Point size range constant register */
3846   GLint pointSizeOutIndex;         /**< Temp point size output register */
3847   GLboolean prevInstWrotePointSize;
3848
3849   const GLuint *inputMapping;
3850   const GLuint *outputMapping;
3851
3852   /* For every instruction that contains a label (eg CALL), keep
3853    * details so that we can go back afterwards and emit the correct
3854    * tgsi instruction number for each label.
3855    */
3856   struct label *labels;
3857   unsigned labels_size;
3858   unsigned labels_count;
3859
3860   /* Keep a record of the tgsi instruction number that each mesa
3861    * instruction starts at, will be used to fix up labels after
3862    * translation.
3863    */
3864   unsigned *insn;
3865   unsigned insn_size;
3866   unsigned insn_count;
3867
3868   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3869
3870   boolean error;
3871};
3872
3873/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3874static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3875   TGSI_SEMANTIC_FACE,
3876   TGSI_SEMANTIC_VERTEXID,
3877   TGSI_SEMANTIC_INSTANCEID
3878};
3879
3880/**
3881 * Make note of a branch to a label in the TGSI code.
3882 * After we've emitted all instructions, we'll go over the list
3883 * of labels built here and patch the TGSI code with the actual
3884 * location of each label.
3885 */
3886static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3887{
3888   unsigned i;
3889
3890   if (t->labels_count + 1 >= t->labels_size) {
3891      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3892      t->labels = (struct label *)realloc(t->labels,
3893                                          t->labels_size * sizeof(struct label));
3894      if (t->labels == NULL) {
3895         static unsigned dummy;
3896         t->error = TRUE;
3897         return &dummy;
3898      }
3899   }
3900
3901   i = t->labels_count++;
3902   t->labels[i].branch_target = branch_target;
3903   return &t->labels[i].token;
3904}
3905
3906/**
3907 * Called prior to emitting the TGSI code for each instruction.
3908 * Allocate additional space for instructions if needed.
3909 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3910 * the next TGSI instruction.
3911 */
3912static void set_insn_start(struct st_translate *t, unsigned start)
3913{
3914   if (t->insn_count + 1 >= t->insn_size) {
3915      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3916      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3917      if (t->insn == NULL) {
3918         t->error = TRUE;
3919         return;
3920      }
3921   }
3922
3923   t->insn[t->insn_count++] = start;
3924}
3925
3926/**
3927 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3928 */
3929static struct ureg_src
3930emit_immediate(struct st_translate *t,
3931               gl_constant_value values[4],
3932               int type, int size)
3933{
3934   struct ureg_program *ureg = t->ureg;
3935
3936   switch(type)
3937   {
3938   case GL_FLOAT:
3939      return ureg_DECL_immediate(ureg, &values[0].f, size);
3940   case GL_INT:
3941      return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3942   case GL_UNSIGNED_INT:
3943   case GL_BOOL:
3944      return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3945   default:
3946      assert(!"should not get here - type must be float, int, uint, or bool");
3947      return ureg_src_undef();
3948   }
3949}
3950
3951/**
3952 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3953 */
3954static struct ureg_dst
3955dst_register(struct st_translate *t,
3956             gl_register_file file,
3957             GLuint index)
3958{
3959   switch(file) {
3960   case PROGRAM_UNDEFINED:
3961      return ureg_dst_undef();
3962
3963   case PROGRAM_TEMPORARY:
3964      if (ureg_dst_is_undef(t->temps[index]))
3965         t->temps[index] = ureg_DECL_temporary(t->ureg);
3966
3967      return t->temps[index];
3968
3969   case PROGRAM_OUTPUT:
3970      if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3971         t->prevInstWrotePointSize = GL_TRUE;
3972
3973      if (t->procType == TGSI_PROCESSOR_VERTEX)
3974         assert(index < VERT_RESULT_MAX);
3975      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3976         assert(index < FRAG_RESULT_MAX);
3977      else
3978         assert(index < GEOM_RESULT_MAX);
3979
3980      assert(t->outputMapping[index] < Elements(t->outputs));
3981
3982      return t->outputs[t->outputMapping[index]];
3983
3984   case PROGRAM_ADDRESS:
3985      return t->address[index];
3986
3987   default:
3988      assert(!"unknown dst register file");
3989      return ureg_dst_undef();
3990   }
3991}
3992
3993/**
3994 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3995 */
3996static struct ureg_src
3997src_register(struct st_translate *t,
3998             gl_register_file file,
3999             GLuint index)
4000{
4001   switch(file) {
4002   case PROGRAM_UNDEFINED:
4003      return ureg_src_undef();
4004
4005   case PROGRAM_TEMPORARY:
4006      assert(index >= 0);
4007      assert(index < Elements(t->temps));
4008      if (ureg_dst_is_undef(t->temps[index]))
4009         t->temps[index] = ureg_DECL_temporary(t->ureg);
4010      return ureg_src(t->temps[index]);
4011
4012   case PROGRAM_NAMED_PARAM:
4013   case PROGRAM_ENV_PARAM:
4014   case PROGRAM_LOCAL_PARAM:
4015   case PROGRAM_UNIFORM:
4016      assert(index >= 0);
4017      return t->constants[index];
4018   case PROGRAM_STATE_VAR:
4019   case PROGRAM_CONSTANT:       /* ie, immediate */
4020      if (index < 0)
4021         return ureg_DECL_constant(t->ureg, 0);
4022      else
4023         return t->constants[index];
4024
4025   case PROGRAM_IMMEDIATE:
4026      return t->immediates[index];
4027
4028   case PROGRAM_INPUT:
4029      assert(t->inputMapping[index] < Elements(t->inputs));
4030      return t->inputs[t->inputMapping[index]];
4031
4032   case PROGRAM_OUTPUT:
4033      assert(t->outputMapping[index] < Elements(t->outputs));
4034      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4035
4036   case PROGRAM_ADDRESS:
4037      return ureg_src(t->address[index]);
4038
4039   case PROGRAM_SYSTEM_VALUE:
4040      assert(index < Elements(t->systemValues));
4041      return t->systemValues[index];
4042
4043   default:
4044      assert(!"unknown src register file");
4045      return ureg_src_undef();
4046   }
4047}
4048
4049/**
4050 * Create a TGSI ureg_dst register from an st_dst_reg.
4051 */
4052static struct ureg_dst
4053translate_dst(struct st_translate *t,
4054              const st_dst_reg *dst_reg,
4055              bool saturate)
4056{
4057   struct ureg_dst dst = dst_register(t,
4058                                      dst_reg->file,
4059                                      dst_reg->index);
4060
4061   dst = ureg_writemask(dst, dst_reg->writemask);
4062
4063   if (saturate)
4064      dst = ureg_saturate(dst);
4065
4066   if (dst_reg->reladdr != NULL)
4067      dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4068
4069   return dst;
4070}
4071
4072/**
4073 * Create a TGSI ureg_src register from an st_src_reg.
4074 */
4075static struct ureg_src
4076translate_src(struct st_translate *t, const st_src_reg *src_reg)
4077{
4078   struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4079
4080   src = ureg_swizzle(src,
4081                      GET_SWZ(src_reg->swizzle, 0) & 0x3,
4082                      GET_SWZ(src_reg->swizzle, 1) & 0x3,
4083                      GET_SWZ(src_reg->swizzle, 2) & 0x3,
4084                      GET_SWZ(src_reg->swizzle, 3) & 0x3);
4085
4086   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4087      src = ureg_negate(src);
4088
4089   if (src_reg->reladdr != NULL) {
4090      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4091       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4092       * set the bit for src.Negate.  So we have to do the operation manually
4093       * here to work around the compiler's problems. */
4094      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4095      struct ureg_src addr = ureg_src(t->address[0]);
4096      src.Indirect = 1;
4097      src.IndirectFile = addr.File;
4098      src.IndirectIndex = addr.Index;
4099      src.IndirectSwizzle = addr.SwizzleX;
4100
4101      if (src_reg->file != PROGRAM_INPUT &&
4102          src_reg->file != PROGRAM_OUTPUT) {
4103         /* If src_reg->index was negative, it was set to zero in
4104          * src_register().  Reassign it now.  But don't do this
4105          * for input/output regs since they get remapped while
4106          * const buffers don't.
4107          */
4108         src.Index = src_reg->index;
4109      }
4110   }
4111
4112   return src;
4113}
4114
4115static struct tgsi_texture_offset
4116translate_tex_offset(struct st_translate *t,
4117                     const struct tgsi_texture_offset *in_offset)
4118{
4119   struct tgsi_texture_offset offset;
4120
4121   assert(in_offset->File == PROGRAM_IMMEDIATE);
4122
4123   offset.File = TGSI_FILE_IMMEDIATE;
4124   offset.Index = in_offset->Index;
4125   offset.SwizzleX = in_offset->SwizzleX;
4126   offset.SwizzleY = in_offset->SwizzleY;
4127   offset.SwizzleZ = in_offset->SwizzleZ;
4128
4129   return offset;
4130}
4131
4132static void
4133compile_tgsi_instruction(struct st_translate *t,
4134                         const glsl_to_tgsi_instruction *inst)
4135{
4136   struct ureg_program *ureg = t->ureg;
4137   GLuint i;
4138   struct ureg_dst dst[1];
4139   struct ureg_src src[4];
4140   struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4141
4142   unsigned num_dst;
4143   unsigned num_src;
4144
4145   num_dst = num_inst_dst_regs(inst->op);
4146   num_src = num_inst_src_regs(inst->op);
4147
4148   if (num_dst)
4149      dst[0] = translate_dst(t,
4150                             &inst->dst,
4151                             inst->saturate);
4152
4153   for (i = 0; i < num_src; i++)
4154      src[i] = translate_src(t, &inst->src[i]);
4155
4156   switch(inst->op) {
4157   case TGSI_OPCODE_BGNLOOP:
4158   case TGSI_OPCODE_CAL:
4159   case TGSI_OPCODE_ELSE:
4160   case TGSI_OPCODE_ENDLOOP:
4161   case TGSI_OPCODE_IF:
4162      assert(num_dst == 0);
4163      ureg_label_insn(ureg,
4164                      inst->op,
4165                      src, num_src,
4166                      get_label(t,
4167                                inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4168      return;
4169
4170   case TGSI_OPCODE_TEX:
4171   case TGSI_OPCODE_TXB:
4172   case TGSI_OPCODE_TXD:
4173   case TGSI_OPCODE_TXL:
4174   case TGSI_OPCODE_TXP:
4175   case TGSI_OPCODE_TXQ:
4176   case TGSI_OPCODE_TXF:
4177      src[num_src++] = t->samplers[inst->sampler];
4178      for (i = 0; i < inst->tex_offset_num_offset; i++) {
4179         texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4180      }
4181      ureg_tex_insn(ureg,
4182                    inst->op,
4183                    dst, num_dst,
4184                    translate_texture_target(inst->tex_target, inst->tex_shadow),
4185                    texoffsets, inst->tex_offset_num_offset,
4186                    src, num_src);
4187      return;
4188
4189   case TGSI_OPCODE_SCS:
4190      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4191      ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4192      break;
4193
4194   default:
4195      ureg_insn(ureg,
4196                inst->op,
4197                dst, num_dst,
4198                src, num_src);
4199      break;
4200   }
4201}
4202
4203/**
4204 * Emit the TGSI instructions for inverting and adjusting WPOS.
4205 * This code is unavoidable because it also depends on whether
4206 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4207 */
4208static void
4209emit_wpos_adjustment( struct st_translate *t,
4210                      const struct gl_program *program,
4211                      boolean invert,
4212                      GLfloat adjX, GLfloat adjY[2])
4213{
4214   struct ureg_program *ureg = t->ureg;
4215
4216   /* Fragment program uses fragment position input.
4217    * Need to replace instances of INPUT[WPOS] with temp T
4218    * where T = INPUT[WPOS] by y is inverted.
4219    */
4220   static const gl_state_index wposTransformState[STATE_LENGTH]
4221      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4222          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4223
4224   /* XXX: note we are modifying the incoming shader here!  Need to
4225    * do this before emitting the constant decls below, or this
4226    * will be missed:
4227    */
4228   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4229                                                       wposTransformState);
4230
4231   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4232   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4233   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4234
4235   /* First, apply the coordinate shift: */
4236   if (adjX || adjY[0] || adjY[1]) {
4237      if (adjY[0] != adjY[1]) {
4238         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4239          * depending on whether inversion is actually going to be applied
4240          * or not, which is determined by testing against the inversion
4241          * state variable used below, which will be either +1 or -1.
4242          */
4243         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4244
4245         ureg_CMP(ureg, adj_temp,
4246                  ureg_scalar(wpostrans, invert ? 2 : 0),
4247                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4248                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4249         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4250      } else {
4251         ureg_ADD(ureg, wpos_temp, wpos_input,
4252                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4253      }
4254      wpos_input = ureg_src(wpos_temp);
4255   } else {
4256      /* MOV wpos_temp, input[wpos]
4257       */
4258      ureg_MOV( ureg, wpos_temp, wpos_input );
4259   }
4260
4261   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4262    * inversion/identity, or the other way around if we're drawing to an FBO.
4263    */
4264   if (invert) {
4265      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4266       */
4267      ureg_MAD( ureg,
4268                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4269                wpos_input,
4270                ureg_scalar(wpostrans, 0),
4271                ureg_scalar(wpostrans, 1));
4272   } else {
4273      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4274       */
4275      ureg_MAD( ureg,
4276                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4277                wpos_input,
4278                ureg_scalar(wpostrans, 2),
4279                ureg_scalar(wpostrans, 3));
4280   }
4281
4282   /* Use wpos_temp as position input from here on:
4283    */
4284   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4285}
4286
4287
4288/**
4289 * Emit fragment position/ooordinate code.
4290 */
4291static void
4292emit_wpos(struct st_context *st,
4293          struct st_translate *t,
4294          const struct gl_program *program,
4295          struct ureg_program *ureg)
4296{
4297   const struct gl_fragment_program *fp =
4298      (const struct gl_fragment_program *) program;
4299   struct pipe_screen *pscreen = st->pipe->screen;
4300   GLfloat adjX = 0.0f;
4301   GLfloat adjY[2] = { 0.0f, 0.0f };
4302   boolean invert = FALSE;
4303
4304   /* Query the pixel center conventions supported by the pipe driver and set
4305    * adjX, adjY to help out if it cannot handle the requested one internally.
4306    *
4307    * The bias of the y-coordinate depends on whether y-inversion takes place
4308    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4309    * drawing to an FBO (causes additional inversion), and whether the the pipe
4310    * driver origin and the requested origin differ (the latter condition is
4311    * stored in the 'invert' variable).
4312    *
4313    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4314    *
4315    * center shift only:
4316    * i -> h: +0.5
4317    * h -> i: -0.5
4318    *
4319    * inversion only:
4320    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4321    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4322    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4323    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4324    *
4325    * inversion and center shift:
4326    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4327    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4328    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4329    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4330    */
4331   if (fp->OriginUpperLeft) {
4332      /* Fragment shader wants origin in upper-left */
4333      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4334         /* the driver supports upper-left origin */
4335      }
4336      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4337         /* the driver supports lower-left origin, need to invert Y */
4338         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4339         invert = TRUE;
4340      }
4341      else
4342         assert(0);
4343   }
4344   else {
4345      /* Fragment shader wants origin in lower-left */
4346      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4347         /* the driver supports lower-left origin */
4348         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4349      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4350         /* the driver supports upper-left origin, need to invert Y */
4351         invert = TRUE;
4352      else
4353         assert(0);
4354   }
4355
4356   if (fp->PixelCenterInteger) {
4357      /* Fragment shader wants pixel center integer */
4358      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4359         /* the driver supports pixel center integer */
4360         adjY[1] = 1.0f;
4361         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4362      }
4363      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4364         /* the driver supports pixel center half integer, need to bias X,Y */
4365         adjX = -0.5f;
4366         adjY[0] = -0.5f;
4367         adjY[1] = 0.5f;
4368      }
4369      else
4370         assert(0);
4371   }
4372   else {
4373      /* Fragment shader wants pixel center half integer */
4374      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4375         /* the driver supports pixel center half integer */
4376      }
4377      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4378         /* the driver supports pixel center integer, need to bias X,Y */
4379         adjX = adjY[0] = adjY[1] = 0.5f;
4380         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4381      }
4382      else
4383         assert(0);
4384   }
4385
4386   /* we invert after adjustment so that we avoid the MOV to temporary,
4387    * and reuse the adjustment ADD instead */
4388   emit_wpos_adjustment(t, program, invert, adjX, adjY);
4389}
4390
4391/**
4392 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4393 * TGSI uses +1 for front, -1 for back.
4394 * This function converts the TGSI value to the GL value.  Simply clamping/
4395 * saturating the value to [0,1] does the job.
4396 */
4397static void
4398emit_face_var(struct st_translate *t)
4399{
4400   struct ureg_program *ureg = t->ureg;
4401   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4402   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4403
4404   /* MOV_SAT face_temp, input[face] */
4405   face_temp = ureg_saturate(face_temp);
4406   ureg_MOV(ureg, face_temp, face_input);
4407
4408   /* Use face_temp as face input from here on: */
4409   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4410}
4411
4412static void
4413emit_edgeflags(struct st_translate *t)
4414{
4415   struct ureg_program *ureg = t->ureg;
4416   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4417   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4418
4419   ureg_MOV(ureg, edge_dst, edge_src);
4420}
4421
4422/**
4423 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4424 * \param program  the program to translate
4425 * \param numInputs  number of input registers used
4426 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
4427 *                      input indexes
4428 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
4429 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
4430 *                            each input
4431 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4432 * \param numOutputs  number of output registers used
4433 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4434 *                       generic outputs
4435 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4436 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4437 *                             each output
4438 *
4439 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4440 */
4441extern "C" enum pipe_error
4442st_translate_program(
4443   struct gl_context *ctx,
4444   uint procType,
4445   struct ureg_program *ureg,
4446   glsl_to_tgsi_visitor *program,
4447   const struct gl_program *proginfo,
4448   GLuint numInputs,
4449   const GLuint inputMapping[],
4450   const ubyte inputSemanticName[],
4451   const ubyte inputSemanticIndex[],
4452   const GLuint interpMode[],
4453   GLuint numOutputs,
4454   const GLuint outputMapping[],
4455   const ubyte outputSemanticName[],
4456   const ubyte outputSemanticIndex[],
4457   boolean passthrough_edgeflags)
4458{
4459   struct st_translate *t;
4460   unsigned i;
4461   enum pipe_error ret = PIPE_OK;
4462
4463   assert(numInputs <= Elements(t->inputs));
4464   assert(numOutputs <= Elements(t->outputs));
4465
4466   t = CALLOC_STRUCT(st_translate);
4467   if (!t) {
4468      ret = PIPE_ERROR_OUT_OF_MEMORY;
4469      goto out;
4470   }
4471
4472   memset(t, 0, sizeof *t);
4473
4474   t->procType = procType;
4475   t->inputMapping = inputMapping;
4476   t->outputMapping = outputMapping;
4477   t->ureg = ureg;
4478   t->pointSizeOutIndex = -1;
4479   t->prevInstWrotePointSize = GL_FALSE;
4480
4481   if (program->shader_program) {
4482      for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4483         struct gl_uniform_storage *const storage =
4484               &program->shader_program->UniformStorage[i];
4485
4486         _mesa_uniform_detach_all_driver_storage(storage);
4487      }
4488   }
4489
4490   /*
4491    * Declare input attributes.
4492    */
4493   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4494      for (i = 0; i < numInputs; i++) {
4495         t->inputs[i] = ureg_DECL_fs_input(ureg,
4496                                           inputSemanticName[i],
4497                                           inputSemanticIndex[i],
4498                                           interpMode[i]);
4499      }
4500
4501      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4502         /* Must do this after setting up t->inputs, and before
4503          * emitting constant references, below:
4504          */
4505          emit_wpos(st_context(ctx), t, proginfo, ureg);
4506      }
4507
4508      if (proginfo->InputsRead & FRAG_BIT_FACE)
4509         emit_face_var(t);
4510
4511      /*
4512       * Declare output attributes.
4513       */
4514      for (i = 0; i < numOutputs; i++) {
4515         switch (outputSemanticName[i]) {
4516         case TGSI_SEMANTIC_POSITION:
4517            t->outputs[i] = ureg_DECL_output(ureg,
4518                                             TGSI_SEMANTIC_POSITION, /* Z/Depth */
4519                                             outputSemanticIndex[i]);
4520            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4521            break;
4522         case TGSI_SEMANTIC_STENCIL:
4523            t->outputs[i] = ureg_DECL_output(ureg,
4524                                             TGSI_SEMANTIC_STENCIL, /* Stencil */
4525                                             outputSemanticIndex[i]);
4526            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4527            break;
4528         case TGSI_SEMANTIC_COLOR:
4529            t->outputs[i] = ureg_DECL_output(ureg,
4530                                             TGSI_SEMANTIC_COLOR,
4531                                             outputSemanticIndex[i]);
4532            break;
4533         default:
4534            assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4535            ret = PIPE_ERROR_BAD_INPUT;
4536            goto out;
4537         }
4538      }
4539   }
4540   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4541      for (i = 0; i < numInputs; i++) {
4542         t->inputs[i] = ureg_DECL_gs_input(ureg,
4543                                           i,
4544                                           inputSemanticName[i],
4545                                           inputSemanticIndex[i]);
4546      }
4547
4548      for (i = 0; i < numOutputs; i++) {
4549         t->outputs[i] = ureg_DECL_output(ureg,
4550                                          outputSemanticName[i],
4551                                          outputSemanticIndex[i]);
4552      }
4553   }
4554   else {
4555      assert(procType == TGSI_PROCESSOR_VERTEX);
4556
4557      for (i = 0; i < numInputs; i++) {
4558         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4559      }
4560
4561      for (i = 0; i < numOutputs; i++) {
4562         if (outputSemanticName[i] == TGSI_SEMANTIC_CLIPDIST) {
4563            int mask = ((1 << (program->num_clip_distances - 4*outputSemanticIndex[i])) - 1) & TGSI_WRITEMASK_XYZW;
4564            t->outputs[i] = ureg_DECL_output_masked(ureg,
4565                                                    outputSemanticName[i],
4566                                                    outputSemanticIndex[i],
4567                                                    mask);
4568         } else {
4569            t->outputs[i] = ureg_DECL_output(ureg,
4570                                             outputSemanticName[i],
4571                                             outputSemanticIndex[i]);
4572         }
4573         if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4574            /* Writing to the point size result register requires special
4575             * handling to implement clamping.
4576             */
4577            static const gl_state_index pointSizeClampState[STATE_LENGTH]
4578               = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4579               /* XXX: note we are modifying the incoming shader here!  Need to
4580               * do this before emitting the constant decls below, or this
4581               * will be missed.
4582               */
4583            unsigned pointSizeClampConst =
4584               _mesa_add_state_reference(proginfo->Parameters,
4585                                         pointSizeClampState);
4586            struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4587            t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4588            t->pointSizeResult = t->outputs[i];
4589            t->pointSizeOutIndex = i;
4590            t->outputs[i] = psizregtemp;
4591         }
4592      }
4593      if (passthrough_edgeflags)
4594         emit_edgeflags(t);
4595   }
4596
4597   /* Declare address register.
4598    */
4599   if (program->num_address_regs > 0) {
4600      assert(program->num_address_regs == 1);
4601      t->address[0] = ureg_DECL_address(ureg);
4602   }
4603
4604   /* Declare misc input registers
4605    */
4606   {
4607      GLbitfield sysInputs = proginfo->SystemValuesRead;
4608      unsigned numSys = 0;
4609      for (i = 0; sysInputs; i++) {
4610         if (sysInputs & (1 << i)) {
4611            unsigned semName = mesa_sysval_to_semantic[i];
4612            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4613            numSys++;
4614            sysInputs &= ~(1 << i);
4615         }
4616      }
4617   }
4618
4619   if (program->indirect_addr_temps) {
4620      /* If temps are accessed with indirect addressing, declare temporaries
4621       * in sequential order.  Else, we declare them on demand elsewhere.
4622       * (Note: the number of temporaries is equal to program->next_temp)
4623       */
4624      for (i = 0; i < (unsigned)program->next_temp; i++) {
4625         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4626         t->temps[i] = ureg_DECL_temporary(t->ureg);
4627      }
4628   }
4629
4630   /* Emit constants and uniforms.  TGSI uses a single index space for these,
4631    * so we put all the translated regs in t->constants.
4632    */
4633   if (proginfo->Parameters) {
4634      t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4635      if (t->constants == NULL) {
4636         ret = PIPE_ERROR_OUT_OF_MEMORY;
4637         goto out;
4638      }
4639
4640      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4641         switch (proginfo->Parameters->Parameters[i].Type) {
4642         case PROGRAM_ENV_PARAM:
4643         case PROGRAM_LOCAL_PARAM:
4644         case PROGRAM_STATE_VAR:
4645         case PROGRAM_NAMED_PARAM:
4646         case PROGRAM_UNIFORM:
4647            t->constants[i] = ureg_DECL_constant(ureg, i);
4648            break;
4649
4650         /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4651          * addressing of the const buffer.
4652          * FIXME: Be smarter and recognize param arrays:
4653          * indirect addressing is only valid within the referenced
4654          * array.
4655          */
4656         case PROGRAM_CONSTANT:
4657            if (program->indirect_addr_consts)
4658               t->constants[i] = ureg_DECL_constant(ureg, i);
4659            else
4660               t->constants[i] = emit_immediate(t,
4661                                                proginfo->Parameters->ParameterValues[i],
4662                                                proginfo->Parameters->Parameters[i].DataType,
4663                                                4);
4664            break;
4665         default:
4666            break;
4667         }
4668      }
4669   }
4670
4671   /* Emit immediate values.
4672    */
4673   t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4674   if (t->immediates == NULL) {
4675      ret = PIPE_ERROR_OUT_OF_MEMORY;
4676      goto out;
4677   }
4678   i = 0;
4679   foreach_iter(exec_list_iterator, iter, program->immediates) {
4680      immediate_storage *imm = (immediate_storage *)iter.get();
4681      t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4682   }
4683
4684   /* texture samplers */
4685   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4686      if (program->samplers_used & (1 << i)) {
4687         t->samplers[i] = ureg_DECL_sampler(ureg, i);
4688      }
4689   }
4690
4691   /* Emit each instruction in turn:
4692    */
4693   foreach_iter(exec_list_iterator, iter, program->instructions) {
4694      set_insn_start(t, ureg_get_instruction_number(ureg));
4695      compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4696
4697      if (t->prevInstWrotePointSize && proginfo->Id) {
4698         /* The previous instruction wrote to the (fake) vertex point size
4699          * result register.  Now we need to clamp that value to the min/max
4700          * point size range, putting the result into the real point size
4701          * register.
4702          * Note that we can't do this easily at the end of program due to
4703          * possible early return.
4704          */
4705         set_insn_start(t, ureg_get_instruction_number(ureg));
4706         ureg_MAX(t->ureg,
4707                  ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4708                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4709                  ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4710         ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4711                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4712                  ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4713      }
4714      t->prevInstWrotePointSize = GL_FALSE;
4715   }
4716
4717   /* Fix up all emitted labels:
4718    */
4719   for (i = 0; i < t->labels_count; i++) {
4720      ureg_fixup_label(ureg, t->labels[i].token,
4721                       t->insn[t->labels[i].branch_target]);
4722   }
4723
4724   if (program->shader_program) {
4725      /* This has to be done last.  Any operation the can cause
4726       * prog->ParameterValues to get reallocated (e.g., anything that adds a
4727       * program constant) has to happen before creating this linkage.
4728       */
4729      for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4730         if (program->shader_program->_LinkedShaders[i] == NULL)
4731            continue;
4732
4733         _mesa_associate_uniform_storage(ctx, program->shader_program,
4734               program->shader_program->_LinkedShaders[i]->Program->Parameters);
4735      }
4736   }
4737
4738out:
4739   if (t) {
4740      FREE(t->insn);
4741      FREE(t->labels);
4742      FREE(t->constants);
4743      FREE(t->immediates);
4744
4745      if (t->error) {
4746         debug_printf("%s: translate error flag set\n", __FUNCTION__);
4747      }
4748
4749      FREE(t);
4750   }
4751
4752   return ret;
4753}
4754/* ----------------------------- End TGSI code ------------------------------ */
4755
4756/**
4757 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4758 * generating Mesa IR.
4759 */
4760static struct gl_program *
4761get_mesa_program(struct gl_context *ctx,
4762                 struct gl_shader_program *shader_program,
4763                 struct gl_shader *shader,
4764                 int num_clip_distances)
4765{
4766   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4767   struct gl_program *prog;
4768   struct pipe_screen * screen = st_context(ctx)->pipe->screen;
4769   unsigned pipe_shader_type;
4770   GLenum target;
4771   const char *target_string;
4772   bool progress;
4773   struct gl_shader_compiler_options *options =
4774         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4775
4776   switch (shader->Type) {
4777   case GL_VERTEX_SHADER:
4778      target = GL_VERTEX_PROGRAM_ARB;
4779      target_string = "vertex";
4780      pipe_shader_type = PIPE_SHADER_VERTEX;
4781      break;
4782   case GL_FRAGMENT_SHADER:
4783      target = GL_FRAGMENT_PROGRAM_ARB;
4784      target_string = "fragment";
4785      pipe_shader_type = PIPE_SHADER_FRAGMENT;
4786      break;
4787   case GL_GEOMETRY_SHADER:
4788      target = GL_GEOMETRY_PROGRAM_NV;
4789      target_string = "geometry";
4790      pipe_shader_type = PIPE_SHADER_GEOMETRY;
4791      break;
4792   default:
4793      assert(!"should not be reached");
4794      return NULL;
4795   }
4796
4797   validate_ir_tree(shader->ir);
4798
4799   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4800   if (!prog)
4801      return NULL;
4802   prog->Parameters = _mesa_new_parameter_list();
4803   v->ctx = ctx;
4804   v->prog = prog;
4805   v->shader_program = shader_program;
4806   v->options = options;
4807   v->glsl_version = ctx->Const.GLSLVersion;
4808   v->native_integers = ctx->Const.NativeIntegers;
4809   v->num_clip_distances = num_clip_distances;
4810
4811   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4812					       prog->Parameters);
4813
4814   if (!screen->get_shader_param(screen, pipe_shader_type,
4815                                 PIPE_SHADER_CAP_OUTPUT_READ)) {
4816      /* Remove reads to output registers, and to varyings in vertex shaders. */
4817      lower_output_reads(shader->ir);
4818   }
4819
4820
4821   /* Emit intermediate IR for main(). */
4822   visit_exec_list(shader->ir, v);
4823
4824   /* Now emit bodies for any functions that were used. */
4825   do {
4826      progress = GL_FALSE;
4827
4828      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4829         function_entry *entry = (function_entry *)iter.get();
4830
4831         if (!entry->bgn_inst) {
4832            v->current_function = entry;
4833
4834            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4835            entry->bgn_inst->function = entry;
4836
4837            visit_exec_list(&entry->sig->body, v);
4838
4839            glsl_to_tgsi_instruction *last;
4840            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4841            if (last->op != TGSI_OPCODE_RET)
4842               v->emit(NULL, TGSI_OPCODE_RET);
4843
4844            glsl_to_tgsi_instruction *end;
4845            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4846            end->function = entry;
4847
4848            progress = GL_TRUE;
4849         }
4850      }
4851   } while (progress);
4852
4853#if 0
4854   /* Print out some information (for debugging purposes) used by the
4855    * optimization passes. */
4856   for (i=0; i < v->next_temp; i++) {
4857      int fr = v->get_first_temp_read(i);
4858      int fw = v->get_first_temp_write(i);
4859      int lr = v->get_last_temp_read(i);
4860      int lw = v->get_last_temp_write(i);
4861
4862      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4863      assert(fw <= fr);
4864   }
4865#endif
4866
4867   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4868   v->simplify_cmp();
4869   v->copy_propagate();
4870   while (v->eliminate_dead_code_advanced());
4871
4872   /* FIXME: These passes to optimize temporary registers don't work when there
4873    * is indirect addressing of the temporary register space.  We need proper
4874    * array support so that we don't have to give up these passes in every
4875    * shader that uses arrays.
4876    */
4877   if (!v->indirect_addr_temps) {
4878      v->eliminate_dead_code();
4879      v->merge_registers();
4880      v->renumber_registers();
4881   }
4882
4883   /* Write the END instruction. */
4884   v->emit(NULL, TGSI_OPCODE_END);
4885
4886   if (ctx->Shader.Flags & GLSL_DUMP) {
4887      printf("\n");
4888      printf("GLSL IR for linked %s program %d:\n", target_string,
4889             shader_program->Name);
4890      _mesa_print_ir(shader->ir, NULL);
4891      printf("\n");
4892      printf("\n");
4893      fflush(stdout);
4894   }
4895
4896   prog->Instructions = NULL;
4897   prog->NumInstructions = 0;
4898
4899   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4900   count_resources(v, prog);
4901
4902   _mesa_reference_program(ctx, &shader->Program, prog);
4903
4904   /* This has to be done last.  Any operation the can cause
4905    * prog->ParameterValues to get reallocated (e.g., anything that adds a
4906    * program constant) has to happen before creating this linkage.
4907    */
4908   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4909   if (!shader_program->LinkStatus) {
4910      return NULL;
4911   }
4912
4913   struct st_vertex_program *stvp;
4914   struct st_fragment_program *stfp;
4915   struct st_geometry_program *stgp;
4916
4917   switch (shader->Type) {
4918   case GL_VERTEX_SHADER:
4919      stvp = (struct st_vertex_program *)prog;
4920      stvp->glsl_to_tgsi = v;
4921      break;
4922   case GL_FRAGMENT_SHADER:
4923      stfp = (struct st_fragment_program *)prog;
4924      stfp->glsl_to_tgsi = v;
4925      break;
4926   case GL_GEOMETRY_SHADER:
4927      stgp = (struct st_geometry_program *)prog;
4928      stgp->glsl_to_tgsi = v;
4929      break;
4930   default:
4931      assert(!"should not be reached");
4932      return NULL;
4933   }
4934
4935   return prog;
4936}
4937
4938/**
4939 * Searches through the IR for a declaration of gl_ClipDistance and returns the
4940 * declared size of the gl_ClipDistance array.  Returns 0 if gl_ClipDistance is
4941 * not declared in the IR.
4942 */
4943int get_clip_distance_size(exec_list *ir)
4944{
4945   foreach_iter (exec_list_iterator, iter, *ir) {
4946      ir_instruction *inst = (ir_instruction *)iter.get();
4947      ir_variable *var = inst->as_variable();
4948      if (var == NULL) continue;
4949      if (!strcmp(var->name, "gl_ClipDistance")) {
4950         return var->type->length;
4951      }
4952   }
4953
4954   return 0;
4955}
4956
4957extern "C" {
4958
4959struct gl_shader *
4960st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4961{
4962   struct gl_shader *shader;
4963   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4964          type == GL_GEOMETRY_SHADER_ARB);
4965   shader = rzalloc(NULL, struct gl_shader);
4966   if (shader) {
4967      shader->Type = type;
4968      shader->Name = name;
4969      _mesa_init_shader(ctx, shader);
4970   }
4971   return shader;
4972}
4973
4974struct gl_shader_program *
4975st_new_shader_program(struct gl_context *ctx, GLuint name)
4976{
4977   struct gl_shader_program *shProg;
4978   shProg = rzalloc(NULL, struct gl_shader_program);
4979   if (shProg) {
4980      shProg->Name = name;
4981      _mesa_init_shader_program(ctx, shProg);
4982   }
4983   return shProg;
4984}
4985
4986/**
4987 * Link a shader.
4988 * Called via ctx->Driver.LinkShader()
4989 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4990 * with code lowering and other optimizations.
4991 */
4992GLboolean
4993st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4994{
4995   int num_clip_distances[MESA_SHADER_TYPES];
4996   assert(prog->LinkStatus);
4997
4998   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4999      if (prog->_LinkedShaders[i] == NULL)
5000         continue;
5001
5002      bool progress;
5003      exec_list *ir = prog->_LinkedShaders[i]->ir;
5004      const struct gl_shader_compiler_options *options =
5005            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5006
5007      /* We have to determine the length of the gl_ClipDistance array before
5008       * the array is lowered to two vec4s by lower_clip_distance().
5009       */
5010      num_clip_distances[i] = get_clip_distance_size(ir);
5011
5012      do {
5013         unsigned what_to_lower = MOD_TO_FRACT | DIV_TO_MUL_RCP |
5014            EXP_TO_EXP2 | LOG_TO_LOG2;
5015         if (options->EmitNoPow)
5016            what_to_lower |= POW_TO_EXP2;
5017         if (!ctx->Const.NativeIntegers)
5018            what_to_lower |= INT_DIV_TO_MUL_RCP;
5019
5020         progress = false;
5021
5022         /* Lowering */
5023         do_mat_op_to_vec(ir);
5024         lower_instructions(ir, what_to_lower);
5025
5026         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5027
5028         progress = do_common_optimization(ir, true, true,
5029					   options->MaxUnrollIterations)
5030	   || progress;
5031
5032         progress = lower_quadop_vector(ir, false) || progress;
5033         progress = lower_clip_distance(ir) || progress;
5034
5035         if (options->MaxIfDepth == 0)
5036            progress = lower_discard(ir) || progress;
5037
5038         progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5039
5040         if (options->EmitNoNoise)
5041            progress = lower_noise(ir) || progress;
5042
5043         /* If there are forms of indirect addressing that the driver
5044          * cannot handle, perform the lowering pass.
5045          */
5046         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5047             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5048           progress =
5049             lower_variable_index_to_cond_assign(ir,
5050        					 options->EmitNoIndirectInput,
5051        					 options->EmitNoIndirectOutput,
5052        					 options->EmitNoIndirectTemp,
5053        					 options->EmitNoIndirectUniform)
5054             || progress;
5055
5056         progress = do_vec_index_to_cond_assign(ir) || progress;
5057      } while (progress);
5058
5059      validate_ir_tree(ir);
5060   }
5061
5062   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5063      struct gl_program *linked_prog;
5064
5065      if (prog->_LinkedShaders[i] == NULL)
5066         continue;
5067
5068      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i],
5069                                     num_clip_distances[i]);
5070
5071      if (linked_prog) {
5072	 static const GLenum targets[] = {
5073	    GL_VERTEX_PROGRAM_ARB,
5074	    GL_FRAGMENT_PROGRAM_ARB,
5075	    GL_GEOMETRY_PROGRAM_NV
5076	 };
5077
5078	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5079				 linked_prog);
5080         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5081	    _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5082				    NULL);
5083            _mesa_reference_program(ctx, &linked_prog, NULL);
5084            return GL_FALSE;
5085         }
5086      }
5087
5088      _mesa_reference_program(ctx, &linked_prog, NULL);
5089   }
5090
5091   return GL_TRUE;
5092}
5093
5094void
5095st_translate_stream_output_info(struct glsl_to_tgsi_visitor *glsl_to_tgsi,
5096                                const GLuint outputMapping[],
5097                                struct pipe_stream_output_info *so)
5098{
5099   static unsigned comps_to_mask[] = {
5100      0,
5101      TGSI_WRITEMASK_X,
5102      TGSI_WRITEMASK_XY,
5103      TGSI_WRITEMASK_XYZ,
5104      TGSI_WRITEMASK_XYZW
5105   };
5106   unsigned i;
5107   struct gl_transform_feedback_info *info =
5108      &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5109
5110   for (i = 0; i < info->NumOutputs; i++) {
5111      assert(info->Outputs[i].NumComponents < Elements(comps_to_mask));
5112      so->output[i].register_index =
5113         outputMapping[info->Outputs[i].OutputRegister];
5114      so->output[i].register_mask =
5115         comps_to_mask[info->Outputs[i].NumComponents]
5116         << info->Outputs[i].ComponentOffset;
5117      so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5118   }
5119   so->num_outputs = info->NumOutputs;
5120}
5121
5122} /* extern "C" */
5123