st_glsl_to_tgsi.cpp revision fc7ac4da7dfb64aa192ef8cff44cb762beace4c1
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45#include "main/mtypes.h"
46#include "main/shaderobj.h"
47#include "program/hash_table.h"
48
49extern "C" {
50#include "main/shaderapi.h"
51#include "main/uniforms.h"
52#include "program/prog_instruction.h"
53#include "program/prog_optimize.h"
54#include "program/prog_print.h"
55#include "program/program.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
75                           (1 << PROGRAM_ENV_PARAM) |    \
76                           (1 << PROGRAM_STATE_VAR) |    \
77                           (1 << PROGRAM_NAMED_PARAM) |  \
78                           (1 << PROGRAM_CONSTANT) |     \
79                           (1 << PROGRAM_UNIFORM))
80
81/**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87#define MAX_TEMPS         4096
88
89/* will be 4 for GLSL 4.00 */
90#define MAX_GLSL_TEXTURE_OFFSET 1
91
92class st_src_reg;
93class st_dst_reg;
94
95static int swizzle_for_size(int size);
96
97/**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100class st_src_reg {
101public:
102   st_src_reg(gl_register_file file, int index, const glsl_type *type)
103   {
104      this->file = file;
105      this->index = index;
106      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107         this->swizzle = swizzle_for_size(type->vector_elements);
108      else
109         this->swizzle = SWIZZLE_XYZW;
110      this->negate = 0;
111      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112      this->reladdr = NULL;
113   }
114
115   st_src_reg(gl_register_file file, int index, int type)
116   {
117      this->type = type;
118      this->file = file;
119      this->index = index;
120      this->swizzle = SWIZZLE_XYZW;
121      this->negate = 0;
122      this->reladdr = NULL;
123   }
124
125   st_src_reg()
126   {
127      this->type = GLSL_TYPE_ERROR;
128      this->file = PROGRAM_UNDEFINED;
129      this->index = 0;
130      this->swizzle = 0;
131      this->negate = 0;
132      this->reladdr = NULL;
133   }
134
135   explicit st_src_reg(st_dst_reg reg);
136
137   gl_register_file file; /**< PROGRAM_* from Mesa */
138   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140   int negate; /**< NEGATE_XYZW mask from mesa */
141   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142   /** Register index should be offset by the integer in this reg. */
143   st_src_reg *reladdr;
144};
145
146class st_dst_reg {
147public:
148   st_dst_reg(gl_register_file file, int writemask, int type)
149   {
150      this->file = file;
151      this->index = 0;
152      this->writemask = writemask;
153      this->cond_mask = COND_TR;
154      this->reladdr = NULL;
155      this->type = type;
156   }
157
158   st_dst_reg()
159   {
160      this->type = GLSL_TYPE_ERROR;
161      this->file = PROGRAM_UNDEFINED;
162      this->index = 0;
163      this->writemask = 0;
164      this->cond_mask = COND_TR;
165      this->reladdr = NULL;
166   }
167
168   explicit st_dst_reg(st_src_reg reg);
169
170   gl_register_file file; /**< PROGRAM_* from Mesa */
171   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173   GLuint cond_mask:4;
174   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175   /** Register index should be offset by the integer in this reg. */
176   st_src_reg *reladdr;
177};
178
179st_src_reg::st_src_reg(st_dst_reg reg)
180{
181   this->type = reg.type;
182   this->file = reg.file;
183   this->index = reg.index;
184   this->swizzle = SWIZZLE_XYZW;
185   this->negate = 0;
186   this->reladdr = reg.reladdr;
187}
188
189st_dst_reg::st_dst_reg(st_src_reg reg)
190{
191   this->type = reg.type;
192   this->file = reg.file;
193   this->index = reg.index;
194   this->writemask = WRITEMASK_XYZW;
195   this->cond_mask = COND_TR;
196   this->reladdr = reg.reladdr;
197}
198
199class glsl_to_tgsi_instruction : public exec_node {
200public:
201   /* Callers of this ralloc-based new need not call delete. It's
202    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203   static void* operator new(size_t size, void *ctx)
204   {
205      void *node;
206
207      node = rzalloc_size(ctx, size);
208      assert(node != NULL);
209
210      return node;
211   }
212
213   unsigned op;
214   st_dst_reg dst;
215   st_src_reg src[3];
216   /** Pointer to the ir source this tree came from for debugging */
217   ir_instruction *ir;
218   GLboolean cond_update;
219   bool saturate;
220   int sampler; /**< sampler index */
221   int tex_target; /**< One of TEXTURE_*_INDEX */
222   GLboolean tex_shadow;
223   struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224   unsigned tex_offset_num_offset;
225   int dead_mask; /**< Used in dead code elimination */
226
227   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228};
229
230class variable_storage : public exec_node {
231public:
232   variable_storage(ir_variable *var, gl_register_file file, int index)
233      : file(file), index(index), var(var)
234   {
235      /* empty */
236   }
237
238   gl_register_file file;
239   int index;
240   ir_variable *var; /* variable that maps to this, if any */
241};
242
243class immediate_storage : public exec_node {
244public:
245   immediate_storage(gl_constant_value *values, int size, int type)
246   {
247      memcpy(this->values, values, size * sizeof(gl_constant_value));
248      this->size = size;
249      this->type = type;
250   }
251
252   gl_constant_value values[4];
253   int size; /**< Number of components (1-4) */
254   int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255};
256
257class function_entry : public exec_node {
258public:
259   ir_function_signature *sig;
260
261   /**
262    * identifier of this function signature used by the program.
263    *
264    * At the point that TGSI instructions for function calls are
265    * generated, we don't know the address of the first instruction of
266    * the function body.  So we make the BranchTarget that is called a
267    * small integer and rewrite them during set_branchtargets().
268    */
269   int sig_id;
270
271   /**
272    * Pointer to first instruction of the function body.
273    *
274    * Set during function body emits after main() is processed.
275    */
276   glsl_to_tgsi_instruction *bgn_inst;
277
278   /**
279    * Index of the first instruction of the function body in actual TGSI.
280    *
281    * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282    */
283   int inst;
284
285   /** Storage for the return value. */
286   st_src_reg return_reg;
287};
288
289class glsl_to_tgsi_visitor : public ir_visitor {
290public:
291   glsl_to_tgsi_visitor();
292   ~glsl_to_tgsi_visitor();
293
294   function_entry *current_function;
295
296   struct gl_context *ctx;
297   struct gl_program *prog;
298   struct gl_shader_program *shader_program;
299   struct gl_shader_compiler_options *options;
300
301   int next_temp;
302
303   int num_address_regs;
304   int samplers_used;
305   bool indirect_addr_temps;
306   bool indirect_addr_consts;
307
308   int glsl_version;
309   bool native_integers;
310
311   variable_storage *find_variable_storage(ir_variable *var);
312
313   int add_constant(gl_register_file file, gl_constant_value values[4],
314                    int size, int datatype, GLuint *swizzle_out);
315
316   function_entry *get_function_signature(ir_function_signature *sig);
317
318   st_src_reg get_temp(const glsl_type *type);
319   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
320
321   st_src_reg st_src_reg_for_float(float val);
322   st_src_reg st_src_reg_for_int(int val);
323   st_src_reg st_src_reg_for_type(int type, int val);
324
325   /**
326    * \name Visit methods
327    *
328    * As typical for the visitor pattern, there must be one \c visit method for
329    * each concrete subclass of \c ir_instruction.  Virtual base classes within
330    * the hierarchy should not have \c visit methods.
331    */
332   /*@{*/
333   virtual void visit(ir_variable *);
334   virtual void visit(ir_loop *);
335   virtual void visit(ir_loop_jump *);
336   virtual void visit(ir_function_signature *);
337   virtual void visit(ir_function *);
338   virtual void visit(ir_expression *);
339   virtual void visit(ir_swizzle *);
340   virtual void visit(ir_dereference_variable  *);
341   virtual void visit(ir_dereference_array *);
342   virtual void visit(ir_dereference_record *);
343   virtual void visit(ir_assignment *);
344   virtual void visit(ir_constant *);
345   virtual void visit(ir_call *);
346   virtual void visit(ir_return *);
347   virtual void visit(ir_discard *);
348   virtual void visit(ir_texture *);
349   virtual void visit(ir_if *);
350   /*@}*/
351
352   st_src_reg result;
353
354   /** List of variable_storage */
355   exec_list variables;
356
357   /** List of immediate_storage */
358   exec_list immediates;
359   int num_immediates;
360
361   /** List of function_entry */
362   exec_list function_signatures;
363   int next_signature_id;
364
365   /** List of glsl_to_tgsi_instruction */
366   exec_list instructions;
367
368   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
369
370   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
371        		        st_dst_reg dst, st_src_reg src0);
372
373   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
374        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
375
376   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
377        		        st_dst_reg dst,
378        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
379
380   unsigned get_opcode(ir_instruction *ir, unsigned op,
381                    st_dst_reg dst,
382                    st_src_reg src0, st_src_reg src1);
383
384   /**
385    * Emit the correct dot-product instruction for the type of arguments
386    */
387   glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
388                                     st_dst_reg dst,
389                                     st_src_reg src0,
390                                     st_src_reg src1,
391                                     unsigned elements);
392
393   void emit_scalar(ir_instruction *ir, unsigned op,
394        	    st_dst_reg dst, st_src_reg src0);
395
396   void emit_scalar(ir_instruction *ir, unsigned op,
397        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
398
399   void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
400
401   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
402
403   void emit_scs(ir_instruction *ir, unsigned op,
404        	 st_dst_reg dst, const st_src_reg &src);
405
406   bool try_emit_mad(ir_expression *ir,
407              int mul_operand);
408   bool try_emit_mad_for_and_not(ir_expression *ir,
409              int mul_operand);
410   bool try_emit_sat(ir_expression *ir);
411
412   void emit_swz(ir_expression *ir);
413
414   bool process_move_condition(ir_rvalue *ir);
415
416   void remove_output_reads(gl_register_file type);
417   void simplify_cmp(void);
418
419   void rename_temp_register(int index, int new_index);
420   int get_first_temp_read(int index);
421   int get_first_temp_write(int index);
422   int get_last_temp_read(int index);
423   int get_last_temp_write(int index);
424
425   void copy_propagate(void);
426   void eliminate_dead_code(void);
427   int eliminate_dead_code_advanced(void);
428   void merge_registers(void);
429   void renumber_registers(void);
430
431   void *mem_ctx;
432};
433
434static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
435
436static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
437
438static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
439
440static void
441fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
442
443static void
444fail_link(struct gl_shader_program *prog, const char *fmt, ...)
445{
446   va_list args;
447   va_start(args, fmt);
448   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
449   va_end(args);
450
451   prog->LinkStatus = GL_FALSE;
452}
453
454static int
455swizzle_for_size(int size)
456{
457   int size_swizzles[4] = {
458      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
459      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
460      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
461      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
462   };
463
464   assert((size >= 1) && (size <= 4));
465   return size_swizzles[size - 1];
466}
467
468static bool
469is_tex_instruction(unsigned opcode)
470{
471   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
472   return info->is_tex;
473}
474
475static unsigned
476num_inst_dst_regs(unsigned opcode)
477{
478   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
479   return info->num_dst;
480}
481
482static unsigned
483num_inst_src_regs(unsigned opcode)
484{
485   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486   return info->is_tex ? info->num_src - 1 : info->num_src;
487}
488
489glsl_to_tgsi_instruction *
490glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
491        		 st_dst_reg dst,
492        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
493{
494   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
495   int num_reladdr = 0, i;
496
497   op = get_opcode(ir, op, dst, src0, src1);
498
499   /* If we have to do relative addressing, we want to load the ARL
500    * reg directly for one of the regs, and preload the other reladdr
501    * sources into temps.
502    */
503   num_reladdr += dst.reladdr != NULL;
504   num_reladdr += src0.reladdr != NULL;
505   num_reladdr += src1.reladdr != NULL;
506   num_reladdr += src2.reladdr != NULL;
507
508   reladdr_to_temp(ir, &src2, &num_reladdr);
509   reladdr_to_temp(ir, &src1, &num_reladdr);
510   reladdr_to_temp(ir, &src0, &num_reladdr);
511
512   if (dst.reladdr) {
513      emit_arl(ir, address_reg, *dst.reladdr);
514      num_reladdr--;
515   }
516   assert(num_reladdr == 0);
517
518   inst->op = op;
519   inst->dst = dst;
520   inst->src[0] = src0;
521   inst->src[1] = src1;
522   inst->src[2] = src2;
523   inst->ir = ir;
524   inst->dead_mask = 0;
525
526   inst->function = NULL;
527
528   if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
529      this->num_address_regs = 1;
530
531   /* Update indirect addressing status used by TGSI */
532   if (dst.reladdr) {
533      switch(dst.file) {
534      case PROGRAM_TEMPORARY:
535         this->indirect_addr_temps = true;
536         break;
537      case PROGRAM_LOCAL_PARAM:
538      case PROGRAM_ENV_PARAM:
539      case PROGRAM_STATE_VAR:
540      case PROGRAM_NAMED_PARAM:
541      case PROGRAM_CONSTANT:
542      case PROGRAM_UNIFORM:
543         this->indirect_addr_consts = true;
544         break;
545      case PROGRAM_IMMEDIATE:
546         assert(!"immediates should not have indirect addressing");
547         break;
548      default:
549         break;
550      }
551   }
552   else {
553      for (i=0; i<3; i++) {
554         if(inst->src[i].reladdr) {
555            switch(inst->src[i].file) {
556            case PROGRAM_TEMPORARY:
557               this->indirect_addr_temps = true;
558               break;
559            case PROGRAM_LOCAL_PARAM:
560            case PROGRAM_ENV_PARAM:
561            case PROGRAM_STATE_VAR:
562            case PROGRAM_NAMED_PARAM:
563            case PROGRAM_CONSTANT:
564            case PROGRAM_UNIFORM:
565               this->indirect_addr_consts = true;
566               break;
567            case PROGRAM_IMMEDIATE:
568               assert(!"immediates should not have indirect addressing");
569               break;
570            default:
571               break;
572            }
573         }
574      }
575   }
576
577   this->instructions.push_tail(inst);
578
579   if (native_integers)
580      try_emit_float_set(ir, op, dst);
581
582   return inst;
583}
584
585
586glsl_to_tgsi_instruction *
587glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
588        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
589{
590   return emit(ir, op, dst, src0, src1, undef_src);
591}
592
593glsl_to_tgsi_instruction *
594glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
595        		 st_dst_reg dst, st_src_reg src0)
596{
597   assert(dst.writemask != 0);
598   return emit(ir, op, dst, src0, undef_src, undef_src);
599}
600
601glsl_to_tgsi_instruction *
602glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
603{
604   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
605}
606
607 /**
608 * Emits the code to convert the result of float SET instructions to integers.
609 */
610void
611glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
612        		 st_dst_reg dst)
613{
614   if ((op == TGSI_OPCODE_SEQ ||
615        op == TGSI_OPCODE_SNE ||
616        op == TGSI_OPCODE_SGE ||
617        op == TGSI_OPCODE_SLT))
618   {
619      st_src_reg src = st_src_reg(dst);
620      src.negate = ~src.negate;
621      dst.type = GLSL_TYPE_FLOAT;
622      emit(ir, TGSI_OPCODE_F2I, dst, src);
623   }
624}
625
626/**
627 * Determines whether to use an integer, unsigned integer, or float opcode
628 * based on the operands and input opcode, then emits the result.
629 */
630unsigned
631glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
632        		 st_dst_reg dst,
633        		 st_src_reg src0, st_src_reg src1)
634{
635   int type = GLSL_TYPE_FLOAT;
636
637   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
638      type = GLSL_TYPE_FLOAT;
639   else if (native_integers)
640      type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
641
642#define case4(c, f, i, u) \
643   case TGSI_OPCODE_##c: \
644      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
645      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
646      else op = TGSI_OPCODE_##f; \
647      break;
648#define case3(f, i, u)  case4(f, f, i, u)
649#define case2fi(f, i)   case4(f, f, i, i)
650#define case2iu(i, u)   case4(i, LAST, i, u)
651
652   switch(op) {
653      case2fi(ADD, UADD);
654      case2fi(MUL, UMUL);
655      case2fi(MAD, UMAD);
656      case3(DIV, IDIV, UDIV);
657      case3(MAX, IMAX, UMAX);
658      case3(MIN, IMIN, UMIN);
659      case2iu(MOD, UMOD);
660
661      case2fi(SEQ, USEQ);
662      case2fi(SNE, USNE);
663      case3(SGE, ISGE, USGE);
664      case3(SLT, ISLT, USLT);
665
666      case2iu(ISHR, USHR);
667
668      default: break;
669   }
670
671   assert(op != TGSI_OPCODE_LAST);
672   return op;
673}
674
675glsl_to_tgsi_instruction *
676glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
677        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
678        		    unsigned elements)
679{
680   static const unsigned dot_opcodes[] = {
681      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
682   };
683
684   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
685}
686
687/**
688 * Emits TGSI scalar opcodes to produce unique answers across channels.
689 *
690 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
691 * channel determines the result across all channels.  So to do a vec4
692 * of this operation, we want to emit a scalar per source channel used
693 * to produce dest channels.
694 */
695void
696glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
697        		        st_dst_reg dst,
698        			st_src_reg orig_src0, st_src_reg orig_src1)
699{
700   int i, j;
701   int done_mask = ~dst.writemask;
702
703   /* TGSI RCP is a scalar operation splatting results to all channels,
704    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
705    * dst channels.
706    */
707   for (i = 0; i < 4; i++) {
708      GLuint this_mask = (1 << i);
709      glsl_to_tgsi_instruction *inst;
710      st_src_reg src0 = orig_src0;
711      st_src_reg src1 = orig_src1;
712
713      if (done_mask & this_mask)
714         continue;
715
716      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
717      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
718      for (j = i + 1; j < 4; j++) {
719         /* If there is another enabled component in the destination that is
720          * derived from the same inputs, generate its value on this pass as
721          * well.
722          */
723         if (!(done_mask & (1 << j)) &&
724             GET_SWZ(src0.swizzle, j) == src0_swiz &&
725             GET_SWZ(src1.swizzle, j) == src1_swiz) {
726            this_mask |= (1 << j);
727         }
728      }
729      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
730        			   src0_swiz, src0_swiz);
731      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
732        			  src1_swiz, src1_swiz);
733
734      inst = emit(ir, op, dst, src0, src1);
735      inst->dst.writemask = this_mask;
736      done_mask |= this_mask;
737   }
738}
739
740void
741glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
742        		        st_dst_reg dst, st_src_reg src0)
743{
744   st_src_reg undef = undef_src;
745
746   undef.swizzle = SWIZZLE_XXXX;
747
748   emit_scalar(ir, op, dst, src0, undef);
749}
750
751void
752glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
753        		        st_dst_reg dst, st_src_reg src0)
754{
755   int op = TGSI_OPCODE_ARL;
756
757   if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
758      op = TGSI_OPCODE_UARL;
759
760   emit(NULL, op, dst, src0);
761}
762
763/**
764 * Emit an TGSI_OPCODE_SCS instruction
765 *
766 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
767 * Instead of splatting its result across all four components of the
768 * destination, it writes one value to the \c x component and another value to
769 * the \c y component.
770 *
771 * \param ir        IR instruction being processed
772 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
773 *                  on which value is desired.
774 * \param dst       Destination register
775 * \param src       Source register
776 */
777void
778glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
779        		     st_dst_reg dst,
780        		     const st_src_reg &src)
781{
782   /* Vertex programs cannot use the SCS opcode.
783    */
784   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
785      emit_scalar(ir, op, dst, src);
786      return;
787   }
788
789   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
790   const unsigned scs_mask = (1U << component);
791   int done_mask = ~dst.writemask;
792   st_src_reg tmp;
793
794   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
795
796   /* If there are compnents in the destination that differ from the component
797    * that will be written by the SCS instrution, we'll need a temporary.
798    */
799   if (scs_mask != unsigned(dst.writemask)) {
800      tmp = get_temp(glsl_type::vec4_type);
801   }
802
803   for (unsigned i = 0; i < 4; i++) {
804      unsigned this_mask = (1U << i);
805      st_src_reg src0 = src;
806
807      if ((done_mask & this_mask) != 0)
808         continue;
809
810      /* The source swizzle specified which component of the source generates
811       * sine / cosine for the current component in the destination.  The SCS
812       * instruction requires that this value be swizzle to the X component.
813       * Replace the current swizzle with a swizzle that puts the source in
814       * the X component.
815       */
816      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
817
818      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
819        			   src0_swiz, src0_swiz);
820      for (unsigned j = i + 1; j < 4; j++) {
821         /* If there is another enabled component in the destination that is
822          * derived from the same inputs, generate its value on this pass as
823          * well.
824          */
825         if (!(done_mask & (1 << j)) &&
826             GET_SWZ(src0.swizzle, j) == src0_swiz) {
827            this_mask |= (1 << j);
828         }
829      }
830
831      if (this_mask != scs_mask) {
832         glsl_to_tgsi_instruction *inst;
833         st_dst_reg tmp_dst = st_dst_reg(tmp);
834
835         /* Emit the SCS instruction.
836          */
837         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
838         inst->dst.writemask = scs_mask;
839
840         /* Move the result of the SCS instruction to the desired location in
841          * the destination.
842          */
843         tmp.swizzle = MAKE_SWIZZLE4(component, component,
844        			     component, component);
845         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
846         inst->dst.writemask = this_mask;
847      } else {
848         /* Emit the SCS instruction to write directly to the destination.
849          */
850         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
851         inst->dst.writemask = scs_mask;
852      }
853
854      done_mask |= this_mask;
855   }
856}
857
858int
859glsl_to_tgsi_visitor::add_constant(gl_register_file file,
860        		     gl_constant_value values[4], int size, int datatype,
861        		     GLuint *swizzle_out)
862{
863   if (file == PROGRAM_CONSTANT) {
864      return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
865                                              size, datatype, swizzle_out);
866   } else {
867      int index = 0;
868      immediate_storage *entry;
869      assert(file == PROGRAM_IMMEDIATE);
870
871      /* Search immediate storage to see if we already have an identical
872       * immediate that we can use instead of adding a duplicate entry.
873       */
874      foreach_iter(exec_list_iterator, iter, this->immediates) {
875         entry = (immediate_storage *)iter.get();
876
877         if (entry->size == size &&
878             entry->type == datatype &&
879             !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
880             return index;
881         }
882         index++;
883      }
884
885      /* Add this immediate to the list. */
886      entry = new(mem_ctx) immediate_storage(values, size, datatype);
887      this->immediates.push_tail(entry);
888      this->num_immediates++;
889      return index;
890   }
891}
892
893st_src_reg
894glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
895{
896   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
897   union gl_constant_value uval;
898
899   uval.f = val;
900   src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
901
902   return src;
903}
904
905st_src_reg
906glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
907{
908   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
909   union gl_constant_value uval;
910
911   assert(native_integers);
912
913   uval.i = val;
914   src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
915
916   return src;
917}
918
919st_src_reg
920glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
921{
922   if (native_integers)
923      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
924                                       st_src_reg_for_int(val);
925   else
926      return st_src_reg_for_float(val);
927}
928
929static int
930type_size(const struct glsl_type *type)
931{
932   unsigned int i;
933   int size;
934
935   switch (type->base_type) {
936   case GLSL_TYPE_UINT:
937   case GLSL_TYPE_INT:
938   case GLSL_TYPE_FLOAT:
939   case GLSL_TYPE_BOOL:
940      if (type->is_matrix()) {
941         return type->matrix_columns;
942      } else {
943         /* Regardless of size of vector, it gets a vec4. This is bad
944          * packing for things like floats, but otherwise arrays become a
945          * mess.  Hopefully a later pass over the code can pack scalars
946          * down if appropriate.
947          */
948         return 1;
949      }
950   case GLSL_TYPE_ARRAY:
951      assert(type->length > 0);
952      return type_size(type->fields.array) * type->length;
953   case GLSL_TYPE_STRUCT:
954      size = 0;
955      for (i = 0; i < type->length; i++) {
956         size += type_size(type->fields.structure[i].type);
957      }
958      return size;
959   case GLSL_TYPE_SAMPLER:
960      /* Samplers take up one slot in UNIFORMS[], but they're baked in
961       * at link time.
962       */
963      return 1;
964   default:
965      assert(0);
966      return 0;
967   }
968}
969
970/**
971 * In the initial pass of codegen, we assign temporary numbers to
972 * intermediate results.  (not SSA -- variable assignments will reuse
973 * storage).
974 */
975st_src_reg
976glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
977{
978   st_src_reg src;
979
980   src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
981   src.file = PROGRAM_TEMPORARY;
982   src.index = next_temp;
983   src.reladdr = NULL;
984   next_temp += type_size(type);
985
986   if (type->is_array() || type->is_record()) {
987      src.swizzle = SWIZZLE_NOOP;
988   } else {
989      src.swizzle = swizzle_for_size(type->vector_elements);
990   }
991   src.negate = 0;
992
993   return src;
994}
995
996variable_storage *
997glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
998{
999
1000   variable_storage *entry;
1001
1002   foreach_iter(exec_list_iterator, iter, this->variables) {
1003      entry = (variable_storage *)iter.get();
1004
1005      if (entry->var == var)
1006         return entry;
1007   }
1008
1009   return NULL;
1010}
1011
1012void
1013glsl_to_tgsi_visitor::visit(ir_variable *ir)
1014{
1015   if (strcmp(ir->name, "gl_FragCoord") == 0) {
1016      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1017
1018      fp->OriginUpperLeft = ir->origin_upper_left;
1019      fp->PixelCenterInteger = ir->pixel_center_integer;
1020   }
1021
1022   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1023      unsigned int i;
1024      const ir_state_slot *const slots = ir->state_slots;
1025      assert(ir->state_slots != NULL);
1026
1027      /* Check if this statevar's setup in the STATE file exactly
1028       * matches how we'll want to reference it as a
1029       * struct/array/whatever.  If not, then we need to move it into
1030       * temporary storage and hope that it'll get copy-propagated
1031       * out.
1032       */
1033      for (i = 0; i < ir->num_state_slots; i++) {
1034         if (slots[i].swizzle != SWIZZLE_XYZW) {
1035            break;
1036         }
1037      }
1038
1039      variable_storage *storage;
1040      st_dst_reg dst;
1041      if (i == ir->num_state_slots) {
1042         /* We'll set the index later. */
1043         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1044         this->variables.push_tail(storage);
1045
1046         dst = undef_dst;
1047      } else {
1048         /* The variable_storage constructor allocates slots based on the size
1049          * of the type.  However, this had better match the number of state
1050          * elements that we're going to copy into the new temporary.
1051          */
1052         assert((int) ir->num_state_slots == type_size(ir->type));
1053
1054         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1055        					 this->next_temp);
1056         this->variables.push_tail(storage);
1057         this->next_temp += type_size(ir->type);
1058
1059         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1060               native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1061      }
1062
1063
1064      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1065         int index = _mesa_add_state_reference(this->prog->Parameters,
1066        				       (gl_state_index *)slots[i].tokens);
1067
1068         if (storage->file == PROGRAM_STATE_VAR) {
1069            if (storage->index == -1) {
1070               storage->index = index;
1071            } else {
1072               assert(index == storage->index + (int)i);
1073            }
1074         } else {
1075            st_src_reg src(PROGRAM_STATE_VAR, index,
1076                  native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1077            src.swizzle = slots[i].swizzle;
1078            emit(ir, TGSI_OPCODE_MOV, dst, src);
1079            /* even a float takes up a whole vec4 reg in a struct/array. */
1080            dst.index++;
1081         }
1082      }
1083
1084      if (storage->file == PROGRAM_TEMPORARY &&
1085          dst.index != storage->index + (int) ir->num_state_slots) {
1086         fail_link(this->shader_program,
1087        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1088        	   ir->name, dst.index - storage->index,
1089        	   type_size(ir->type));
1090      }
1091   }
1092}
1093
1094void
1095glsl_to_tgsi_visitor::visit(ir_loop *ir)
1096{
1097   ir_dereference_variable *counter = NULL;
1098
1099   if (ir->counter != NULL)
1100      counter = new(ir) ir_dereference_variable(ir->counter);
1101
1102   if (ir->from != NULL) {
1103      assert(ir->counter != NULL);
1104
1105      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1106
1107      a->accept(this);
1108      delete a;
1109   }
1110
1111   emit(NULL, TGSI_OPCODE_BGNLOOP);
1112
1113   if (ir->to) {
1114      ir_expression *e =
1115         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1116        		       counter, ir->to);
1117      ir_if *if_stmt =  new(ir) ir_if(e);
1118
1119      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1120
1121      if_stmt->then_instructions.push_tail(brk);
1122
1123      if_stmt->accept(this);
1124
1125      delete if_stmt;
1126      delete e;
1127      delete brk;
1128   }
1129
1130   visit_exec_list(&ir->body_instructions, this);
1131
1132   if (ir->increment) {
1133      ir_expression *e =
1134         new(ir) ir_expression(ir_binop_add, counter->type,
1135        		       counter, ir->increment);
1136
1137      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1138
1139      a->accept(this);
1140      delete a;
1141      delete e;
1142   }
1143
1144   emit(NULL, TGSI_OPCODE_ENDLOOP);
1145}
1146
1147void
1148glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1149{
1150   switch (ir->mode) {
1151   case ir_loop_jump::jump_break:
1152      emit(NULL, TGSI_OPCODE_BRK);
1153      break;
1154   case ir_loop_jump::jump_continue:
1155      emit(NULL, TGSI_OPCODE_CONT);
1156      break;
1157   }
1158}
1159
1160
1161void
1162glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1163{
1164   assert(0);
1165   (void)ir;
1166}
1167
1168void
1169glsl_to_tgsi_visitor::visit(ir_function *ir)
1170{
1171   /* Ignore function bodies other than main() -- we shouldn't see calls to
1172    * them since they should all be inlined before we get to glsl_to_tgsi.
1173    */
1174   if (strcmp(ir->name, "main") == 0) {
1175      const ir_function_signature *sig;
1176      exec_list empty;
1177
1178      sig = ir->matching_signature(&empty);
1179
1180      assert(sig);
1181
1182      foreach_iter(exec_list_iterator, iter, sig->body) {
1183         ir_instruction *ir = (ir_instruction *)iter.get();
1184
1185         ir->accept(this);
1186      }
1187   }
1188}
1189
1190bool
1191glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1192{
1193   int nonmul_operand = 1 - mul_operand;
1194   st_src_reg a, b, c;
1195   st_dst_reg result_dst;
1196
1197   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1198   if (!expr || expr->operation != ir_binop_mul)
1199      return false;
1200
1201   expr->operands[0]->accept(this);
1202   a = this->result;
1203   expr->operands[1]->accept(this);
1204   b = this->result;
1205   ir->operands[nonmul_operand]->accept(this);
1206   c = this->result;
1207
1208   this->result = get_temp(ir->type);
1209   result_dst = st_dst_reg(this->result);
1210   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1211   emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1212
1213   return true;
1214}
1215
1216/**
1217 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1218 *
1219 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1220 * implemented using multiplication, and logical-or is implemented using
1221 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1222 * As result, the logical expression (a & !b) can be rewritten as:
1223 *
1224 *     - a * !b
1225 *     - a * (1 - b)
1226 *     - (a * 1) - (a * b)
1227 *     - a + -(a * b)
1228 *     - a + (a * -b)
1229 *
1230 * This final expression can be implemented as a single MAD(a, -b, a)
1231 * instruction.
1232 */
1233bool
1234glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1235{
1236   const int other_operand = 1 - try_operand;
1237   st_src_reg a, b;
1238
1239   ir_expression *expr = ir->operands[try_operand]->as_expression();
1240   if (!expr || expr->operation != ir_unop_logic_not)
1241      return false;
1242
1243   ir->operands[other_operand]->accept(this);
1244   a = this->result;
1245   expr->operands[0]->accept(this);
1246   b = this->result;
1247
1248   b.negate = ~b.negate;
1249
1250   this->result = get_temp(ir->type);
1251   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1252
1253   return true;
1254}
1255
1256bool
1257glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1258{
1259   /* Saturates were only introduced to vertex programs in
1260    * NV_vertex_program3, so don't give them to drivers in the VP.
1261    */
1262   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1263      return false;
1264
1265   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1266   if (!sat_src)
1267      return false;
1268
1269   sat_src->accept(this);
1270   st_src_reg src = this->result;
1271
1272   /* If we generated an expression instruction into a temporary in
1273    * processing the saturate's operand, apply the saturate to that
1274    * instruction.  Otherwise, generate a MOV to do the saturate.
1275    *
1276    * Note that we have to be careful to only do this optimization if
1277    * the instruction in question was what generated src->result.  For
1278    * example, ir_dereference_array might generate a MUL instruction
1279    * to create the reladdr, and return us a src reg using that
1280    * reladdr.  That MUL result is not the value we're trying to
1281    * saturate.
1282    */
1283   ir_expression *sat_src_expr = sat_src->as_expression();
1284   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1285			sat_src_expr->operation == ir_binop_add ||
1286			sat_src_expr->operation == ir_binop_dot)) {
1287      glsl_to_tgsi_instruction *new_inst;
1288      new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1289      new_inst->saturate = true;
1290   } else {
1291      this->result = get_temp(ir->type);
1292      st_dst_reg result_dst = st_dst_reg(this->result);
1293      result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1294      glsl_to_tgsi_instruction *inst;
1295      inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1296      inst->saturate = true;
1297   }
1298
1299   return true;
1300}
1301
1302void
1303glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1304        			    st_src_reg *reg, int *num_reladdr)
1305{
1306   if (!reg->reladdr)
1307      return;
1308
1309   emit_arl(ir, address_reg, *reg->reladdr);
1310
1311   if (*num_reladdr != 1) {
1312      st_src_reg temp = get_temp(glsl_type::vec4_type);
1313
1314      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1315      *reg = temp;
1316   }
1317
1318   (*num_reladdr)--;
1319}
1320
1321void
1322glsl_to_tgsi_visitor::visit(ir_expression *ir)
1323{
1324   unsigned int operand;
1325   st_src_reg op[Elements(ir->operands)];
1326   st_src_reg result_src;
1327   st_dst_reg result_dst;
1328
1329   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1330    */
1331   if (ir->operation == ir_binop_add) {
1332      if (try_emit_mad(ir, 1))
1333         return;
1334      if (try_emit_mad(ir, 0))
1335         return;
1336   }
1337
1338   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1339    */
1340   if (ir->operation == ir_binop_logic_and) {
1341      if (try_emit_mad_for_and_not(ir, 1))
1342	 return;
1343      if (try_emit_mad_for_and_not(ir, 0))
1344	 return;
1345   }
1346
1347   if (try_emit_sat(ir))
1348      return;
1349
1350   if (ir->operation == ir_quadop_vector)
1351      assert(!"ir_quadop_vector should have been lowered");
1352
1353   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1354      this->result.file = PROGRAM_UNDEFINED;
1355      ir->operands[operand]->accept(this);
1356      if (this->result.file == PROGRAM_UNDEFINED) {
1357         ir_print_visitor v;
1358         printf("Failed to get tree for expression operand:\n");
1359         ir->operands[operand]->accept(&v);
1360         exit(1);
1361      }
1362      op[operand] = this->result;
1363
1364      /* Matrix expression operands should have been broken down to vector
1365       * operations already.
1366       */
1367      assert(!ir->operands[operand]->type->is_matrix());
1368   }
1369
1370   int vector_elements = ir->operands[0]->type->vector_elements;
1371   if (ir->operands[1]) {
1372      vector_elements = MAX2(vector_elements,
1373        		     ir->operands[1]->type->vector_elements);
1374   }
1375
1376   this->result.file = PROGRAM_UNDEFINED;
1377
1378   /* Storage for our result.  Ideally for an assignment we'd be using
1379    * the actual storage for the result here, instead.
1380    */
1381   result_src = get_temp(ir->type);
1382   /* convenience for the emit functions below. */
1383   result_dst = st_dst_reg(result_src);
1384   /* Limit writes to the channels that will be used by result_src later.
1385    * This does limit this temp's use as a temporary for multi-instruction
1386    * sequences.
1387    */
1388   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1389
1390   switch (ir->operation) {
1391   case ir_unop_logic_not:
1392      if (result_dst.type != GLSL_TYPE_FLOAT)
1393         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1394      else {
1395         /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1396          * older GPUs implement SEQ using multiple instructions (i915 uses two
1397          * SGE instructions and a MUL instruction).  Since our logic values are
1398          * 0.0 and 1.0, 1-x also implements !x.
1399          */
1400         op[0].negate = ~op[0].negate;
1401         emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1402      }
1403      break;
1404   case ir_unop_neg:
1405      assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1406      if (result_dst.type == GLSL_TYPE_INT)
1407         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1408      else {
1409         op[0].negate = ~op[0].negate;
1410         result_src = op[0];
1411      }
1412      break;
1413   case ir_unop_abs:
1414      assert(result_dst.type == GLSL_TYPE_FLOAT);
1415      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1416      break;
1417   case ir_unop_sign:
1418      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1419      break;
1420   case ir_unop_rcp:
1421      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1422      break;
1423
1424   case ir_unop_exp2:
1425      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1426      break;
1427   case ir_unop_exp:
1428   case ir_unop_log:
1429      assert(!"not reached: should be handled by ir_explog_to_explog2");
1430      break;
1431   case ir_unop_log2:
1432      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1433      break;
1434   case ir_unop_sin:
1435      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1436      break;
1437   case ir_unop_cos:
1438      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1439      break;
1440   case ir_unop_sin_reduced:
1441      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1442      break;
1443   case ir_unop_cos_reduced:
1444      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1445      break;
1446
1447   case ir_unop_dFdx:
1448      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1449      break;
1450   case ir_unop_dFdy:
1451      op[0].negate = ~op[0].negate;
1452      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1453      break;
1454
1455   case ir_unop_noise: {
1456      /* At some point, a motivated person could add a better
1457       * implementation of noise.  Currently not even the nvidia
1458       * binary drivers do anything more than this.  In any case, the
1459       * place to do this is in the GL state tracker, not the poor
1460       * driver.
1461       */
1462      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1463      break;
1464   }
1465
1466   case ir_binop_add:
1467      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1468      break;
1469   case ir_binop_sub:
1470      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1471      break;
1472
1473   case ir_binop_mul:
1474      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1475      break;
1476   case ir_binop_div:
1477      if (result_dst.type == GLSL_TYPE_FLOAT)
1478         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1479      else
1480         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1481      break;
1482   case ir_binop_mod:
1483      if (result_dst.type == GLSL_TYPE_FLOAT)
1484         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1485      else
1486         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1487      break;
1488
1489   case ir_binop_less:
1490      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1491      break;
1492   case ir_binop_greater:
1493      emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1494      break;
1495   case ir_binop_lequal:
1496      emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1497      break;
1498   case ir_binop_gequal:
1499      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1500      break;
1501   case ir_binop_equal:
1502      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1503      break;
1504   case ir_binop_nequal:
1505      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1506      break;
1507   case ir_binop_all_equal:
1508      /* "==" operator producing a scalar boolean. */
1509      if (ir->operands[0]->type->is_vector() ||
1510          ir->operands[1]->type->is_vector()) {
1511         st_src_reg temp = get_temp(native_integers ?
1512               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1513               glsl_type::vec4_type);
1514
1515         if (native_integers) {
1516            st_dst_reg temp_dst = st_dst_reg(temp);
1517            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1518
1519            emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1520
1521            /* Emit 1-3 AND operations to combine the SEQ results. */
1522            switch (ir->operands[0]->type->vector_elements) {
1523            case 2:
1524               break;
1525            case 3:
1526               temp_dst.writemask = WRITEMASK_Y;
1527               temp1.swizzle = SWIZZLE_YYYY;
1528               temp2.swizzle = SWIZZLE_ZZZZ;
1529               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1530               break;
1531            case 4:
1532               temp_dst.writemask = WRITEMASK_X;
1533               temp1.swizzle = SWIZZLE_XXXX;
1534               temp2.swizzle = SWIZZLE_YYYY;
1535               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1536               temp_dst.writemask = WRITEMASK_Y;
1537               temp1.swizzle = SWIZZLE_ZZZZ;
1538               temp2.swizzle = SWIZZLE_WWWW;
1539               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1540            }
1541
1542            temp1.swizzle = SWIZZLE_XXXX;
1543            temp2.swizzle = SWIZZLE_YYYY;
1544            emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1545         } else {
1546            emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1547
1548            /* After the dot-product, the value will be an integer on the
1549             * range [0,4].  Zero becomes 1.0, and positive values become zero.
1550             */
1551            emit_dp(ir, result_dst, temp, temp, vector_elements);
1552
1553            /* Negating the result of the dot-product gives values on the range
1554             * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1555             * This is achieved using SGE.
1556             */
1557            st_src_reg sge_src = result_src;
1558            sge_src.negate = ~sge_src.negate;
1559            emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1560         }
1561      } else {
1562         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1563      }
1564      break;
1565   case ir_binop_any_nequal:
1566      /* "!=" operator producing a scalar boolean. */
1567      if (ir->operands[0]->type->is_vector() ||
1568          ir->operands[1]->type->is_vector()) {
1569         st_src_reg temp = get_temp(native_integers ?
1570               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1571               glsl_type::vec4_type);
1572         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1573
1574         if (native_integers) {
1575            st_dst_reg temp_dst = st_dst_reg(temp);
1576            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1577
1578            /* Emit 1-3 OR operations to combine the SNE results. */
1579            switch (ir->operands[0]->type->vector_elements) {
1580            case 2:
1581               break;
1582            case 3:
1583               temp_dst.writemask = WRITEMASK_Y;
1584               temp1.swizzle = SWIZZLE_YYYY;
1585               temp2.swizzle = SWIZZLE_ZZZZ;
1586               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1587               break;
1588            case 4:
1589               temp_dst.writemask = WRITEMASK_X;
1590               temp1.swizzle = SWIZZLE_XXXX;
1591               temp2.swizzle = SWIZZLE_YYYY;
1592               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1593               temp_dst.writemask = WRITEMASK_Y;
1594               temp1.swizzle = SWIZZLE_ZZZZ;
1595               temp2.swizzle = SWIZZLE_WWWW;
1596               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1597            }
1598
1599            temp1.swizzle = SWIZZLE_XXXX;
1600            temp2.swizzle = SWIZZLE_YYYY;
1601            emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1602         } else {
1603            /* After the dot-product, the value will be an integer on the
1604             * range [0,4].  Zero stays zero, and positive values become 1.0.
1605             */
1606            glsl_to_tgsi_instruction *const dp =
1607                  emit_dp(ir, result_dst, temp, temp, vector_elements);
1608            if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1609               /* The clamping to [0,1] can be done for free in the fragment
1610                * shader with a saturate.
1611                */
1612               dp->saturate = true;
1613            } else {
1614               /* Negating the result of the dot-product gives values on the range
1615                * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1616                * achieved using SLT.
1617                */
1618               st_src_reg slt_src = result_src;
1619               slt_src.negate = ~slt_src.negate;
1620               emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1621            }
1622         }
1623      } else {
1624         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1625      }
1626      break;
1627
1628   case ir_unop_any: {
1629      assert(ir->operands[0]->type->is_vector());
1630
1631      /* After the dot-product, the value will be an integer on the
1632       * range [0,4].  Zero stays zero, and positive values become 1.0.
1633       */
1634      glsl_to_tgsi_instruction *const dp =
1635         emit_dp(ir, result_dst, op[0], op[0],
1636                 ir->operands[0]->type->vector_elements);
1637      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1638          result_dst.type == GLSL_TYPE_FLOAT) {
1639	      /* The clamping to [0,1] can be done for free in the fragment
1640	       * shader with a saturate.
1641	       */
1642	      dp->saturate = true;
1643      } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1644	      /* Negating the result of the dot-product gives values on the range
1645	       * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1646	       * is achieved using SLT.
1647	       */
1648	      st_src_reg slt_src = result_src;
1649	      slt_src.negate = ~slt_src.negate;
1650	      emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1651      }
1652      else {
1653         /* Use SNE 0 if integers are being used as boolean values. */
1654         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1655      }
1656      break;
1657   }
1658
1659   case ir_binop_logic_xor:
1660      if (native_integers)
1661         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1662      else
1663         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1664      break;
1665
1666   case ir_binop_logic_or: {
1667      if (native_integers) {
1668         /* If integers are used as booleans, we can use an actual "or"
1669          * instruction.
1670          */
1671         assert(native_integers);
1672         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1673      } else {
1674         /* After the addition, the value will be an integer on the
1675          * range [0,2].  Zero stays zero, and positive values become 1.0.
1676          */
1677         glsl_to_tgsi_instruction *add =
1678            emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1679         if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1680            /* The clamping to [0,1] can be done for free in the fragment
1681             * shader with a saturate if floats are being used as boolean values.
1682             */
1683            add->saturate = true;
1684         } else {
1685            /* Negating the result of the addition gives values on the range
1686             * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1687             * is achieved using SLT.
1688             */
1689            st_src_reg slt_src = result_src;
1690            slt_src.negate = ~slt_src.negate;
1691            emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1692         }
1693      }
1694      break;
1695   }
1696
1697   case ir_binop_logic_and:
1698      /* If native integers are disabled, the bool args are stored as float 0.0
1699       * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1700       * actual AND opcode.
1701       */
1702      if (native_integers)
1703         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1704      else
1705         emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1706      break;
1707
1708   case ir_binop_dot:
1709      assert(ir->operands[0]->type->is_vector());
1710      assert(ir->operands[0]->type == ir->operands[1]->type);
1711      emit_dp(ir, result_dst, op[0], op[1],
1712              ir->operands[0]->type->vector_elements);
1713      break;
1714
1715   case ir_unop_sqrt:
1716      /* sqrt(x) = x * rsq(x). */
1717      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1718      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1719      /* For incoming channels <= 0, set the result to 0. */
1720      op[0].negate = ~op[0].negate;
1721      emit(ir, TGSI_OPCODE_CMP, result_dst,
1722        		  op[0], result_src, st_src_reg_for_float(0.0));
1723      break;
1724   case ir_unop_rsq:
1725      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1726      break;
1727   case ir_unop_i2f:
1728      if (native_integers) {
1729         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1730         break;
1731      }
1732      /* fallthrough to next case otherwise */
1733   case ir_unop_b2f:
1734      if (native_integers) {
1735         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1736         break;
1737      }
1738      /* fallthrough to next case otherwise */
1739   case ir_unop_i2u:
1740   case ir_unop_u2i:
1741      /* Converting between signed and unsigned integers is a no-op. */
1742      result_src = op[0];
1743      break;
1744   case ir_unop_b2i:
1745      if (native_integers) {
1746         /* Booleans are stored as integers using ~0 for true and 0 for false.
1747          * GLSL requires that int(bool) return 1 for true and 0 for false.
1748          * This conversion is done with AND, but it could be done with NEG.
1749          */
1750         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1751      } else {
1752         /* Booleans and integers are both stored as floats when native
1753          * integers are disabled.
1754          */
1755         result_src = op[0];
1756      }
1757      break;
1758   case ir_unop_f2i:
1759      if (native_integers)
1760         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1761      else
1762         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1763      break;
1764   case ir_unop_f2b:
1765      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1766      break;
1767   case ir_unop_i2b:
1768      if (native_integers)
1769         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1770      else
1771         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1772      break;
1773   case ir_unop_trunc:
1774      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1775      break;
1776   case ir_unop_ceil:
1777      op[0].negate = ~op[0].negate;
1778      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1779      result_src.negate = ~result_src.negate;
1780      break;
1781   case ir_unop_floor:
1782      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1783      break;
1784   case ir_unop_round_even:
1785      emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1786      break;
1787   case ir_unop_fract:
1788      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1789      break;
1790
1791   case ir_binop_min:
1792      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1793      break;
1794   case ir_binop_max:
1795      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1796      break;
1797   case ir_binop_pow:
1798      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1799      break;
1800
1801   case ir_unop_bit_not:
1802      if (native_integers) {
1803         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1804         break;
1805      }
1806   case ir_unop_u2f:
1807      if (native_integers) {
1808         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1809         break;
1810      }
1811   case ir_binop_lshift:
1812      if (native_integers) {
1813         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1814         break;
1815      }
1816   case ir_binop_rshift:
1817      if (native_integers) {
1818         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1819         break;
1820      }
1821   case ir_binop_bit_and:
1822      if (native_integers) {
1823         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1824         break;
1825      }
1826   case ir_binop_bit_xor:
1827      if (native_integers) {
1828         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1829         break;
1830      }
1831   case ir_binop_bit_or:
1832      if (native_integers) {
1833         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1834         break;
1835      }
1836
1837      assert(!"GLSL 1.30 features unsupported");
1838      break;
1839
1840   case ir_quadop_vector:
1841      /* This operation should have already been handled.
1842       */
1843      assert(!"Should not get here.");
1844      break;
1845   }
1846
1847   this->result = result_src;
1848}
1849
1850
1851void
1852glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1853{
1854   st_src_reg src;
1855   int i;
1856   int swizzle[4];
1857
1858   /* Note that this is only swizzles in expressions, not those on the left
1859    * hand side of an assignment, which do write masking.  See ir_assignment
1860    * for that.
1861    */
1862
1863   ir->val->accept(this);
1864   src = this->result;
1865   assert(src.file != PROGRAM_UNDEFINED);
1866
1867   for (i = 0; i < 4; i++) {
1868      if (i < ir->type->vector_elements) {
1869         switch (i) {
1870         case 0:
1871            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1872            break;
1873         case 1:
1874            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1875            break;
1876         case 2:
1877            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1878            break;
1879         case 3:
1880            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1881            break;
1882         }
1883      } else {
1884         /* If the type is smaller than a vec4, replicate the last
1885          * channel out.
1886          */
1887         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1888      }
1889   }
1890
1891   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1892
1893   this->result = src;
1894}
1895
1896void
1897glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1898{
1899   variable_storage *entry = find_variable_storage(ir->var);
1900   ir_variable *var = ir->var;
1901
1902   if (!entry) {
1903      switch (var->mode) {
1904      case ir_var_uniform:
1905         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1906        				       var->location);
1907         this->variables.push_tail(entry);
1908         break;
1909      case ir_var_in:
1910      case ir_var_inout:
1911         /* The linker assigns locations for varyings and attributes,
1912          * including deprecated builtins (like gl_Color), user-assign
1913          * generic attributes (glBindVertexLocation), and
1914          * user-defined varyings.
1915          *
1916          * FINISHME: We would hit this path for function arguments.  Fix!
1917          */
1918         assert(var->location != -1);
1919         entry = new(mem_ctx) variable_storage(var,
1920                                               PROGRAM_INPUT,
1921                                               var->location);
1922         break;
1923      case ir_var_out:
1924         assert(var->location != -1);
1925         entry = new(mem_ctx) variable_storage(var,
1926                                               PROGRAM_OUTPUT,
1927                                               var->location);
1928         break;
1929      case ir_var_system_value:
1930         entry = new(mem_ctx) variable_storage(var,
1931                                               PROGRAM_SYSTEM_VALUE,
1932                                               var->location);
1933         break;
1934      case ir_var_auto:
1935      case ir_var_temporary:
1936         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1937        				       this->next_temp);
1938         this->variables.push_tail(entry);
1939
1940         next_temp += type_size(var->type);
1941         break;
1942      }
1943
1944      if (!entry) {
1945         printf("Failed to make storage for %s\n", var->name);
1946         exit(1);
1947      }
1948   }
1949
1950   this->result = st_src_reg(entry->file, entry->index, var->type);
1951   if (!native_integers)
1952      this->result.type = GLSL_TYPE_FLOAT;
1953}
1954
1955void
1956glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1957{
1958   ir_constant *index;
1959   st_src_reg src;
1960   int element_size = type_size(ir->type);
1961
1962   index = ir->array_index->constant_expression_value();
1963
1964   ir->array->accept(this);
1965   src = this->result;
1966
1967   if (index) {
1968      src.index += index->value.i[0] * element_size;
1969   } else {
1970      /* Variable index array dereference.  It eats the "vec4" of the
1971       * base of the array and an index that offsets the TGSI register
1972       * index.
1973       */
1974      ir->array_index->accept(this);
1975
1976      st_src_reg index_reg;
1977
1978      if (element_size == 1) {
1979         index_reg = this->result;
1980      } else {
1981         index_reg = get_temp(native_integers ?
1982                              glsl_type::int_type : glsl_type::float_type);
1983
1984         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1985              this->result, st_src_reg_for_type(index_reg.type, element_size));
1986      }
1987
1988      /* If there was already a relative address register involved, add the
1989       * new and the old together to get the new offset.
1990       */
1991      if (src.reladdr != NULL) {
1992         st_src_reg accum_reg = get_temp(native_integers ?
1993                                glsl_type::int_type : glsl_type::float_type);
1994
1995         emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1996              index_reg, *src.reladdr);
1997
1998         index_reg = accum_reg;
1999      }
2000
2001      src.reladdr = ralloc(mem_ctx, st_src_reg);
2002      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2003   }
2004
2005   /* If the type is smaller than a vec4, replicate the last channel out. */
2006   if (ir->type->is_scalar() || ir->type->is_vector())
2007      src.swizzle = swizzle_for_size(ir->type->vector_elements);
2008   else
2009      src.swizzle = SWIZZLE_NOOP;
2010
2011   this->result = src;
2012}
2013
2014void
2015glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2016{
2017   unsigned int i;
2018   const glsl_type *struct_type = ir->record->type;
2019   int offset = 0;
2020
2021   ir->record->accept(this);
2022
2023   for (i = 0; i < struct_type->length; i++) {
2024      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2025         break;
2026      offset += type_size(struct_type->fields.structure[i].type);
2027   }
2028
2029   /* If the type is smaller than a vec4, replicate the last channel out. */
2030   if (ir->type->is_scalar() || ir->type->is_vector())
2031      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2032   else
2033      this->result.swizzle = SWIZZLE_NOOP;
2034
2035   this->result.index += offset;
2036}
2037
2038/**
2039 * We want to be careful in assignment setup to hit the actual storage
2040 * instead of potentially using a temporary like we might with the
2041 * ir_dereference handler.
2042 */
2043static st_dst_reg
2044get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2045{
2046   /* The LHS must be a dereference.  If the LHS is a variable indexed array
2047    * access of a vector, it must be separated into a series conditional moves
2048    * before reaching this point (see ir_vec_index_to_cond_assign).
2049    */
2050   assert(ir->as_dereference());
2051   ir_dereference_array *deref_array = ir->as_dereference_array();
2052   if (deref_array) {
2053      assert(!deref_array->array->type->is_vector());
2054   }
2055
2056   /* Use the rvalue deref handler for the most part.  We'll ignore
2057    * swizzles in it and write swizzles using writemask, though.
2058    */
2059   ir->accept(v);
2060   return st_dst_reg(v->result);
2061}
2062
2063/**
2064 * Process the condition of a conditional assignment
2065 *
2066 * Examines the condition of a conditional assignment to generate the optimal
2067 * first operand of a \c CMP instruction.  If the condition is a relational
2068 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2069 * used as the source for the \c CMP instruction.  Otherwise the comparison
2070 * is processed to a boolean result, and the boolean result is used as the
2071 * operand to the CMP instruction.
2072 */
2073bool
2074glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2075{
2076   ir_rvalue *src_ir = ir;
2077   bool negate = true;
2078   bool switch_order = false;
2079
2080   ir_expression *const expr = ir->as_expression();
2081   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2082      bool zero_on_left = false;
2083
2084      if (expr->operands[0]->is_zero()) {
2085         src_ir = expr->operands[1];
2086         zero_on_left = true;
2087      } else if (expr->operands[1]->is_zero()) {
2088         src_ir = expr->operands[0];
2089         zero_on_left = false;
2090      }
2091
2092      /*      a is -  0  +            -  0  +
2093       * (a <  0)  T  F  F  ( a < 0)  T  F  F
2094       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2095       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2096       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2097       * (a >  0)  F  F  T  (-a < 0)  F  F  T
2098       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2099       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2100       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2101       *
2102       * Note that exchanging the order of 0 and 'a' in the comparison simply
2103       * means that the value of 'a' should be negated.
2104       */
2105      if (src_ir != ir) {
2106         switch (expr->operation) {
2107         case ir_binop_less:
2108            switch_order = false;
2109            negate = zero_on_left;
2110            break;
2111
2112         case ir_binop_greater:
2113            switch_order = false;
2114            negate = !zero_on_left;
2115            break;
2116
2117         case ir_binop_lequal:
2118            switch_order = true;
2119            negate = !zero_on_left;
2120            break;
2121
2122         case ir_binop_gequal:
2123            switch_order = true;
2124            negate = zero_on_left;
2125            break;
2126
2127         default:
2128            /* This isn't the right kind of comparison afterall, so make sure
2129             * the whole condition is visited.
2130             */
2131            src_ir = ir;
2132            break;
2133         }
2134      }
2135   }
2136
2137   src_ir->accept(this);
2138
2139   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2140    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2141    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2142    * computing the condition.
2143    */
2144   if (negate)
2145      this->result.negate = ~this->result.negate;
2146
2147   return switch_order;
2148}
2149
2150void
2151glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2152{
2153   st_dst_reg l;
2154   st_src_reg r;
2155   int i;
2156
2157   ir->rhs->accept(this);
2158   r = this->result;
2159
2160   l = get_assignment_lhs(ir->lhs, this);
2161
2162   /* FINISHME: This should really set to the correct maximal writemask for each
2163    * FINISHME: component written (in the loops below).  This case can only
2164    * FINISHME: occur for matrices, arrays, and structures.
2165    */
2166   if (ir->write_mask == 0) {
2167      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2168      l.writemask = WRITEMASK_XYZW;
2169   } else if (ir->lhs->type->is_scalar() &&
2170              ir->lhs->variable_referenced()->mode == ir_var_out) {
2171      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2172       * FINISHME: W component of fragment shader output zero, work correctly.
2173       */
2174      l.writemask = WRITEMASK_XYZW;
2175   } else {
2176      int swizzles[4];
2177      int first_enabled_chan = 0;
2178      int rhs_chan = 0;
2179
2180      l.writemask = ir->write_mask;
2181
2182      for (int i = 0; i < 4; i++) {
2183         if (l.writemask & (1 << i)) {
2184            first_enabled_chan = GET_SWZ(r.swizzle, i);
2185            break;
2186         }
2187      }
2188
2189      /* Swizzle a small RHS vector into the channels being written.
2190       *
2191       * glsl ir treats write_mask as dictating how many channels are
2192       * present on the RHS while TGSI treats write_mask as just
2193       * showing which channels of the vec4 RHS get written.
2194       */
2195      for (int i = 0; i < 4; i++) {
2196         if (l.writemask & (1 << i))
2197            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2198         else
2199            swizzles[i] = first_enabled_chan;
2200      }
2201      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2202        			swizzles[2], swizzles[3]);
2203   }
2204
2205   assert(l.file != PROGRAM_UNDEFINED);
2206   assert(r.file != PROGRAM_UNDEFINED);
2207
2208   if (ir->condition) {
2209      const bool switch_order = this->process_move_condition(ir->condition);
2210      st_src_reg condition = this->result;
2211
2212      for (i = 0; i < type_size(ir->lhs->type); i++) {
2213         st_src_reg l_src = st_src_reg(l);
2214         st_src_reg condition_temp = condition;
2215         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2216
2217         if (native_integers) {
2218            /* This is necessary because TGSI's CMP instruction expects the
2219             * condition to be a float, and we store booleans as integers.
2220             * If TGSI had a UCMP instruction or similar, this extra
2221             * instruction would not be necessary.
2222             */
2223            condition_temp = get_temp(glsl_type::vec4_type);
2224            condition.negate = 0;
2225            emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2226            condition_temp.swizzle = condition.swizzle;
2227         }
2228
2229         if (switch_order) {
2230            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2231         } else {
2232            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2233         }
2234
2235         l.index++;
2236         r.index++;
2237      }
2238   } else if (ir->rhs->as_expression() &&
2239              this->instructions.get_tail() &&
2240              ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2241              type_size(ir->lhs->type) == 1 &&
2242              l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2243      /* To avoid emitting an extra MOV when assigning an expression to a
2244       * variable, emit the last instruction of the expression again, but
2245       * replace the destination register with the target of the assignment.
2246       * Dead code elimination will remove the original instruction.
2247       */
2248      glsl_to_tgsi_instruction *inst, *new_inst;
2249      inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2250      new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2251      new_inst->saturate = inst->saturate;
2252      inst->dead_mask = inst->dst.writemask;
2253   } else {
2254      for (i = 0; i < type_size(ir->lhs->type); i++) {
2255         emit(ir, TGSI_OPCODE_MOV, l, r);
2256         l.index++;
2257         r.index++;
2258      }
2259   }
2260}
2261
2262
2263void
2264glsl_to_tgsi_visitor::visit(ir_constant *ir)
2265{
2266   st_src_reg src;
2267   GLfloat stack_vals[4] = { 0 };
2268   gl_constant_value *values = (gl_constant_value *) stack_vals;
2269   GLenum gl_type = GL_NONE;
2270   unsigned int i;
2271   static int in_array = 0;
2272   gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2273
2274   /* Unfortunately, 4 floats is all we can get into
2275    * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
2276    * aggregate constant and move each constant value into it.  If we
2277    * get lucky, copy propagation will eliminate the extra moves.
2278    */
2279   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2280      st_src_reg temp_base = get_temp(ir->type);
2281      st_dst_reg temp = st_dst_reg(temp_base);
2282
2283      foreach_iter(exec_list_iterator, iter, ir->components) {
2284         ir_constant *field_value = (ir_constant *)iter.get();
2285         int size = type_size(field_value->type);
2286
2287         assert(size > 0);
2288
2289         field_value->accept(this);
2290         src = this->result;
2291
2292         for (i = 0; i < (unsigned int)size; i++) {
2293            emit(ir, TGSI_OPCODE_MOV, temp, src);
2294
2295            src.index++;
2296            temp.index++;
2297         }
2298      }
2299      this->result = temp_base;
2300      return;
2301   }
2302
2303   if (ir->type->is_array()) {
2304      st_src_reg temp_base = get_temp(ir->type);
2305      st_dst_reg temp = st_dst_reg(temp_base);
2306      int size = type_size(ir->type->fields.array);
2307
2308      assert(size > 0);
2309      in_array++;
2310
2311      for (i = 0; i < ir->type->length; i++) {
2312         ir->array_elements[i]->accept(this);
2313         src = this->result;
2314         for (int j = 0; j < size; j++) {
2315            emit(ir, TGSI_OPCODE_MOV, temp, src);
2316
2317            src.index++;
2318            temp.index++;
2319         }
2320      }
2321      this->result = temp_base;
2322      in_array--;
2323      return;
2324   }
2325
2326   if (ir->type->is_matrix()) {
2327      st_src_reg mat = get_temp(ir->type);
2328      st_dst_reg mat_column = st_dst_reg(mat);
2329
2330      for (i = 0; i < ir->type->matrix_columns; i++) {
2331         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2332         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2333
2334         src = st_src_reg(file, -1, ir->type->base_type);
2335         src.index = add_constant(file,
2336                                  values,
2337                                  ir->type->vector_elements,
2338                                  GL_FLOAT,
2339                                  &src.swizzle);
2340         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2341
2342         mat_column.index++;
2343      }
2344
2345      this->result = mat;
2346      return;
2347   }
2348
2349   switch (ir->type->base_type) {
2350   case GLSL_TYPE_FLOAT:
2351      gl_type = GL_FLOAT;
2352      for (i = 0; i < ir->type->vector_elements; i++) {
2353         values[i].f = ir->value.f[i];
2354      }
2355      break;
2356   case GLSL_TYPE_UINT:
2357      gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2358      for (i = 0; i < ir->type->vector_elements; i++) {
2359         if (native_integers)
2360            values[i].u = ir->value.u[i];
2361         else
2362            values[i].f = ir->value.u[i];
2363      }
2364      break;
2365   case GLSL_TYPE_INT:
2366      gl_type = native_integers ? GL_INT : GL_FLOAT;
2367      for (i = 0; i < ir->type->vector_elements; i++) {
2368         if (native_integers)
2369            values[i].i = ir->value.i[i];
2370         else
2371            values[i].f = ir->value.i[i];
2372      }
2373      break;
2374   case GLSL_TYPE_BOOL:
2375      gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2376      for (i = 0; i < ir->type->vector_elements; i++) {
2377         if (native_integers)
2378            values[i].b = ir->value.b[i];
2379         else
2380            values[i].f = ir->value.b[i];
2381      }
2382      break;
2383   default:
2384      assert(!"Non-float/uint/int/bool constant");
2385   }
2386
2387   this->result = st_src_reg(file, -1, ir->type);
2388   this->result.index = add_constant(file,
2389                                     values,
2390                                     ir->type->vector_elements,
2391                                     gl_type,
2392                                     &this->result.swizzle);
2393}
2394
2395function_entry *
2396glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2397{
2398   function_entry *entry;
2399
2400   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2401      entry = (function_entry *)iter.get();
2402
2403      if (entry->sig == sig)
2404         return entry;
2405   }
2406
2407   entry = ralloc(mem_ctx, function_entry);
2408   entry->sig = sig;
2409   entry->sig_id = this->next_signature_id++;
2410   entry->bgn_inst = NULL;
2411
2412   /* Allocate storage for all the parameters. */
2413   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2414      ir_variable *param = (ir_variable *)iter.get();
2415      variable_storage *storage;
2416
2417      storage = find_variable_storage(param);
2418      assert(!storage);
2419
2420      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2421        				      this->next_temp);
2422      this->variables.push_tail(storage);
2423
2424      this->next_temp += type_size(param->type);
2425   }
2426
2427   if (!sig->return_type->is_void()) {
2428      entry->return_reg = get_temp(sig->return_type);
2429   } else {
2430      entry->return_reg = undef_src;
2431   }
2432
2433   this->function_signatures.push_tail(entry);
2434   return entry;
2435}
2436
2437void
2438glsl_to_tgsi_visitor::visit(ir_call *ir)
2439{
2440   glsl_to_tgsi_instruction *call_inst;
2441   ir_function_signature *sig = ir->get_callee();
2442   function_entry *entry = get_function_signature(sig);
2443   int i;
2444
2445   /* Process in parameters. */
2446   exec_list_iterator sig_iter = sig->parameters.iterator();
2447   foreach_iter(exec_list_iterator, iter, *ir) {
2448      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2449      ir_variable *param = (ir_variable *)sig_iter.get();
2450
2451      if (param->mode == ir_var_in ||
2452          param->mode == ir_var_inout) {
2453         variable_storage *storage = find_variable_storage(param);
2454         assert(storage);
2455
2456         param_rval->accept(this);
2457         st_src_reg r = this->result;
2458
2459         st_dst_reg l;
2460         l.file = storage->file;
2461         l.index = storage->index;
2462         l.reladdr = NULL;
2463         l.writemask = WRITEMASK_XYZW;
2464         l.cond_mask = COND_TR;
2465
2466         for (i = 0; i < type_size(param->type); i++) {
2467            emit(ir, TGSI_OPCODE_MOV, l, r);
2468            l.index++;
2469            r.index++;
2470         }
2471      }
2472
2473      sig_iter.next();
2474   }
2475   assert(!sig_iter.has_next());
2476
2477   /* Emit call instruction */
2478   call_inst = emit(ir, TGSI_OPCODE_CAL);
2479   call_inst->function = entry;
2480
2481   /* Process out parameters. */
2482   sig_iter = sig->parameters.iterator();
2483   foreach_iter(exec_list_iterator, iter, *ir) {
2484      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2485      ir_variable *param = (ir_variable *)sig_iter.get();
2486
2487      if (param->mode == ir_var_out ||
2488          param->mode == ir_var_inout) {
2489         variable_storage *storage = find_variable_storage(param);
2490         assert(storage);
2491
2492         st_src_reg r;
2493         r.file = storage->file;
2494         r.index = storage->index;
2495         r.reladdr = NULL;
2496         r.swizzle = SWIZZLE_NOOP;
2497         r.negate = 0;
2498
2499         param_rval->accept(this);
2500         st_dst_reg l = st_dst_reg(this->result);
2501
2502         for (i = 0; i < type_size(param->type); i++) {
2503            emit(ir, TGSI_OPCODE_MOV, l, r);
2504            l.index++;
2505            r.index++;
2506         }
2507      }
2508
2509      sig_iter.next();
2510   }
2511   assert(!sig_iter.has_next());
2512
2513   /* Process return value. */
2514   this->result = entry->return_reg;
2515}
2516
2517void
2518glsl_to_tgsi_visitor::visit(ir_texture *ir)
2519{
2520   st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2521   st_dst_reg result_dst, coord_dst;
2522   glsl_to_tgsi_instruction *inst = NULL;
2523   unsigned opcode = TGSI_OPCODE_NOP;
2524
2525   if (ir->coordinate) {
2526      ir->coordinate->accept(this);
2527
2528      /* Put our coords in a temp.  We'll need to modify them for shadow,
2529       * projection, or LOD, so the only case we'd use it as is is if
2530       * we're doing plain old texturing.  The optimization passes on
2531       * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2532       */
2533      coord = get_temp(glsl_type::vec4_type);
2534      coord_dst = st_dst_reg(coord);
2535      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2536   }
2537
2538   if (ir->projector) {
2539      ir->projector->accept(this);
2540      projector = this->result;
2541   }
2542
2543   /* Storage for our result.  Ideally for an assignment we'd be using
2544    * the actual storage for the result here, instead.
2545    */
2546   result_src = get_temp(glsl_type::vec4_type);
2547   result_dst = st_dst_reg(result_src);
2548
2549   switch (ir->op) {
2550   case ir_tex:
2551      opcode = TGSI_OPCODE_TEX;
2552      break;
2553   case ir_txb:
2554      opcode = TGSI_OPCODE_TXB;
2555      ir->lod_info.bias->accept(this);
2556      lod_info = this->result;
2557      break;
2558   case ir_txl:
2559      opcode = TGSI_OPCODE_TXL;
2560      ir->lod_info.lod->accept(this);
2561      lod_info = this->result;
2562      break;
2563   case ir_txd:
2564      opcode = TGSI_OPCODE_TXD;
2565      ir->lod_info.grad.dPdx->accept(this);
2566      dx = this->result;
2567      ir->lod_info.grad.dPdy->accept(this);
2568      dy = this->result;
2569      break;
2570   case ir_txs:
2571      opcode = TGSI_OPCODE_TXQ;
2572      ir->lod_info.lod->accept(this);
2573      lod_info = this->result;
2574      break;
2575   case ir_txf:
2576      opcode = TGSI_OPCODE_TXF;
2577      ir->lod_info.lod->accept(this);
2578      lod_info = this->result;
2579      if (ir->offset) {
2580	 ir->offset->accept(this);
2581	 offset = this->result;
2582      }
2583      break;
2584   }
2585
2586   const glsl_type *sampler_type = ir->sampler->type;
2587
2588   if (ir->projector) {
2589      if (opcode == TGSI_OPCODE_TEX) {
2590         /* Slot the projector in as the last component of the coord. */
2591         coord_dst.writemask = WRITEMASK_W;
2592         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2593         coord_dst.writemask = WRITEMASK_XYZW;
2594         opcode = TGSI_OPCODE_TXP;
2595      } else {
2596         st_src_reg coord_w = coord;
2597         coord_w.swizzle = SWIZZLE_WWWW;
2598
2599         /* For the other TEX opcodes there's no projective version
2600          * since the last slot is taken up by LOD info.  Do the
2601          * projective divide now.
2602          */
2603         coord_dst.writemask = WRITEMASK_W;
2604         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2605
2606         /* In the case where we have to project the coordinates "by hand,"
2607          * the shadow comparator value must also be projected.
2608          */
2609         st_src_reg tmp_src = coord;
2610         if (ir->shadow_comparitor) {
2611            /* Slot the shadow value in as the second to last component of the
2612             * coord.
2613             */
2614            ir->shadow_comparitor->accept(this);
2615
2616            tmp_src = get_temp(glsl_type::vec4_type);
2617            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2618
2619	    /* Projective division not allowed for array samplers. */
2620	    assert(!sampler_type->sampler_array);
2621
2622            tmp_dst.writemask = WRITEMASK_Z;
2623            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2624
2625            tmp_dst.writemask = WRITEMASK_XY;
2626            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2627         }
2628
2629         coord_dst.writemask = WRITEMASK_XYZ;
2630         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2631
2632         coord_dst.writemask = WRITEMASK_XYZW;
2633         coord.swizzle = SWIZZLE_XYZW;
2634      }
2635   }
2636
2637   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2638    * comparator was put in the correct place (and projected) by the code,
2639    * above, that handles by-hand projection.
2640    */
2641   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2642      /* Slot the shadow value in as the second to last component of the
2643       * coord.
2644       */
2645      ir->shadow_comparitor->accept(this);
2646
2647      /* XXX This will need to be updated for cubemap array samplers. */
2648      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2649          sampler_type->sampler_array) {
2650         coord_dst.writemask = WRITEMASK_W;
2651      } else {
2652         coord_dst.writemask = WRITEMASK_Z;
2653      }
2654
2655      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2656      coord_dst.writemask = WRITEMASK_XYZW;
2657   }
2658
2659   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2660       opcode == TGSI_OPCODE_TXF) {
2661      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2662      coord_dst.writemask = WRITEMASK_W;
2663      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2664      coord_dst.writemask = WRITEMASK_XYZW;
2665   }
2666
2667   if (opcode == TGSI_OPCODE_TXD)
2668      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2669   else if (opcode == TGSI_OPCODE_TXQ)
2670      inst = emit(ir, opcode, result_dst, lod_info);
2671   else if (opcode == TGSI_OPCODE_TXF) {
2672      inst = emit(ir, opcode, result_dst, coord);
2673   } else
2674      inst = emit(ir, opcode, result_dst, coord);
2675
2676   if (ir->shadow_comparitor)
2677      inst->tex_shadow = GL_TRUE;
2678
2679   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2680        					   this->shader_program,
2681        					   this->prog);
2682
2683   if (ir->offset) {
2684       inst->tex_offset_num_offset = 1;
2685       inst->tex_offsets[0].Index = offset.index;
2686       inst->tex_offsets[0].File = offset.file;
2687       inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2688       inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2689       inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2690   }
2691
2692   switch (sampler_type->sampler_dimensionality) {
2693   case GLSL_SAMPLER_DIM_1D:
2694      inst->tex_target = (sampler_type->sampler_array)
2695         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2696      break;
2697   case GLSL_SAMPLER_DIM_2D:
2698      inst->tex_target = (sampler_type->sampler_array)
2699         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2700      break;
2701   case GLSL_SAMPLER_DIM_3D:
2702      inst->tex_target = TEXTURE_3D_INDEX;
2703      break;
2704   case GLSL_SAMPLER_DIM_CUBE:
2705      inst->tex_target = TEXTURE_CUBE_INDEX;
2706      break;
2707   case GLSL_SAMPLER_DIM_RECT:
2708      inst->tex_target = TEXTURE_RECT_INDEX;
2709      break;
2710   case GLSL_SAMPLER_DIM_BUF:
2711      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2712      break;
2713   case GLSL_SAMPLER_DIM_EXTERNAL:
2714      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2715      break;
2716   default:
2717      assert(!"Should not get here.");
2718   }
2719
2720   this->result = result_src;
2721}
2722
2723void
2724glsl_to_tgsi_visitor::visit(ir_return *ir)
2725{
2726   if (ir->get_value()) {
2727      st_dst_reg l;
2728      int i;
2729
2730      assert(current_function);
2731
2732      ir->get_value()->accept(this);
2733      st_src_reg r = this->result;
2734
2735      l = st_dst_reg(current_function->return_reg);
2736
2737      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2738         emit(ir, TGSI_OPCODE_MOV, l, r);
2739         l.index++;
2740         r.index++;
2741      }
2742   }
2743
2744   emit(ir, TGSI_OPCODE_RET);
2745}
2746
2747void
2748glsl_to_tgsi_visitor::visit(ir_discard *ir)
2749{
2750   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2751
2752   if (ir->condition) {
2753      ir->condition->accept(this);
2754      this->result.negate = ~this->result.negate;
2755      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2756   } else {
2757      emit(ir, TGSI_OPCODE_KILP);
2758   }
2759
2760   fp->UsesKill = GL_TRUE;
2761}
2762
2763void
2764glsl_to_tgsi_visitor::visit(ir_if *ir)
2765{
2766   glsl_to_tgsi_instruction *cond_inst, *if_inst;
2767   glsl_to_tgsi_instruction *prev_inst;
2768
2769   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2770
2771   ir->condition->accept(this);
2772   assert(this->result.file != PROGRAM_UNDEFINED);
2773
2774   if (this->options->EmitCondCodes) {
2775      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2776
2777      /* See if we actually generated any instruction for generating
2778       * the condition.  If not, then cook up a move to a temp so we
2779       * have something to set cond_update on.
2780       */
2781      if (cond_inst == prev_inst) {
2782         st_src_reg temp = get_temp(glsl_type::bool_type);
2783         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2784      }
2785      cond_inst->cond_update = GL_TRUE;
2786
2787      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2788      if_inst->dst.cond_mask = COND_NE;
2789   } else {
2790      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2791   }
2792
2793   this->instructions.push_tail(if_inst);
2794
2795   visit_exec_list(&ir->then_instructions, this);
2796
2797   if (!ir->else_instructions.is_empty()) {
2798      emit(ir->condition, TGSI_OPCODE_ELSE);
2799      visit_exec_list(&ir->else_instructions, this);
2800   }
2801
2802   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2803}
2804
2805glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2806{
2807   result.file = PROGRAM_UNDEFINED;
2808   next_temp = 1;
2809   next_signature_id = 1;
2810   num_immediates = 0;
2811   current_function = NULL;
2812   num_address_regs = 0;
2813   indirect_addr_temps = false;
2814   indirect_addr_consts = false;
2815   mem_ctx = ralloc_context(NULL);
2816}
2817
2818glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2819{
2820   ralloc_free(mem_ctx);
2821}
2822
2823extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2824{
2825   delete v;
2826}
2827
2828
2829/**
2830 * Count resources used by the given gpu program (number of texture
2831 * samplers, etc).
2832 */
2833static void
2834count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2835{
2836   v->samplers_used = 0;
2837
2838   foreach_iter(exec_list_iterator, iter, v->instructions) {
2839      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2840
2841      if (is_tex_instruction(inst->op)) {
2842         v->samplers_used |= 1 << inst->sampler;
2843
2844         prog->SamplerTargets[inst->sampler] =
2845            (gl_texture_index)inst->tex_target;
2846         if (inst->tex_shadow) {
2847            prog->ShadowSamplers |= 1 << inst->sampler;
2848         }
2849      }
2850   }
2851
2852   prog->SamplersUsed = v->samplers_used;
2853   _mesa_update_shader_textures_used(prog);
2854}
2855
2856static void
2857set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2858        		struct gl_shader_program *shader_program,
2859        		const char *name, const glsl_type *type,
2860        		ir_constant *val)
2861{
2862   if (type->is_record()) {
2863      ir_constant *field_constant;
2864
2865      field_constant = (ir_constant *)val->components.get_head();
2866
2867      for (unsigned int i = 0; i < type->length; i++) {
2868         const glsl_type *field_type = type->fields.structure[i].type;
2869         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2870        				    type->fields.structure[i].name);
2871         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2872        			 field_type, field_constant);
2873         field_constant = (ir_constant *)field_constant->next;
2874      }
2875      return;
2876   }
2877
2878   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2879
2880   if (loc == -1) {
2881      fail_link(shader_program,
2882        	"Couldn't find uniform for initializer %s\n", name);
2883      return;
2884   }
2885
2886   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2887      ir_constant *element;
2888      const glsl_type *element_type;
2889      if (type->is_array()) {
2890         element = val->array_elements[i];
2891         element_type = type->fields.array;
2892      } else {
2893         element = val;
2894         element_type = type;
2895      }
2896
2897      void *values;
2898
2899      if (element_type->base_type == GLSL_TYPE_BOOL) {
2900         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2901         for (unsigned int j = 0; j < element_type->components(); j++) {
2902            conv[j] = element->value.b[j];
2903         }
2904         values = (void *)conv;
2905         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2906        					element_type->vector_elements,
2907        					1);
2908      } else {
2909         values = &element->value;
2910      }
2911
2912      if (element_type->is_matrix()) {
2913         _mesa_uniform_matrix(ctx, shader_program,
2914        		      element_type->matrix_columns,
2915        		      element_type->vector_elements,
2916        		      loc, 1, GL_FALSE, (GLfloat *)values);
2917      } else {
2918         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2919        	       values, element_type->gl_type);
2920      }
2921
2922      loc++;
2923   }
2924}
2925
2926/*
2927 * Scan/rewrite program to remove reads of custom (output) registers.
2928 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2929 * (for vertex shaders).
2930 * In GLSL shaders, varying vars can be read and written.
2931 * On some hardware, trying to read an output register causes trouble.
2932 * So, rewrite the program to use a temporary register in this case.
2933 *
2934 * Based on _mesa_remove_output_reads from programopt.c.
2935 */
2936void
2937glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2938{
2939   GLuint i;
2940   GLint outputMap[VERT_RESULT_MAX];
2941   GLint outputTypes[VERT_RESULT_MAX];
2942   GLuint numVaryingReads = 0;
2943   GLboolean *usedTemps;
2944   GLuint firstTemp = 0;
2945
2946   usedTemps = new GLboolean[MAX_TEMPS];
2947   if (!usedTemps) {
2948      return;
2949   }
2950   _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2951                             usedTemps, MAX_TEMPS);
2952
2953   assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2954   assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2955
2956   for (i = 0; i < VERT_RESULT_MAX; i++)
2957      outputMap[i] = -1;
2958
2959   /* look for instructions which read from varying vars */
2960   foreach_iter(exec_list_iterator, iter, this->instructions) {
2961      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2962      const GLuint numSrc = num_inst_src_regs(inst->op);
2963      GLuint j;
2964      for (j = 0; j < numSrc; j++) {
2965         if (inst->src[j].file == type) {
2966            /* replace the read with a temp reg */
2967            const GLuint var = inst->src[j].index;
2968            if (outputMap[var] == -1) {
2969               numVaryingReads++;
2970               outputMap[var] = _mesa_find_free_register(usedTemps,
2971                                                         MAX_TEMPS,
2972                                                         firstTemp);
2973               outputTypes[var] = inst->src[j].type;
2974               firstTemp = outputMap[var] + 1;
2975            }
2976            inst->src[j].file = PROGRAM_TEMPORARY;
2977            inst->src[j].index = outputMap[var];
2978         }
2979      }
2980   }
2981
2982   delete [] usedTemps;
2983
2984   if (numVaryingReads == 0)
2985      return; /* nothing to be done */
2986
2987   /* look for instructions which write to the varying vars identified above */
2988   foreach_iter(exec_list_iterator, iter, this->instructions) {
2989      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2990      if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2991         /* change inst to write to the temp reg, instead of the varying */
2992         inst->dst.file = PROGRAM_TEMPORARY;
2993         inst->dst.index = outputMap[inst->dst.index];
2994      }
2995   }
2996
2997   /* insert new MOV instructions at the end */
2998   for (i = 0; i < VERT_RESULT_MAX; i++) {
2999      if (outputMap[i] >= 0) {
3000         /* MOV VAR[i], TEMP[tmp]; */
3001         st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
3002         st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
3003         dst.index = i;
3004         this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
3005      }
3006   }
3007}
3008
3009/**
3010 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3011 * are read from the given src in this instruction
3012 */
3013static int
3014get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3015{
3016   int read_mask = 0, comp;
3017
3018   /* Now, given the src swizzle and the written channels, find which
3019    * components are actually read
3020    */
3021   for (comp = 0; comp < 4; ++comp) {
3022      const unsigned coord = GET_SWZ(src.swizzle, comp);
3023      ASSERT(coord < 4);
3024      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3025         read_mask |= 1 << coord;
3026   }
3027
3028   return read_mask;
3029}
3030
3031/**
3032 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3033 * instruction is the first instruction to write to register T0.  There are
3034 * several lowering passes done in GLSL IR (e.g. branches and
3035 * relative addressing) that create a large number of conditional assignments
3036 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3037 *
3038 * Here is why this conversion is safe:
3039 * CMP T0, T1 T2 T0 can be expanded to:
3040 * if (T1 < 0.0)
3041 * 	MOV T0, T2;
3042 * else
3043 * 	MOV T0, T0;
3044 *
3045 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3046 * as the original program.  If (T1 < 0.0) evaluates to false, executing
3047 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3048 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3049 * because any instruction that was going to read from T0 after this was going
3050 * to read a garbage value anyway.
3051 */
3052void
3053glsl_to_tgsi_visitor::simplify_cmp(void)
3054{
3055   unsigned *tempWrites;
3056   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3057
3058   tempWrites = new unsigned[MAX_TEMPS];
3059   if (!tempWrites) {
3060      return;
3061   }
3062   memset(tempWrites, 0, sizeof(tempWrites));
3063   memset(outputWrites, 0, sizeof(outputWrites));
3064
3065   foreach_iter(exec_list_iterator, iter, this->instructions) {
3066      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3067      unsigned prevWriteMask = 0;
3068
3069      /* Give up if we encounter relative addressing or flow control. */
3070      if (inst->dst.reladdr ||
3071          tgsi_get_opcode_info(inst->op)->is_branch ||
3072          inst->op == TGSI_OPCODE_BGNSUB ||
3073          inst->op == TGSI_OPCODE_CONT ||
3074          inst->op == TGSI_OPCODE_END ||
3075          inst->op == TGSI_OPCODE_ENDSUB ||
3076          inst->op == TGSI_OPCODE_RET) {
3077         break;
3078      }
3079
3080      if (inst->dst.file == PROGRAM_OUTPUT) {
3081         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3082         prevWriteMask = outputWrites[inst->dst.index];
3083         outputWrites[inst->dst.index] |= inst->dst.writemask;
3084      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3085         assert(inst->dst.index < MAX_TEMPS);
3086         prevWriteMask = tempWrites[inst->dst.index];
3087         tempWrites[inst->dst.index] |= inst->dst.writemask;
3088      }
3089
3090      /* For a CMP to be considered a conditional write, the destination
3091       * register and source register two must be the same. */
3092      if (inst->op == TGSI_OPCODE_CMP
3093          && !(inst->dst.writemask & prevWriteMask)
3094          && inst->src[2].file == inst->dst.file
3095          && inst->src[2].index == inst->dst.index
3096          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3097
3098         inst->op = TGSI_OPCODE_MOV;
3099         inst->src[0] = inst->src[1];
3100      }
3101   }
3102
3103   delete [] tempWrites;
3104}
3105
3106/* Replaces all references to a temporary register index with another index. */
3107void
3108glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3109{
3110   foreach_iter(exec_list_iterator, iter, this->instructions) {
3111      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3112      unsigned j;
3113
3114      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3115         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3116             inst->src[j].index == index) {
3117            inst->src[j].index = new_index;
3118         }
3119      }
3120
3121      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3122         inst->dst.index = new_index;
3123      }
3124   }
3125}
3126
3127int
3128glsl_to_tgsi_visitor::get_first_temp_read(int index)
3129{
3130   int depth = 0; /* loop depth */
3131   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3132   unsigned i = 0, j;
3133
3134   foreach_iter(exec_list_iterator, iter, this->instructions) {
3135      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3136
3137      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3138         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3139             inst->src[j].index == index) {
3140            return (depth == 0) ? i : loop_start;
3141         }
3142      }
3143
3144      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3145         if(depth++ == 0)
3146            loop_start = i;
3147      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3148         if (--depth == 0)
3149            loop_start = -1;
3150      }
3151      assert(depth >= 0);
3152
3153      i++;
3154   }
3155
3156   return -1;
3157}
3158
3159int
3160glsl_to_tgsi_visitor::get_first_temp_write(int index)
3161{
3162   int depth = 0; /* loop depth */
3163   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3164   int i = 0;
3165
3166   foreach_iter(exec_list_iterator, iter, this->instructions) {
3167      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3168
3169      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3170         return (depth == 0) ? i : loop_start;
3171      }
3172
3173      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3174         if(depth++ == 0)
3175            loop_start = i;
3176      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3177         if (--depth == 0)
3178            loop_start = -1;
3179      }
3180      assert(depth >= 0);
3181
3182      i++;
3183   }
3184
3185   return -1;
3186}
3187
3188int
3189glsl_to_tgsi_visitor::get_last_temp_read(int index)
3190{
3191   int depth = 0; /* loop depth */
3192   int last = -1; /* index of last instruction that reads the temporary */
3193   unsigned i = 0, j;
3194
3195   foreach_iter(exec_list_iterator, iter, this->instructions) {
3196      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3197
3198      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3199         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3200             inst->src[j].index == index) {
3201            last = (depth == 0) ? i : -2;
3202         }
3203      }
3204
3205      if (inst->op == TGSI_OPCODE_BGNLOOP)
3206         depth++;
3207      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3208         if (--depth == 0 && last == -2)
3209            last = i;
3210      assert(depth >= 0);
3211
3212      i++;
3213   }
3214
3215   assert(last >= -1);
3216   return last;
3217}
3218
3219int
3220glsl_to_tgsi_visitor::get_last_temp_write(int index)
3221{
3222   int depth = 0; /* loop depth */
3223   int last = -1; /* index of last instruction that writes to the temporary */
3224   int i = 0;
3225
3226   foreach_iter(exec_list_iterator, iter, this->instructions) {
3227      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3228
3229      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3230         last = (depth == 0) ? i : -2;
3231
3232      if (inst->op == TGSI_OPCODE_BGNLOOP)
3233         depth++;
3234      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3235         if (--depth == 0 && last == -2)
3236            last = i;
3237      assert(depth >= 0);
3238
3239      i++;
3240   }
3241
3242   assert(last >= -1);
3243   return last;
3244}
3245
3246/*
3247 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3248 * channels for copy propagation and updates following instructions to
3249 * use the original versions.
3250 *
3251 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3252 * will occur.  As an example, a TXP production before this pass:
3253 *
3254 * 0: MOV TEMP[1], INPUT[4].xyyy;
3255 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3256 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3257 *
3258 * and after:
3259 *
3260 * 0: MOV TEMP[1], INPUT[4].xyyy;
3261 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3262 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3263 *
3264 * which allows for dead code elimination on TEMP[1]'s writes.
3265 */
3266void
3267glsl_to_tgsi_visitor::copy_propagate(void)
3268{
3269   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3270        					    glsl_to_tgsi_instruction *,
3271        					    this->next_temp * 4);
3272   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3273   int level = 0;
3274
3275   foreach_iter(exec_list_iterator, iter, this->instructions) {
3276      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3277
3278      assert(inst->dst.file != PROGRAM_TEMPORARY
3279             || inst->dst.index < this->next_temp);
3280
3281      /* First, do any copy propagation possible into the src regs. */
3282      for (int r = 0; r < 3; r++) {
3283         glsl_to_tgsi_instruction *first = NULL;
3284         bool good = true;
3285         int acp_base = inst->src[r].index * 4;
3286
3287         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3288             inst->src[r].reladdr)
3289            continue;
3290
3291         /* See if we can find entries in the ACP consisting of MOVs
3292          * from the same src register for all the swizzled channels
3293          * of this src register reference.
3294          */
3295         for (int i = 0; i < 4; i++) {
3296            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3297            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3298
3299            if (!copy_chan) {
3300               good = false;
3301               break;
3302            }
3303
3304            assert(acp_level[acp_base + src_chan] <= level);
3305
3306            if (!first) {
3307               first = copy_chan;
3308            } else {
3309               if (first->src[0].file != copy_chan->src[0].file ||
3310        	   first->src[0].index != copy_chan->src[0].index) {
3311        	  good = false;
3312        	  break;
3313               }
3314            }
3315         }
3316
3317         if (good) {
3318            /* We've now validated that we can copy-propagate to
3319             * replace this src register reference.  Do it.
3320             */
3321            inst->src[r].file = first->src[0].file;
3322            inst->src[r].index = first->src[0].index;
3323
3324            int swizzle = 0;
3325            for (int i = 0; i < 4; i++) {
3326               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3327               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3328               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3329        		   (3 * i));
3330            }
3331            inst->src[r].swizzle = swizzle;
3332         }
3333      }
3334
3335      switch (inst->op) {
3336      case TGSI_OPCODE_BGNLOOP:
3337      case TGSI_OPCODE_ENDLOOP:
3338         /* End of a basic block, clear the ACP entirely. */
3339         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3340         break;
3341
3342      case TGSI_OPCODE_IF:
3343         ++level;
3344         break;
3345
3346      case TGSI_OPCODE_ENDIF:
3347      case TGSI_OPCODE_ELSE:
3348         /* Clear all channels written inside the block from the ACP, but
3349          * leaving those that were not touched.
3350          */
3351         for (int r = 0; r < this->next_temp; r++) {
3352            for (int c = 0; c < 4; c++) {
3353               if (!acp[4 * r + c])
3354        	  continue;
3355
3356               if (acp_level[4 * r + c] >= level)
3357        	  acp[4 * r + c] = NULL;
3358            }
3359         }
3360         if (inst->op == TGSI_OPCODE_ENDIF)
3361            --level;
3362         break;
3363
3364      default:
3365         /* Continuing the block, clear any written channels from
3366          * the ACP.
3367          */
3368         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3369            /* Any temporary might be written, so no copy propagation
3370             * across this instruction.
3371             */
3372            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3373         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3374        	    inst->dst.reladdr) {
3375            /* Any output might be written, so no copy propagation
3376             * from outputs across this instruction.
3377             */
3378            for (int r = 0; r < this->next_temp; r++) {
3379               for (int c = 0; c < 4; c++) {
3380        	  if (!acp[4 * r + c])
3381        	     continue;
3382
3383        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3384        	     acp[4 * r + c] = NULL;
3385               }
3386            }
3387         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3388        	    inst->dst.file == PROGRAM_OUTPUT) {
3389            /* Clear where it's used as dst. */
3390            if (inst->dst.file == PROGRAM_TEMPORARY) {
3391               for (int c = 0; c < 4; c++) {
3392        	  if (inst->dst.writemask & (1 << c)) {
3393        	     acp[4 * inst->dst.index + c] = NULL;
3394        	  }
3395               }
3396            }
3397
3398            /* Clear where it's used as src. */
3399            for (int r = 0; r < this->next_temp; r++) {
3400               for (int c = 0; c < 4; c++) {
3401        	  if (!acp[4 * r + c])
3402        	     continue;
3403
3404        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3405
3406        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3407        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3408        	      inst->dst.writemask & (1 << src_chan))
3409        	  {
3410        	     acp[4 * r + c] = NULL;
3411        	  }
3412               }
3413            }
3414         }
3415         break;
3416      }
3417
3418      /* If this is a copy, add it to the ACP. */
3419      if (inst->op == TGSI_OPCODE_MOV &&
3420          inst->dst.file == PROGRAM_TEMPORARY &&
3421          !inst->dst.reladdr &&
3422          !inst->saturate &&
3423          !inst->src[0].reladdr &&
3424          !inst->src[0].negate) {
3425         for (int i = 0; i < 4; i++) {
3426            if (inst->dst.writemask & (1 << i)) {
3427               acp[4 * inst->dst.index + i] = inst;
3428               acp_level[4 * inst->dst.index + i] = level;
3429            }
3430         }
3431      }
3432   }
3433
3434   ralloc_free(acp_level);
3435   ralloc_free(acp);
3436}
3437
3438/*
3439 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3440 *
3441 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3442 * will occur.  As an example, a TXP production after copy propagation but
3443 * before this pass:
3444 *
3445 * 0: MOV TEMP[1], INPUT[4].xyyy;
3446 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3447 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3448 *
3449 * and after this pass:
3450 *
3451 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3452 *
3453 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3454 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3455 */
3456void
3457glsl_to_tgsi_visitor::eliminate_dead_code(void)
3458{
3459   int i;
3460
3461   for (i=0; i < this->next_temp; i++) {
3462      int last_read = get_last_temp_read(i);
3463      int j = 0;
3464
3465      foreach_iter(exec_list_iterator, iter, this->instructions) {
3466         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3467
3468         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3469             j > last_read)
3470         {
3471            iter.remove();
3472            delete inst;
3473         }
3474
3475         j++;
3476      }
3477   }
3478}
3479
3480/*
3481 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3482 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3483 * is per-channel and can detect consecutive writes without a read between them
3484 * as dead code.  However, there is some dead code that can be eliminated by
3485 * eliminate_dead_code() but not this function - for example, this function
3486 * cannot eliminate an instruction writing to a register that is never read and
3487 * is the only instruction writing to that register.
3488 *
3489 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3490 * will occur.
3491 */
3492int
3493glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3494{
3495   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3496                                                     glsl_to_tgsi_instruction *,
3497                                                     this->next_temp * 4);
3498   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3499   int level = 0;
3500   int removed = 0;
3501
3502   foreach_iter(exec_list_iterator, iter, this->instructions) {
3503      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3504
3505      assert(inst->dst.file != PROGRAM_TEMPORARY
3506             || inst->dst.index < this->next_temp);
3507
3508      switch (inst->op) {
3509      case TGSI_OPCODE_BGNLOOP:
3510      case TGSI_OPCODE_ENDLOOP:
3511      case TGSI_OPCODE_CONT:
3512      case TGSI_OPCODE_BRK:
3513         /* End of a basic block, clear the write array entirely.
3514          *
3515          * This keeps us from killing dead code when the writes are
3516          * on either side of a loop, even when the register isn't touched
3517          * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
3518          * dead code of this type, so it shouldn't make a difference as long as
3519          * the dead code elimination pass in the GLSL compiler does its job.
3520          */
3521         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3522         break;
3523
3524      case TGSI_OPCODE_ENDIF:
3525      case TGSI_OPCODE_ELSE:
3526         /* Promote the recorded level of all channels written inside the
3527          * preceding if or else block to the level above the if/else block.
3528          */
3529         for (int r = 0; r < this->next_temp; r++) {
3530            for (int c = 0; c < 4; c++) {
3531               if (!writes[4 * r + c])
3532        	         continue;
3533
3534               if (write_level[4 * r + c] == level)
3535        	         write_level[4 * r + c] = level-1;
3536            }
3537         }
3538
3539         if(inst->op == TGSI_OPCODE_ENDIF)
3540            --level;
3541
3542         break;
3543
3544      case TGSI_OPCODE_IF:
3545         ++level;
3546         /* fallthrough to default case to mark the condition as read */
3547
3548      default:
3549         /* Continuing the block, clear any channels from the write array that
3550          * are read by this instruction.
3551          */
3552         for (unsigned i = 0; i < Elements(inst->src); i++) {
3553            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3554               /* Any temporary might be read, so no dead code elimination
3555                * across this instruction.
3556                */
3557               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3558            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3559               /* Clear where it's used as src. */
3560               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3561               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3562               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3563               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3564
3565               for (int c = 0; c < 4; c++) {
3566              	   if (src_chans & (1 << c)) {
3567              	      writes[4 * inst->src[i].index + c] = NULL;
3568              	   }
3569               }
3570            }
3571         }
3572         break;
3573      }
3574
3575      /* If this instruction writes to a temporary, add it to the write array.
3576       * If there is already an instruction in the write array for one or more
3577       * of the channels, flag that channel write as dead.
3578       */
3579      if (inst->dst.file == PROGRAM_TEMPORARY &&
3580          !inst->dst.reladdr &&
3581          !inst->saturate) {
3582         for (int c = 0; c < 4; c++) {
3583            if (inst->dst.writemask & (1 << c)) {
3584               if (writes[4 * inst->dst.index + c]) {
3585                  if (write_level[4 * inst->dst.index + c] < level)
3586                     continue;
3587                  else
3588                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3589               }
3590               writes[4 * inst->dst.index + c] = inst;
3591               write_level[4 * inst->dst.index + c] = level;
3592            }
3593         }
3594      }
3595   }
3596
3597   /* Anything still in the write array at this point is dead code. */
3598   for (int r = 0; r < this->next_temp; r++) {
3599      for (int c = 0; c < 4; c++) {
3600         glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3601         if (inst)
3602            inst->dead_mask |= (1 << c);
3603      }
3604   }
3605
3606   /* Now actually remove the instructions that are completely dead and update
3607    * the writemask of other instructions with dead channels.
3608    */
3609   foreach_iter(exec_list_iterator, iter, this->instructions) {
3610      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3611
3612      if (!inst->dead_mask || !inst->dst.writemask)
3613         continue;
3614      else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3615         iter.remove();
3616         delete inst;
3617         removed++;
3618      } else
3619         inst->dst.writemask &= ~(inst->dead_mask);
3620   }
3621
3622   ralloc_free(write_level);
3623   ralloc_free(writes);
3624
3625   return removed;
3626}
3627
3628/* Merges temporary registers together where possible to reduce the number of
3629 * registers needed to run a program.
3630 *
3631 * Produces optimal code only after copy propagation and dead code elimination
3632 * have been run. */
3633void
3634glsl_to_tgsi_visitor::merge_registers(void)
3635{
3636   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3637   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3638   int i, j;
3639
3640   /* Read the indices of the last read and first write to each temp register
3641    * into an array so that we don't have to traverse the instruction list as
3642    * much. */
3643   for (i=0; i < this->next_temp; i++) {
3644      last_reads[i] = get_last_temp_read(i);
3645      first_writes[i] = get_first_temp_write(i);
3646   }
3647
3648   /* Start looking for registers with non-overlapping usages that can be
3649    * merged together. */
3650   for (i=0; i < this->next_temp; i++) {
3651      /* Don't touch unused registers. */
3652      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3653
3654      for (j=0; j < this->next_temp; j++) {
3655         /* Don't touch unused registers. */
3656         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3657
3658         /* We can merge the two registers if the first write to j is after or
3659          * in the same instruction as the last read from i.  Note that the
3660          * register at index i will always be used earlier or at the same time
3661          * as the register at index j. */
3662         if (first_writes[i] <= first_writes[j] &&
3663             last_reads[i] <= first_writes[j])
3664         {
3665            rename_temp_register(j, i); /* Replace all references to j with i.*/
3666
3667            /* Update the first_writes and last_reads arrays with the new
3668             * values for the merged register index, and mark the newly unused
3669             * register index as such. */
3670            last_reads[i] = last_reads[j];
3671            first_writes[j] = -1;
3672            last_reads[j] = -1;
3673         }
3674      }
3675   }
3676
3677   ralloc_free(last_reads);
3678   ralloc_free(first_writes);
3679}
3680
3681/* Reassign indices to temporary registers by reusing unused indices created
3682 * by optimization passes. */
3683void
3684glsl_to_tgsi_visitor::renumber_registers(void)
3685{
3686   int i = 0;
3687   int new_index = 0;
3688
3689   for (i=0; i < this->next_temp; i++) {
3690      if (get_first_temp_read(i) < 0) continue;
3691      if (i != new_index)
3692         rename_temp_register(i, new_index);
3693      new_index++;
3694   }
3695
3696   this->next_temp = new_index;
3697}
3698
3699/**
3700 * Returns a fragment program which implements the current pixel transfer ops.
3701 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3702 */
3703extern "C" void
3704get_pixel_transfer_visitor(struct st_fragment_program *fp,
3705                           glsl_to_tgsi_visitor *original,
3706                           int scale_and_bias, int pixel_maps)
3707{
3708   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3709   struct st_context *st = st_context(original->ctx);
3710   struct gl_program *prog = &fp->Base.Base;
3711   struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3712   st_src_reg coord, src0;
3713   st_dst_reg dst0;
3714   glsl_to_tgsi_instruction *inst;
3715
3716   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3717   v->ctx = original->ctx;
3718   v->prog = prog;
3719   v->glsl_version = original->glsl_version;
3720   v->native_integers = original->native_integers;
3721   v->options = original->options;
3722   v->next_temp = original->next_temp;
3723   v->num_address_regs = original->num_address_regs;
3724   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3725   v->indirect_addr_temps = original->indirect_addr_temps;
3726   v->indirect_addr_consts = original->indirect_addr_consts;
3727   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3728
3729   /*
3730    * Get initial pixel color from the texture.
3731    * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3732    */
3733   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3734   src0 = v->get_temp(glsl_type::vec4_type);
3735   dst0 = st_dst_reg(src0);
3736   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3737   inst->sampler = 0;
3738   inst->tex_target = TEXTURE_2D_INDEX;
3739
3740   prog->InputsRead |= FRAG_BIT_TEX0;
3741   prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3742   v->samplers_used |= (1 << 0);
3743
3744   if (scale_and_bias) {
3745      static const gl_state_index scale_state[STATE_LENGTH] =
3746         { STATE_INTERNAL, STATE_PT_SCALE,
3747           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3748      static const gl_state_index bias_state[STATE_LENGTH] =
3749         { STATE_INTERNAL, STATE_PT_BIAS,
3750           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3751      GLint scale_p, bias_p;
3752      st_src_reg scale, bias;
3753
3754      scale_p = _mesa_add_state_reference(params, scale_state);
3755      bias_p = _mesa_add_state_reference(params, bias_state);
3756
3757      /* MAD colorTemp, colorTemp, scale, bias; */
3758      scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3759      bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3760      inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3761   }
3762
3763   if (pixel_maps) {
3764      st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3765      st_dst_reg temp_dst = st_dst_reg(temp);
3766
3767      assert(st->pixel_xfer.pixelmap_texture);
3768
3769      /* With a little effort, we can do four pixel map look-ups with
3770       * two TEX instructions:
3771       */
3772
3773      /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3774      temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3775      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3776      inst->sampler = 1;
3777      inst->tex_target = TEXTURE_2D_INDEX;
3778
3779      /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3780      src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3781      temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3782      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3783      inst->sampler = 1;
3784      inst->tex_target = TEXTURE_2D_INDEX;
3785
3786      prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3787      v->samplers_used |= (1 << 1);
3788
3789      /* MOV colorTemp, temp; */
3790      inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3791   }
3792
3793   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3794    * new visitor. */
3795   foreach_iter(exec_list_iterator, iter, original->instructions) {
3796      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3797      glsl_to_tgsi_instruction *newinst;
3798      st_src_reg src_regs[3];
3799
3800      if (inst->dst.file == PROGRAM_OUTPUT)
3801         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3802
3803      for (int i=0; i<3; i++) {
3804         src_regs[i] = inst->src[i];
3805         if (src_regs[i].file == PROGRAM_INPUT &&
3806             src_regs[i].index == FRAG_ATTRIB_COL0)
3807         {
3808            src_regs[i].file = PROGRAM_TEMPORARY;
3809            src_regs[i].index = src0.index;
3810         }
3811         else if (src_regs[i].file == PROGRAM_INPUT)
3812            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3813      }
3814
3815      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3816      newinst->tex_target = inst->tex_target;
3817   }
3818
3819   /* Make modifications to fragment program info. */
3820   prog->Parameters = _mesa_combine_parameter_lists(params,
3821                                                    original->prog->Parameters);
3822   _mesa_free_parameter_list(params);
3823   count_resources(v, prog);
3824   fp->glsl_to_tgsi = v;
3825}
3826
3827/**
3828 * Make fragment program for glBitmap:
3829 *   Sample the texture and kill the fragment if the bit is 0.
3830 * This program will be combined with the user's fragment program.
3831 *
3832 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3833 */
3834extern "C" void
3835get_bitmap_visitor(struct st_fragment_program *fp,
3836                   glsl_to_tgsi_visitor *original, int samplerIndex)
3837{
3838   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3839   struct st_context *st = st_context(original->ctx);
3840   struct gl_program *prog = &fp->Base.Base;
3841   st_src_reg coord, src0;
3842   st_dst_reg dst0;
3843   glsl_to_tgsi_instruction *inst;
3844
3845   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3846   v->ctx = original->ctx;
3847   v->prog = prog;
3848   v->glsl_version = original->glsl_version;
3849   v->native_integers = original->native_integers;
3850   v->options = original->options;
3851   v->next_temp = original->next_temp;
3852   v->num_address_regs = original->num_address_regs;
3853   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3854   v->indirect_addr_temps = original->indirect_addr_temps;
3855   v->indirect_addr_consts = original->indirect_addr_consts;
3856   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3857
3858   /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3859   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3860   src0 = v->get_temp(glsl_type::vec4_type);
3861   dst0 = st_dst_reg(src0);
3862   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3863   inst->sampler = samplerIndex;
3864   inst->tex_target = TEXTURE_2D_INDEX;
3865
3866   prog->InputsRead |= FRAG_BIT_TEX0;
3867   prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3868   v->samplers_used |= (1 << samplerIndex);
3869
3870   /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3871   src0.negate = NEGATE_XYZW;
3872   if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3873      src0.swizzle = SWIZZLE_XXXX;
3874   inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3875
3876   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3877    * new visitor. */
3878   foreach_iter(exec_list_iterator, iter, original->instructions) {
3879      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3880      glsl_to_tgsi_instruction *newinst;
3881      st_src_reg src_regs[3];
3882
3883      if (inst->dst.file == PROGRAM_OUTPUT)
3884         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3885
3886      for (int i=0; i<3; i++) {
3887         src_regs[i] = inst->src[i];
3888         if (src_regs[i].file == PROGRAM_INPUT)
3889            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3890      }
3891
3892      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3893      newinst->tex_target = inst->tex_target;
3894   }
3895
3896   /* Make modifications to fragment program info. */
3897   prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3898   count_resources(v, prog);
3899   fp->glsl_to_tgsi = v;
3900}
3901
3902/* ------------------------- TGSI conversion stuff -------------------------- */
3903struct label {
3904   unsigned branch_target;
3905   unsigned token;
3906};
3907
3908/**
3909 * Intermediate state used during shader translation.
3910 */
3911struct st_translate {
3912   struct ureg_program *ureg;
3913
3914   struct ureg_dst temps[MAX_TEMPS];
3915   struct ureg_src *constants;
3916   struct ureg_src *immediates;
3917   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3918   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3919   struct ureg_dst address[1];
3920   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3921   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3922
3923   /* Extra info for handling point size clamping in vertex shader */
3924   struct ureg_dst pointSizeResult; /**< Actual point size output register */
3925   struct ureg_src pointSizeConst;  /**< Point size range constant register */
3926   GLint pointSizeOutIndex;         /**< Temp point size output register */
3927   GLboolean prevInstWrotePointSize;
3928
3929   const GLuint *inputMapping;
3930   const GLuint *outputMapping;
3931
3932   /* For every instruction that contains a label (eg CALL), keep
3933    * details so that we can go back afterwards and emit the correct
3934    * tgsi instruction number for each label.
3935    */
3936   struct label *labels;
3937   unsigned labels_size;
3938   unsigned labels_count;
3939
3940   /* Keep a record of the tgsi instruction number that each mesa
3941    * instruction starts at, will be used to fix up labels after
3942    * translation.
3943    */
3944   unsigned *insn;
3945   unsigned insn_size;
3946   unsigned insn_count;
3947
3948   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3949
3950   boolean error;
3951};
3952
3953/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3954static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3955   TGSI_SEMANTIC_FACE,
3956   TGSI_SEMANTIC_VERTEXID,
3957   TGSI_SEMANTIC_INSTANCEID
3958};
3959
3960/**
3961 * Make note of a branch to a label in the TGSI code.
3962 * After we've emitted all instructions, we'll go over the list
3963 * of labels built here and patch the TGSI code with the actual
3964 * location of each label.
3965 */
3966static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3967{
3968   unsigned i;
3969
3970   if (t->labels_count + 1 >= t->labels_size) {
3971      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3972      t->labels = (struct label *)realloc(t->labels,
3973                                          t->labels_size * sizeof(struct label));
3974      if (t->labels == NULL) {
3975         static unsigned dummy;
3976         t->error = TRUE;
3977         return &dummy;
3978      }
3979   }
3980
3981   i = t->labels_count++;
3982   t->labels[i].branch_target = branch_target;
3983   return &t->labels[i].token;
3984}
3985
3986/**
3987 * Called prior to emitting the TGSI code for each instruction.
3988 * Allocate additional space for instructions if needed.
3989 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3990 * the next TGSI instruction.
3991 */
3992static void set_insn_start(struct st_translate *t, unsigned start)
3993{
3994   if (t->insn_count + 1 >= t->insn_size) {
3995      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3996      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3997      if (t->insn == NULL) {
3998         t->error = TRUE;
3999         return;
4000      }
4001   }
4002
4003   t->insn[t->insn_count++] = start;
4004}
4005
4006/**
4007 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4008 */
4009static struct ureg_src
4010emit_immediate(struct st_translate *t,
4011               gl_constant_value values[4],
4012               int type, int size)
4013{
4014   struct ureg_program *ureg = t->ureg;
4015
4016   switch(type)
4017   {
4018   case GL_FLOAT:
4019      return ureg_DECL_immediate(ureg, &values[0].f, size);
4020   case GL_INT:
4021      return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4022   case GL_UNSIGNED_INT:
4023   case GL_BOOL:
4024      return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4025   default:
4026      assert(!"should not get here - type must be float, int, uint, or bool");
4027      return ureg_src_undef();
4028   }
4029}
4030
4031/**
4032 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4033 */
4034static struct ureg_dst
4035dst_register(struct st_translate *t,
4036             gl_register_file file,
4037             GLuint index)
4038{
4039   switch(file) {
4040   case PROGRAM_UNDEFINED:
4041      return ureg_dst_undef();
4042
4043   case PROGRAM_TEMPORARY:
4044      if (ureg_dst_is_undef(t->temps[index]))
4045         t->temps[index] = ureg_DECL_temporary(t->ureg);
4046
4047      return t->temps[index];
4048
4049   case PROGRAM_OUTPUT:
4050      if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4051         t->prevInstWrotePointSize = GL_TRUE;
4052
4053      if (t->procType == TGSI_PROCESSOR_VERTEX)
4054         assert(index < VERT_RESULT_MAX);
4055      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4056         assert(index < FRAG_RESULT_MAX);
4057      else
4058         assert(index < GEOM_RESULT_MAX);
4059
4060      assert(t->outputMapping[index] < Elements(t->outputs));
4061
4062      return t->outputs[t->outputMapping[index]];
4063
4064   case PROGRAM_ADDRESS:
4065      return t->address[index];
4066
4067   default:
4068      assert(!"unknown dst register file");
4069      return ureg_dst_undef();
4070   }
4071}
4072
4073/**
4074 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4075 */
4076static struct ureg_src
4077src_register(struct st_translate *t,
4078             gl_register_file file,
4079             GLuint index)
4080{
4081   switch(file) {
4082   case PROGRAM_UNDEFINED:
4083      return ureg_src_undef();
4084
4085   case PROGRAM_TEMPORARY:
4086      assert(index >= 0);
4087      assert(index < Elements(t->temps));
4088      if (ureg_dst_is_undef(t->temps[index]))
4089         t->temps[index] = ureg_DECL_temporary(t->ureg);
4090      return ureg_src(t->temps[index]);
4091
4092   case PROGRAM_NAMED_PARAM:
4093   case PROGRAM_ENV_PARAM:
4094   case PROGRAM_LOCAL_PARAM:
4095   case PROGRAM_UNIFORM:
4096      assert(index >= 0);
4097      return t->constants[index];
4098   case PROGRAM_STATE_VAR:
4099   case PROGRAM_CONSTANT:       /* ie, immediate */
4100      if (index < 0)
4101         return ureg_DECL_constant(t->ureg, 0);
4102      else
4103         return t->constants[index];
4104
4105   case PROGRAM_IMMEDIATE:
4106      return t->immediates[index];
4107
4108   case PROGRAM_INPUT:
4109      assert(t->inputMapping[index] < Elements(t->inputs));
4110      return t->inputs[t->inputMapping[index]];
4111
4112   case PROGRAM_OUTPUT:
4113      assert(t->outputMapping[index] < Elements(t->outputs));
4114      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4115
4116   case PROGRAM_ADDRESS:
4117      return ureg_src(t->address[index]);
4118
4119   case PROGRAM_SYSTEM_VALUE:
4120      assert(index < Elements(t->systemValues));
4121      return t->systemValues[index];
4122
4123   default:
4124      assert(!"unknown src register file");
4125      return ureg_src_undef();
4126   }
4127}
4128
4129/**
4130 * Create a TGSI ureg_dst register from an st_dst_reg.
4131 */
4132static struct ureg_dst
4133translate_dst(struct st_translate *t,
4134              const st_dst_reg *dst_reg,
4135              bool saturate)
4136{
4137   struct ureg_dst dst = dst_register(t,
4138                                      dst_reg->file,
4139                                      dst_reg->index);
4140
4141   dst = ureg_writemask(dst, dst_reg->writemask);
4142
4143   if (saturate)
4144      dst = ureg_saturate(dst);
4145
4146   if (dst_reg->reladdr != NULL)
4147      dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4148
4149   return dst;
4150}
4151
4152/**
4153 * Create a TGSI ureg_src register from an st_src_reg.
4154 */
4155static struct ureg_src
4156translate_src(struct st_translate *t, const st_src_reg *src_reg)
4157{
4158   struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4159
4160   src = ureg_swizzle(src,
4161                      GET_SWZ(src_reg->swizzle, 0) & 0x3,
4162                      GET_SWZ(src_reg->swizzle, 1) & 0x3,
4163                      GET_SWZ(src_reg->swizzle, 2) & 0x3,
4164                      GET_SWZ(src_reg->swizzle, 3) & 0x3);
4165
4166   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4167      src = ureg_negate(src);
4168
4169   if (src_reg->reladdr != NULL) {
4170      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4171       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4172       * set the bit for src.Negate.  So we have to do the operation manually
4173       * here to work around the compiler's problems. */
4174      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4175      struct ureg_src addr = ureg_src(t->address[0]);
4176      src.Indirect = 1;
4177      src.IndirectFile = addr.File;
4178      src.IndirectIndex = addr.Index;
4179      src.IndirectSwizzle = addr.SwizzleX;
4180
4181      if (src_reg->file != PROGRAM_INPUT &&
4182          src_reg->file != PROGRAM_OUTPUT) {
4183         /* If src_reg->index was negative, it was set to zero in
4184          * src_register().  Reassign it now.  But don't do this
4185          * for input/output regs since they get remapped while
4186          * const buffers don't.
4187          */
4188         src.Index = src_reg->index;
4189      }
4190   }
4191
4192   return src;
4193}
4194
4195static struct tgsi_texture_offset
4196translate_tex_offset(struct st_translate *t,
4197                     const struct tgsi_texture_offset *in_offset)
4198{
4199   struct tgsi_texture_offset offset;
4200
4201   assert(in_offset->File == PROGRAM_IMMEDIATE);
4202
4203   offset.File = TGSI_FILE_IMMEDIATE;
4204   offset.Index = in_offset->Index;
4205   offset.SwizzleX = in_offset->SwizzleX;
4206   offset.SwizzleY = in_offset->SwizzleY;
4207   offset.SwizzleZ = in_offset->SwizzleZ;
4208
4209   return offset;
4210}
4211
4212static void
4213compile_tgsi_instruction(struct st_translate *t,
4214                         const glsl_to_tgsi_instruction *inst)
4215{
4216   struct ureg_program *ureg = t->ureg;
4217   GLuint i;
4218   struct ureg_dst dst[1];
4219   struct ureg_src src[4];
4220   struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4221
4222   unsigned num_dst;
4223   unsigned num_src;
4224
4225   num_dst = num_inst_dst_regs(inst->op);
4226   num_src = num_inst_src_regs(inst->op);
4227
4228   if (num_dst)
4229      dst[0] = translate_dst(t,
4230                             &inst->dst,
4231                             inst->saturate);
4232
4233   for (i = 0; i < num_src; i++)
4234      src[i] = translate_src(t, &inst->src[i]);
4235
4236   switch(inst->op) {
4237   case TGSI_OPCODE_BGNLOOP:
4238   case TGSI_OPCODE_CAL:
4239   case TGSI_OPCODE_ELSE:
4240   case TGSI_OPCODE_ENDLOOP:
4241   case TGSI_OPCODE_IF:
4242      assert(num_dst == 0);
4243      ureg_label_insn(ureg,
4244                      inst->op,
4245                      src, num_src,
4246                      get_label(t,
4247                                inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4248      return;
4249
4250   case TGSI_OPCODE_TEX:
4251   case TGSI_OPCODE_TXB:
4252   case TGSI_OPCODE_TXD:
4253   case TGSI_OPCODE_TXL:
4254   case TGSI_OPCODE_TXP:
4255   case TGSI_OPCODE_TXQ:
4256   case TGSI_OPCODE_TXF:
4257      src[num_src++] = t->samplers[inst->sampler];
4258      for (i = 0; i < inst->tex_offset_num_offset; i++) {
4259         texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4260      }
4261      ureg_tex_insn(ureg,
4262                    inst->op,
4263                    dst, num_dst,
4264                    translate_texture_target(inst->tex_target, inst->tex_shadow),
4265                    texoffsets, inst->tex_offset_num_offset,
4266                    src, num_src);
4267      return;
4268
4269   case TGSI_OPCODE_SCS:
4270      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4271      ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4272      break;
4273
4274   default:
4275      ureg_insn(ureg,
4276                inst->op,
4277                dst, num_dst,
4278                src, num_src);
4279      break;
4280   }
4281}
4282
4283/**
4284 * Emit the TGSI instructions for inverting and adjusting WPOS.
4285 * This code is unavoidable because it also depends on whether
4286 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4287 */
4288static void
4289emit_wpos_adjustment( struct st_translate *t,
4290                      const struct gl_program *program,
4291                      boolean invert,
4292                      GLfloat adjX, GLfloat adjY[2])
4293{
4294   struct ureg_program *ureg = t->ureg;
4295
4296   /* Fragment program uses fragment position input.
4297    * Need to replace instances of INPUT[WPOS] with temp T
4298    * where T = INPUT[WPOS] by y is inverted.
4299    */
4300   static const gl_state_index wposTransformState[STATE_LENGTH]
4301      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4302          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4303
4304   /* XXX: note we are modifying the incoming shader here!  Need to
4305    * do this before emitting the constant decls below, or this
4306    * will be missed:
4307    */
4308   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4309                                                       wposTransformState);
4310
4311   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4312   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4313   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4314
4315   /* First, apply the coordinate shift: */
4316   if (adjX || adjY[0] || adjY[1]) {
4317      if (adjY[0] != adjY[1]) {
4318         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4319          * depending on whether inversion is actually going to be applied
4320          * or not, which is determined by testing against the inversion
4321          * state variable used below, which will be either +1 or -1.
4322          */
4323         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4324
4325         ureg_CMP(ureg, adj_temp,
4326                  ureg_scalar(wpostrans, invert ? 2 : 0),
4327                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4328                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4329         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4330      } else {
4331         ureg_ADD(ureg, wpos_temp, wpos_input,
4332                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4333      }
4334      wpos_input = ureg_src(wpos_temp);
4335   } else {
4336      /* MOV wpos_temp, input[wpos]
4337       */
4338      ureg_MOV( ureg, wpos_temp, wpos_input );
4339   }
4340
4341   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4342    * inversion/identity, or the other way around if we're drawing to an FBO.
4343    */
4344   if (invert) {
4345      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4346       */
4347      ureg_MAD( ureg,
4348                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4349                wpos_input,
4350                ureg_scalar(wpostrans, 0),
4351                ureg_scalar(wpostrans, 1));
4352   } else {
4353      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4354       */
4355      ureg_MAD( ureg,
4356                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4357                wpos_input,
4358                ureg_scalar(wpostrans, 2),
4359                ureg_scalar(wpostrans, 3));
4360   }
4361
4362   /* Use wpos_temp as position input from here on:
4363    */
4364   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4365}
4366
4367
4368/**
4369 * Emit fragment position/ooordinate code.
4370 */
4371static void
4372emit_wpos(struct st_context *st,
4373          struct st_translate *t,
4374          const struct gl_program *program,
4375          struct ureg_program *ureg)
4376{
4377   const struct gl_fragment_program *fp =
4378      (const struct gl_fragment_program *) program;
4379   struct pipe_screen *pscreen = st->pipe->screen;
4380   GLfloat adjX = 0.0f;
4381   GLfloat adjY[2] = { 0.0f, 0.0f };
4382   boolean invert = FALSE;
4383
4384   /* Query the pixel center conventions supported by the pipe driver and set
4385    * adjX, adjY to help out if it cannot handle the requested one internally.
4386    *
4387    * The bias of the y-coordinate depends on whether y-inversion takes place
4388    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4389    * drawing to an FBO (causes additional inversion), and whether the the pipe
4390    * driver origin and the requested origin differ (the latter condition is
4391    * stored in the 'invert' variable).
4392    *
4393    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4394    *
4395    * center shift only:
4396    * i -> h: +0.5
4397    * h -> i: -0.5
4398    *
4399    * inversion only:
4400    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4401    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4402    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4403    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4404    *
4405    * inversion and center shift:
4406    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4407    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4408    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4409    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4410    */
4411   if (fp->OriginUpperLeft) {
4412      /* Fragment shader wants origin in upper-left */
4413      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4414         /* the driver supports upper-left origin */
4415      }
4416      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4417         /* the driver supports lower-left origin, need to invert Y */
4418         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4419         invert = TRUE;
4420      }
4421      else
4422         assert(0);
4423   }
4424   else {
4425      /* Fragment shader wants origin in lower-left */
4426      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4427         /* the driver supports lower-left origin */
4428         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4429      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4430         /* the driver supports upper-left origin, need to invert Y */
4431         invert = TRUE;
4432      else
4433         assert(0);
4434   }
4435
4436   if (fp->PixelCenterInteger) {
4437      /* Fragment shader wants pixel center integer */
4438      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4439         /* the driver supports pixel center integer */
4440         adjY[1] = 1.0f;
4441         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4442      }
4443      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4444         /* the driver supports pixel center half integer, need to bias X,Y */
4445         adjX = -0.5f;
4446         adjY[0] = -0.5f;
4447         adjY[1] = 0.5f;
4448      }
4449      else
4450         assert(0);
4451   }
4452   else {
4453      /* Fragment shader wants pixel center half integer */
4454      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4455         /* the driver supports pixel center half integer */
4456      }
4457      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4458         /* the driver supports pixel center integer, need to bias X,Y */
4459         adjX = adjY[0] = adjY[1] = 0.5f;
4460         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4461      }
4462      else
4463         assert(0);
4464   }
4465
4466   /* we invert after adjustment so that we avoid the MOV to temporary,
4467    * and reuse the adjustment ADD instead */
4468   emit_wpos_adjustment(t, program, invert, adjX, adjY);
4469}
4470
4471/**
4472 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4473 * TGSI uses +1 for front, -1 for back.
4474 * This function converts the TGSI value to the GL value.  Simply clamping/
4475 * saturating the value to [0,1] does the job.
4476 */
4477static void
4478emit_face_var(struct st_translate *t)
4479{
4480   struct ureg_program *ureg = t->ureg;
4481   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4482   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4483
4484   /* MOV_SAT face_temp, input[face] */
4485   face_temp = ureg_saturate(face_temp);
4486   ureg_MOV(ureg, face_temp, face_input);
4487
4488   /* Use face_temp as face input from here on: */
4489   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4490}
4491
4492static void
4493emit_edgeflags(struct st_translate *t)
4494{
4495   struct ureg_program *ureg = t->ureg;
4496   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4497   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4498
4499   ureg_MOV(ureg, edge_dst, edge_src);
4500}
4501
4502/**
4503 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4504 * \param program  the program to translate
4505 * \param numInputs  number of input registers used
4506 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
4507 *                      input indexes
4508 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
4509 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
4510 *                            each input
4511 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4512 * \param numOutputs  number of output registers used
4513 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4514 *                       generic outputs
4515 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4516 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4517 *                             each output
4518 *
4519 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4520 */
4521extern "C" enum pipe_error
4522st_translate_program(
4523   struct gl_context *ctx,
4524   uint procType,
4525   struct ureg_program *ureg,
4526   glsl_to_tgsi_visitor *program,
4527   const struct gl_program *proginfo,
4528   GLuint numInputs,
4529   const GLuint inputMapping[],
4530   const ubyte inputSemanticName[],
4531   const ubyte inputSemanticIndex[],
4532   const GLuint interpMode[],
4533   GLuint numOutputs,
4534   const GLuint outputMapping[],
4535   const ubyte outputSemanticName[],
4536   const ubyte outputSemanticIndex[],
4537   boolean passthrough_edgeflags)
4538{
4539   struct st_translate *t;
4540   unsigned i;
4541   enum pipe_error ret = PIPE_OK;
4542
4543   assert(numInputs <= Elements(t->inputs));
4544   assert(numOutputs <= Elements(t->outputs));
4545
4546   t = CALLOC_STRUCT(st_translate);
4547   if (!t) {
4548      ret = PIPE_ERROR_OUT_OF_MEMORY;
4549      goto out;
4550   }
4551
4552   memset(t, 0, sizeof *t);
4553
4554   t->procType = procType;
4555   t->inputMapping = inputMapping;
4556   t->outputMapping = outputMapping;
4557   t->ureg = ureg;
4558   t->pointSizeOutIndex = -1;
4559   t->prevInstWrotePointSize = GL_FALSE;
4560
4561   /*
4562    * Declare input attributes.
4563    */
4564   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4565      for (i = 0; i < numInputs; i++) {
4566         t->inputs[i] = ureg_DECL_fs_input(ureg,
4567                                           inputSemanticName[i],
4568                                           inputSemanticIndex[i],
4569                                           interpMode[i]);
4570      }
4571
4572      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4573         /* Must do this after setting up t->inputs, and before
4574          * emitting constant references, below:
4575          */
4576          emit_wpos(st_context(ctx), t, proginfo, ureg);
4577      }
4578
4579      if (proginfo->InputsRead & FRAG_BIT_FACE)
4580         emit_face_var(t);
4581
4582      /*
4583       * Declare output attributes.
4584       */
4585      for (i = 0; i < numOutputs; i++) {
4586         switch (outputSemanticName[i]) {
4587         case TGSI_SEMANTIC_POSITION:
4588            t->outputs[i] = ureg_DECL_output(ureg,
4589                                             TGSI_SEMANTIC_POSITION, /* Z/Depth */
4590                                             outputSemanticIndex[i]);
4591            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4592            break;
4593         case TGSI_SEMANTIC_STENCIL:
4594            t->outputs[i] = ureg_DECL_output(ureg,
4595                                             TGSI_SEMANTIC_STENCIL, /* Stencil */
4596                                             outputSemanticIndex[i]);
4597            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4598            break;
4599         case TGSI_SEMANTIC_COLOR:
4600            t->outputs[i] = ureg_DECL_output(ureg,
4601                                             TGSI_SEMANTIC_COLOR,
4602                                             outputSemanticIndex[i]);
4603            break;
4604         default:
4605            assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4606            ret = PIPE_ERROR_BAD_INPUT;
4607            goto out;
4608         }
4609      }
4610   }
4611   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4612      for (i = 0; i < numInputs; i++) {
4613         t->inputs[i] = ureg_DECL_gs_input(ureg,
4614                                           i,
4615                                           inputSemanticName[i],
4616                                           inputSemanticIndex[i]);
4617      }
4618
4619      for (i = 0; i < numOutputs; i++) {
4620         t->outputs[i] = ureg_DECL_output(ureg,
4621                                          outputSemanticName[i],
4622                                          outputSemanticIndex[i]);
4623      }
4624   }
4625   else {
4626      assert(procType == TGSI_PROCESSOR_VERTEX);
4627
4628      for (i = 0; i < numInputs; i++) {
4629         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4630      }
4631
4632      for (i = 0; i < numOutputs; i++) {
4633         t->outputs[i] = ureg_DECL_output(ureg,
4634                                          outputSemanticName[i],
4635                                          outputSemanticIndex[i]);
4636         if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4637            /* Writing to the point size result register requires special
4638             * handling to implement clamping.
4639             */
4640            static const gl_state_index pointSizeClampState[STATE_LENGTH]
4641               = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4642               /* XXX: note we are modifying the incoming shader here!  Need to
4643               * do this before emitting the constant decls below, or this
4644               * will be missed.
4645               */
4646            unsigned pointSizeClampConst =
4647               _mesa_add_state_reference(proginfo->Parameters,
4648                                         pointSizeClampState);
4649            struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4650            t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4651            t->pointSizeResult = t->outputs[i];
4652            t->pointSizeOutIndex = i;
4653            t->outputs[i] = psizregtemp;
4654         }
4655      }
4656      if (passthrough_edgeflags)
4657         emit_edgeflags(t);
4658   }
4659
4660   /* Declare address register.
4661    */
4662   if (program->num_address_regs > 0) {
4663      assert(program->num_address_regs == 1);
4664      t->address[0] = ureg_DECL_address(ureg);
4665   }
4666
4667   /* Declare misc input registers
4668    */
4669   {
4670      GLbitfield sysInputs = proginfo->SystemValuesRead;
4671      unsigned numSys = 0;
4672      for (i = 0; sysInputs; i++) {
4673         if (sysInputs & (1 << i)) {
4674            unsigned semName = mesa_sysval_to_semantic[i];
4675            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4676            numSys++;
4677            sysInputs &= ~(1 << i);
4678         }
4679      }
4680   }
4681
4682   if (program->indirect_addr_temps) {
4683      /* If temps are accessed with indirect addressing, declare temporaries
4684       * in sequential order.  Else, we declare them on demand elsewhere.
4685       * (Note: the number of temporaries is equal to program->next_temp)
4686       */
4687      for (i = 0; i < (unsigned)program->next_temp; i++) {
4688         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4689         t->temps[i] = ureg_DECL_temporary(t->ureg);
4690      }
4691   }
4692
4693   /* Emit constants and uniforms.  TGSI uses a single index space for these,
4694    * so we put all the translated regs in t->constants.
4695    */
4696   if (proginfo->Parameters) {
4697      t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4698      if (t->constants == NULL) {
4699         ret = PIPE_ERROR_OUT_OF_MEMORY;
4700         goto out;
4701      }
4702
4703      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4704         switch (proginfo->Parameters->Parameters[i].Type) {
4705         case PROGRAM_ENV_PARAM:
4706         case PROGRAM_LOCAL_PARAM:
4707         case PROGRAM_STATE_VAR:
4708         case PROGRAM_NAMED_PARAM:
4709         case PROGRAM_UNIFORM:
4710            t->constants[i] = ureg_DECL_constant(ureg, i);
4711            break;
4712
4713         /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4714          * addressing of the const buffer.
4715          * FIXME: Be smarter and recognize param arrays:
4716          * indirect addressing is only valid within the referenced
4717          * array.
4718          */
4719         case PROGRAM_CONSTANT:
4720            if (program->indirect_addr_consts)
4721               t->constants[i] = ureg_DECL_constant(ureg, i);
4722            else
4723               t->constants[i] = emit_immediate(t,
4724                                                proginfo->Parameters->ParameterValues[i],
4725                                                proginfo->Parameters->Parameters[i].DataType,
4726                                                4);
4727            break;
4728         default:
4729            break;
4730         }
4731      }
4732   }
4733
4734   /* Emit immediate values.
4735    */
4736   t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4737   if (t->immediates == NULL) {
4738      ret = PIPE_ERROR_OUT_OF_MEMORY;
4739      goto out;
4740   }
4741   i = 0;
4742   foreach_iter(exec_list_iterator, iter, program->immediates) {
4743      immediate_storage *imm = (immediate_storage *)iter.get();
4744      t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4745   }
4746
4747   /* texture samplers */
4748   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4749      if (program->samplers_used & (1 << i)) {
4750         t->samplers[i] = ureg_DECL_sampler(ureg, i);
4751      }
4752   }
4753
4754   /* Emit each instruction in turn:
4755    */
4756   foreach_iter(exec_list_iterator, iter, program->instructions) {
4757      set_insn_start(t, ureg_get_instruction_number(ureg));
4758      compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4759
4760      if (t->prevInstWrotePointSize && proginfo->Id) {
4761         /* The previous instruction wrote to the (fake) vertex point size
4762          * result register.  Now we need to clamp that value to the min/max
4763          * point size range, putting the result into the real point size
4764          * register.
4765          * Note that we can't do this easily at the end of program due to
4766          * possible early return.
4767          */
4768         set_insn_start(t, ureg_get_instruction_number(ureg));
4769         ureg_MAX(t->ureg,
4770                  ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4771                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4772                  ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4773         ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4774                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4775                  ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4776      }
4777      t->prevInstWrotePointSize = GL_FALSE;
4778   }
4779
4780   /* Fix up all emitted labels:
4781    */
4782   for (i = 0; i < t->labels_count; i++) {
4783      ureg_fixup_label(ureg, t->labels[i].token,
4784                       t->insn[t->labels[i].branch_target]);
4785   }
4786
4787out:
4788   if (t) {
4789      FREE(t->insn);
4790      FREE(t->labels);
4791      FREE(t->constants);
4792      FREE(t->immediates);
4793
4794      if (t->error) {
4795         debug_printf("%s: translate error flag set\n", __FUNCTION__);
4796      }
4797
4798      FREE(t);
4799   }
4800
4801   return ret;
4802}
4803/* ----------------------------- End TGSI code ------------------------------ */
4804
4805/**
4806 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4807 * generating Mesa IR.
4808 */
4809static struct gl_program *
4810get_mesa_program(struct gl_context *ctx,
4811                 struct gl_shader_program *shader_program,
4812        	 struct gl_shader *shader)
4813{
4814   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4815   struct gl_program *prog;
4816   struct pipe_screen * screen = st_context(ctx)->pipe->screen;
4817   unsigned pipe_shader_type;
4818   GLenum target;
4819   const char *target_string;
4820   bool progress;
4821   struct gl_shader_compiler_options *options =
4822         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4823
4824   switch (shader->Type) {
4825   case GL_VERTEX_SHADER:
4826      target = GL_VERTEX_PROGRAM_ARB;
4827      target_string = "vertex";
4828      pipe_shader_type = PIPE_SHADER_VERTEX;
4829      break;
4830   case GL_FRAGMENT_SHADER:
4831      target = GL_FRAGMENT_PROGRAM_ARB;
4832      target_string = "fragment";
4833      pipe_shader_type = PIPE_SHADER_FRAGMENT;
4834      break;
4835   case GL_GEOMETRY_SHADER:
4836      target = GL_GEOMETRY_PROGRAM_NV;
4837      target_string = "geometry";
4838      pipe_shader_type = PIPE_SHADER_GEOMETRY;
4839      break;
4840   default:
4841      assert(!"should not be reached");
4842      return NULL;
4843   }
4844
4845   validate_ir_tree(shader->ir);
4846
4847   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4848   if (!prog)
4849      return NULL;
4850   prog->Parameters = _mesa_new_parameter_list();
4851   v->ctx = ctx;
4852   v->prog = prog;
4853   v->shader_program = shader_program;
4854   v->options = options;
4855   v->glsl_version = ctx->Const.GLSLVersion;
4856   v->native_integers = ctx->Const.NativeIntegers;
4857
4858   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4859					       prog->Parameters);
4860
4861   /* Emit intermediate IR for main(). */
4862   visit_exec_list(shader->ir, v);
4863
4864   /* Now emit bodies for any functions that were used. */
4865   do {
4866      progress = GL_FALSE;
4867
4868      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4869         function_entry *entry = (function_entry *)iter.get();
4870
4871         if (!entry->bgn_inst) {
4872            v->current_function = entry;
4873
4874            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4875            entry->bgn_inst->function = entry;
4876
4877            visit_exec_list(&entry->sig->body, v);
4878
4879            glsl_to_tgsi_instruction *last;
4880            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4881            if (last->op != TGSI_OPCODE_RET)
4882               v->emit(NULL, TGSI_OPCODE_RET);
4883
4884            glsl_to_tgsi_instruction *end;
4885            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4886            end->function = entry;
4887
4888            progress = GL_TRUE;
4889         }
4890      }
4891   } while (progress);
4892
4893#if 0
4894   /* Print out some information (for debugging purposes) used by the
4895    * optimization passes. */
4896   for (i=0; i < v->next_temp; i++) {
4897      int fr = v->get_first_temp_read(i);
4898      int fw = v->get_first_temp_write(i);
4899      int lr = v->get_last_temp_read(i);
4900      int lw = v->get_last_temp_write(i);
4901
4902      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4903      assert(fw <= fr);
4904   }
4905#endif
4906
4907   if (!screen->get_shader_param(screen, pipe_shader_type,
4908                                 PIPE_SHADER_CAP_OUTPUT_READ)) {
4909      /* Remove reads to output registers, and to varyings in vertex shaders. */
4910      v->remove_output_reads(PROGRAM_OUTPUT);
4911      if (target == GL_VERTEX_PROGRAM_ARB)
4912         v->remove_output_reads(PROGRAM_VARYING);
4913   }
4914
4915   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4916   v->simplify_cmp();
4917   v->copy_propagate();
4918   while (v->eliminate_dead_code_advanced());
4919
4920   /* FIXME: These passes to optimize temporary registers don't work when there
4921    * is indirect addressing of the temporary register space.  We need proper
4922    * array support so that we don't have to give up these passes in every
4923    * shader that uses arrays.
4924    */
4925   if (!v->indirect_addr_temps) {
4926      v->eliminate_dead_code();
4927      v->merge_registers();
4928      v->renumber_registers();
4929   }
4930
4931   /* Write the END instruction. */
4932   v->emit(NULL, TGSI_OPCODE_END);
4933
4934   if (ctx->Shader.Flags & GLSL_DUMP) {
4935      printf("\n");
4936      printf("GLSL IR for linked %s program %d:\n", target_string,
4937             shader_program->Name);
4938      _mesa_print_ir(shader->ir, NULL);
4939      printf("\n");
4940      printf("\n");
4941      fflush(stdout);
4942   }
4943
4944   prog->Instructions = NULL;
4945   prog->NumInstructions = 0;
4946
4947   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4948   count_resources(v, prog);
4949
4950   _mesa_reference_program(ctx, &shader->Program, prog);
4951
4952   /* This has to be done last.  Any operation the can cause
4953    * prog->ParameterValues to get reallocated (e.g., anything that adds a
4954    * program constant) has to happen before creating this linkage.
4955    */
4956   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4957   if (!shader_program->LinkStatus) {
4958      return NULL;
4959   }
4960
4961   struct st_vertex_program *stvp;
4962   struct st_fragment_program *stfp;
4963   struct st_geometry_program *stgp;
4964
4965   switch (shader->Type) {
4966   case GL_VERTEX_SHADER:
4967      stvp = (struct st_vertex_program *)prog;
4968      stvp->glsl_to_tgsi = v;
4969      break;
4970   case GL_FRAGMENT_SHADER:
4971      stfp = (struct st_fragment_program *)prog;
4972      stfp->glsl_to_tgsi = v;
4973      break;
4974   case GL_GEOMETRY_SHADER:
4975      stgp = (struct st_geometry_program *)prog;
4976      stgp->glsl_to_tgsi = v;
4977      break;
4978   default:
4979      assert(!"should not be reached");
4980      return NULL;
4981   }
4982
4983   return prog;
4984}
4985
4986extern "C" {
4987
4988struct gl_shader *
4989st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4990{
4991   struct gl_shader *shader;
4992   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4993          type == GL_GEOMETRY_SHADER_ARB);
4994   shader = rzalloc(NULL, struct gl_shader);
4995   if (shader) {
4996      shader->Type = type;
4997      shader->Name = name;
4998      _mesa_init_shader(ctx, shader);
4999   }
5000   return shader;
5001}
5002
5003struct gl_shader_program *
5004st_new_shader_program(struct gl_context *ctx, GLuint name)
5005{
5006   struct gl_shader_program *shProg;
5007   shProg = rzalloc(NULL, struct gl_shader_program);
5008   if (shProg) {
5009      shProg->Name = name;
5010      _mesa_init_shader_program(ctx, shProg);
5011   }
5012   return shProg;
5013}
5014
5015/**
5016 * Link a shader.
5017 * Called via ctx->Driver.LinkShader()
5018 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5019 * with code lowering and other optimizations.
5020 */
5021GLboolean
5022st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5023{
5024   assert(prog->LinkStatus);
5025
5026   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5027      if (prog->_LinkedShaders[i] == NULL)
5028         continue;
5029
5030      bool progress;
5031      exec_list *ir = prog->_LinkedShaders[i]->ir;
5032      const struct gl_shader_compiler_options *options =
5033            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5034
5035      do {
5036         progress = false;
5037
5038         /* Lowering */
5039         do_mat_op_to_vec(ir);
5040         lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5041				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5042        			 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5043
5044         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5045
5046         progress = do_common_optimization(ir, true, true,
5047					   options->MaxUnrollIterations)
5048	   || progress;
5049
5050         progress = lower_quadop_vector(ir, false) || progress;
5051
5052         if (options->MaxIfDepth == 0)
5053            progress = lower_discard(ir) || progress;
5054
5055         progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5056
5057         if (options->EmitNoNoise)
5058            progress = lower_noise(ir) || progress;
5059
5060         /* If there are forms of indirect addressing that the driver
5061          * cannot handle, perform the lowering pass.
5062          */
5063         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5064             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5065           progress =
5066             lower_variable_index_to_cond_assign(ir,
5067        					 options->EmitNoIndirectInput,
5068        					 options->EmitNoIndirectOutput,
5069        					 options->EmitNoIndirectTemp,
5070        					 options->EmitNoIndirectUniform)
5071             || progress;
5072
5073         progress = do_vec_index_to_cond_assign(ir) || progress;
5074      } while (progress);
5075
5076      validate_ir_tree(ir);
5077   }
5078
5079   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5080      struct gl_program *linked_prog;
5081
5082      if (prog->_LinkedShaders[i] == NULL)
5083         continue;
5084
5085      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5086
5087      if (linked_prog) {
5088	 static const GLenum targets[] = {
5089	    GL_VERTEX_PROGRAM_ARB,
5090	    GL_FRAGMENT_PROGRAM_ARB,
5091	    GL_GEOMETRY_PROGRAM_NV
5092	 };
5093
5094	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5095				 linked_prog);
5096         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5097	    _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5098				    NULL);
5099            _mesa_reference_program(ctx, &linked_prog, NULL);
5100            return GL_FALSE;
5101         }
5102      }
5103
5104      _mesa_reference_program(ctx, &linked_prog, NULL);
5105   }
5106
5107   return GL_TRUE;
5108}
5109
5110void
5111st_translate_stream_output_info(struct glsl_to_tgsi_visitor *glsl_to_tgsi,
5112                                const GLuint outputMapping[],
5113                                struct pipe_stream_output_info *so)
5114{
5115   static unsigned comps_to_mask[] = {
5116      0,
5117      TGSI_WRITEMASK_X,
5118      TGSI_WRITEMASK_XY,
5119      TGSI_WRITEMASK_XYZ,
5120      TGSI_WRITEMASK_XYZW
5121   };
5122   unsigned i;
5123   struct gl_transform_feedback_info *info =
5124      &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5125
5126   for (i = 0; i < info->NumOutputs; i++) {
5127      assert(info->Outputs[i].NumComponents < Elements(comps_to_mask));
5128      so->output[i].register_index =
5129         outputMapping[info->Outputs[i].OutputRegister];
5130      so->output[i].register_mask =
5131         comps_to_mask[info->Outputs[i].NumComponents];
5132      so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5133   }
5134   so->num_outputs = info->NumOutputs;
5135}
5136
5137} /* extern "C" */
5138