s_aatritemp.h revision dd34fe8679fa200e55cfaf8e80bbecdecea084e3
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet.  That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 *    DO_Z         - if defined, compute Z values
36 *    DO_RGBA      - if defined, compute RGBA values
37 *    DO_INDEX     - if defined, compute color index values
38 *    DO_SPEC      - if defined, compute specular RGB values
39 *    DO_TEXVAR    - if defined, compute texcoords, varying
40 */
41
42/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
43{
44   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
45   const GLfloat *p0 = v0->win;
46   const GLfloat *p1 = v1->win;
47   const GLfloat *p2 = v2->win;
48   const SWvertex *vMin, *vMid, *vMax;
49   GLint iyMin, iyMax;
50   GLfloat yMin, yMax;
51   GLboolean ltor;
52   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
53
54   SWspan span;
55
56#ifdef DO_Z
57   GLfloat zPlane[4];
58#endif
59#ifdef DO_FOG
60   GLfloat fogPlane[4];
61#else
62   GLfloat *fog = NULL;
63#endif
64#ifdef DO_RGBA
65   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66#endif
67#ifdef DO_INDEX
68   GLfloat iPlane[4];
69#endif
70#ifdef DO_SPEC
71   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
72#endif
73#if defined(DO_TEXVAR)
74   GLfloat sPlane[FRAG_ATTRIB_MAX][4];  /* texture S */
75   GLfloat tPlane[FRAG_ATTRIB_MAX][4];  /* texture T */
76   GLfloat uPlane[FRAG_ATTRIB_MAX][4];  /* texture R */
77   GLfloat vPlane[FRAG_ATTRIB_MAX][4];  /* texture Q */
78   GLfloat texWidth[FRAG_ATTRIB_MAX];
79   GLfloat texHeight[FRAG_ATTRIB_MAX];
80#endif
81   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
82
83   (void) swrast;
84
85   INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
86
87   /* determine bottom to top order of vertices */
88   {
89      GLfloat y0 = v0->win[1];
90      GLfloat y1 = v1->win[1];
91      GLfloat y2 = v2->win[1];
92      if (y0 <= y1) {
93	 if (y1 <= y2) {
94	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
95	 }
96	 else if (y2 <= y0) {
97	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
98	 }
99	 else {
100	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
101	 }
102      }
103      else {
104	 if (y0 <= y2) {
105	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
106	 }
107	 else if (y2 <= y1) {
108	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
109	 }
110	 else {
111	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
112	 }
113      }
114   }
115
116   majDx = vMax->win[0] - vMin->win[0];
117   majDy = vMax->win[1] - vMin->win[1];
118
119   {
120      const GLfloat botDx = vMid->win[0] - vMin->win[0];
121      const GLfloat botDy = vMid->win[1] - vMin->win[1];
122      const GLfloat area = majDx * botDy - botDx * majDy;
123      /* Do backface culling */
124      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
125	 return;
126      ltor = (GLboolean) (area < 0.0F);
127   }
128
129   /* Plane equation setup:
130    * We evaluate plane equations at window (x,y) coordinates in order
131    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
132    * efficient but it's easy and reliable.
133    */
134#ifdef DO_Z
135   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
136   span.arrayMask |= SPAN_Z;
137#endif
138#ifdef DO_FOG
139   compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
140   span.arrayMask |= SPAN_FOG;
141#endif
142#ifdef DO_RGBA
143   if (ctx->Light.ShadeModel == GL_SMOOTH) {
144      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
145      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
146      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
147      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
148   }
149   else {
150      constant_plane(v2->color[RCOMP], rPlane);
151      constant_plane(v2->color[GCOMP], gPlane);
152      constant_plane(v2->color[BCOMP], bPlane);
153      constant_plane(v2->color[ACOMP], aPlane);
154   }
155   span.arrayMask |= SPAN_RGBA;
156#endif
157#ifdef DO_INDEX
158   if (ctx->Light.ShadeModel == GL_SMOOTH) {
159      compute_plane(p0, p1, p2, (GLfloat) v0->index,
160                    v1->index, v2->index, iPlane);
161   }
162   else {
163      constant_plane(v2->index, iPlane);
164   }
165   span.arrayMask |= SPAN_INDEX;
166#endif
167#ifdef DO_SPEC
168   if (ctx->Light.ShadeModel == GL_SMOOTH) {
169      compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
170      compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
171      compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
172   }
173   else {
174      constant_plane(v2->specular[RCOMP], srPlane);
175      constant_plane(v2->specular[GCOMP], sgPlane);
176      constant_plane(v2->specular[BCOMP], sbPlane);
177   }
178   span.arrayMask |= SPAN_SPEC;
179#endif
180#if defined(DO_TEXVAR)
181   {
182      GLuint attr;
183      const GLfloat invW0 = v0->win[3];
184      const GLfloat invW1 = v1->win[3];
185      const GLfloat invW2 = v2->win[3];
186      for (attr = swrast->_MinFragmentAttrib; attr < swrast->_MaxFragmentAttrib; attr++) {
187         if (swrast->_FragmentAttribs & (1 << attr)) {
188            const GLfloat s0 = v0->attrib[attr][0] * invW0;
189            const GLfloat s1 = v1->attrib[attr][0] * invW1;
190            const GLfloat s2 = v2->attrib[attr][0] * invW2;
191            const GLfloat t0 = v0->attrib[attr][1] * invW0;
192            const GLfloat t1 = v1->attrib[attr][1] * invW1;
193            const GLfloat t2 = v2->attrib[attr][1] * invW2;
194            const GLfloat r0 = v0->attrib[attr][2] * invW0;
195            const GLfloat r1 = v1->attrib[attr][2] * invW1;
196            const GLfloat r2 = v2->attrib[attr][2] * invW2;
197            const GLfloat q0 = v0->attrib[attr][3] * invW0;
198            const GLfloat q1 = v1->attrib[attr][3] * invW1;
199            const GLfloat q2 = v2->attrib[attr][3] * invW2;
200            compute_plane(p0, p1, p2, s0, s1, s2, sPlane[attr]);
201            compute_plane(p0, p1, p2, t0, t1, t2, tPlane[attr]);
202            compute_plane(p0, p1, p2, r0, r1, r2, uPlane[attr]);
203            compute_plane(p0, p1, p2, q0, q1, q2, vPlane[attr]);
204            if (attr < FRAG_ATTRIB_VAR0) {
205               const GLuint u = attr - FRAG_ATTRIB_TEX0;
206               const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
207               const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
208               texWidth[attr]  = (GLfloat) texImage->Width;
209               texHeight[attr] = (GLfloat) texImage->Height;
210            }
211            else {
212               texWidth[attr] = texHeight[attr] = 1.0;
213            }
214         }
215      }
216   }
217   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA | SPAN_VARYING);
218#endif
219
220   /* Begin bottom-to-top scan over the triangle.
221    * The long edge will either be on the left or right side of the
222    * triangle.  We always scan from the long edge toward the shorter
223    * edges, stopping when we find that coverage = 0.  If the long edge
224    * is on the left we scan left-to-right.  Else, we scan right-to-left.
225    */
226   yMin = vMin->win[1];
227   yMax = vMax->win[1];
228   iyMin = (GLint) yMin;
229   iyMax = (GLint) yMax + 1;
230
231   if (ltor) {
232      /* scan left to right */
233      const GLfloat *pMin = vMin->win;
234      const GLfloat *pMid = vMid->win;
235      const GLfloat *pMax = vMax->win;
236      const GLfloat dxdy = majDx / majDy;
237      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
238      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
239      GLint iy;
240      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
241         GLint ix, startX = (GLint) (x - xAdj);
242         GLuint count;
243         GLfloat coverage = 0.0F;
244
245         /* skip over fragments with zero coverage */
246         while (startX < MAX_WIDTH) {
247            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
248            if (coverage > 0.0F)
249               break;
250            startX++;
251         }
252
253         /* enter interior of triangle */
254         ix = startX;
255         count = 0;
256         while (coverage > 0.0F) {
257            /* (cx,cy) = center of fragment */
258            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
259            SWspanarrays *array = span.array;
260#ifdef DO_INDEX
261            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
262#else
263            array->coverage[count] = coverage;
264#endif
265#ifdef DO_Z
266            array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
267#endif
268#ifdef DO_FOG
269	    array->attribs[FRAG_ATTRIB_FOGC][count][0] = solve_plane(cx, cy, fogPlane);
270#endif
271#ifdef DO_RGBA
272            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
273            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
274            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
275            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
276#endif
277#ifdef DO_INDEX
278            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
279#endif
280#ifdef DO_SPEC
281            array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
282            array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
283            array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
284#endif
285#if defined(DO_TEXVAR)
286            {
287               GLuint attr;
288               for (attr = swrast->_MinFragmentAttrib; attr < swrast->_MaxFragmentAttrib; attr++) {
289                  if (swrast->_FragmentAttribs & (1 << attr)) {
290                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[attr]);
291                     array->attribs[attr][count][0] = solve_plane(cx, cy, sPlane[attr]) * invQ;
292                     array->attribs[attr][count][1] = solve_plane(cx, cy, tPlane[attr]) * invQ;
293                     array->attribs[attr][count][2] = solve_plane(cx, cy, uPlane[attr]) * invQ;
294                     if (attr < FRAG_ATTRIB_VAR0) {
295                        const GLuint unit = attr - FRAG_ATTRIB_TEX0;
296                        array->lambda[unit][count] = compute_lambda(sPlane[attr], tPlane[attr],
297                                                                    vPlane[attr], cx, cy, invQ,
298                                                                    texWidth[attr], texHeight[attr]);
299                     }
300                  }
301               }
302            }
303#endif
304            ix++;
305            count++;
306            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
307         }
308
309         if (ix <= startX)
310            continue;
311
312         span.x = startX;
313         span.y = iy;
314         span.end = (GLuint) ix - (GLuint) startX;
315         ASSERT(span.interpMask == 0);
316#if defined(DO_RGBA)
317         _swrast_write_rgba_span(ctx, &span);
318#else
319         _swrast_write_index_span(ctx, &span);
320#endif
321      }
322   }
323   else {
324      /* scan right to left */
325      const GLfloat *pMin = vMin->win;
326      const GLfloat *pMid = vMid->win;
327      const GLfloat *pMax = vMax->win;
328      const GLfloat dxdy = majDx / majDy;
329      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
330      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
331      GLint iy;
332      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
333         GLint ix, left, startX = (GLint) (x + xAdj);
334         GLuint count, n;
335         GLfloat coverage = 0.0F;
336
337         /* make sure we're not past the window edge */
338         if (startX >= ctx->DrawBuffer->_Xmax) {
339            startX = ctx->DrawBuffer->_Xmax - 1;
340         }
341
342         /* skip fragments with zero coverage */
343         while (startX >= 0) {
344            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
345            if (coverage > 0.0F)
346               break;
347            startX--;
348         }
349
350         /* enter interior of triangle */
351         ix = startX;
352         count = 0;
353         while (coverage > 0.0F) {
354            /* (cx,cy) = center of fragment */
355            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
356            SWspanarrays *array = span.array;
357#ifdef DO_INDEX
358            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
359#else
360            array->coverage[ix] = coverage;
361#endif
362#ifdef DO_Z
363            array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
364#endif
365#ifdef DO_FOG
366            array->attribs[FRAG_ATTRIB_FOGC][ix][0] = solve_plane(cx, cy, fogPlane);
367#endif
368#ifdef DO_RGBA
369            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
370            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
371            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
372            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
373#endif
374#ifdef DO_INDEX
375            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
376#endif
377#ifdef DO_SPEC
378            array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
379            array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
380            array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
381#endif
382#if defined(DO_TEXVAR)
383            {
384               GLuint attr;
385               for (attr = swrast->_MinFragmentAttrib; attr < swrast->_MaxFragmentAttrib; attr++) {
386                  if (swrast->_FragmentAttribs & (1 << attr)) {
387                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[attr]);
388                     array->attribs[attr][ix][0] = solve_plane(cx, cy, sPlane[attr]) * invQ;
389                     array->attribs[attr][ix][1] = solve_plane(cx, cy, tPlane[attr]) * invQ;
390                     array->attribs[attr][ix][2] = solve_plane(cx, cy, uPlane[attr]) * invQ;
391                     if (attr < FRAG_ATTRIB_VAR0) {
392                        const GLuint unit = attr - FRAG_ATTRIB_TEX0;
393                        array->lambda[unit][ix] = compute_lambda(sPlane[attr],
394                                                                 tPlane[attr],
395                                                                 vPlane[attr],
396                                                                 cx, cy, invQ,
397                                                                 texWidth[attr],
398                                                                 texHeight[attr]);
399                     }
400                  }
401               }
402            }
403#endif
404            ix--;
405            count++;
406            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
407         }
408
409         if (startX <= ix)
410            continue;
411
412         n = (GLuint) startX - (GLuint) ix;
413
414         left = ix + 1;
415
416         /* shift all values to the left */
417         /* XXX this is temporary */
418         {
419            SWspanarrays *array = span.array;
420            GLint j;
421            for (j = 0; j < (GLint) n; j++) {
422#ifdef DO_RGBA
423               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
424#endif
425#ifdef DO_SPEC
426               COPY_CHAN4(array->spec[j], array->spec[j + left]);
427#endif
428#ifdef DO_INDEX
429               array->index[j] = array->index[j + left];
430#endif
431#ifdef DO_Z
432               array->z[j] = array->z[j + left];
433#endif
434#ifdef DO_FOG
435               array->attribs[FRAG_ATTRIB_FOGC][j][0]
436                  = array->attribs[FRAG_ATTRIB_FOGC][j + left][0];
437#endif
438#if defined(DO_TEXVAR)
439               array->lambda[0][j] = array->lambda[0][j + left];
440#endif
441               array->coverage[j] = array->coverage[j + left];
442            }
443         }
444#ifdef DO_TEXVAR
445         /* shift texcoords, varying */
446         {
447            SWspanarrays *array = span.array;
448            GLuint attr;
449            for (attr = swrast->_MinFragmentAttrib; attr < swrast->_MaxFragmentAttrib; attr++) {
450               if (swrast->_FragmentAttribs & (1 << attr)) {
451                  GLint j;
452                  for (j = 0; j < (GLint) n; j++) {
453                     array->attribs[attr][j][0] = array->attribs[attr][j + left][0];
454                     array->attribs[attr][j][1] = array->attribs[attr][j + left][1];
455                     array->attribs[attr][j][2] = array->attribs[attr][j + left][2];
456                     /*array->lambda[unit][j] = array->lambda[unit][j + left];*/
457                  }
458               }
459            }
460         }
461#endif
462
463         span.x = left;
464         span.y = iy;
465         span.end = n;
466         ASSERT(span.interpMask == 0);
467#if defined(DO_RGBA)
468         _swrast_write_rgba_span(ctx, &span);
469#else
470         _swrast_write_index_span(ctx, &span);
471#endif
472      }
473   }
474}
475
476
477#ifdef DO_Z
478#undef DO_Z
479#endif
480
481#ifdef DO_FOG
482#undef DO_FOG
483#endif
484
485#ifdef DO_RGBA
486#undef DO_RGBA
487#endif
488
489#ifdef DO_INDEX
490#undef DO_INDEX
491#endif
492
493#ifdef DO_SPEC
494#undef DO_SPEC
495#endif
496
497#ifdef DO_TEXVAR
498#undef DO_TEXVAR
499#endif
500
501#ifdef DO_OCCLUSION_TEST
502#undef DO_OCCLUSION_TEST
503#endif
504