code-stubs-arm.cc revision 053d10c438f14580aaf4ab1b2aad93a5a4fe8b82
1// Copyright 2011 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#include "v8.h" 29 30#if defined(V8_TARGET_ARCH_ARM) 31 32#include "bootstrapper.h" 33#include "code-stubs.h" 34#include "regexp-macro-assembler.h" 35 36namespace v8 { 37namespace internal { 38 39 40#define __ ACCESS_MASM(masm) 41 42static void EmitIdenticalObjectComparison(MacroAssembler* masm, 43 Label* slow, 44 Condition cond, 45 bool never_nan_nan); 46static void EmitSmiNonsmiComparison(MacroAssembler* masm, 47 Register lhs, 48 Register rhs, 49 Label* lhs_not_nan, 50 Label* slow, 51 bool strict); 52static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond); 53static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, 54 Register lhs, 55 Register rhs); 56 57 58void ToNumberStub::Generate(MacroAssembler* masm) { 59 // The ToNumber stub takes one argument in eax. 60 Label check_heap_number, call_builtin; 61 __ tst(r0, Operand(kSmiTagMask)); 62 __ b(ne, &check_heap_number); 63 __ Ret(); 64 65 __ bind(&check_heap_number); 66 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 67 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 68 __ cmp(r1, ip); 69 __ b(ne, &call_builtin); 70 __ Ret(); 71 72 __ bind(&call_builtin); 73 __ push(r0); 74 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS); 75} 76 77 78void FastNewClosureStub::Generate(MacroAssembler* masm) { 79 // Create a new closure from the given function info in new 80 // space. Set the context to the current context in cp. 81 Label gc; 82 83 // Pop the function info from the stack. 84 __ pop(r3); 85 86 // Attempt to allocate new JSFunction in new space. 87 __ AllocateInNewSpace(JSFunction::kSize, 88 r0, 89 r1, 90 r2, 91 &gc, 92 TAG_OBJECT); 93 94 int map_index = strict_mode_ == kStrictMode 95 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX 96 : Context::FUNCTION_MAP_INDEX; 97 98 // Compute the function map in the current global context and set that 99 // as the map of the allocated object. 100 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 101 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); 102 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index))); 103 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 104 105 // Initialize the rest of the function. We don't have to update the 106 // write barrier because the allocated object is in new space. 107 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); 108 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); 109 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); 110 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 111 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); 112 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); 113 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); 114 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); 115 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); 116 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset)); 117 118 119 // Initialize the code pointer in the function to be the one 120 // found in the shared function info object. 121 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); 122 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); 123 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); 124 125 // Return result. The argument function info has been popped already. 126 __ Ret(); 127 128 // Create a new closure through the slower runtime call. 129 __ bind(&gc); 130 __ LoadRoot(r4, Heap::kFalseValueRootIndex); 131 __ Push(cp, r3, r4); 132 __ TailCallRuntime(Runtime::kNewClosure, 3, 1); 133} 134 135 136void FastNewContextStub::Generate(MacroAssembler* masm) { 137 // Try to allocate the context in new space. 138 Label gc; 139 int length = slots_ + Context::MIN_CONTEXT_SLOTS; 140 141 // Attempt to allocate the context in new space. 142 __ AllocateInNewSpace(FixedArray::SizeFor(length), 143 r0, 144 r1, 145 r2, 146 &gc, 147 TAG_OBJECT); 148 149 // Load the function from the stack. 150 __ ldr(r3, MemOperand(sp, 0)); 151 152 // Setup the object header. 153 __ LoadRoot(r2, Heap::kContextMapRootIndex); 154 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 155 __ mov(r2, Operand(Smi::FromInt(length))); 156 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); 157 158 // Setup the fixed slots. 159 __ mov(r1, Operand(Smi::FromInt(0))); 160 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); 161 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); 162 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); 163 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); 164 165 // Copy the global object from the surrounding context. 166 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 167 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); 168 169 // Initialize the rest of the slots to undefined. 170 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 171 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { 172 __ str(r1, MemOperand(r0, Context::SlotOffset(i))); 173 } 174 175 // Remove the on-stack argument and return. 176 __ mov(cp, r0); 177 __ pop(); 178 __ Ret(); 179 180 // Need to collect. Call into runtime system. 181 __ bind(&gc); 182 __ TailCallRuntime(Runtime::kNewContext, 1, 1); 183} 184 185 186void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { 187 // Stack layout on entry: 188 // 189 // [sp]: constant elements. 190 // [sp + kPointerSize]: literal index. 191 // [sp + (2 * kPointerSize)]: literals array. 192 193 // All sizes here are multiples of kPointerSize. 194 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; 195 int size = JSArray::kSize + elements_size; 196 197 // Load boilerplate object into r3 and check if we need to create a 198 // boilerplate. 199 Label slow_case; 200 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); 201 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); 202 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 203 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); 204 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 205 __ cmp(r3, ip); 206 __ b(eq, &slow_case); 207 208 if (FLAG_debug_code) { 209 const char* message; 210 Heap::RootListIndex expected_map_index; 211 if (mode_ == CLONE_ELEMENTS) { 212 message = "Expected (writable) fixed array"; 213 expected_map_index = Heap::kFixedArrayMapRootIndex; 214 } else { 215 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); 216 message = "Expected copy-on-write fixed array"; 217 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; 218 } 219 __ push(r3); 220 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); 221 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); 222 __ LoadRoot(ip, expected_map_index); 223 __ cmp(r3, ip); 224 __ Assert(eq, message); 225 __ pop(r3); 226 } 227 228 // Allocate both the JS array and the elements array in one big 229 // allocation. This avoids multiple limit checks. 230 __ AllocateInNewSpace(size, 231 r0, 232 r1, 233 r2, 234 &slow_case, 235 TAG_OBJECT); 236 237 // Copy the JS array part. 238 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { 239 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { 240 __ ldr(r1, FieldMemOperand(r3, i)); 241 __ str(r1, FieldMemOperand(r0, i)); 242 } 243 } 244 245 if (length_ > 0) { 246 // Get hold of the elements array of the boilerplate and setup the 247 // elements pointer in the resulting object. 248 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); 249 __ add(r2, r0, Operand(JSArray::kSize)); 250 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); 251 252 // Copy the elements array. 253 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); 254 } 255 256 // Return and remove the on-stack parameters. 257 __ add(sp, sp, Operand(3 * kPointerSize)); 258 __ Ret(); 259 260 __ bind(&slow_case); 261 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); 262} 263 264 265// Takes a Smi and converts to an IEEE 64 bit floating point value in two 266// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and 267// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a 268// scratch register. Destroys the source register. No GC occurs during this 269// stub so you don't have to set up the frame. 270class ConvertToDoubleStub : public CodeStub { 271 public: 272 ConvertToDoubleStub(Register result_reg_1, 273 Register result_reg_2, 274 Register source_reg, 275 Register scratch_reg) 276 : result1_(result_reg_1), 277 result2_(result_reg_2), 278 source_(source_reg), 279 zeros_(scratch_reg) { } 280 281 private: 282 Register result1_; 283 Register result2_; 284 Register source_; 285 Register zeros_; 286 287 // Minor key encoding in 16 bits. 288 class ModeBits: public BitField<OverwriteMode, 0, 2> {}; 289 class OpBits: public BitField<Token::Value, 2, 14> {}; 290 291 Major MajorKey() { return ConvertToDouble; } 292 int MinorKey() { 293 // Encode the parameters in a unique 16 bit value. 294 return result1_.code() + 295 (result2_.code() << 4) + 296 (source_.code() << 8) + 297 (zeros_.code() << 12); 298 } 299 300 void Generate(MacroAssembler* masm); 301 302 const char* GetName() { return "ConvertToDoubleStub"; } 303 304#ifdef DEBUG 305 void Print() { PrintF("ConvertToDoubleStub\n"); } 306#endif 307}; 308 309 310void ConvertToDoubleStub::Generate(MacroAssembler* masm) { 311 Register exponent = result1_; 312 Register mantissa = result2_; 313 314 Label not_special; 315 // Convert from Smi to integer. 316 __ mov(source_, Operand(source_, ASR, kSmiTagSize)); 317 // Move sign bit from source to destination. This works because the sign bit 318 // in the exponent word of the double has the same position and polarity as 319 // the 2's complement sign bit in a Smi. 320 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); 321 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); 322 // Subtract from 0 if source was negative. 323 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne); 324 325 // We have -1, 0 or 1, which we treat specially. Register source_ contains 326 // absolute value: it is either equal to 1 (special case of -1 and 1), 327 // greater than 1 (not a special case) or less than 1 (special case of 0). 328 __ cmp(source_, Operand(1)); 329 __ b(gt, ¬_special); 330 331 // For 1 or -1 we need to or in the 0 exponent (biased to 1023). 332 static const uint32_t exponent_word_for_1 = 333 HeapNumber::kExponentBias << HeapNumber::kExponentShift; 334 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); 335 // 1, 0 and -1 all have 0 for the second word. 336 __ mov(mantissa, Operand(0, RelocInfo::NONE)); 337 __ Ret(); 338 339 __ bind(¬_special); 340 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. 341 // Gets the wrong answer for 0, but we already checked for that case above. 342 __ CountLeadingZeros(zeros_, source_, mantissa); 343 // Compute exponent and or it into the exponent register. 344 // We use mantissa as a scratch register here. Use a fudge factor to 345 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts 346 // that fit in the ARM's constant field. 347 int fudge = 0x400; 348 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); 349 __ add(mantissa, mantissa, Operand(fudge)); 350 __ orr(exponent, 351 exponent, 352 Operand(mantissa, LSL, HeapNumber::kExponentShift)); 353 // Shift up the source chopping the top bit off. 354 __ add(zeros_, zeros_, Operand(1)); 355 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. 356 __ mov(source_, Operand(source_, LSL, zeros_)); 357 // Compute lower part of fraction (last 12 bits). 358 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); 359 // And the top (top 20 bits). 360 __ orr(exponent, 361 exponent, 362 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); 363 __ Ret(); 364} 365 366 367class FloatingPointHelper : public AllStatic { 368 public: 369 370 enum Destination { 371 kVFPRegisters, 372 kCoreRegisters 373 }; 374 375 376 // Loads smis from r0 and r1 (right and left in binary operations) into 377 // floating point registers. Depending on the destination the values ends up 378 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is 379 // floating point registers VFP3 must be supported. If core registers are 380 // requested when VFP3 is supported d6 and d7 will be scratched. 381 static void LoadSmis(MacroAssembler* masm, 382 Destination destination, 383 Register scratch1, 384 Register scratch2); 385 386 // Loads objects from r0 and r1 (right and left in binary operations) into 387 // floating point registers. Depending on the destination the values ends up 388 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is 389 // floating point registers VFP3 must be supported. If core registers are 390 // requested when VFP3 is supported d6 and d7 will still be scratched. If 391 // either r0 or r1 is not a number (not smi and not heap number object) the 392 // not_number label is jumped to with r0 and r1 intact. 393 static void LoadOperands(MacroAssembler* masm, 394 FloatingPointHelper::Destination destination, 395 Register heap_number_map, 396 Register scratch1, 397 Register scratch2, 398 Label* not_number); 399 400 // Convert the smi or heap number in object to an int32 using the rules 401 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated 402 // and brought into the range -2^31 .. +2^31 - 1. 403 static void ConvertNumberToInt32(MacroAssembler* masm, 404 Register object, 405 Register dst, 406 Register heap_number_map, 407 Register scratch1, 408 Register scratch2, 409 Register scratch3, 410 DwVfpRegister double_scratch, 411 Label* not_int32); 412 413 // Load the number from object into double_dst in the double format. 414 // Control will jump to not_int32 if the value cannot be exactly represented 415 // by a 32-bit integer. 416 // Floating point value in the 32-bit integer range that are not exact integer 417 // won't be loaded. 418 static void LoadNumberAsInt32Double(MacroAssembler* masm, 419 Register object, 420 Destination destination, 421 DwVfpRegister double_dst, 422 Register dst1, 423 Register dst2, 424 Register heap_number_map, 425 Register scratch1, 426 Register scratch2, 427 SwVfpRegister single_scratch, 428 Label* not_int32); 429 430 // Loads the number from object into dst as a 32-bit integer. 431 // Control will jump to not_int32 if the object cannot be exactly represented 432 // by a 32-bit integer. 433 // Floating point value in the 32-bit integer range that are not exact integer 434 // won't be converted. 435 // scratch3 is not used when VFP3 is supported. 436 static void LoadNumberAsInt32(MacroAssembler* masm, 437 Register object, 438 Register dst, 439 Register heap_number_map, 440 Register scratch1, 441 Register scratch2, 442 Register scratch3, 443 DwVfpRegister double_scratch, 444 Label* not_int32); 445 446 // Generate non VFP3 code to check if a double can be exactly represented by a 447 // 32-bit integer. This does not check for 0 or -0, which need 448 // to be checked for separately. 449 // Control jumps to not_int32 if the value is not a 32-bit integer, and falls 450 // through otherwise. 451 // src1 and src2 will be cloberred. 452 // 453 // Expected input: 454 // - src1: higher (exponent) part of the double value. 455 // - src2: lower (mantissa) part of the double value. 456 // Output status: 457 // - dst: 32 higher bits of the mantissa. (mantissa[51:20]) 458 // - src2: contains 1. 459 // - other registers are clobbered. 460 static void DoubleIs32BitInteger(MacroAssembler* masm, 461 Register src1, 462 Register src2, 463 Register dst, 464 Register scratch, 465 Label* not_int32); 466 467 // Generates code to call a C function to do a double operation using core 468 // registers. (Used when VFP3 is not supported.) 469 // This code never falls through, but returns with a heap number containing 470 // the result in r0. 471 // Register heapnumber_result must be a heap number in which the 472 // result of the operation will be stored. 473 // Requires the following layout on entry: 474 // r0: Left value (least significant part of mantissa). 475 // r1: Left value (sign, exponent, top of mantissa). 476 // r2: Right value (least significant part of mantissa). 477 // r3: Right value (sign, exponent, top of mantissa). 478 static void CallCCodeForDoubleOperation(MacroAssembler* masm, 479 Token::Value op, 480 Register heap_number_result, 481 Register scratch); 482 483 private: 484 static void LoadNumber(MacroAssembler* masm, 485 FloatingPointHelper::Destination destination, 486 Register object, 487 DwVfpRegister dst, 488 Register dst1, 489 Register dst2, 490 Register heap_number_map, 491 Register scratch1, 492 Register scratch2, 493 Label* not_number); 494}; 495 496 497void FloatingPointHelper::LoadSmis(MacroAssembler* masm, 498 FloatingPointHelper::Destination destination, 499 Register scratch1, 500 Register scratch2) { 501 if (CpuFeatures::IsSupported(VFP3)) { 502 CpuFeatures::Scope scope(VFP3); 503 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize)); 504 __ vmov(d7.high(), scratch1); 505 __ vcvt_f64_s32(d7, d7.high()); 506 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize)); 507 __ vmov(d6.high(), scratch1); 508 __ vcvt_f64_s32(d6, d6.high()); 509 if (destination == kCoreRegisters) { 510 __ vmov(r2, r3, d7); 511 __ vmov(r0, r1, d6); 512 } 513 } else { 514 ASSERT(destination == kCoreRegisters); 515 // Write Smi from r0 to r3 and r2 in double format. 516 __ mov(scratch1, Operand(r0)); 517 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2); 518 __ push(lr); 519 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); 520 // Write Smi from r1 to r1 and r0 in double format. 521 __ mov(scratch1, Operand(r1)); 522 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2); 523 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); 524 __ pop(lr); 525 } 526} 527 528 529void FloatingPointHelper::LoadOperands( 530 MacroAssembler* masm, 531 FloatingPointHelper::Destination destination, 532 Register heap_number_map, 533 Register scratch1, 534 Register scratch2, 535 Label* slow) { 536 537 // Load right operand (r0) to d6 or r2/r3. 538 LoadNumber(masm, destination, 539 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow); 540 541 // Load left operand (r1) to d7 or r0/r1. 542 LoadNumber(masm, destination, 543 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow); 544} 545 546 547void FloatingPointHelper::LoadNumber(MacroAssembler* masm, 548 Destination destination, 549 Register object, 550 DwVfpRegister dst, 551 Register dst1, 552 Register dst2, 553 Register heap_number_map, 554 Register scratch1, 555 Register scratch2, 556 Label* not_number) { 557 if (FLAG_debug_code) { 558 __ AbortIfNotRootValue(heap_number_map, 559 Heap::kHeapNumberMapRootIndex, 560 "HeapNumberMap register clobbered."); 561 } 562 563 Label is_smi, done; 564 565 __ JumpIfSmi(object, &is_smi); 566 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); 567 568 // Handle loading a double from a heap number. 569 if (CpuFeatures::IsSupported(VFP3) && 570 destination == kVFPRegisters) { 571 CpuFeatures::Scope scope(VFP3); 572 // Load the double from tagged HeapNumber to double register. 573 __ sub(scratch1, object, Operand(kHeapObjectTag)); 574 __ vldr(dst, scratch1, HeapNumber::kValueOffset); 575 } else { 576 ASSERT(destination == kCoreRegisters); 577 // Load the double from heap number to dst1 and dst2 in double format. 578 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 579 } 580 __ jmp(&done); 581 582 // Handle loading a double from a smi. 583 __ bind(&is_smi); 584 if (CpuFeatures::IsSupported(VFP3)) { 585 CpuFeatures::Scope scope(VFP3); 586 // Convert smi to double using VFP instructions. 587 __ SmiUntag(scratch1, object); 588 __ vmov(dst.high(), scratch1); 589 __ vcvt_f64_s32(dst, dst.high()); 590 if (destination == kCoreRegisters) { 591 // Load the converted smi to dst1 and dst2 in double format. 592 __ vmov(dst1, dst2, dst); 593 } 594 } else { 595 ASSERT(destination == kCoreRegisters); 596 // Write smi to dst1 and dst2 double format. 597 __ mov(scratch1, Operand(object)); 598 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); 599 __ push(lr); 600 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); 601 __ pop(lr); 602 } 603 604 __ bind(&done); 605} 606 607 608void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, 609 Register object, 610 Register dst, 611 Register heap_number_map, 612 Register scratch1, 613 Register scratch2, 614 Register scratch3, 615 DwVfpRegister double_scratch, 616 Label* not_number) { 617 if (FLAG_debug_code) { 618 __ AbortIfNotRootValue(heap_number_map, 619 Heap::kHeapNumberMapRootIndex, 620 "HeapNumberMap register clobbered."); 621 } 622 Label is_smi; 623 Label done; 624 Label not_in_int32_range; 625 626 __ JumpIfSmi(object, &is_smi); 627 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); 628 __ cmp(scratch1, heap_number_map); 629 __ b(ne, not_number); 630 __ ConvertToInt32(object, 631 dst, 632 scratch1, 633 scratch2, 634 double_scratch, 635 ¬_in_int32_range); 636 __ jmp(&done); 637 638 __ bind(¬_in_int32_range); 639 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 640 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); 641 642 __ EmitOutOfInt32RangeTruncate(dst, 643 scratch1, 644 scratch2, 645 scratch3); 646 __ jmp(&done); 647 648 __ bind(&is_smi); 649 __ SmiUntag(dst, object); 650 __ bind(&done); 651} 652 653 654void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, 655 Register object, 656 Destination destination, 657 DwVfpRegister double_dst, 658 Register dst1, 659 Register dst2, 660 Register heap_number_map, 661 Register scratch1, 662 Register scratch2, 663 SwVfpRegister single_scratch, 664 Label* not_int32) { 665 ASSERT(!scratch1.is(object) && !scratch2.is(object)); 666 ASSERT(!scratch1.is(scratch2)); 667 ASSERT(!heap_number_map.is(object) && 668 !heap_number_map.is(scratch1) && 669 !heap_number_map.is(scratch2)); 670 671 Label done, obj_is_not_smi; 672 673 __ JumpIfNotSmi(object, &obj_is_not_smi); 674 __ SmiUntag(scratch1, object); 675 if (CpuFeatures::IsSupported(VFP3)) { 676 CpuFeatures::Scope scope(VFP3); 677 __ vmov(single_scratch, scratch1); 678 __ vcvt_f64_s32(double_dst, single_scratch); 679 if (destination == kCoreRegisters) { 680 __ vmov(dst1, dst2, double_dst); 681 } 682 } else { 683 Label fewer_than_20_useful_bits; 684 // Expected output: 685 // | dst2 | dst1 | 686 // | s | exp | mantissa | 687 688 // Check for zero. 689 __ cmp(scratch1, Operand(0)); 690 __ mov(dst2, scratch1); 691 __ mov(dst1, scratch1); 692 __ b(eq, &done); 693 694 // Preload the sign of the value. 695 __ and_(dst2, scratch1, Operand(HeapNumber::kSignMask), SetCC); 696 // Get the absolute value of the object (as an unsigned integer). 697 __ rsb(scratch1, scratch1, Operand(0), SetCC, mi); 698 699 // Get mantisssa[51:20]. 700 701 // Get the position of the first set bit. 702 __ CountLeadingZeros(dst1, scratch1, scratch2); 703 __ rsb(dst1, dst1, Operand(31)); 704 705 // Set the exponent. 706 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias)); 707 __ Bfi(dst2, scratch2, scratch2, 708 HeapNumber::kExponentShift, HeapNumber::kExponentBits); 709 710 // Clear the first non null bit. 711 __ mov(scratch2, Operand(1)); 712 __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst1)); 713 714 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); 715 // Get the number of bits to set in the lower part of the mantissa. 716 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); 717 __ b(mi, &fewer_than_20_useful_bits); 718 // Set the higher 20 bits of the mantissa. 719 __ orr(dst2, dst2, Operand(scratch1, LSR, scratch2)); 720 __ rsb(scratch2, scratch2, Operand(32)); 721 __ mov(dst1, Operand(scratch1, LSL, scratch2)); 722 __ b(&done); 723 724 __ bind(&fewer_than_20_useful_bits); 725 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); 726 __ mov(scratch2, Operand(scratch1, LSL, scratch2)); 727 __ orr(dst2, dst2, scratch2); 728 // Set dst1 to 0. 729 __ mov(dst1, Operand(0)); 730 } 731 732 __ b(&done); 733 734 __ bind(&obj_is_not_smi); 735 if (FLAG_debug_code) { 736 __ AbortIfNotRootValue(heap_number_map, 737 Heap::kHeapNumberMapRootIndex, 738 "HeapNumberMap register clobbered."); 739 } 740 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); 741 742 // Load the number. 743 if (CpuFeatures::IsSupported(VFP3)) { 744 CpuFeatures::Scope scope(VFP3); 745 // Load the double value. 746 __ sub(scratch1, object, Operand(kHeapObjectTag)); 747 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset); 748 749 __ EmitVFPTruncate(kRoundToZero, 750 single_scratch, 751 double_dst, 752 scratch1, 753 scratch2, 754 kCheckForInexactConversion); 755 756 // Jump to not_int32 if the operation did not succeed. 757 __ b(ne, not_int32); 758 759 if (destination == kCoreRegisters) { 760 __ vmov(dst1, dst2, double_dst); 761 } 762 763 } else { 764 ASSERT(!scratch1.is(object) && !scratch2.is(object)); 765 // Load the double value in the destination registers.. 766 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 767 768 // Check for 0 and -0. 769 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask)); 770 __ orr(scratch1, scratch1, Operand(dst2)); 771 __ cmp(scratch1, Operand(0)); 772 __ b(eq, &done); 773 774 // Check that the value can be exactly represented by a 32-bit integer. 775 // Jump to not_int32 if that's not the case. 776 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); 777 778 // dst1 and dst2 were trashed. Reload the double value. 779 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 780 } 781 782 __ bind(&done); 783} 784 785 786void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, 787 Register object, 788 Register dst, 789 Register heap_number_map, 790 Register scratch1, 791 Register scratch2, 792 Register scratch3, 793 DwVfpRegister double_scratch, 794 Label* not_int32) { 795 ASSERT(!dst.is(object)); 796 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); 797 ASSERT(!scratch1.is(scratch2) && 798 !scratch1.is(scratch3) && 799 !scratch2.is(scratch3)); 800 801 Label done; 802 803 // Untag the object into the destination register. 804 __ SmiUntag(dst, object); 805 // Just return if the object is a smi. 806 __ JumpIfSmi(object, &done); 807 808 if (FLAG_debug_code) { 809 __ AbortIfNotRootValue(heap_number_map, 810 Heap::kHeapNumberMapRootIndex, 811 "HeapNumberMap register clobbered."); 812 } 813 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); 814 815 // Object is a heap number. 816 // Convert the floating point value to a 32-bit integer. 817 if (CpuFeatures::IsSupported(VFP3)) { 818 CpuFeatures::Scope scope(VFP3); 819 SwVfpRegister single_scratch = double_scratch.low(); 820 // Load the double value. 821 __ sub(scratch1, object, Operand(kHeapObjectTag)); 822 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset); 823 824 __ EmitVFPTruncate(kRoundToZero, 825 single_scratch, 826 double_scratch, 827 scratch1, 828 scratch2, 829 kCheckForInexactConversion); 830 831 // Jump to not_int32 if the operation did not succeed. 832 __ b(ne, not_int32); 833 // Get the result in the destination register. 834 __ vmov(dst, single_scratch); 835 836 } else { 837 // Load the double value in the destination registers. 838 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 839 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); 840 841 // Check for 0 and -0. 842 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask)); 843 __ orr(dst, scratch2, Operand(dst)); 844 __ cmp(dst, Operand(0)); 845 __ b(eq, &done); 846 847 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); 848 849 // Registers state after DoubleIs32BitInteger. 850 // dst: mantissa[51:20]. 851 // scratch2: 1 852 853 // Shift back the higher bits of the mantissa. 854 __ mov(dst, Operand(dst, LSR, scratch3)); 855 // Set the implicit first bit. 856 __ rsb(scratch3, scratch3, Operand(32)); 857 __ orr(dst, dst, Operand(scratch2, LSL, scratch3)); 858 // Set the sign. 859 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 860 __ tst(scratch1, Operand(HeapNumber::kSignMask)); 861 __ rsb(dst, dst, Operand(0), LeaveCC, mi); 862 } 863 864 __ bind(&done); 865} 866 867 868void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, 869 Register src1, 870 Register src2, 871 Register dst, 872 Register scratch, 873 Label* not_int32) { 874 // Get exponent alone in scratch. 875 __ Ubfx(scratch, 876 src1, 877 HeapNumber::kExponentShift, 878 HeapNumber::kExponentBits); 879 880 // Substract the bias from the exponent. 881 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC); 882 883 // src1: higher (exponent) part of the double value. 884 // src2: lower (mantissa) part of the double value. 885 // scratch: unbiased exponent. 886 887 // Fast cases. Check for obvious non 32-bit integer values. 888 // Negative exponent cannot yield 32-bit integers. 889 __ b(mi, not_int32); 890 // Exponent greater than 31 cannot yield 32-bit integers. 891 // Also, a positive value with an exponent equal to 31 is outside of the 892 // signed 32-bit integer range. 893 // Another way to put it is that if (exponent - signbit) > 30 then the 894 // number cannot be represented as an int32. 895 Register tmp = dst; 896 __ sub(tmp, scratch, Operand(src1, LSR, 31)); 897 __ cmp(tmp, Operand(30)); 898 __ b(gt, not_int32); 899 // - Bits [21:0] in the mantissa are not null. 900 __ tst(src2, Operand(0x3fffff)); 901 __ b(ne, not_int32); 902 903 // Otherwise the exponent needs to be big enough to shift left all the 904 // non zero bits left. So we need the (30 - exponent) last bits of the 905 // 31 higher bits of the mantissa to be null. 906 // Because bits [21:0] are null, we can check instead that the 907 // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null. 908 909 // Get the 32 higher bits of the mantissa in dst. 910 __ Ubfx(dst, 911 src2, 912 HeapNumber::kMantissaBitsInTopWord, 913 32 - HeapNumber::kMantissaBitsInTopWord); 914 __ orr(dst, 915 dst, 916 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord)); 917 918 // Create the mask and test the lower bits (of the higher bits). 919 __ rsb(scratch, scratch, Operand(32)); 920 __ mov(src2, Operand(1)); 921 __ mov(src1, Operand(src2, LSL, scratch)); 922 __ sub(src1, src1, Operand(1)); 923 __ tst(dst, src1); 924 __ b(ne, not_int32); 925} 926 927 928void FloatingPointHelper::CallCCodeForDoubleOperation( 929 MacroAssembler* masm, 930 Token::Value op, 931 Register heap_number_result, 932 Register scratch) { 933 // Using core registers: 934 // r0: Left value (least significant part of mantissa). 935 // r1: Left value (sign, exponent, top of mantissa). 936 // r2: Right value (least significant part of mantissa). 937 // r3: Right value (sign, exponent, top of mantissa). 938 939 // Assert that heap_number_result is callee-saved. 940 // We currently always use r5 to pass it. 941 ASSERT(heap_number_result.is(r5)); 942 943 // Push the current return address before the C call. Return will be 944 // through pop(pc) below. 945 __ push(lr); 946 __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. 947 // Call C routine that may not cause GC or other trouble. 948 __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()), 949 4); 950 // Store answer in the overwritable heap number. Double returned in 951 // registers r0 and r1. 952 __ Strd(r0, r1, FieldMemOperand(heap_number_result, 953 HeapNumber::kValueOffset)); 954 // Place heap_number_result in r0 and return to the pushed return address. 955 __ mov(r0, Operand(heap_number_result)); 956 __ pop(pc); 957} 958 959 960// See comment for class. 961void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { 962 Label max_negative_int; 963 // the_int_ has the answer which is a signed int32 but not a Smi. 964 // We test for the special value that has a different exponent. This test 965 // has the neat side effect of setting the flags according to the sign. 966 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); 967 __ cmp(the_int_, Operand(0x80000000u)); 968 __ b(eq, &max_negative_int); 969 // Set up the correct exponent in scratch_. All non-Smi int32s have the same. 970 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). 971 uint32_t non_smi_exponent = 972 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; 973 __ mov(scratch_, Operand(non_smi_exponent)); 974 // Set the sign bit in scratch_ if the value was negative. 975 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); 976 // Subtract from 0 if the value was negative. 977 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs); 978 // We should be masking the implict first digit of the mantissa away here, 979 // but it just ends up combining harmlessly with the last digit of the 980 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get 981 // the most significant 1 to hit the last bit of the 12 bit sign and exponent. 982 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); 983 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; 984 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); 985 __ str(scratch_, FieldMemOperand(the_heap_number_, 986 HeapNumber::kExponentOffset)); 987 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); 988 __ str(scratch_, FieldMemOperand(the_heap_number_, 989 HeapNumber::kMantissaOffset)); 990 __ Ret(); 991 992 __ bind(&max_negative_int); 993 // The max negative int32 is stored as a positive number in the mantissa of 994 // a double because it uses a sign bit instead of using two's complement. 995 // The actual mantissa bits stored are all 0 because the implicit most 996 // significant 1 bit is not stored. 997 non_smi_exponent += 1 << HeapNumber::kExponentShift; 998 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); 999 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); 1000 __ mov(ip, Operand(0, RelocInfo::NONE)); 1001 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); 1002 __ Ret(); 1003} 1004 1005 1006// Handle the case where the lhs and rhs are the same object. 1007// Equality is almost reflexive (everything but NaN), so this is a test 1008// for "identity and not NaN". 1009static void EmitIdenticalObjectComparison(MacroAssembler* masm, 1010 Label* slow, 1011 Condition cond, 1012 bool never_nan_nan) { 1013 Label not_identical; 1014 Label heap_number, return_equal; 1015 __ cmp(r0, r1); 1016 __ b(ne, ¬_identical); 1017 1018 // The two objects are identical. If we know that one of them isn't NaN then 1019 // we now know they test equal. 1020 if (cond != eq || !never_nan_nan) { 1021 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), 1022 // so we do the second best thing - test it ourselves. 1023 // They are both equal and they are not both Smis so both of them are not 1024 // Smis. If it's not a heap number, then return equal. 1025 if (cond == lt || cond == gt) { 1026 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); 1027 __ b(ge, slow); 1028 } else { 1029 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); 1030 __ b(eq, &heap_number); 1031 // Comparing JS objects with <=, >= is complicated. 1032 if (cond != eq) { 1033 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); 1034 __ b(ge, slow); 1035 // Normally here we fall through to return_equal, but undefined is 1036 // special: (undefined == undefined) == true, but 1037 // (undefined <= undefined) == false! See ECMAScript 11.8.5. 1038 if (cond == le || cond == ge) { 1039 __ cmp(r4, Operand(ODDBALL_TYPE)); 1040 __ b(ne, &return_equal); 1041 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 1042 __ cmp(r0, r2); 1043 __ b(ne, &return_equal); 1044 if (cond == le) { 1045 // undefined <= undefined should fail. 1046 __ mov(r0, Operand(GREATER)); 1047 } else { 1048 // undefined >= undefined should fail. 1049 __ mov(r0, Operand(LESS)); 1050 } 1051 __ Ret(); 1052 } 1053 } 1054 } 1055 } 1056 1057 __ bind(&return_equal); 1058 if (cond == lt) { 1059 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. 1060 } else if (cond == gt) { 1061 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. 1062 } else { 1063 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. 1064 } 1065 __ Ret(); 1066 1067 if (cond != eq || !never_nan_nan) { 1068 // For less and greater we don't have to check for NaN since the result of 1069 // x < x is false regardless. For the others here is some code to check 1070 // for NaN. 1071 if (cond != lt && cond != gt) { 1072 __ bind(&heap_number); 1073 // It is a heap number, so return non-equal if it's NaN and equal if it's 1074 // not NaN. 1075 1076 // The representation of NaN values has all exponent bits (52..62) set, 1077 // and not all mantissa bits (0..51) clear. 1078 // Read top bits of double representation (second word of value). 1079 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 1080 // Test that exponent bits are all set. 1081 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); 1082 // NaNs have all-one exponents so they sign extend to -1. 1083 __ cmp(r3, Operand(-1)); 1084 __ b(ne, &return_equal); 1085 1086 // Shift out flag and all exponent bits, retaining only mantissa. 1087 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); 1088 // Or with all low-bits of mantissa. 1089 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 1090 __ orr(r0, r3, Operand(r2), SetCC); 1091 // For equal we already have the right value in r0: Return zero (equal) 1092 // if all bits in mantissa are zero (it's an Infinity) and non-zero if 1093 // not (it's a NaN). For <= and >= we need to load r0 with the failing 1094 // value if it's a NaN. 1095 if (cond != eq) { 1096 // All-zero means Infinity means equal. 1097 __ Ret(eq); 1098 if (cond == le) { 1099 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. 1100 } else { 1101 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. 1102 } 1103 } 1104 __ Ret(); 1105 } 1106 // No fall through here. 1107 } 1108 1109 __ bind(¬_identical); 1110} 1111 1112 1113// See comment at call site. 1114static void EmitSmiNonsmiComparison(MacroAssembler* masm, 1115 Register lhs, 1116 Register rhs, 1117 Label* lhs_not_nan, 1118 Label* slow, 1119 bool strict) { 1120 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1121 (lhs.is(r1) && rhs.is(r0))); 1122 1123 Label rhs_is_smi; 1124 __ tst(rhs, Operand(kSmiTagMask)); 1125 __ b(eq, &rhs_is_smi); 1126 1127 // Lhs is a Smi. Check whether the rhs is a heap number. 1128 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); 1129 if (strict) { 1130 // If rhs is not a number and lhs is a Smi then strict equality cannot 1131 // succeed. Return non-equal 1132 // If rhs is r0 then there is already a non zero value in it. 1133 if (!rhs.is(r0)) { 1134 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 1135 } 1136 __ Ret(ne); 1137 } else { 1138 // Smi compared non-strictly with a non-Smi non-heap-number. Call 1139 // the runtime. 1140 __ b(ne, slow); 1141 } 1142 1143 // Lhs is a smi, rhs is a number. 1144 if (CpuFeatures::IsSupported(VFP3)) { 1145 // Convert lhs to a double in d7. 1146 CpuFeatures::Scope scope(VFP3); 1147 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); 1148 // Load the double from rhs, tagged HeapNumber r0, to d6. 1149 __ sub(r7, rhs, Operand(kHeapObjectTag)); 1150 __ vldr(d6, r7, HeapNumber::kValueOffset); 1151 } else { 1152 __ push(lr); 1153 // Convert lhs to a double in r2, r3. 1154 __ mov(r7, Operand(lhs)); 1155 ConvertToDoubleStub stub1(r3, r2, r7, r6); 1156 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); 1157 // Load rhs to a double in r0, r1. 1158 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); 1159 __ pop(lr); 1160 } 1161 1162 // We now have both loaded as doubles but we can skip the lhs nan check 1163 // since it's a smi. 1164 __ jmp(lhs_not_nan); 1165 1166 __ bind(&rhs_is_smi); 1167 // Rhs is a smi. Check whether the non-smi lhs is a heap number. 1168 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); 1169 if (strict) { 1170 // If lhs is not a number and rhs is a smi then strict equality cannot 1171 // succeed. Return non-equal. 1172 // If lhs is r0 then there is already a non zero value in it. 1173 if (!lhs.is(r0)) { 1174 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 1175 } 1176 __ Ret(ne); 1177 } else { 1178 // Smi compared non-strictly with a non-smi non-heap-number. Call 1179 // the runtime. 1180 __ b(ne, slow); 1181 } 1182 1183 // Rhs is a smi, lhs is a heap number. 1184 if (CpuFeatures::IsSupported(VFP3)) { 1185 CpuFeatures::Scope scope(VFP3); 1186 // Load the double from lhs, tagged HeapNumber r1, to d7. 1187 __ sub(r7, lhs, Operand(kHeapObjectTag)); 1188 __ vldr(d7, r7, HeapNumber::kValueOffset); 1189 // Convert rhs to a double in d6 . 1190 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); 1191 } else { 1192 __ push(lr); 1193 // Load lhs to a double in r2, r3. 1194 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); 1195 // Convert rhs to a double in r0, r1. 1196 __ mov(r7, Operand(rhs)); 1197 ConvertToDoubleStub stub2(r1, r0, r7, r6); 1198 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); 1199 __ pop(lr); 1200 } 1201 // Fall through to both_loaded_as_doubles. 1202} 1203 1204 1205void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) { 1206 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); 1207 Register rhs_exponent = exp_first ? r0 : r1; 1208 Register lhs_exponent = exp_first ? r2 : r3; 1209 Register rhs_mantissa = exp_first ? r1 : r0; 1210 Register lhs_mantissa = exp_first ? r3 : r2; 1211 Label one_is_nan, neither_is_nan; 1212 1213 __ Sbfx(r4, 1214 lhs_exponent, 1215 HeapNumber::kExponentShift, 1216 HeapNumber::kExponentBits); 1217 // NaNs have all-one exponents so they sign extend to -1. 1218 __ cmp(r4, Operand(-1)); 1219 __ b(ne, lhs_not_nan); 1220 __ mov(r4, 1221 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), 1222 SetCC); 1223 __ b(ne, &one_is_nan); 1224 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE)); 1225 __ b(ne, &one_is_nan); 1226 1227 __ bind(lhs_not_nan); 1228 __ Sbfx(r4, 1229 rhs_exponent, 1230 HeapNumber::kExponentShift, 1231 HeapNumber::kExponentBits); 1232 // NaNs have all-one exponents so they sign extend to -1. 1233 __ cmp(r4, Operand(-1)); 1234 __ b(ne, &neither_is_nan); 1235 __ mov(r4, 1236 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), 1237 SetCC); 1238 __ b(ne, &one_is_nan); 1239 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE)); 1240 __ b(eq, &neither_is_nan); 1241 1242 __ bind(&one_is_nan); 1243 // NaN comparisons always fail. 1244 // Load whatever we need in r0 to make the comparison fail. 1245 if (cond == lt || cond == le) { 1246 __ mov(r0, Operand(GREATER)); 1247 } else { 1248 __ mov(r0, Operand(LESS)); 1249 } 1250 __ Ret(); 1251 1252 __ bind(&neither_is_nan); 1253} 1254 1255 1256// See comment at call site. 1257static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, 1258 Condition cond) { 1259 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); 1260 Register rhs_exponent = exp_first ? r0 : r1; 1261 Register lhs_exponent = exp_first ? r2 : r3; 1262 Register rhs_mantissa = exp_first ? r1 : r0; 1263 Register lhs_mantissa = exp_first ? r3 : r2; 1264 1265 // r0, r1, r2, r3 have the two doubles. Neither is a NaN. 1266 if (cond == eq) { 1267 // Doubles are not equal unless they have the same bit pattern. 1268 // Exception: 0 and -0. 1269 __ cmp(rhs_mantissa, Operand(lhs_mantissa)); 1270 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); 1271 // Return non-zero if the numbers are unequal. 1272 __ Ret(ne); 1273 1274 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); 1275 // If exponents are equal then return 0. 1276 __ Ret(eq); 1277 1278 // Exponents are unequal. The only way we can return that the numbers 1279 // are equal is if one is -0 and the other is 0. We already dealt 1280 // with the case where both are -0 or both are 0. 1281 // We start by seeing if the mantissas (that are equal) or the bottom 1282 // 31 bits of the rhs exponent are non-zero. If so we return not 1283 // equal. 1284 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); 1285 __ mov(r0, Operand(r4), LeaveCC, ne); 1286 __ Ret(ne); 1287 // Now they are equal if and only if the lhs exponent is zero in its 1288 // low 31 bits. 1289 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); 1290 __ Ret(); 1291 } else { 1292 // Call a native function to do a comparison between two non-NaNs. 1293 // Call C routine that may not cause GC or other trouble. 1294 __ push(lr); 1295 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. 1296 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4); 1297 __ pop(pc); // Return. 1298 } 1299} 1300 1301 1302// See comment at call site. 1303static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, 1304 Register lhs, 1305 Register rhs) { 1306 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1307 (lhs.is(r1) && rhs.is(r0))); 1308 1309 // If either operand is a JSObject or an oddball value, then they are 1310 // not equal since their pointers are different. 1311 // There is no test for undetectability in strict equality. 1312 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); 1313 Label first_non_object; 1314 // Get the type of the first operand into r2 and compare it with 1315 // FIRST_JS_OBJECT_TYPE. 1316 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE); 1317 __ b(lt, &first_non_object); 1318 1319 // Return non-zero (r0 is not zero) 1320 Label return_not_equal; 1321 __ bind(&return_not_equal); 1322 __ Ret(); 1323 1324 __ bind(&first_non_object); 1325 // Check for oddballs: true, false, null, undefined. 1326 __ cmp(r2, Operand(ODDBALL_TYPE)); 1327 __ b(eq, &return_not_equal); 1328 1329 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE); 1330 __ b(ge, &return_not_equal); 1331 1332 // Check for oddballs: true, false, null, undefined. 1333 __ cmp(r3, Operand(ODDBALL_TYPE)); 1334 __ b(eq, &return_not_equal); 1335 1336 // Now that we have the types we might as well check for symbol-symbol. 1337 // Ensure that no non-strings have the symbol bit set. 1338 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); 1339 STATIC_ASSERT(kSymbolTag != 0); 1340 __ and_(r2, r2, Operand(r3)); 1341 __ tst(r2, Operand(kIsSymbolMask)); 1342 __ b(ne, &return_not_equal); 1343} 1344 1345 1346// See comment at call site. 1347static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, 1348 Register lhs, 1349 Register rhs, 1350 Label* both_loaded_as_doubles, 1351 Label* not_heap_numbers, 1352 Label* slow) { 1353 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1354 (lhs.is(r1) && rhs.is(r0))); 1355 1356 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); 1357 __ b(ne, not_heap_numbers); 1358 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); 1359 __ cmp(r2, r3); 1360 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. 1361 1362 // Both are heap numbers. Load them up then jump to the code we have 1363 // for that. 1364 if (CpuFeatures::IsSupported(VFP3)) { 1365 CpuFeatures::Scope scope(VFP3); 1366 __ sub(r7, rhs, Operand(kHeapObjectTag)); 1367 __ vldr(d6, r7, HeapNumber::kValueOffset); 1368 __ sub(r7, lhs, Operand(kHeapObjectTag)); 1369 __ vldr(d7, r7, HeapNumber::kValueOffset); 1370 } else { 1371 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); 1372 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); 1373 } 1374 __ jmp(both_loaded_as_doubles); 1375} 1376 1377 1378// Fast negative check for symbol-to-symbol equality. 1379static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, 1380 Register lhs, 1381 Register rhs, 1382 Label* possible_strings, 1383 Label* not_both_strings) { 1384 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1385 (lhs.is(r1) && rhs.is(r0))); 1386 1387 // r2 is object type of rhs. 1388 // Ensure that no non-strings have the symbol bit set. 1389 Label object_test; 1390 STATIC_ASSERT(kSymbolTag != 0); 1391 __ tst(r2, Operand(kIsNotStringMask)); 1392 __ b(ne, &object_test); 1393 __ tst(r2, Operand(kIsSymbolMask)); 1394 __ b(eq, possible_strings); 1395 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); 1396 __ b(ge, not_both_strings); 1397 __ tst(r3, Operand(kIsSymbolMask)); 1398 __ b(eq, possible_strings); 1399 1400 // Both are symbols. We already checked they weren't the same pointer 1401 // so they are not equal. 1402 __ mov(r0, Operand(NOT_EQUAL)); 1403 __ Ret(); 1404 1405 __ bind(&object_test); 1406 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); 1407 __ b(lt, not_both_strings); 1408 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE); 1409 __ b(lt, not_both_strings); 1410 // If both objects are undetectable, they are equal. Otherwise, they 1411 // are not equal, since they are different objects and an object is not 1412 // equal to undefined. 1413 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); 1414 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); 1415 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); 1416 __ and_(r0, r2, Operand(r3)); 1417 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); 1418 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); 1419 __ Ret(); 1420} 1421 1422 1423void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, 1424 Register object, 1425 Register result, 1426 Register scratch1, 1427 Register scratch2, 1428 Register scratch3, 1429 bool object_is_smi, 1430 Label* not_found) { 1431 // Use of registers. Register result is used as a temporary. 1432 Register number_string_cache = result; 1433 Register mask = scratch3; 1434 1435 // Load the number string cache. 1436 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); 1437 1438 // Make the hash mask from the length of the number string cache. It 1439 // contains two elements (number and string) for each cache entry. 1440 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); 1441 // Divide length by two (length is a smi). 1442 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); 1443 __ sub(mask, mask, Operand(1)); // Make mask. 1444 1445 // Calculate the entry in the number string cache. The hash value in the 1446 // number string cache for smis is just the smi value, and the hash for 1447 // doubles is the xor of the upper and lower words. See 1448 // Heap::GetNumberStringCache. 1449 Isolate* isolate = masm->isolate(); 1450 Label is_smi; 1451 Label load_result_from_cache; 1452 if (!object_is_smi) { 1453 __ JumpIfSmi(object, &is_smi); 1454 if (CpuFeatures::IsSupported(VFP3)) { 1455 CpuFeatures::Scope scope(VFP3); 1456 __ CheckMap(object, 1457 scratch1, 1458 Heap::kHeapNumberMapRootIndex, 1459 not_found, 1460 true); 1461 1462 STATIC_ASSERT(8 == kDoubleSize); 1463 __ add(scratch1, 1464 object, 1465 Operand(HeapNumber::kValueOffset - kHeapObjectTag)); 1466 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); 1467 __ eor(scratch1, scratch1, Operand(scratch2)); 1468 __ and_(scratch1, scratch1, Operand(mask)); 1469 1470 // Calculate address of entry in string cache: each entry consists 1471 // of two pointer sized fields. 1472 __ add(scratch1, 1473 number_string_cache, 1474 Operand(scratch1, LSL, kPointerSizeLog2 + 1)); 1475 1476 Register probe = mask; 1477 __ ldr(probe, 1478 FieldMemOperand(scratch1, FixedArray::kHeaderSize)); 1479 __ JumpIfSmi(probe, not_found); 1480 __ sub(scratch2, object, Operand(kHeapObjectTag)); 1481 __ vldr(d0, scratch2, HeapNumber::kValueOffset); 1482 __ sub(probe, probe, Operand(kHeapObjectTag)); 1483 __ vldr(d1, probe, HeapNumber::kValueOffset); 1484 __ VFPCompareAndSetFlags(d0, d1); 1485 __ b(ne, not_found); // The cache did not contain this value. 1486 __ b(&load_result_from_cache); 1487 } else { 1488 __ b(not_found); 1489 } 1490 } 1491 1492 __ bind(&is_smi); 1493 Register scratch = scratch1; 1494 __ and_(scratch, mask, Operand(object, ASR, 1)); 1495 // Calculate address of entry in string cache: each entry consists 1496 // of two pointer sized fields. 1497 __ add(scratch, 1498 number_string_cache, 1499 Operand(scratch, LSL, kPointerSizeLog2 + 1)); 1500 1501 // Check if the entry is the smi we are looking for. 1502 Register probe = mask; 1503 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 1504 __ cmp(object, probe); 1505 __ b(ne, not_found); 1506 1507 // Get the result from the cache. 1508 __ bind(&load_result_from_cache); 1509 __ ldr(result, 1510 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); 1511 __ IncrementCounter(isolate->counters()->number_to_string_native(), 1512 1, 1513 scratch1, 1514 scratch2); 1515} 1516 1517 1518void NumberToStringStub::Generate(MacroAssembler* masm) { 1519 Label runtime; 1520 1521 __ ldr(r1, MemOperand(sp, 0)); 1522 1523 // Generate code to lookup number in the number string cache. 1524 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); 1525 __ add(sp, sp, Operand(1 * kPointerSize)); 1526 __ Ret(); 1527 1528 __ bind(&runtime); 1529 // Handle number to string in the runtime system if not found in the cache. 1530 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); 1531} 1532 1533 1534// On entry lhs_ and rhs_ are the values to be compared. 1535// On exit r0 is 0, positive or negative to indicate the result of 1536// the comparison. 1537void CompareStub::Generate(MacroAssembler* masm) { 1538 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 1539 (lhs_.is(r1) && rhs_.is(r0))); 1540 1541 Label slow; // Call builtin. 1542 Label not_smis, both_loaded_as_doubles, lhs_not_nan; 1543 1544 if (include_smi_compare_) { 1545 Label not_two_smis, smi_done; 1546 __ orr(r2, r1, r0); 1547 __ tst(r2, Operand(kSmiTagMask)); 1548 __ b(ne, ¬_two_smis); 1549 __ mov(r1, Operand(r1, ASR, 1)); 1550 __ sub(r0, r1, Operand(r0, ASR, 1)); 1551 __ Ret(); 1552 __ bind(¬_two_smis); 1553 } else if (FLAG_debug_code) { 1554 __ orr(r2, r1, r0); 1555 __ tst(r2, Operand(kSmiTagMask)); 1556 __ Assert(ne, "CompareStub: unexpected smi operands."); 1557 } 1558 1559 // NOTICE! This code is only reached after a smi-fast-case check, so 1560 // it is certain that at least one operand isn't a smi. 1561 1562 // Handle the case where the objects are identical. Either returns the answer 1563 // or goes to slow. Only falls through if the objects were not identical. 1564 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); 1565 1566 // If either is a Smi (we know that not both are), then they can only 1567 // be strictly equal if the other is a HeapNumber. 1568 STATIC_ASSERT(kSmiTag == 0); 1569 ASSERT_EQ(0, Smi::FromInt(0)); 1570 __ and_(r2, lhs_, Operand(rhs_)); 1571 __ tst(r2, Operand(kSmiTagMask)); 1572 __ b(ne, ¬_smis); 1573 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: 1574 // 1) Return the answer. 1575 // 2) Go to slow. 1576 // 3) Fall through to both_loaded_as_doubles. 1577 // 4) Jump to lhs_not_nan. 1578 // In cases 3 and 4 we have found out we were dealing with a number-number 1579 // comparison. If VFP3 is supported the double values of the numbers have 1580 // been loaded into d7 and d6. Otherwise, the double values have been loaded 1581 // into r0, r1, r2, and r3. 1582 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_); 1583 1584 __ bind(&both_loaded_as_doubles); 1585 // The arguments have been converted to doubles and stored in d6 and d7, if 1586 // VFP3 is supported, or in r0, r1, r2, and r3. 1587 Isolate* isolate = masm->isolate(); 1588 if (CpuFeatures::IsSupported(VFP3)) { 1589 __ bind(&lhs_not_nan); 1590 CpuFeatures::Scope scope(VFP3); 1591 Label no_nan; 1592 // ARMv7 VFP3 instructions to implement double precision comparison. 1593 __ VFPCompareAndSetFlags(d7, d6); 1594 Label nan; 1595 __ b(vs, &nan); 1596 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 1597 __ mov(r0, Operand(LESS), LeaveCC, lt); 1598 __ mov(r0, Operand(GREATER), LeaveCC, gt); 1599 __ Ret(); 1600 1601 __ bind(&nan); 1602 // If one of the sides was a NaN then the v flag is set. Load r0 with 1603 // whatever it takes to make the comparison fail, since comparisons with NaN 1604 // always fail. 1605 if (cc_ == lt || cc_ == le) { 1606 __ mov(r0, Operand(GREATER)); 1607 } else { 1608 __ mov(r0, Operand(LESS)); 1609 } 1610 __ Ret(); 1611 } else { 1612 // Checks for NaN in the doubles we have loaded. Can return the answer or 1613 // fall through if neither is a NaN. Also binds lhs_not_nan. 1614 EmitNanCheck(masm, &lhs_not_nan, cc_); 1615 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the 1616 // answer. Never falls through. 1617 EmitTwoNonNanDoubleComparison(masm, cc_); 1618 } 1619 1620 __ bind(¬_smis); 1621 // At this point we know we are dealing with two different objects, 1622 // and neither of them is a Smi. The objects are in rhs_ and lhs_. 1623 if (strict_) { 1624 // This returns non-equal for some object types, or falls through if it 1625 // was not lucky. 1626 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); 1627 } 1628 1629 Label check_for_symbols; 1630 Label flat_string_check; 1631 // Check for heap-number-heap-number comparison. Can jump to slow case, 1632 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles 1633 // that case. If the inputs are not doubles then jumps to check_for_symbols. 1634 // In this case r2 will contain the type of rhs_. Never falls through. 1635 EmitCheckForTwoHeapNumbers(masm, 1636 lhs_, 1637 rhs_, 1638 &both_loaded_as_doubles, 1639 &check_for_symbols, 1640 &flat_string_check); 1641 1642 __ bind(&check_for_symbols); 1643 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of 1644 // symbols. 1645 if (cc_ == eq && !strict_) { 1646 // Returns an answer for two symbols or two detectable objects. 1647 // Otherwise jumps to string case or not both strings case. 1648 // Assumes that r2 is the type of rhs_ on entry. 1649 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); 1650 } 1651 1652 // Check for both being sequential ASCII strings, and inline if that is the 1653 // case. 1654 __ bind(&flat_string_check); 1655 1656 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow); 1657 1658 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3); 1659 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, 1660 lhs_, 1661 rhs_, 1662 r2, 1663 r3, 1664 r4, 1665 r5); 1666 // Never falls through to here. 1667 1668 __ bind(&slow); 1669 1670 __ Push(lhs_, rhs_); 1671 // Figure out which native to call and setup the arguments. 1672 Builtins::JavaScript native; 1673 if (cc_ == eq) { 1674 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; 1675 } else { 1676 native = Builtins::COMPARE; 1677 int ncr; // NaN compare result 1678 if (cc_ == lt || cc_ == le) { 1679 ncr = GREATER; 1680 } else { 1681 ASSERT(cc_ == gt || cc_ == ge); // remaining cases 1682 ncr = LESS; 1683 } 1684 __ mov(r0, Operand(Smi::FromInt(ncr))); 1685 __ push(r0); 1686 } 1687 1688 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) 1689 // tagged as a small integer. 1690 __ InvokeBuiltin(native, JUMP_JS); 1691} 1692 1693 1694// This stub does not handle the inlined cases (Smis, Booleans, undefined). 1695// The stub returns zero for false, and a non-zero value for true. 1696void ToBooleanStub::Generate(MacroAssembler* masm) { 1697 // This stub uses VFP3 instructions. 1698 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1699 1700 Label false_result; 1701 Label not_heap_number; 1702 Register scratch = r9.is(tos_) ? r7 : r9; 1703 1704 __ LoadRoot(ip, Heap::kNullValueRootIndex); 1705 __ cmp(tos_, ip); 1706 __ b(eq, &false_result); 1707 1708 // HeapNumber => false iff +0, -0, or NaN. 1709 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1710 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 1711 __ cmp(scratch, ip); 1712 __ b(¬_heap_number, ne); 1713 1714 __ sub(ip, tos_, Operand(kHeapObjectTag)); 1715 __ vldr(d1, ip, HeapNumber::kValueOffset); 1716 __ VFPCompareAndSetFlags(d1, 0.0); 1717 // "tos_" is a register, and contains a non zero value by default. 1718 // Hence we only need to overwrite "tos_" with zero to return false for 1719 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. 1720 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO 1721 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN 1722 __ Ret(); 1723 1724 __ bind(¬_heap_number); 1725 1726 // Check if the value is 'null'. 1727 // 'null' => false. 1728 __ LoadRoot(ip, Heap::kNullValueRootIndex); 1729 __ cmp(tos_, ip); 1730 __ b(&false_result, eq); 1731 1732 // It can be an undetectable object. 1733 // Undetectable => false. 1734 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1735 __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset)); 1736 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); 1737 __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); 1738 __ b(&false_result, eq); 1739 1740 // JavaScript object => true. 1741 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1742 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 1743 __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE)); 1744 // "tos_" is a register and contains a non-zero value. 1745 // Hence we implicitly return true if the greater than 1746 // condition is satisfied. 1747 __ Ret(gt); 1748 1749 // Check for string 1750 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1751 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 1752 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); 1753 // "tos_" is a register and contains a non-zero value. 1754 // Hence we implicitly return true if the greater than 1755 // condition is satisfied. 1756 __ Ret(gt); 1757 1758 // String value => false iff empty, i.e., length is zero 1759 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset)); 1760 // If length is zero, "tos_" contains zero ==> false. 1761 // If length is not zero, "tos_" contains a non-zero value ==> true. 1762 __ Ret(); 1763 1764 // Return 0 in "tos_" for false . 1765 __ bind(&false_result); 1766 __ mov(tos_, Operand(0, RelocInfo::NONE)); 1767 __ Ret(); 1768} 1769 1770 1771Handle<Code> GetTypeRecordingBinaryOpStub(int key, 1772 TRBinaryOpIC::TypeInfo type_info, 1773 TRBinaryOpIC::TypeInfo result_type_info) { 1774 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); 1775 return stub.GetCode(); 1776} 1777 1778 1779void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { 1780 Label get_result; 1781 1782 __ Push(r1, r0); 1783 1784 __ mov(r2, Operand(Smi::FromInt(MinorKey()))); 1785 __ mov(r1, Operand(Smi::FromInt(op_))); 1786 __ mov(r0, Operand(Smi::FromInt(operands_type_))); 1787 __ Push(r2, r1, r0); 1788 1789 __ TailCallExternalReference( 1790 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch), 1791 masm->isolate()), 1792 5, 1793 1); 1794} 1795 1796 1797void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( 1798 MacroAssembler* masm) { 1799 UNIMPLEMENTED(); 1800} 1801 1802 1803void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { 1804 switch (operands_type_) { 1805 case TRBinaryOpIC::UNINITIALIZED: 1806 GenerateTypeTransition(masm); 1807 break; 1808 case TRBinaryOpIC::SMI: 1809 GenerateSmiStub(masm); 1810 break; 1811 case TRBinaryOpIC::INT32: 1812 GenerateInt32Stub(masm); 1813 break; 1814 case TRBinaryOpIC::HEAP_NUMBER: 1815 GenerateHeapNumberStub(masm); 1816 break; 1817 case TRBinaryOpIC::ODDBALL: 1818 GenerateOddballStub(masm); 1819 break; 1820 case TRBinaryOpIC::STRING: 1821 GenerateStringStub(masm); 1822 break; 1823 case TRBinaryOpIC::GENERIC: 1824 GenerateGeneric(masm); 1825 break; 1826 default: 1827 UNREACHABLE(); 1828 } 1829} 1830 1831 1832const char* TypeRecordingBinaryOpStub::GetName() { 1833 if (name_ != NULL) return name_; 1834 const int kMaxNameLength = 100; 1835 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 1836 kMaxNameLength); 1837 if (name_ == NULL) return "OOM"; 1838 const char* op_name = Token::Name(op_); 1839 const char* overwrite_name; 1840 switch (mode_) { 1841 case NO_OVERWRITE: overwrite_name = "Alloc"; break; 1842 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; 1843 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; 1844 default: overwrite_name = "UnknownOverwrite"; break; 1845 } 1846 1847 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 1848 "TypeRecordingBinaryOpStub_%s_%s_%s", 1849 op_name, 1850 overwrite_name, 1851 TRBinaryOpIC::GetName(operands_type_)); 1852 return name_; 1853} 1854 1855 1856void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation( 1857 MacroAssembler* masm) { 1858 Register left = r1; 1859 Register right = r0; 1860 Register scratch1 = r7; 1861 Register scratch2 = r9; 1862 1863 ASSERT(right.is(r0)); 1864 STATIC_ASSERT(kSmiTag == 0); 1865 1866 Label not_smi_result; 1867 switch (op_) { 1868 case Token::ADD: 1869 __ add(right, left, Operand(right), SetCC); // Add optimistically. 1870 __ Ret(vc); 1871 __ sub(right, right, Operand(left)); // Revert optimistic add. 1872 break; 1873 case Token::SUB: 1874 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically. 1875 __ Ret(vc); 1876 __ sub(right, left, Operand(right)); // Revert optimistic subtract. 1877 break; 1878 case Token::MUL: 1879 // Remove tag from one of the operands. This way the multiplication result 1880 // will be a smi if it fits the smi range. 1881 __ SmiUntag(ip, right); 1882 // Do multiplication 1883 // scratch1 = lower 32 bits of ip * left. 1884 // scratch2 = higher 32 bits of ip * left. 1885 __ smull(scratch1, scratch2, left, ip); 1886 // Check for overflowing the smi range - no overflow if higher 33 bits of 1887 // the result are identical. 1888 __ mov(ip, Operand(scratch1, ASR, 31)); 1889 __ cmp(ip, Operand(scratch2)); 1890 __ b(ne, ¬_smi_result); 1891 // Go slow on zero result to handle -0. 1892 __ tst(scratch1, Operand(scratch1)); 1893 __ mov(right, Operand(scratch1), LeaveCC, ne); 1894 __ Ret(ne); 1895 // We need -0 if we were multiplying a negative number with 0 to get 0. 1896 // We know one of them was zero. 1897 __ add(scratch2, right, Operand(left), SetCC); 1898 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); 1899 __ Ret(pl); // Return smi 0 if the non-zero one was positive. 1900 // We fall through here if we multiplied a negative number with 0, because 1901 // that would mean we should produce -0. 1902 break; 1903 case Token::DIV: 1904 // Check for power of two on the right hand side. 1905 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); 1906 // Check for positive and no remainder (scratch1 contains right - 1). 1907 __ orr(scratch2, scratch1, Operand(0x80000000u)); 1908 __ tst(left, scratch2); 1909 __ b(ne, ¬_smi_result); 1910 1911 // Perform division by shifting. 1912 __ CountLeadingZeros(scratch1, scratch1, scratch2); 1913 __ rsb(scratch1, scratch1, Operand(31)); 1914 __ mov(right, Operand(left, LSR, scratch1)); 1915 __ Ret(); 1916 break; 1917 case Token::MOD: 1918 // Check for two positive smis. 1919 __ orr(scratch1, left, Operand(right)); 1920 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask)); 1921 __ b(ne, ¬_smi_result); 1922 1923 // Check for power of two on the right hand side. 1924 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); 1925 1926 // Perform modulus by masking. 1927 __ and_(right, left, Operand(scratch1)); 1928 __ Ret(); 1929 break; 1930 case Token::BIT_OR: 1931 __ orr(right, left, Operand(right)); 1932 __ Ret(); 1933 break; 1934 case Token::BIT_AND: 1935 __ and_(right, left, Operand(right)); 1936 __ Ret(); 1937 break; 1938 case Token::BIT_XOR: 1939 __ eor(right, left, Operand(right)); 1940 __ Ret(); 1941 break; 1942 case Token::SAR: 1943 // Remove tags from right operand. 1944 __ GetLeastBitsFromSmi(scratch1, right, 5); 1945 __ mov(right, Operand(left, ASR, scratch1)); 1946 // Smi tag result. 1947 __ bic(right, right, Operand(kSmiTagMask)); 1948 __ Ret(); 1949 break; 1950 case Token::SHR: 1951 // Remove tags from operands. We can't do this on a 31 bit number 1952 // because then the 0s get shifted into bit 30 instead of bit 31. 1953 __ SmiUntag(scratch1, left); 1954 __ GetLeastBitsFromSmi(scratch2, right, 5); 1955 __ mov(scratch1, Operand(scratch1, LSR, scratch2)); 1956 // Unsigned shift is not allowed to produce a negative number, so 1957 // check the sign bit and the sign bit after Smi tagging. 1958 __ tst(scratch1, Operand(0xc0000000)); 1959 __ b(ne, ¬_smi_result); 1960 // Smi tag result. 1961 __ SmiTag(right, scratch1); 1962 __ Ret(); 1963 break; 1964 case Token::SHL: 1965 // Remove tags from operands. 1966 __ SmiUntag(scratch1, left); 1967 __ GetLeastBitsFromSmi(scratch2, right, 5); 1968 __ mov(scratch1, Operand(scratch1, LSL, scratch2)); 1969 // Check that the signed result fits in a Smi. 1970 __ add(scratch2, scratch1, Operand(0x40000000), SetCC); 1971 __ b(mi, ¬_smi_result); 1972 __ SmiTag(right, scratch1); 1973 __ Ret(); 1974 break; 1975 default: 1976 UNREACHABLE(); 1977 } 1978 __ bind(¬_smi_result); 1979} 1980 1981 1982void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm, 1983 bool smi_operands, 1984 Label* not_numbers, 1985 Label* gc_required) { 1986 Register left = r1; 1987 Register right = r0; 1988 Register scratch1 = r7; 1989 Register scratch2 = r9; 1990 Register scratch3 = r4; 1991 1992 ASSERT(smi_operands || (not_numbers != NULL)); 1993 if (smi_operands && FLAG_debug_code) { 1994 __ AbortIfNotSmi(left); 1995 __ AbortIfNotSmi(right); 1996 } 1997 1998 Register heap_number_map = r6; 1999 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2000 2001 switch (op_) { 2002 case Token::ADD: 2003 case Token::SUB: 2004 case Token::MUL: 2005 case Token::DIV: 2006 case Token::MOD: { 2007 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3 2008 // depending on whether VFP3 is available or not. 2009 FloatingPointHelper::Destination destination = 2010 CpuFeatures::IsSupported(VFP3) && 2011 op_ != Token::MOD ? 2012 FloatingPointHelper::kVFPRegisters : 2013 FloatingPointHelper::kCoreRegisters; 2014 2015 // Allocate new heap number for result. 2016 Register result = r5; 2017 GenerateHeapResultAllocation( 2018 masm, result, heap_number_map, scratch1, scratch2, gc_required); 2019 2020 // Load the operands. 2021 if (smi_operands) { 2022 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); 2023 } else { 2024 FloatingPointHelper::LoadOperands(masm, 2025 destination, 2026 heap_number_map, 2027 scratch1, 2028 scratch2, 2029 not_numbers); 2030 } 2031 2032 // Calculate the result. 2033 if (destination == FloatingPointHelper::kVFPRegisters) { 2034 // Using VFP registers: 2035 // d6: Left value 2036 // d7: Right value 2037 CpuFeatures::Scope scope(VFP3); 2038 switch (op_) { 2039 case Token::ADD: 2040 __ vadd(d5, d6, d7); 2041 break; 2042 case Token::SUB: 2043 __ vsub(d5, d6, d7); 2044 break; 2045 case Token::MUL: 2046 __ vmul(d5, d6, d7); 2047 break; 2048 case Token::DIV: 2049 __ vdiv(d5, d6, d7); 2050 break; 2051 default: 2052 UNREACHABLE(); 2053 } 2054 2055 __ sub(r0, result, Operand(kHeapObjectTag)); 2056 __ vstr(d5, r0, HeapNumber::kValueOffset); 2057 __ add(r0, r0, Operand(kHeapObjectTag)); 2058 __ Ret(); 2059 } else { 2060 // Call the C function to handle the double operation. 2061 FloatingPointHelper::CallCCodeForDoubleOperation(masm, 2062 op_, 2063 result, 2064 scratch1); 2065 if (FLAG_debug_code) { 2066 __ stop("Unreachable code."); 2067 } 2068 } 2069 break; 2070 } 2071 case Token::BIT_OR: 2072 case Token::BIT_XOR: 2073 case Token::BIT_AND: 2074 case Token::SAR: 2075 case Token::SHR: 2076 case Token::SHL: { 2077 if (smi_operands) { 2078 __ SmiUntag(r3, left); 2079 __ SmiUntag(r2, right); 2080 } else { 2081 // Convert operands to 32-bit integers. Right in r2 and left in r3. 2082 FloatingPointHelper::ConvertNumberToInt32(masm, 2083 left, 2084 r3, 2085 heap_number_map, 2086 scratch1, 2087 scratch2, 2088 scratch3, 2089 d0, 2090 not_numbers); 2091 FloatingPointHelper::ConvertNumberToInt32(masm, 2092 right, 2093 r2, 2094 heap_number_map, 2095 scratch1, 2096 scratch2, 2097 scratch3, 2098 d0, 2099 not_numbers); 2100 } 2101 2102 Label result_not_a_smi; 2103 switch (op_) { 2104 case Token::BIT_OR: 2105 __ orr(r2, r3, Operand(r2)); 2106 break; 2107 case Token::BIT_XOR: 2108 __ eor(r2, r3, Operand(r2)); 2109 break; 2110 case Token::BIT_AND: 2111 __ and_(r2, r3, Operand(r2)); 2112 break; 2113 case Token::SAR: 2114 // Use only the 5 least significant bits of the shift count. 2115 __ GetLeastBitsFromInt32(r2, r2, 5); 2116 __ mov(r2, Operand(r3, ASR, r2)); 2117 break; 2118 case Token::SHR: 2119 // Use only the 5 least significant bits of the shift count. 2120 __ GetLeastBitsFromInt32(r2, r2, 5); 2121 __ mov(r2, Operand(r3, LSR, r2), SetCC); 2122 // SHR is special because it is required to produce a positive answer. 2123 // The code below for writing into heap numbers isn't capable of 2124 // writing the register as an unsigned int so we go to slow case if we 2125 // hit this case. 2126 if (CpuFeatures::IsSupported(VFP3)) { 2127 __ b(mi, &result_not_a_smi); 2128 } else { 2129 __ b(mi, not_numbers); 2130 } 2131 break; 2132 case Token::SHL: 2133 // Use only the 5 least significant bits of the shift count. 2134 __ GetLeastBitsFromInt32(r2, r2, 5); 2135 __ mov(r2, Operand(r3, LSL, r2)); 2136 break; 2137 default: 2138 UNREACHABLE(); 2139 } 2140 2141 // Check that the *signed* result fits in a smi. 2142 __ add(r3, r2, Operand(0x40000000), SetCC); 2143 __ b(mi, &result_not_a_smi); 2144 __ SmiTag(r0, r2); 2145 __ Ret(); 2146 2147 // Allocate new heap number for result. 2148 __ bind(&result_not_a_smi); 2149 Register result = r5; 2150 if (smi_operands) { 2151 __ AllocateHeapNumber( 2152 result, scratch1, scratch2, heap_number_map, gc_required); 2153 } else { 2154 GenerateHeapResultAllocation( 2155 masm, result, heap_number_map, scratch1, scratch2, gc_required); 2156 } 2157 2158 // r2: Answer as signed int32. 2159 // r5: Heap number to write answer into. 2160 2161 // Nothing can go wrong now, so move the heap number to r0, which is the 2162 // result. 2163 __ mov(r0, Operand(r5)); 2164 2165 if (CpuFeatures::IsSupported(VFP3)) { 2166 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As 2167 // mentioned above SHR needs to always produce a positive result. 2168 CpuFeatures::Scope scope(VFP3); 2169 __ vmov(s0, r2); 2170 if (op_ == Token::SHR) { 2171 __ vcvt_f64_u32(d0, s0); 2172 } else { 2173 __ vcvt_f64_s32(d0, s0); 2174 } 2175 __ sub(r3, r0, Operand(kHeapObjectTag)); 2176 __ vstr(d0, r3, HeapNumber::kValueOffset); 2177 __ Ret(); 2178 } else { 2179 // Tail call that writes the int32 in r2 to the heap number in r0, using 2180 // r3 as scratch. r0 is preserved and returned. 2181 WriteInt32ToHeapNumberStub stub(r2, r0, r3); 2182 __ TailCallStub(&stub); 2183 } 2184 break; 2185 } 2186 default: 2187 UNREACHABLE(); 2188 } 2189} 2190 2191 2192// Generate the smi code. If the operation on smis are successful this return is 2193// generated. If the result is not a smi and heap number allocation is not 2194// requested the code falls through. If number allocation is requested but a 2195// heap number cannot be allocated the code jumps to the lable gc_required. 2196void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, 2197 Label* use_runtime, 2198 Label* gc_required, 2199 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { 2200 Label not_smis; 2201 2202 Register left = r1; 2203 Register right = r0; 2204 Register scratch1 = r7; 2205 Register scratch2 = r9; 2206 2207 // Perform combined smi check on both operands. 2208 __ orr(scratch1, left, Operand(right)); 2209 STATIC_ASSERT(kSmiTag == 0); 2210 __ tst(scratch1, Operand(kSmiTagMask)); 2211 __ b(ne, ¬_smis); 2212 2213 // If the smi-smi operation results in a smi return is generated. 2214 GenerateSmiSmiOperation(masm); 2215 2216 // If heap number results are possible generate the result in an allocated 2217 // heap number. 2218 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { 2219 GenerateFPOperation(masm, true, use_runtime, gc_required); 2220 } 2221 __ bind(¬_smis); 2222} 2223 2224 2225void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { 2226 Label not_smis, call_runtime; 2227 2228 if (result_type_ == TRBinaryOpIC::UNINITIALIZED || 2229 result_type_ == TRBinaryOpIC::SMI) { 2230 // Only allow smi results. 2231 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); 2232 } else { 2233 // Allow heap number result and don't make a transition if a heap number 2234 // cannot be allocated. 2235 GenerateSmiCode(masm, 2236 &call_runtime, 2237 &call_runtime, 2238 ALLOW_HEAPNUMBER_RESULTS); 2239 } 2240 2241 // Code falls through if the result is not returned as either a smi or heap 2242 // number. 2243 GenerateTypeTransition(masm); 2244 2245 __ bind(&call_runtime); 2246 GenerateCallRuntime(masm); 2247} 2248 2249 2250void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { 2251 ASSERT(operands_type_ == TRBinaryOpIC::STRING); 2252 ASSERT(op_ == Token::ADD); 2253 // Try to add arguments as strings, otherwise, transition to the generic 2254 // TRBinaryOpIC type. 2255 GenerateAddStrings(masm); 2256 GenerateTypeTransition(masm); 2257} 2258 2259 2260void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { 2261 ASSERT(operands_type_ == TRBinaryOpIC::INT32); 2262 2263 Register left = r1; 2264 Register right = r0; 2265 Register scratch1 = r7; 2266 Register scratch2 = r9; 2267 DwVfpRegister double_scratch = d0; 2268 SwVfpRegister single_scratch = s3; 2269 2270 Register heap_number_result = no_reg; 2271 Register heap_number_map = r6; 2272 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2273 2274 Label call_runtime; 2275 // Labels for type transition, used for wrong input or output types. 2276 // Both label are currently actually bound to the same position. We use two 2277 // different label to differentiate the cause leading to type transition. 2278 Label transition; 2279 2280 // Smi-smi fast case. 2281 Label skip; 2282 __ orr(scratch1, left, right); 2283 __ JumpIfNotSmi(scratch1, &skip); 2284 GenerateSmiSmiOperation(masm); 2285 // Fall through if the result is not a smi. 2286 __ bind(&skip); 2287 2288 switch (op_) { 2289 case Token::ADD: 2290 case Token::SUB: 2291 case Token::MUL: 2292 case Token::DIV: 2293 case Token::MOD: { 2294 // Load both operands and check that they are 32-bit integer. 2295 // Jump to type transition if they are not. The registers r0 and r1 (right 2296 // and left) are preserved for the runtime call. 2297 FloatingPointHelper::Destination destination = 2298 CpuFeatures::IsSupported(VFP3) && 2299 op_ != Token::MOD ? 2300 FloatingPointHelper::kVFPRegisters : 2301 FloatingPointHelper::kCoreRegisters; 2302 2303 FloatingPointHelper::LoadNumberAsInt32Double(masm, 2304 right, 2305 destination, 2306 d7, 2307 r2, 2308 r3, 2309 heap_number_map, 2310 scratch1, 2311 scratch2, 2312 s0, 2313 &transition); 2314 FloatingPointHelper::LoadNumberAsInt32Double(masm, 2315 left, 2316 destination, 2317 d6, 2318 r4, 2319 r5, 2320 heap_number_map, 2321 scratch1, 2322 scratch2, 2323 s0, 2324 &transition); 2325 2326 if (destination == FloatingPointHelper::kVFPRegisters) { 2327 CpuFeatures::Scope scope(VFP3); 2328 Label return_heap_number; 2329 switch (op_) { 2330 case Token::ADD: 2331 __ vadd(d5, d6, d7); 2332 break; 2333 case Token::SUB: 2334 __ vsub(d5, d6, d7); 2335 break; 2336 case Token::MUL: 2337 __ vmul(d5, d6, d7); 2338 break; 2339 case Token::DIV: 2340 __ vdiv(d5, d6, d7); 2341 break; 2342 default: 2343 UNREACHABLE(); 2344 } 2345 2346 if (op_ != Token::DIV) { 2347 // These operations produce an integer result. 2348 // Try to return a smi if we can. 2349 // Otherwise return a heap number if allowed, or jump to type 2350 // transition. 2351 2352 __ EmitVFPTruncate(kRoundToZero, 2353 single_scratch, 2354 d5, 2355 scratch1, 2356 scratch2); 2357 2358 if (result_type_ <= TRBinaryOpIC::INT32) { 2359 // If the ne condition is set, result does 2360 // not fit in a 32-bit integer. 2361 __ b(ne, &transition); 2362 } 2363 2364 // Check if the result fits in a smi. 2365 __ vmov(scratch1, single_scratch); 2366 __ add(scratch2, scratch1, Operand(0x40000000), SetCC); 2367 // If not try to return a heap number. 2368 __ b(mi, &return_heap_number); 2369 // Check for minus zero. Return heap number for minus zero. 2370 Label not_zero; 2371 __ cmp(scratch1, Operand(0)); 2372 __ b(ne, ¬_zero); 2373 __ vmov(scratch2, d5.high()); 2374 __ tst(scratch2, Operand(HeapNumber::kSignMask)); 2375 __ b(ne, &return_heap_number); 2376 __ bind(¬_zero); 2377 2378 // Tag the result and return. 2379 __ SmiTag(r0, scratch1); 2380 __ Ret(); 2381 } else { 2382 // DIV just falls through to allocating a heap number. 2383 } 2384 2385 if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER 2386 : TRBinaryOpIC::INT32) { 2387 __ bind(&return_heap_number); 2388 // We are using vfp registers so r5 is available. 2389 heap_number_result = r5; 2390 GenerateHeapResultAllocation(masm, 2391 heap_number_result, 2392 heap_number_map, 2393 scratch1, 2394 scratch2, 2395 &call_runtime); 2396 __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); 2397 __ vstr(d5, r0, HeapNumber::kValueOffset); 2398 __ mov(r0, heap_number_result); 2399 __ Ret(); 2400 } 2401 2402 // A DIV operation expecting an integer result falls through 2403 // to type transition. 2404 2405 } else { 2406 // We preserved r0 and r1 to be able to call runtime. 2407 // Save the left value on the stack. 2408 __ Push(r5, r4); 2409 2410 Label pop_and_call_runtime; 2411 2412 // Allocate a heap number to store the result. 2413 heap_number_result = r5; 2414 GenerateHeapResultAllocation(masm, 2415 heap_number_result, 2416 heap_number_map, 2417 scratch1, 2418 scratch2, 2419 &pop_and_call_runtime); 2420 2421 // Load the left value from the value saved on the stack. 2422 __ Pop(r1, r0); 2423 2424 // Call the C function to handle the double operation. 2425 FloatingPointHelper::CallCCodeForDoubleOperation( 2426 masm, op_, heap_number_result, scratch1); 2427 if (FLAG_debug_code) { 2428 __ stop("Unreachable code."); 2429 } 2430 2431 __ bind(&pop_and_call_runtime); 2432 __ Drop(2); 2433 __ b(&call_runtime); 2434 } 2435 2436 break; 2437 } 2438 2439 case Token::BIT_OR: 2440 case Token::BIT_XOR: 2441 case Token::BIT_AND: 2442 case Token::SAR: 2443 case Token::SHR: 2444 case Token::SHL: { 2445 Label return_heap_number; 2446 Register scratch3 = r5; 2447 // Convert operands to 32-bit integers. Right in r2 and left in r3. The 2448 // registers r0 and r1 (right and left) are preserved for the runtime 2449 // call. 2450 FloatingPointHelper::LoadNumberAsInt32(masm, 2451 left, 2452 r3, 2453 heap_number_map, 2454 scratch1, 2455 scratch2, 2456 scratch3, 2457 d0, 2458 &transition); 2459 FloatingPointHelper::LoadNumberAsInt32(masm, 2460 right, 2461 r2, 2462 heap_number_map, 2463 scratch1, 2464 scratch2, 2465 scratch3, 2466 d0, 2467 &transition); 2468 2469 // The ECMA-262 standard specifies that, for shift operations, only the 2470 // 5 least significant bits of the shift value should be used. 2471 switch (op_) { 2472 case Token::BIT_OR: 2473 __ orr(r2, r3, Operand(r2)); 2474 break; 2475 case Token::BIT_XOR: 2476 __ eor(r2, r3, Operand(r2)); 2477 break; 2478 case Token::BIT_AND: 2479 __ and_(r2, r3, Operand(r2)); 2480 break; 2481 case Token::SAR: 2482 __ and_(r2, r2, Operand(0x1f)); 2483 __ mov(r2, Operand(r3, ASR, r2)); 2484 break; 2485 case Token::SHR: 2486 __ and_(r2, r2, Operand(0x1f)); 2487 __ mov(r2, Operand(r3, LSR, r2), SetCC); 2488 // SHR is special because it is required to produce a positive answer. 2489 // We only get a negative result if the shift value (r2) is 0. 2490 // This result cannot be respresented as a signed 32-bit integer, try 2491 // to return a heap number if we can. 2492 // The non vfp3 code does not support this special case, so jump to 2493 // runtime if we don't support it. 2494 if (CpuFeatures::IsSupported(VFP3)) { 2495 __ b(mi, 2496 (result_type_ <= TRBinaryOpIC::INT32) ? &transition 2497 : &return_heap_number); 2498 } else { 2499 __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition 2500 : &call_runtime); 2501 } 2502 break; 2503 case Token::SHL: 2504 __ and_(r2, r2, Operand(0x1f)); 2505 __ mov(r2, Operand(r3, LSL, r2)); 2506 break; 2507 default: 2508 UNREACHABLE(); 2509 } 2510 2511 // Check if the result fits in a smi. 2512 __ add(scratch1, r2, Operand(0x40000000), SetCC); 2513 // If not try to return a heap number. (We know the result is an int32.) 2514 __ b(mi, &return_heap_number); 2515 // Tag the result and return. 2516 __ SmiTag(r0, r2); 2517 __ Ret(); 2518 2519 __ bind(&return_heap_number); 2520 heap_number_result = r5; 2521 GenerateHeapResultAllocation(masm, 2522 heap_number_result, 2523 heap_number_map, 2524 scratch1, 2525 scratch2, 2526 &call_runtime); 2527 2528 if (CpuFeatures::IsSupported(VFP3)) { 2529 CpuFeatures::Scope scope(VFP3); 2530 if (op_ != Token::SHR) { 2531 // Convert the result to a floating point value. 2532 __ vmov(double_scratch.low(), r2); 2533 __ vcvt_f64_s32(double_scratch, double_scratch.low()); 2534 } else { 2535 // The result must be interpreted as an unsigned 32-bit integer. 2536 __ vmov(double_scratch.low(), r2); 2537 __ vcvt_f64_u32(double_scratch, double_scratch.low()); 2538 } 2539 2540 // Store the result. 2541 __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); 2542 __ vstr(double_scratch, r0, HeapNumber::kValueOffset); 2543 __ mov(r0, heap_number_result); 2544 __ Ret(); 2545 } else { 2546 // Tail call that writes the int32 in r2 to the heap number in r0, using 2547 // r3 as scratch. r0 is preserved and returned. 2548 __ mov(r0, r5); 2549 WriteInt32ToHeapNumberStub stub(r2, r0, r3); 2550 __ TailCallStub(&stub); 2551 } 2552 2553 break; 2554 } 2555 2556 default: 2557 UNREACHABLE(); 2558 } 2559 2560 if (transition.is_linked()) { 2561 __ bind(&transition); 2562 GenerateTypeTransition(masm); 2563 } 2564 2565 __ bind(&call_runtime); 2566 GenerateCallRuntime(masm); 2567} 2568 2569 2570void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { 2571 Label call_runtime; 2572 2573 if (op_ == Token::ADD) { 2574 // Handle string addition here, because it is the only operation 2575 // that does not do a ToNumber conversion on the operands. 2576 GenerateAddStrings(masm); 2577 } 2578 2579 // Convert oddball arguments to numbers. 2580 Label check, done; 2581 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); 2582 __ b(ne, &check); 2583 if (Token::IsBitOp(op_)) { 2584 __ mov(r1, Operand(Smi::FromInt(0))); 2585 } else { 2586 __ LoadRoot(r1, Heap::kNanValueRootIndex); 2587 } 2588 __ jmp(&done); 2589 __ bind(&check); 2590 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); 2591 __ b(ne, &done); 2592 if (Token::IsBitOp(op_)) { 2593 __ mov(r0, Operand(Smi::FromInt(0))); 2594 } else { 2595 __ LoadRoot(r0, Heap::kNanValueRootIndex); 2596 } 2597 __ bind(&done); 2598 2599 GenerateHeapNumberStub(masm); 2600} 2601 2602 2603void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { 2604 Label call_runtime; 2605 GenerateFPOperation(masm, false, &call_runtime, &call_runtime); 2606 2607 __ bind(&call_runtime); 2608 GenerateCallRuntime(masm); 2609} 2610 2611 2612void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { 2613 Label call_runtime, call_string_add_or_runtime; 2614 2615 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); 2616 2617 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); 2618 2619 __ bind(&call_string_add_or_runtime); 2620 if (op_ == Token::ADD) { 2621 GenerateAddStrings(masm); 2622 } 2623 2624 __ bind(&call_runtime); 2625 GenerateCallRuntime(masm); 2626} 2627 2628 2629void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { 2630 ASSERT(op_ == Token::ADD); 2631 Label left_not_string, call_runtime; 2632 2633 Register left = r1; 2634 Register right = r0; 2635 2636 // Check if left argument is a string. 2637 __ JumpIfSmi(left, &left_not_string); 2638 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); 2639 __ b(ge, &left_not_string); 2640 2641 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); 2642 GenerateRegisterArgsPush(masm); 2643 __ TailCallStub(&string_add_left_stub); 2644 2645 // Left operand is not a string, test right. 2646 __ bind(&left_not_string); 2647 __ JumpIfSmi(right, &call_runtime); 2648 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); 2649 __ b(ge, &call_runtime); 2650 2651 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); 2652 GenerateRegisterArgsPush(masm); 2653 __ TailCallStub(&string_add_right_stub); 2654 2655 // At least one argument is not a string. 2656 __ bind(&call_runtime); 2657} 2658 2659 2660void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { 2661 GenerateRegisterArgsPush(masm); 2662 switch (op_) { 2663 case Token::ADD: 2664 __ InvokeBuiltin(Builtins::ADD, JUMP_JS); 2665 break; 2666 case Token::SUB: 2667 __ InvokeBuiltin(Builtins::SUB, JUMP_JS); 2668 break; 2669 case Token::MUL: 2670 __ InvokeBuiltin(Builtins::MUL, JUMP_JS); 2671 break; 2672 case Token::DIV: 2673 __ InvokeBuiltin(Builtins::DIV, JUMP_JS); 2674 break; 2675 case Token::MOD: 2676 __ InvokeBuiltin(Builtins::MOD, JUMP_JS); 2677 break; 2678 case Token::BIT_OR: 2679 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); 2680 break; 2681 case Token::BIT_AND: 2682 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); 2683 break; 2684 case Token::BIT_XOR: 2685 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); 2686 break; 2687 case Token::SAR: 2688 __ InvokeBuiltin(Builtins::SAR, JUMP_JS); 2689 break; 2690 case Token::SHR: 2691 __ InvokeBuiltin(Builtins::SHR, JUMP_JS); 2692 break; 2693 case Token::SHL: 2694 __ InvokeBuiltin(Builtins::SHL, JUMP_JS); 2695 break; 2696 default: 2697 UNREACHABLE(); 2698 } 2699} 2700 2701 2702void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( 2703 MacroAssembler* masm, 2704 Register result, 2705 Register heap_number_map, 2706 Register scratch1, 2707 Register scratch2, 2708 Label* gc_required) { 2709 2710 // Code below will scratch result if allocation fails. To keep both arguments 2711 // intact for the runtime call result cannot be one of these. 2712 ASSERT(!result.is(r0) && !result.is(r1)); 2713 2714 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { 2715 Label skip_allocation, allocated; 2716 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0; 2717 // If the overwritable operand is already an object, we skip the 2718 // allocation of a heap number. 2719 __ JumpIfNotSmi(overwritable_operand, &skip_allocation); 2720 // Allocate a heap number for the result. 2721 __ AllocateHeapNumber( 2722 result, scratch1, scratch2, heap_number_map, gc_required); 2723 __ b(&allocated); 2724 __ bind(&skip_allocation); 2725 // Use object holding the overwritable operand for result. 2726 __ mov(result, Operand(overwritable_operand)); 2727 __ bind(&allocated); 2728 } else { 2729 ASSERT(mode_ == NO_OVERWRITE); 2730 __ AllocateHeapNumber( 2731 result, scratch1, scratch2, heap_number_map, gc_required); 2732 } 2733} 2734 2735 2736void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { 2737 __ Push(r1, r0); 2738} 2739 2740 2741void TranscendentalCacheStub::Generate(MacroAssembler* masm) { 2742 // Untagged case: double input in d2, double result goes 2743 // into d2. 2744 // Tagged case: tagged input on top of stack and in r0, 2745 // tagged result (heap number) goes into r0. 2746 2747 Label input_not_smi; 2748 Label loaded; 2749 Label calculate; 2750 Label invalid_cache; 2751 const Register scratch0 = r9; 2752 const Register scratch1 = r7; 2753 const Register cache_entry = r0; 2754 const bool tagged = (argument_type_ == TAGGED); 2755 2756 if (CpuFeatures::IsSupported(VFP3)) { 2757 CpuFeatures::Scope scope(VFP3); 2758 if (tagged) { 2759 // Argument is a number and is on stack and in r0. 2760 // Load argument and check if it is a smi. 2761 __ JumpIfNotSmi(r0, &input_not_smi); 2762 2763 // Input is a smi. Convert to double and load the low and high words 2764 // of the double into r2, r3. 2765 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); 2766 __ b(&loaded); 2767 2768 __ bind(&input_not_smi); 2769 // Check if input is a HeapNumber. 2770 __ CheckMap(r0, 2771 r1, 2772 Heap::kHeapNumberMapRootIndex, 2773 &calculate, 2774 true); 2775 // Input is a HeapNumber. Load it to a double register and store the 2776 // low and high words into r2, r3. 2777 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2778 __ vmov(r2, r3, d0); 2779 } else { 2780 // Input is untagged double in d2. Output goes to d2. 2781 __ vmov(r2, r3, d2); 2782 } 2783 __ bind(&loaded); 2784 // r2 = low 32 bits of double value 2785 // r3 = high 32 bits of double value 2786 // Compute hash (the shifts are arithmetic): 2787 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); 2788 __ eor(r1, r2, Operand(r3)); 2789 __ eor(r1, r1, Operand(r1, ASR, 16)); 2790 __ eor(r1, r1, Operand(r1, ASR, 8)); 2791 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); 2792 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); 2793 2794 // r2 = low 32 bits of double value. 2795 // r3 = high 32 bits of double value. 2796 // r1 = TranscendentalCache::hash(double value). 2797 Isolate* isolate = masm->isolate(); 2798 ExternalReference cache_array = 2799 ExternalReference::transcendental_cache_array_address(isolate); 2800 __ mov(cache_entry, Operand(cache_array)); 2801 // cache_entry points to cache array. 2802 int cache_array_index 2803 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]); 2804 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index)); 2805 // r0 points to the cache for the type type_. 2806 // If NULL, the cache hasn't been initialized yet, so go through runtime. 2807 __ cmp(cache_entry, Operand(0, RelocInfo::NONE)); 2808 __ b(eq, &invalid_cache); 2809 2810#ifdef DEBUG 2811 // Check that the layout of cache elements match expectations. 2812 { TranscendentalCache::SubCache::Element test_elem[2]; 2813 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); 2814 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); 2815 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); 2816 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); 2817 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); 2818 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. 2819 CHECK_EQ(0, elem_in0 - elem_start); 2820 CHECK_EQ(kIntSize, elem_in1 - elem_start); 2821 CHECK_EQ(2 * kIntSize, elem_out - elem_start); 2822 } 2823#endif 2824 2825 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. 2826 __ add(r1, r1, Operand(r1, LSL, 1)); 2827 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2)); 2828 // Check if cache matches: Double value is stored in uint32_t[2] array. 2829 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit()); 2830 __ cmp(r2, r4); 2831 __ b(ne, &calculate); 2832 __ cmp(r3, r5); 2833 __ b(ne, &calculate); 2834 // Cache hit. Load result, cleanup and return. 2835 if (tagged) { 2836 // Pop input value from stack and load result into r0. 2837 __ pop(); 2838 __ mov(r0, Operand(r6)); 2839 } else { 2840 // Load result into d2. 2841 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); 2842 } 2843 __ Ret(); 2844 } // if (CpuFeatures::IsSupported(VFP3)) 2845 2846 __ bind(&calculate); 2847 if (tagged) { 2848 __ bind(&invalid_cache); 2849 ExternalReference runtime_function = 2850 ExternalReference(RuntimeFunction(), masm->isolate()); 2851 __ TailCallExternalReference(runtime_function, 1, 1); 2852 } else { 2853 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE(); 2854 CpuFeatures::Scope scope(VFP3); 2855 2856 Label no_update; 2857 Label skip_cache; 2858 const Register heap_number_map = r5; 2859 2860 // Call C function to calculate the result and update the cache. 2861 // Register r0 holds precalculated cache entry address; preserve 2862 // it on the stack and pop it into register cache_entry after the 2863 // call. 2864 __ push(cache_entry); 2865 GenerateCallCFunction(masm, scratch0); 2866 __ GetCFunctionDoubleResult(d2); 2867 2868 // Try to update the cache. If we cannot allocate a 2869 // heap number, we return the result without updating. 2870 __ pop(cache_entry); 2871 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); 2872 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update); 2873 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); 2874 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit()); 2875 __ Ret(); 2876 2877 __ bind(&invalid_cache); 2878 // The cache is invalid. Call runtime which will recreate the 2879 // cache. 2880 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); 2881 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache); 2882 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2883 __ EnterInternalFrame(); 2884 __ push(r0); 2885 __ CallRuntime(RuntimeFunction(), 1); 2886 __ LeaveInternalFrame(); 2887 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2888 __ Ret(); 2889 2890 __ bind(&skip_cache); 2891 // Call C function to calculate the result and answer directly 2892 // without updating the cache. 2893 GenerateCallCFunction(masm, scratch0); 2894 __ GetCFunctionDoubleResult(d2); 2895 __ bind(&no_update); 2896 2897 // We return the value in d2 without adding it to the cache, but 2898 // we cause a scavenging GC so that future allocations will succeed. 2899 __ EnterInternalFrame(); 2900 2901 // Allocate an aligned object larger than a HeapNumber. 2902 ASSERT(4 * kPointerSize >= HeapNumber::kSize); 2903 __ mov(scratch0, Operand(4 * kPointerSize)); 2904 __ push(scratch0); 2905 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); 2906 __ LeaveInternalFrame(); 2907 __ Ret(); 2908 } 2909} 2910 2911 2912void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, 2913 Register scratch) { 2914 Isolate* isolate = masm->isolate(); 2915 2916 __ push(lr); 2917 __ PrepareCallCFunction(2, scratch); 2918 __ vmov(r0, r1, d2); 2919 switch (type_) { 2920 case TranscendentalCache::SIN: 2921 __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 2); 2922 break; 2923 case TranscendentalCache::COS: 2924 __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 2); 2925 break; 2926 case TranscendentalCache::LOG: 2927 __ CallCFunction(ExternalReference::math_log_double_function(isolate), 2); 2928 break; 2929 default: 2930 UNIMPLEMENTED(); 2931 break; 2932 } 2933 __ pop(lr); 2934} 2935 2936 2937Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { 2938 switch (type_) { 2939 // Add more cases when necessary. 2940 case TranscendentalCache::SIN: return Runtime::kMath_sin; 2941 case TranscendentalCache::COS: return Runtime::kMath_cos; 2942 case TranscendentalCache::LOG: return Runtime::kMath_log; 2943 default: 2944 UNIMPLEMENTED(); 2945 return Runtime::kAbort; 2946 } 2947} 2948 2949 2950void StackCheckStub::Generate(MacroAssembler* masm) { 2951 __ TailCallRuntime(Runtime::kStackGuard, 0, 1); 2952} 2953 2954 2955void GenericUnaryOpStub::Generate(MacroAssembler* masm) { 2956 Label slow, done; 2957 2958 Register heap_number_map = r6; 2959 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2960 2961 if (op_ == Token::SUB) { 2962 if (include_smi_code_) { 2963 // Check whether the value is a smi. 2964 Label try_float; 2965 __ tst(r0, Operand(kSmiTagMask)); 2966 __ b(ne, &try_float); 2967 2968 // Go slow case if the value of the expression is zero 2969 // to make sure that we switch between 0 and -0. 2970 if (negative_zero_ == kStrictNegativeZero) { 2971 // If we have to check for zero, then we can check for the max negative 2972 // smi while we are at it. 2973 __ bic(ip, r0, Operand(0x80000000), SetCC); 2974 __ b(eq, &slow); 2975 __ rsb(r0, r0, Operand(0, RelocInfo::NONE)); 2976 __ Ret(); 2977 } else { 2978 // The value of the expression is a smi and 0 is OK for -0. Try 2979 // optimistic subtraction '0 - value'. 2980 __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC); 2981 __ Ret(vc); 2982 // We don't have to reverse the optimistic neg since the only case 2983 // where we fall through is the minimum negative Smi, which is the case 2984 // where the neg leaves the register unchanged. 2985 __ jmp(&slow); // Go slow on max negative Smi. 2986 } 2987 __ bind(&try_float); 2988 } else if (FLAG_debug_code) { 2989 __ tst(r0, Operand(kSmiTagMask)); 2990 __ Assert(ne, "Unexpected smi operand."); 2991 } 2992 2993 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 2994 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2995 __ cmp(r1, heap_number_map); 2996 __ b(ne, &slow); 2997 // r0 is a heap number. Get a new heap number in r1. 2998 if (overwrite_ == UNARY_OVERWRITE) { 2999 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3000 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. 3001 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3002 } else { 3003 __ AllocateHeapNumber(r1, r2, r3, r6, &slow); 3004 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 3005 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3006 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); 3007 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. 3008 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); 3009 __ mov(r0, Operand(r1)); 3010 } 3011 } else if (op_ == Token::BIT_NOT) { 3012 if (include_smi_code_) { 3013 Label non_smi; 3014 __ JumpIfNotSmi(r0, &non_smi); 3015 __ mvn(r0, Operand(r0)); 3016 // Bit-clear inverted smi-tag. 3017 __ bic(r0, r0, Operand(kSmiTagMask)); 3018 __ Ret(); 3019 __ bind(&non_smi); 3020 } else if (FLAG_debug_code) { 3021 __ tst(r0, Operand(kSmiTagMask)); 3022 __ Assert(ne, "Unexpected smi operand."); 3023 } 3024 3025 // Check if the operand is a heap number. 3026 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 3027 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 3028 __ cmp(r1, heap_number_map); 3029 __ b(ne, &slow); 3030 3031 // Convert the heap number is r0 to an untagged integer in r1. 3032 __ ConvertToInt32(r0, r1, r2, r3, d0, &slow); 3033 3034 // Do the bitwise operation (move negated) and check if the result 3035 // fits in a smi. 3036 Label try_float; 3037 __ mvn(r1, Operand(r1)); 3038 __ add(r2, r1, Operand(0x40000000), SetCC); 3039 __ b(mi, &try_float); 3040 __ mov(r0, Operand(r1, LSL, kSmiTagSize)); 3041 __ b(&done); 3042 3043 __ bind(&try_float); 3044 if (!overwrite_ == UNARY_OVERWRITE) { 3045 // Allocate a fresh heap number, but don't overwrite r0 until 3046 // we're sure we can do it without going through the slow case 3047 // that needs the value in r0. 3048 __ AllocateHeapNumber(r2, r3, r4, r6, &slow); 3049 __ mov(r0, Operand(r2)); 3050 } 3051 3052 if (CpuFeatures::IsSupported(VFP3)) { 3053 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. 3054 CpuFeatures::Scope scope(VFP3); 3055 __ vmov(s0, r1); 3056 __ vcvt_f64_s32(d0, s0); 3057 __ sub(r2, r0, Operand(kHeapObjectTag)); 3058 __ vstr(d0, r2, HeapNumber::kValueOffset); 3059 } else { 3060 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not 3061 // have to set up a frame. 3062 WriteInt32ToHeapNumberStub stub(r1, r0, r2); 3063 __ push(lr); 3064 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); 3065 __ pop(lr); 3066 } 3067 } else { 3068 UNIMPLEMENTED(); 3069 } 3070 3071 __ bind(&done); 3072 __ Ret(); 3073 3074 // Handle the slow case by jumping to the JavaScript builtin. 3075 __ bind(&slow); 3076 __ push(r0); 3077 switch (op_) { 3078 case Token::SUB: 3079 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); 3080 break; 3081 case Token::BIT_NOT: 3082 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); 3083 break; 3084 default: 3085 UNREACHABLE(); 3086 } 3087} 3088 3089 3090void MathPowStub::Generate(MacroAssembler* masm) { 3091 Label call_runtime; 3092 3093 if (CpuFeatures::IsSupported(VFP3)) { 3094 CpuFeatures::Scope scope(VFP3); 3095 3096 Label base_not_smi; 3097 Label exponent_not_smi; 3098 Label convert_exponent; 3099 3100 const Register base = r0; 3101 const Register exponent = r1; 3102 const Register heapnumbermap = r5; 3103 const Register heapnumber = r6; 3104 const DoubleRegister double_base = d0; 3105 const DoubleRegister double_exponent = d1; 3106 const DoubleRegister double_result = d2; 3107 const SwVfpRegister single_scratch = s0; 3108 const Register scratch = r9; 3109 const Register scratch2 = r7; 3110 3111 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); 3112 __ ldr(base, MemOperand(sp, 1 * kPointerSize)); 3113 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); 3114 3115 // Convert base to double value and store it in d0. 3116 __ JumpIfNotSmi(base, &base_not_smi); 3117 // Base is a Smi. Untag and convert it. 3118 __ SmiUntag(base); 3119 __ vmov(single_scratch, base); 3120 __ vcvt_f64_s32(double_base, single_scratch); 3121 __ b(&convert_exponent); 3122 3123 __ bind(&base_not_smi); 3124 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); 3125 __ cmp(scratch, heapnumbermap); 3126 __ b(ne, &call_runtime); 3127 // Base is a heapnumber. Load it into double register. 3128 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); 3129 3130 __ bind(&convert_exponent); 3131 __ JumpIfNotSmi(exponent, &exponent_not_smi); 3132 __ SmiUntag(exponent); 3133 3134 // The base is in a double register and the exponent is 3135 // an untagged smi. Allocate a heap number and call a 3136 // C function for integer exponents. The register containing 3137 // the heap number is callee-saved. 3138 __ AllocateHeapNumber(heapnumber, 3139 scratch, 3140 scratch2, 3141 heapnumbermap, 3142 &call_runtime); 3143 __ push(lr); 3144 __ PrepareCallCFunction(3, scratch); 3145 __ mov(r2, exponent); 3146 __ vmov(r0, r1, double_base); 3147 __ CallCFunction( 3148 ExternalReference::power_double_int_function(masm->isolate()), 3); 3149 __ pop(lr); 3150 __ GetCFunctionDoubleResult(double_result); 3151 __ vstr(double_result, 3152 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); 3153 __ mov(r0, heapnumber); 3154 __ Ret(2 * kPointerSize); 3155 3156 __ bind(&exponent_not_smi); 3157 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); 3158 __ cmp(scratch, heapnumbermap); 3159 __ b(ne, &call_runtime); 3160 // Exponent is a heapnumber. Load it into double register. 3161 __ vldr(double_exponent, 3162 FieldMemOperand(exponent, HeapNumber::kValueOffset)); 3163 3164 // The base and the exponent are in double registers. 3165 // Allocate a heap number and call a C function for 3166 // double exponents. The register containing 3167 // the heap number is callee-saved. 3168 __ AllocateHeapNumber(heapnumber, 3169 scratch, 3170 scratch2, 3171 heapnumbermap, 3172 &call_runtime); 3173 __ push(lr); 3174 __ PrepareCallCFunction(4, scratch); 3175 __ vmov(r0, r1, double_base); 3176 __ vmov(r2, r3, double_exponent); 3177 __ CallCFunction( 3178 ExternalReference::power_double_double_function(masm->isolate()), 4); 3179 __ pop(lr); 3180 __ GetCFunctionDoubleResult(double_result); 3181 __ vstr(double_result, 3182 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); 3183 __ mov(r0, heapnumber); 3184 __ Ret(2 * kPointerSize); 3185 } 3186 3187 __ bind(&call_runtime); 3188 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); 3189} 3190 3191 3192bool CEntryStub::NeedsImmovableCode() { 3193 return true; 3194} 3195 3196 3197void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { 3198 __ Throw(r0); 3199} 3200 3201 3202void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, 3203 UncatchableExceptionType type) { 3204 __ ThrowUncatchable(type, r0); 3205} 3206 3207 3208void CEntryStub::GenerateCore(MacroAssembler* masm, 3209 Label* throw_normal_exception, 3210 Label* throw_termination_exception, 3211 Label* throw_out_of_memory_exception, 3212 bool do_gc, 3213 bool always_allocate) { 3214 // r0: result parameter for PerformGC, if any 3215 // r4: number of arguments including receiver (C callee-saved) 3216 // r5: pointer to builtin function (C callee-saved) 3217 // r6: pointer to the first argument (C callee-saved) 3218 Isolate* isolate = masm->isolate(); 3219 3220 if (do_gc) { 3221 // Passing r0. 3222 __ PrepareCallCFunction(1, r1); 3223 __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1); 3224 } 3225 3226 ExternalReference scope_depth = 3227 ExternalReference::heap_always_allocate_scope_depth(isolate); 3228 if (always_allocate) { 3229 __ mov(r0, Operand(scope_depth)); 3230 __ ldr(r1, MemOperand(r0)); 3231 __ add(r1, r1, Operand(1)); 3232 __ str(r1, MemOperand(r0)); 3233 } 3234 3235 // Call C built-in. 3236 // r0 = argc, r1 = argv 3237 __ mov(r0, Operand(r4)); 3238 __ mov(r1, Operand(r6)); 3239 3240#if defined(V8_HOST_ARCH_ARM) 3241 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 3242 int frame_alignment_mask = frame_alignment - 1; 3243 if (FLAG_debug_code) { 3244 if (frame_alignment > kPointerSize) { 3245 Label alignment_as_expected; 3246 ASSERT(IsPowerOf2(frame_alignment)); 3247 __ tst(sp, Operand(frame_alignment_mask)); 3248 __ b(eq, &alignment_as_expected); 3249 // Don't use Check here, as it will call Runtime_Abort re-entering here. 3250 __ stop("Unexpected alignment"); 3251 __ bind(&alignment_as_expected); 3252 } 3253 } 3254#endif 3255 3256 __ mov(r2, Operand(ExternalReference::isolate_address())); 3257 3258 3259 // TODO(1242173): To let the GC traverse the return address of the exit 3260 // frames, we need to know where the return address is. Right now, 3261 // we store it on the stack to be able to find it again, but we never 3262 // restore from it in case of changes, which makes it impossible to 3263 // support moving the C entry code stub. This should be fixed, but currently 3264 // this is OK because the CEntryStub gets generated so early in the V8 boot 3265 // sequence that it is not moving ever. 3266 3267 // Compute the return address in lr to return to after the jump below. Pc is 3268 // already at '+ 8' from the current instruction but return is after three 3269 // instructions so add another 4 to pc to get the return address. 3270 masm->add(lr, pc, Operand(4)); 3271 __ str(lr, MemOperand(sp, 0)); 3272 masm->Jump(r5); 3273 3274 if (always_allocate) { 3275 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 3276 // though (contain the result). 3277 __ mov(r2, Operand(scope_depth)); 3278 __ ldr(r3, MemOperand(r2)); 3279 __ sub(r3, r3, Operand(1)); 3280 __ str(r3, MemOperand(r2)); 3281 } 3282 3283 // check for failure result 3284 Label failure_returned; 3285 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); 3286 // Lower 2 bits of r2 are 0 iff r0 has failure tag. 3287 __ add(r2, r0, Operand(1)); 3288 __ tst(r2, Operand(kFailureTagMask)); 3289 __ b(eq, &failure_returned); 3290 3291 // Exit C frame and return. 3292 // r0:r1: result 3293 // sp: stack pointer 3294 // fp: frame pointer 3295 // Callee-saved register r4 still holds argc. 3296 __ LeaveExitFrame(save_doubles_, r4); 3297 __ mov(pc, lr); 3298 3299 // check if we should retry or throw exception 3300 Label retry; 3301 __ bind(&failure_returned); 3302 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); 3303 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); 3304 __ b(eq, &retry); 3305 3306 // Special handling of out of memory exceptions. 3307 Failure* out_of_memory = Failure::OutOfMemoryException(); 3308 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); 3309 __ b(eq, throw_out_of_memory_exception); 3310 3311 // Retrieve the pending exception and clear the variable. 3312 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); 3313 __ ldr(r3, MemOperand(ip)); 3314 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3315 isolate))); 3316 __ ldr(r0, MemOperand(ip)); 3317 __ str(r3, MemOperand(ip)); 3318 3319 // Special handling of termination exceptions which are uncatchable 3320 // by javascript code. 3321 __ cmp(r0, Operand(isolate->factory()->termination_exception())); 3322 __ b(eq, throw_termination_exception); 3323 3324 // Handle normal exception. 3325 __ jmp(throw_normal_exception); 3326 3327 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying 3328} 3329 3330 3331void CEntryStub::Generate(MacroAssembler* masm) { 3332 // Called from JavaScript; parameters are on stack as if calling JS function 3333 // r0: number of arguments including receiver 3334 // r1: pointer to builtin function 3335 // fp: frame pointer (restored after C call) 3336 // sp: stack pointer (restored as callee's sp after C call) 3337 // cp: current context (C callee-saved) 3338 3339 // Result returned in r0 or r0+r1 by default. 3340 3341 // NOTE: Invocations of builtins may return failure objects 3342 // instead of a proper result. The builtin entry handles 3343 // this by performing a garbage collection and retrying the 3344 // builtin once. 3345 3346 // Compute the argv pointer in a callee-saved register. 3347 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); 3348 __ sub(r6, r6, Operand(kPointerSize)); 3349 3350 // Enter the exit frame that transitions from JavaScript to C++. 3351 __ EnterExitFrame(save_doubles_); 3352 3353 // Setup argc and the builtin function in callee-saved registers. 3354 __ mov(r4, Operand(r0)); 3355 __ mov(r5, Operand(r1)); 3356 3357 // r4: number of arguments (C callee-saved) 3358 // r5: pointer to builtin function (C callee-saved) 3359 // r6: pointer to first argument (C callee-saved) 3360 3361 Label throw_normal_exception; 3362 Label throw_termination_exception; 3363 Label throw_out_of_memory_exception; 3364 3365 // Call into the runtime system. 3366 GenerateCore(masm, 3367 &throw_normal_exception, 3368 &throw_termination_exception, 3369 &throw_out_of_memory_exception, 3370 false, 3371 false); 3372 3373 // Do space-specific GC and retry runtime call. 3374 GenerateCore(masm, 3375 &throw_normal_exception, 3376 &throw_termination_exception, 3377 &throw_out_of_memory_exception, 3378 true, 3379 false); 3380 3381 // Do full GC and retry runtime call one final time. 3382 Failure* failure = Failure::InternalError(); 3383 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); 3384 GenerateCore(masm, 3385 &throw_normal_exception, 3386 &throw_termination_exception, 3387 &throw_out_of_memory_exception, 3388 true, 3389 true); 3390 3391 __ bind(&throw_out_of_memory_exception); 3392 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); 3393 3394 __ bind(&throw_termination_exception); 3395 GenerateThrowUncatchable(masm, TERMINATION); 3396 3397 __ bind(&throw_normal_exception); 3398 GenerateThrowTOS(masm); 3399} 3400 3401 3402void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { 3403 // r0: code entry 3404 // r1: function 3405 // r2: receiver 3406 // r3: argc 3407 // [sp+0]: argv 3408 3409 Label invoke, exit; 3410 3411 // Called from C, so do not pop argc and args on exit (preserve sp) 3412 // No need to save register-passed args 3413 // Save callee-saved registers (incl. cp and fp), sp, and lr 3414 __ stm(db_w, sp, kCalleeSaved | lr.bit()); 3415 3416 // Get address of argv, see stm above. 3417 // r0: code entry 3418 // r1: function 3419 // r2: receiver 3420 // r3: argc 3421 __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv 3422 3423 // Push a frame with special values setup to mark it as an entry frame. 3424 // r0: code entry 3425 // r1: function 3426 // r2: receiver 3427 // r3: argc 3428 // r4: argv 3429 Isolate* isolate = masm->isolate(); 3430 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. 3431 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; 3432 __ mov(r7, Operand(Smi::FromInt(marker))); 3433 __ mov(r6, Operand(Smi::FromInt(marker))); 3434 __ mov(r5, 3435 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); 3436 __ ldr(r5, MemOperand(r5)); 3437 __ Push(r8, r7, r6, r5); 3438 3439 // Setup frame pointer for the frame to be pushed. 3440 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 3441 3442#ifdef ENABLE_LOGGING_AND_PROFILING 3443 // If this is the outermost JS call, set js_entry_sp value. 3444 Label non_outermost_js; 3445 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate); 3446 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 3447 __ ldr(r6, MemOperand(r5)); 3448 __ cmp(r6, Operand(0)); 3449 __ b(ne, &non_outermost_js); 3450 __ str(fp, MemOperand(r5)); 3451 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 3452 Label cont; 3453 __ b(&cont); 3454 __ bind(&non_outermost_js); 3455 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); 3456 __ bind(&cont); 3457 __ push(ip); 3458#endif 3459 3460 // Call a faked try-block that does the invoke. 3461 __ bl(&invoke); 3462 3463 // Caught exception: Store result (exception) in the pending 3464 // exception field in the JSEnv and return a failure sentinel. 3465 // Coming in here the fp will be invalid because the PushTryHandler below 3466 // sets it to 0 to signal the existence of the JSEntry frame. 3467 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3468 isolate))); 3469 __ str(r0, MemOperand(ip)); 3470 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); 3471 __ b(&exit); 3472 3473 // Invoke: Link this frame into the handler chain. 3474 __ bind(&invoke); 3475 // Must preserve r0-r4, r5-r7 are available. 3476 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); 3477 // If an exception not caught by another handler occurs, this handler 3478 // returns control to the code after the bl(&invoke) above, which 3479 // restores all kCalleeSaved registers (including cp and fp) to their 3480 // saved values before returning a failure to C. 3481 3482 // Clear any pending exceptions. 3483 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); 3484 __ ldr(r5, MemOperand(ip)); 3485 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3486 isolate))); 3487 __ str(r5, MemOperand(ip)); 3488 3489 // Invoke the function by calling through JS entry trampoline builtin. 3490 // Notice that we cannot store a reference to the trampoline code directly in 3491 // this stub, because runtime stubs are not traversed when doing GC. 3492 3493 // Expected registers by Builtins::JSEntryTrampoline 3494 // r0: code entry 3495 // r1: function 3496 // r2: receiver 3497 // r3: argc 3498 // r4: argv 3499 if (is_construct) { 3500 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 3501 isolate); 3502 __ mov(ip, Operand(construct_entry)); 3503 } else { 3504 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); 3505 __ mov(ip, Operand(entry)); 3506 } 3507 __ ldr(ip, MemOperand(ip)); // deref address 3508 3509 // Branch and link to JSEntryTrampoline. We don't use the double underscore 3510 // macro for the add instruction because we don't want the coverage tool 3511 // inserting instructions here after we read the pc. 3512 __ mov(lr, Operand(pc)); 3513 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); 3514 3515 // Unlink this frame from the handler chain. 3516 __ PopTryHandler(); 3517 3518 __ bind(&exit); // r0 holds result 3519#ifdef ENABLE_LOGGING_AND_PROFILING 3520 // Check if the current stack frame is marked as the outermost JS frame. 3521 Label non_outermost_js_2; 3522 __ pop(r5); 3523 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 3524 __ b(ne, &non_outermost_js_2); 3525 __ mov(r6, Operand(0)); 3526 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 3527 __ str(r6, MemOperand(r5)); 3528 __ bind(&non_outermost_js_2); 3529#endif 3530 3531 // Restore the top frame descriptors from the stack. 3532 __ pop(r3); 3533 __ mov(ip, 3534 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); 3535 __ str(r3, MemOperand(ip)); 3536 3537 // Reset the stack to the callee saved registers. 3538 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 3539 3540 // Restore callee-saved registers and return. 3541#ifdef DEBUG 3542 if (FLAG_debug_code) { 3543 __ mov(lr, Operand(pc)); 3544 } 3545#endif 3546 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); 3547} 3548 3549 3550// Uses registers r0 to r4. 3551// Expected input (depending on whether args are in registers or on the stack): 3552// * object: r0 or at sp + 1 * kPointerSize. 3553// * function: r1 or at sp. 3554// 3555// An inlined call site may have been generated before calling this stub. 3556// In this case the offset to the inline site to patch is passed on the stack, 3557// in the safepoint slot for register r4. 3558// (See LCodeGen::DoInstanceOfKnownGlobal) 3559void InstanceofStub::Generate(MacroAssembler* masm) { 3560 // Call site inlining and patching implies arguments in registers. 3561 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); 3562 // ReturnTrueFalse is only implemented for inlined call sites. 3563 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); 3564 3565 // Fixed register usage throughout the stub: 3566 const Register object = r0; // Object (lhs). 3567 Register map = r3; // Map of the object. 3568 const Register function = r1; // Function (rhs). 3569 const Register prototype = r4; // Prototype of the function. 3570 const Register inline_site = r9; 3571 const Register scratch = r2; 3572 3573 const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize; 3574 3575 Label slow, loop, is_instance, is_not_instance, not_js_object; 3576 3577 if (!HasArgsInRegisters()) { 3578 __ ldr(object, MemOperand(sp, 1 * kPointerSize)); 3579 __ ldr(function, MemOperand(sp, 0)); 3580 } 3581 3582 // Check that the left hand is a JS object and load map. 3583 __ JumpIfSmi(object, ¬_js_object); 3584 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); 3585 3586 // If there is a call site cache don't look in the global cache, but do the 3587 // real lookup and update the call site cache. 3588 if (!HasCallSiteInlineCheck()) { 3589 Label miss; 3590 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); 3591 __ cmp(function, ip); 3592 __ b(ne, &miss); 3593 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); 3594 __ cmp(map, ip); 3595 __ b(ne, &miss); 3596 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3597 __ Ret(HasArgsInRegisters() ? 0 : 2); 3598 3599 __ bind(&miss); 3600 } 3601 3602 // Get the prototype of the function. 3603 __ TryGetFunctionPrototype(function, prototype, scratch, &slow); 3604 3605 // Check that the function prototype is a JS object. 3606 __ JumpIfSmi(prototype, &slow); 3607 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); 3608 3609 // Update the global instanceof or call site inlined cache with the current 3610 // map and function. The cached answer will be set when it is known below. 3611 if (!HasCallSiteInlineCheck()) { 3612 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 3613 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); 3614 } else { 3615 ASSERT(HasArgsInRegisters()); 3616 // Patch the (relocated) inlined map check. 3617 3618 // The offset was stored in r4 safepoint slot. 3619 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal) 3620 __ LoadFromSafepointRegisterSlot(scratch, r4); 3621 __ sub(inline_site, lr, scratch); 3622 // Get the map location in scratch and patch it. 3623 __ GetRelocatedValueLocation(inline_site, scratch); 3624 __ str(map, MemOperand(scratch)); 3625 } 3626 3627 // Register mapping: r3 is object map and r4 is function prototype. 3628 // Get prototype of object into r2. 3629 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); 3630 3631 // We don't need map any more. Use it as a scratch register. 3632 Register scratch2 = map; 3633 map = no_reg; 3634 3635 // Loop through the prototype chain looking for the function prototype. 3636 __ LoadRoot(scratch2, Heap::kNullValueRootIndex); 3637 __ bind(&loop); 3638 __ cmp(scratch, Operand(prototype)); 3639 __ b(eq, &is_instance); 3640 __ cmp(scratch, scratch2); 3641 __ b(eq, &is_not_instance); 3642 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); 3643 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); 3644 __ jmp(&loop); 3645 3646 __ bind(&is_instance); 3647 if (!HasCallSiteInlineCheck()) { 3648 __ mov(r0, Operand(Smi::FromInt(0))); 3649 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3650 } else { 3651 // Patch the call site to return true. 3652 __ LoadRoot(r0, Heap::kTrueValueRootIndex); 3653 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); 3654 // Get the boolean result location in scratch and patch it. 3655 __ GetRelocatedValueLocation(inline_site, scratch); 3656 __ str(r0, MemOperand(scratch)); 3657 3658 if (!ReturnTrueFalseObject()) { 3659 __ mov(r0, Operand(Smi::FromInt(0))); 3660 } 3661 } 3662 __ Ret(HasArgsInRegisters() ? 0 : 2); 3663 3664 __ bind(&is_not_instance); 3665 if (!HasCallSiteInlineCheck()) { 3666 __ mov(r0, Operand(Smi::FromInt(1))); 3667 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3668 } else { 3669 // Patch the call site to return false. 3670 __ LoadRoot(r0, Heap::kFalseValueRootIndex); 3671 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); 3672 // Get the boolean result location in scratch and patch it. 3673 __ GetRelocatedValueLocation(inline_site, scratch); 3674 __ str(r0, MemOperand(scratch)); 3675 3676 if (!ReturnTrueFalseObject()) { 3677 __ mov(r0, Operand(Smi::FromInt(1))); 3678 } 3679 } 3680 __ Ret(HasArgsInRegisters() ? 0 : 2); 3681 3682 Label object_not_null, object_not_null_or_smi; 3683 __ bind(¬_js_object); 3684 // Before null, smi and string value checks, check that the rhs is a function 3685 // as for a non-function rhs an exception needs to be thrown. 3686 __ JumpIfSmi(function, &slow); 3687 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); 3688 __ b(ne, &slow); 3689 3690 // Null is not instance of anything. 3691 __ cmp(scratch, Operand(FACTORY->null_value())); 3692 __ b(ne, &object_not_null); 3693 __ mov(r0, Operand(Smi::FromInt(1))); 3694 __ Ret(HasArgsInRegisters() ? 0 : 2); 3695 3696 __ bind(&object_not_null); 3697 // Smi values are not instances of anything. 3698 __ JumpIfNotSmi(object, &object_not_null_or_smi); 3699 __ mov(r0, Operand(Smi::FromInt(1))); 3700 __ Ret(HasArgsInRegisters() ? 0 : 2); 3701 3702 __ bind(&object_not_null_or_smi); 3703 // String values are not instances of anything. 3704 __ IsObjectJSStringType(object, scratch, &slow); 3705 __ mov(r0, Operand(Smi::FromInt(1))); 3706 __ Ret(HasArgsInRegisters() ? 0 : 2); 3707 3708 // Slow-case. Tail call builtin. 3709 __ bind(&slow); 3710 if (!ReturnTrueFalseObject()) { 3711 if (HasArgsInRegisters()) { 3712 __ Push(r0, r1); 3713 } 3714 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); 3715 } else { 3716 __ EnterInternalFrame(); 3717 __ Push(r0, r1); 3718 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS); 3719 __ LeaveInternalFrame(); 3720 __ cmp(r0, Operand(0)); 3721 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); 3722 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); 3723 __ Ret(HasArgsInRegisters() ? 0 : 2); 3724 } 3725} 3726 3727 3728Register InstanceofStub::left() { return r0; } 3729 3730 3731Register InstanceofStub::right() { return r1; } 3732 3733 3734void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { 3735 // The displacement is the offset of the last parameter (if any) 3736 // relative to the frame pointer. 3737 static const int kDisplacement = 3738 StandardFrameConstants::kCallerSPOffset - kPointerSize; 3739 3740 // Check that the key is a smi. 3741 Label slow; 3742 __ JumpIfNotSmi(r1, &slow); 3743 3744 // Check if the calling frame is an arguments adaptor frame. 3745 Label adaptor; 3746 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3747 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3748 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3749 __ b(eq, &adaptor); 3750 3751 // Check index against formal parameters count limit passed in 3752 // through register r0. Use unsigned comparison to get negative 3753 // check for free. 3754 __ cmp(r1, r0); 3755 __ b(hs, &slow); 3756 3757 // Read the argument from the stack and return it. 3758 __ sub(r3, r0, r1); 3759 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); 3760 __ ldr(r0, MemOperand(r3, kDisplacement)); 3761 __ Jump(lr); 3762 3763 // Arguments adaptor case: Check index against actual arguments 3764 // limit found in the arguments adaptor frame. Use unsigned 3765 // comparison to get negative check for free. 3766 __ bind(&adaptor); 3767 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3768 __ cmp(r1, r0); 3769 __ b(cs, &slow); 3770 3771 // Read the argument from the adaptor frame and return it. 3772 __ sub(r3, r0, r1); 3773 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); 3774 __ ldr(r0, MemOperand(r3, kDisplacement)); 3775 __ Jump(lr); 3776 3777 // Slow-case: Handle non-smi or out-of-bounds access to arguments 3778 // by calling the runtime system. 3779 __ bind(&slow); 3780 __ push(r1); 3781 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); 3782} 3783 3784 3785void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { 3786 // sp[0] : number of parameters 3787 // sp[4] : receiver displacement 3788 // sp[8] : function 3789 3790 // Check if the calling frame is an arguments adaptor frame. 3791 Label adaptor_frame, try_allocate, runtime; 3792 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3793 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3794 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3795 __ b(eq, &adaptor_frame); 3796 3797 // Get the length from the frame. 3798 __ ldr(r1, MemOperand(sp, 0)); 3799 __ b(&try_allocate); 3800 3801 // Patch the arguments.length and the parameters pointer. 3802 __ bind(&adaptor_frame); 3803 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3804 __ str(r1, MemOperand(sp, 0)); 3805 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); 3806 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); 3807 __ str(r3, MemOperand(sp, 1 * kPointerSize)); 3808 3809 // Try the new space allocation. Start out with computing the size 3810 // of the arguments object and the elements array in words. 3811 Label add_arguments_object; 3812 __ bind(&try_allocate); 3813 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3814 __ b(eq, &add_arguments_object); 3815 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); 3816 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); 3817 __ bind(&add_arguments_object); 3818 __ add(r1, r1, Operand(GetArgumentsObjectSize() / kPointerSize)); 3819 3820 // Do the allocation of both objects in one go. 3821 __ AllocateInNewSpace( 3822 r1, 3823 r0, 3824 r2, 3825 r3, 3826 &runtime, 3827 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); 3828 3829 // Get the arguments boilerplate from the current (global) context. 3830 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 3831 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); 3832 __ ldr(r4, MemOperand(r4, 3833 Context::SlotOffset(GetArgumentsBoilerplateIndex()))); 3834 3835 // Copy the JS object part. 3836 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); 3837 3838 if (type_ == NEW_NON_STRICT) { 3839 // Setup the callee in-object property. 3840 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); 3841 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); 3842 const int kCalleeOffset = JSObject::kHeaderSize + 3843 Heap::kArgumentsCalleeIndex * kPointerSize; 3844 __ str(r3, FieldMemOperand(r0, kCalleeOffset)); 3845 } 3846 3847 // Get the length (smi tagged) and set that as an in-object property too. 3848 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 3849 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); 3850 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + 3851 Heap::kArgumentsLengthIndex * kPointerSize)); 3852 3853 // If there are no actual arguments, we're done. 3854 Label done; 3855 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3856 __ b(eq, &done); 3857 3858 // Get the parameters pointer from the stack. 3859 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); 3860 3861 // Setup the elements pointer in the allocated arguments object and 3862 // initialize the header in the elements fixed array. 3863 __ add(r4, r0, Operand(GetArgumentsObjectSize())); 3864 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 3865 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); 3866 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); 3867 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); 3868 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. 3869 3870 // Copy the fixed array slots. 3871 Label loop; 3872 // Setup r4 to point to the first array slot. 3873 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3874 __ bind(&loop); 3875 // Pre-decrement r2 with kPointerSize on each iteration. 3876 // Pre-decrement in order to skip receiver. 3877 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); 3878 // Post-increment r4 with kPointerSize on each iteration. 3879 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); 3880 __ sub(r1, r1, Operand(1)); 3881 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3882 __ b(ne, &loop); 3883 3884 // Return and remove the on-stack parameters. 3885 __ bind(&done); 3886 __ add(sp, sp, Operand(3 * kPointerSize)); 3887 __ Ret(); 3888 3889 // Do the runtime call to allocate the arguments object. 3890 __ bind(&runtime); 3891 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); 3892} 3893 3894 3895void RegExpExecStub::Generate(MacroAssembler* masm) { 3896 // Just jump directly to runtime if native RegExp is not selected at compile 3897 // time or if regexp entry in generated code is turned off runtime switch or 3898 // at compilation. 3899#ifdef V8_INTERPRETED_REGEXP 3900 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 3901#else // V8_INTERPRETED_REGEXP 3902 if (!FLAG_regexp_entry_native) { 3903 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 3904 return; 3905 } 3906 3907 // Stack frame on entry. 3908 // sp[0]: last_match_info (expected JSArray) 3909 // sp[4]: previous index 3910 // sp[8]: subject string 3911 // sp[12]: JSRegExp object 3912 3913 static const int kLastMatchInfoOffset = 0 * kPointerSize; 3914 static const int kPreviousIndexOffset = 1 * kPointerSize; 3915 static const int kSubjectOffset = 2 * kPointerSize; 3916 static const int kJSRegExpOffset = 3 * kPointerSize; 3917 3918 Label runtime, invoke_regexp; 3919 3920 // Allocation of registers for this function. These are in callee save 3921 // registers and will be preserved by the call to the native RegExp code, as 3922 // this code is called using the normal C calling convention. When calling 3923 // directly from generated code the native RegExp code will not do a GC and 3924 // therefore the content of these registers are safe to use after the call. 3925 Register subject = r4; 3926 Register regexp_data = r5; 3927 Register last_match_info_elements = r6; 3928 3929 // Ensure that a RegExp stack is allocated. 3930 Isolate* isolate = masm->isolate(); 3931 ExternalReference address_of_regexp_stack_memory_address = 3932 ExternalReference::address_of_regexp_stack_memory_address(isolate); 3933 ExternalReference address_of_regexp_stack_memory_size = 3934 ExternalReference::address_of_regexp_stack_memory_size(isolate); 3935 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); 3936 __ ldr(r0, MemOperand(r0, 0)); 3937 __ tst(r0, Operand(r0)); 3938 __ b(eq, &runtime); 3939 3940 // Check that the first argument is a JSRegExp object. 3941 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); 3942 STATIC_ASSERT(kSmiTag == 0); 3943 __ tst(r0, Operand(kSmiTagMask)); 3944 __ b(eq, &runtime); 3945 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); 3946 __ b(ne, &runtime); 3947 3948 // Check that the RegExp has been compiled (data contains a fixed array). 3949 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); 3950 if (FLAG_debug_code) { 3951 __ tst(regexp_data, Operand(kSmiTagMask)); 3952 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected"); 3953 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); 3954 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); 3955 } 3956 3957 // regexp_data: RegExp data (FixedArray) 3958 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 3959 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); 3960 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); 3961 __ b(ne, &runtime); 3962 3963 // regexp_data: RegExp data (FixedArray) 3964 // Check that the number of captures fit in the static offsets vector buffer. 3965 __ ldr(r2, 3966 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 3967 // Calculate number of capture registers (number_of_captures + 1) * 2. This 3968 // uses the asumption that smis are 2 * their untagged value. 3969 STATIC_ASSERT(kSmiTag == 0); 3970 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 3971 __ add(r2, r2, Operand(2)); // r2 was a smi. 3972 // Check that the static offsets vector buffer is large enough. 3973 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); 3974 __ b(hi, &runtime); 3975 3976 // r2: Number of capture registers 3977 // regexp_data: RegExp data (FixedArray) 3978 // Check that the second argument is a string. 3979 __ ldr(subject, MemOperand(sp, kSubjectOffset)); 3980 __ tst(subject, Operand(kSmiTagMask)); 3981 __ b(eq, &runtime); 3982 Condition is_string = masm->IsObjectStringType(subject, r0); 3983 __ b(NegateCondition(is_string), &runtime); 3984 // Get the length of the string to r3. 3985 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); 3986 3987 // r2: Number of capture registers 3988 // r3: Length of subject string as a smi 3989 // subject: Subject string 3990 // regexp_data: RegExp data (FixedArray) 3991 // Check that the third argument is a positive smi less than the subject 3992 // string length. A negative value will be greater (unsigned comparison). 3993 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); 3994 __ tst(r0, Operand(kSmiTagMask)); 3995 __ b(ne, &runtime); 3996 __ cmp(r3, Operand(r0)); 3997 __ b(ls, &runtime); 3998 3999 // r2: Number of capture registers 4000 // subject: Subject string 4001 // regexp_data: RegExp data (FixedArray) 4002 // Check that the fourth object is a JSArray object. 4003 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 4004 __ tst(r0, Operand(kSmiTagMask)); 4005 __ b(eq, &runtime); 4006 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); 4007 __ b(ne, &runtime); 4008 // Check that the JSArray is in fast case. 4009 __ ldr(last_match_info_elements, 4010 FieldMemOperand(r0, JSArray::kElementsOffset)); 4011 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); 4012 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); 4013 __ cmp(r0, ip); 4014 __ b(ne, &runtime); 4015 // Check that the last match info has space for the capture registers and the 4016 // additional information. 4017 __ ldr(r0, 4018 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); 4019 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); 4020 __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); 4021 __ b(gt, &runtime); 4022 4023 // subject: Subject string 4024 // regexp_data: RegExp data (FixedArray) 4025 // Check the representation and encoding of the subject string. 4026 Label seq_string; 4027 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 4028 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 4029 // First check for flat string. 4030 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); 4031 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); 4032 __ b(eq, &seq_string); 4033 4034 // subject: Subject string 4035 // regexp_data: RegExp data (FixedArray) 4036 // Check for flat cons string. 4037 // A flat cons string is a cons string where the second part is the empty 4038 // string. In that case the subject string is just the first part of the cons 4039 // string. Also in this case the first part of the cons string is known to be 4040 // a sequential string or an external string. 4041 STATIC_ASSERT(kExternalStringTag !=0); 4042 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); 4043 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); 4044 __ b(ne, &runtime); 4045 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); 4046 __ LoadRoot(r1, Heap::kEmptyStringRootIndex); 4047 __ cmp(r0, r1); 4048 __ b(ne, &runtime); 4049 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); 4050 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 4051 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 4052 // Is first part a flat string? 4053 STATIC_ASSERT(kSeqStringTag == 0); 4054 __ tst(r0, Operand(kStringRepresentationMask)); 4055 __ b(ne, &runtime); 4056 4057 __ bind(&seq_string); 4058 // subject: Subject string 4059 // regexp_data: RegExp data (FixedArray) 4060 // r0: Instance type of subject string 4061 STATIC_ASSERT(4 == kAsciiStringTag); 4062 STATIC_ASSERT(kTwoByteStringTag == 0); 4063 // Find the code object based on the assumptions above. 4064 __ and_(r0, r0, Operand(kStringEncodingMask)); 4065 __ mov(r3, Operand(r0, ASR, 2), SetCC); 4066 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); 4067 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); 4068 4069 // Check that the irregexp code has been generated for the actual string 4070 // encoding. If it has, the field contains a code object otherwise it contains 4071 // the hole. 4072 __ CompareObjectType(r7, r0, r0, CODE_TYPE); 4073 __ b(ne, &runtime); 4074 4075 // r3: encoding of subject string (1 if ASCII, 0 if two_byte); 4076 // r7: code 4077 // subject: Subject string 4078 // regexp_data: RegExp data (FixedArray) 4079 // Load used arguments before starting to push arguments for call to native 4080 // RegExp code to avoid handling changing stack height. 4081 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); 4082 __ mov(r1, Operand(r1, ASR, kSmiTagSize)); 4083 4084 // r1: previous index 4085 // r3: encoding of subject string (1 if ASCII, 0 if two_byte); 4086 // r7: code 4087 // subject: Subject string 4088 // regexp_data: RegExp data (FixedArray) 4089 // All checks done. Now push arguments for native regexp code. 4090 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2); 4091 4092 // Isolates: note we add an additional parameter here (isolate pointer). 4093 static const int kRegExpExecuteArguments = 8; 4094 static const int kParameterRegisters = 4; 4095 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); 4096 4097 // Stack pointer now points to cell where return address is to be written. 4098 // Arguments are before that on the stack or in registers. 4099 4100 // Argument 8 (sp[16]): Pass current isolate address. 4101 __ mov(r0, Operand(ExternalReference::isolate_address())); 4102 __ str(r0, MemOperand(sp, 4 * kPointerSize)); 4103 4104 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript. 4105 __ mov(r0, Operand(1)); 4106 __ str(r0, MemOperand(sp, 3 * kPointerSize)); 4107 4108 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area. 4109 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); 4110 __ ldr(r0, MemOperand(r0, 0)); 4111 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); 4112 __ ldr(r2, MemOperand(r2, 0)); 4113 __ add(r0, r0, Operand(r2)); 4114 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4115 4116 // Argument 5 (sp[4]): static offsets vector buffer. 4117 __ mov(r0, 4118 Operand(ExternalReference::address_of_static_offsets_vector(isolate))); 4119 __ str(r0, MemOperand(sp, 1 * kPointerSize)); 4120 4121 // For arguments 4 and 3 get string length, calculate start of string data and 4122 // calculate the shift of the index (0 for ASCII and 1 for two byte). 4123 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); 4124 __ mov(r0, Operand(r0, ASR, kSmiTagSize)); 4125 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); 4126 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 4127 __ eor(r3, r3, Operand(1)); 4128 // Argument 4 (r3): End of string data 4129 // Argument 3 (r2): Start of string data 4130 __ add(r2, r9, Operand(r1, LSL, r3)); 4131 __ add(r3, r9, Operand(r0, LSL, r3)); 4132 4133 // Argument 2 (r1): Previous index. 4134 // Already there 4135 4136 // Argument 1 (r0): Subject string. 4137 __ mov(r0, subject); 4138 4139 // Locate the code entry and call it. 4140 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); 4141 DirectCEntryStub stub; 4142 stub.GenerateCall(masm, r7); 4143 4144 __ LeaveExitFrame(false, no_reg); 4145 4146 // r0: result 4147 // subject: subject string (callee saved) 4148 // regexp_data: RegExp data (callee saved) 4149 // last_match_info_elements: Last match info elements (callee saved) 4150 4151 // Check the result. 4152 Label success; 4153 4154 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); 4155 __ b(eq, &success); 4156 Label failure; 4157 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); 4158 __ b(eq, &failure); 4159 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); 4160 // If not exception it can only be retry. Handle that in the runtime system. 4161 __ b(ne, &runtime); 4162 // Result must now be exception. If there is no pending exception already a 4163 // stack overflow (on the backtrack stack) was detected in RegExp code but 4164 // haven't created the exception yet. Handle that in the runtime system. 4165 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 4166 __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate))); 4167 __ ldr(r1, MemOperand(r1, 0)); 4168 __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address, 4169 isolate))); 4170 __ ldr(r0, MemOperand(r2, 0)); 4171 __ cmp(r0, r1); 4172 __ b(eq, &runtime); 4173 4174 __ str(r1, MemOperand(r2, 0)); // Clear pending exception. 4175 4176 // Check if the exception is a termination. If so, throw as uncatchable. 4177 __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex); 4178 __ cmp(r0, ip); 4179 Label termination_exception; 4180 __ b(eq, &termination_exception); 4181 4182 __ Throw(r0); // Expects thrown value in r0. 4183 4184 __ bind(&termination_exception); 4185 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0. 4186 4187 __ bind(&failure); 4188 // For failure and exception return null. 4189 __ mov(r0, Operand(FACTORY->null_value())); 4190 __ add(sp, sp, Operand(4 * kPointerSize)); 4191 __ Ret(); 4192 4193 // Process the result from the native regexp code. 4194 __ bind(&success); 4195 __ ldr(r1, 4196 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 4197 // Calculate number of capture registers (number_of_captures + 1) * 2. 4198 STATIC_ASSERT(kSmiTag == 0); 4199 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 4200 __ add(r1, r1, Operand(2)); // r1 was a smi. 4201 4202 // r1: number of capture registers 4203 // r4: subject string 4204 // Store the capture count. 4205 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. 4206 __ str(r2, FieldMemOperand(last_match_info_elements, 4207 RegExpImpl::kLastCaptureCountOffset)); 4208 // Store last subject and last input. 4209 __ mov(r3, last_match_info_elements); // Moved up to reduce latency. 4210 __ str(subject, 4211 FieldMemOperand(last_match_info_elements, 4212 RegExpImpl::kLastSubjectOffset)); 4213 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7); 4214 __ str(subject, 4215 FieldMemOperand(last_match_info_elements, 4216 RegExpImpl::kLastInputOffset)); 4217 __ mov(r3, last_match_info_elements); 4218 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7); 4219 4220 // Get the static offsets vector filled by the native regexp code. 4221 ExternalReference address_of_static_offsets_vector = 4222 ExternalReference::address_of_static_offsets_vector(isolate); 4223 __ mov(r2, Operand(address_of_static_offsets_vector)); 4224 4225 // r1: number of capture registers 4226 // r2: offsets vector 4227 Label next_capture, done; 4228 // Capture register counter starts from number of capture registers and 4229 // counts down until wraping after zero. 4230 __ add(r0, 4231 last_match_info_elements, 4232 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); 4233 __ bind(&next_capture); 4234 __ sub(r1, r1, Operand(1), SetCC); 4235 __ b(mi, &done); 4236 // Read the value from the static offsets vector buffer. 4237 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); 4238 // Store the smi value in the last match info. 4239 __ mov(r3, Operand(r3, LSL, kSmiTagSize)); 4240 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); 4241 __ jmp(&next_capture); 4242 __ bind(&done); 4243 4244 // Return last match info. 4245 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 4246 __ add(sp, sp, Operand(4 * kPointerSize)); 4247 __ Ret(); 4248 4249 // Do the runtime call to execute the regexp. 4250 __ bind(&runtime); 4251 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 4252#endif // V8_INTERPRETED_REGEXP 4253} 4254 4255 4256void RegExpConstructResultStub::Generate(MacroAssembler* masm) { 4257 const int kMaxInlineLength = 100; 4258 Label slowcase; 4259 Label done; 4260 __ ldr(r1, MemOperand(sp, kPointerSize * 2)); 4261 STATIC_ASSERT(kSmiTag == 0); 4262 STATIC_ASSERT(kSmiTagSize == 1); 4263 __ tst(r1, Operand(kSmiTagMask)); 4264 __ b(ne, &slowcase); 4265 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength))); 4266 __ b(hi, &slowcase); 4267 // Smi-tagging is equivalent to multiplying by 2. 4268 // Allocate RegExpResult followed by FixedArray with size in ebx. 4269 // JSArray: [Map][empty properties][Elements][Length-smi][index][input] 4270 // Elements: [Map][Length][..elements..] 4271 // Size of JSArray with two in-object properties and the header of a 4272 // FixedArray. 4273 int objects_size = 4274 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; 4275 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize)); 4276 __ add(r2, r5, Operand(objects_size)); 4277 __ AllocateInNewSpace( 4278 r2, // In: Size, in words. 4279 r0, // Out: Start of allocation (tagged). 4280 r3, // Scratch register. 4281 r4, // Scratch register. 4282 &slowcase, 4283 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); 4284 // r0: Start of allocated area, object-tagged. 4285 // r1: Number of elements in array, as smi. 4286 // r5: Number of elements, untagged. 4287 4288 // Set JSArray map to global.regexp_result_map(). 4289 // Set empty properties FixedArray. 4290 // Set elements to point to FixedArray allocated right after the JSArray. 4291 // Interleave operations for better latency. 4292 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX)); 4293 __ add(r3, r0, Operand(JSRegExpResult::kSize)); 4294 __ mov(r4, Operand(FACTORY->empty_fixed_array())); 4295 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); 4296 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); 4297 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX)); 4298 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 4299 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 4300 4301 // Set input, index and length fields from arguments. 4302 __ ldr(r1, MemOperand(sp, kPointerSize * 0)); 4303 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset)); 4304 __ ldr(r1, MemOperand(sp, kPointerSize * 1)); 4305 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset)); 4306 __ ldr(r1, MemOperand(sp, kPointerSize * 2)); 4307 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset)); 4308 4309 // Fill out the elements FixedArray. 4310 // r0: JSArray, tagged. 4311 // r3: FixedArray, tagged. 4312 // r5: Number of elements in array, untagged. 4313 4314 // Set map. 4315 __ mov(r2, Operand(FACTORY->fixed_array_map())); 4316 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); 4317 // Set FixedArray length. 4318 __ mov(r6, Operand(r5, LSL, kSmiTagSize)); 4319 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset)); 4320 // Fill contents of fixed-array with the-hole. 4321 __ mov(r2, Operand(FACTORY->the_hole_value())); 4322 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 4323 // Fill fixed array elements with hole. 4324 // r0: JSArray, tagged. 4325 // r2: the hole. 4326 // r3: Start of elements in FixedArray. 4327 // r5: Number of elements to fill. 4328 Label loop; 4329 __ tst(r5, Operand(r5)); 4330 __ bind(&loop); 4331 __ b(le, &done); // Jump if r1 is negative or zero. 4332 __ sub(r5, r5, Operand(1), SetCC); 4333 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2)); 4334 __ jmp(&loop); 4335 4336 __ bind(&done); 4337 __ add(sp, sp, Operand(3 * kPointerSize)); 4338 __ Ret(); 4339 4340 __ bind(&slowcase); 4341 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); 4342} 4343 4344 4345void CallFunctionStub::Generate(MacroAssembler* masm) { 4346 Label slow; 4347 4348 // If the receiver might be a value (string, number or boolean) check for this 4349 // and box it if it is. 4350 if (ReceiverMightBeValue()) { 4351 // Get the receiver from the stack. 4352 // function, receiver [, arguments] 4353 Label receiver_is_value, receiver_is_js_object; 4354 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); 4355 4356 // Check if receiver is a smi (which is a number value). 4357 __ JumpIfSmi(r1, &receiver_is_value); 4358 4359 // Check if the receiver is a valid JS object. 4360 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); 4361 __ b(ge, &receiver_is_js_object); 4362 4363 // Call the runtime to box the value. 4364 __ bind(&receiver_is_value); 4365 __ EnterInternalFrame(); 4366 __ push(r1); 4367 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); 4368 __ LeaveInternalFrame(); 4369 __ str(r0, MemOperand(sp, argc_ * kPointerSize)); 4370 4371 __ bind(&receiver_is_js_object); 4372 } 4373 4374 // Get the function to call from the stack. 4375 // function, receiver [, arguments] 4376 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); 4377 4378 // Check that the function is really a JavaScript function. 4379 // r1: pushed function (to be verified) 4380 __ JumpIfSmi(r1, &slow); 4381 // Get the map of the function object. 4382 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); 4383 __ b(ne, &slow); 4384 4385 // Fast-case: Invoke the function now. 4386 // r1: pushed function 4387 ParameterCount actual(argc_); 4388 __ InvokeFunction(r1, actual, JUMP_FUNCTION); 4389 4390 // Slow-case: Non-function called. 4391 __ bind(&slow); 4392 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead 4393 // of the original receiver from the call site). 4394 __ str(r1, MemOperand(sp, argc_ * kPointerSize)); 4395 __ mov(r0, Operand(argc_)); // Setup the number of arguments. 4396 __ mov(r2, Operand(0, RelocInfo::NONE)); 4397 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); 4398 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), 4399 RelocInfo::CODE_TARGET); 4400} 4401 4402 4403// Unfortunately you have to run without snapshots to see most of these 4404// names in the profile since most compare stubs end up in the snapshot. 4405const char* CompareStub::GetName() { 4406 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 4407 (lhs_.is(r1) && rhs_.is(r0))); 4408 4409 if (name_ != NULL) return name_; 4410 const int kMaxNameLength = 100; 4411 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 4412 kMaxNameLength); 4413 if (name_ == NULL) return "OOM"; 4414 4415 const char* cc_name; 4416 switch (cc_) { 4417 case lt: cc_name = "LT"; break; 4418 case gt: cc_name = "GT"; break; 4419 case le: cc_name = "LE"; break; 4420 case ge: cc_name = "GE"; break; 4421 case eq: cc_name = "EQ"; break; 4422 case ne: cc_name = "NE"; break; 4423 default: cc_name = "UnknownCondition"; break; 4424 } 4425 4426 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1"; 4427 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1"; 4428 4429 const char* strict_name = ""; 4430 if (strict_ && (cc_ == eq || cc_ == ne)) { 4431 strict_name = "_STRICT"; 4432 } 4433 4434 const char* never_nan_nan_name = ""; 4435 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { 4436 never_nan_nan_name = "_NO_NAN"; 4437 } 4438 4439 const char* include_number_compare_name = ""; 4440 if (!include_number_compare_) { 4441 include_number_compare_name = "_NO_NUMBER"; 4442 } 4443 4444 const char* include_smi_compare_name = ""; 4445 if (!include_smi_compare_) { 4446 include_smi_compare_name = "_NO_SMI"; 4447 } 4448 4449 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 4450 "CompareStub_%s%s%s%s%s%s", 4451 cc_name, 4452 lhs_name, 4453 rhs_name, 4454 strict_name, 4455 never_nan_nan_name, 4456 include_number_compare_name, 4457 include_smi_compare_name); 4458 return name_; 4459} 4460 4461 4462int CompareStub::MinorKey() { 4463 // Encode the three parameters in a unique 16 bit value. To avoid duplicate 4464 // stubs the never NaN NaN condition is only taken into account if the 4465 // condition is equals. 4466 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12)); 4467 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 4468 (lhs_.is(r1) && rhs_.is(r0))); 4469 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) 4470 | RegisterField::encode(lhs_.is(r0)) 4471 | StrictField::encode(strict_) 4472 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) 4473 | IncludeNumberCompareField::encode(include_number_compare_) 4474 | IncludeSmiCompareField::encode(include_smi_compare_); 4475} 4476 4477 4478// StringCharCodeAtGenerator 4479void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 4480 Label flat_string; 4481 Label ascii_string; 4482 Label got_char_code; 4483 4484 // If the receiver is a smi trigger the non-string case. 4485 __ JumpIfSmi(object_, receiver_not_string_); 4486 4487 // Fetch the instance type of the receiver into result register. 4488 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4489 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4490 // If the receiver is not a string trigger the non-string case. 4491 __ tst(result_, Operand(kIsNotStringMask)); 4492 __ b(ne, receiver_not_string_); 4493 4494 // If the index is non-smi trigger the non-smi case. 4495 __ JumpIfNotSmi(index_, &index_not_smi_); 4496 4497 // Put smi-tagged index into scratch register. 4498 __ mov(scratch_, index_); 4499 __ bind(&got_smi_index_); 4500 4501 // Check for index out of range. 4502 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); 4503 __ cmp(ip, Operand(scratch_)); 4504 __ b(ls, index_out_of_range_); 4505 4506 // We need special handling for non-flat strings. 4507 STATIC_ASSERT(kSeqStringTag == 0); 4508 __ tst(result_, Operand(kStringRepresentationMask)); 4509 __ b(eq, &flat_string); 4510 4511 // Handle non-flat strings. 4512 __ tst(result_, Operand(kIsConsStringMask)); 4513 __ b(eq, &call_runtime_); 4514 4515 // ConsString. 4516 // Check whether the right hand side is the empty string (i.e. if 4517 // this is really a flat string in a cons string). If that is not 4518 // the case we would rather go to the runtime system now to flatten 4519 // the string. 4520 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); 4521 __ LoadRoot(ip, Heap::kEmptyStringRootIndex); 4522 __ cmp(result_, Operand(ip)); 4523 __ b(ne, &call_runtime_); 4524 // Get the first of the two strings and load its instance type. 4525 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); 4526 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4527 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4528 // If the first cons component is also non-flat, then go to runtime. 4529 STATIC_ASSERT(kSeqStringTag == 0); 4530 __ tst(result_, Operand(kStringRepresentationMask)); 4531 __ b(ne, &call_runtime_); 4532 4533 // Check for 1-byte or 2-byte string. 4534 __ bind(&flat_string); 4535 STATIC_ASSERT(kAsciiStringTag != 0); 4536 __ tst(result_, Operand(kStringEncodingMask)); 4537 __ b(ne, &ascii_string); 4538 4539 // 2-byte string. 4540 // Load the 2-byte character code into the result register. We can 4541 // add without shifting since the smi tag size is the log2 of the 4542 // number of bytes in a two-byte character. 4543 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); 4544 __ add(scratch_, object_, Operand(scratch_)); 4545 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); 4546 __ jmp(&got_char_code); 4547 4548 // ASCII string. 4549 // Load the byte into the result register. 4550 __ bind(&ascii_string); 4551 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); 4552 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); 4553 4554 __ bind(&got_char_code); 4555 __ mov(result_, Operand(result_, LSL, kSmiTagSize)); 4556 __ bind(&exit_); 4557} 4558 4559 4560void StringCharCodeAtGenerator::GenerateSlow( 4561 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4562 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); 4563 4564 // Index is not a smi. 4565 __ bind(&index_not_smi_); 4566 // If index is a heap number, try converting it to an integer. 4567 __ CheckMap(index_, 4568 scratch_, 4569 Heap::kHeapNumberMapRootIndex, 4570 index_not_number_, 4571 true); 4572 call_helper.BeforeCall(masm); 4573 __ Push(object_, index_); 4574 __ push(index_); // Consumed by runtime conversion function. 4575 if (index_flags_ == STRING_INDEX_IS_NUMBER) { 4576 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); 4577 } else { 4578 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); 4579 // NumberToSmi discards numbers that are not exact integers. 4580 __ CallRuntime(Runtime::kNumberToSmi, 1); 4581 } 4582 // Save the conversion result before the pop instructions below 4583 // have a chance to overwrite it. 4584 __ Move(scratch_, r0); 4585 __ pop(index_); 4586 __ pop(object_); 4587 // Reload the instance type. 4588 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4589 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4590 call_helper.AfterCall(masm); 4591 // If index is still not a smi, it must be out of range. 4592 __ JumpIfNotSmi(scratch_, index_out_of_range_); 4593 // Otherwise, return to the fast path. 4594 __ jmp(&got_smi_index_); 4595 4596 // Call runtime. We get here when the receiver is a string and the 4597 // index is a number, but the code of getting the actual character 4598 // is too complex (e.g., when the string needs to be flattened). 4599 __ bind(&call_runtime_); 4600 call_helper.BeforeCall(masm); 4601 __ Push(object_, index_); 4602 __ CallRuntime(Runtime::kStringCharCodeAt, 2); 4603 __ Move(result_, r0); 4604 call_helper.AfterCall(masm); 4605 __ jmp(&exit_); 4606 4607 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); 4608} 4609 4610 4611// ------------------------------------------------------------------------- 4612// StringCharFromCodeGenerator 4613 4614void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 4615 // Fast case of Heap::LookupSingleCharacterStringFromCode. 4616 STATIC_ASSERT(kSmiTag == 0); 4617 STATIC_ASSERT(kSmiShiftSize == 0); 4618 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); 4619 __ tst(code_, 4620 Operand(kSmiTagMask | 4621 ((~String::kMaxAsciiCharCode) << kSmiTagSize))); 4622 __ b(ne, &slow_case_); 4623 4624 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 4625 // At this point code register contains smi tagged ASCII char code. 4626 STATIC_ASSERT(kSmiTag == 0); 4627 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); 4628 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); 4629 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 4630 __ cmp(result_, Operand(ip)); 4631 __ b(eq, &slow_case_); 4632 __ bind(&exit_); 4633} 4634 4635 4636void StringCharFromCodeGenerator::GenerateSlow( 4637 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4638 __ Abort("Unexpected fallthrough to CharFromCode slow case"); 4639 4640 __ bind(&slow_case_); 4641 call_helper.BeforeCall(masm); 4642 __ push(code_); 4643 __ CallRuntime(Runtime::kCharFromCode, 1); 4644 __ Move(result_, r0); 4645 call_helper.AfterCall(masm); 4646 __ jmp(&exit_); 4647 4648 __ Abort("Unexpected fallthrough from CharFromCode slow case"); 4649} 4650 4651 4652// ------------------------------------------------------------------------- 4653// StringCharAtGenerator 4654 4655void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { 4656 char_code_at_generator_.GenerateFast(masm); 4657 char_from_code_generator_.GenerateFast(masm); 4658} 4659 4660 4661void StringCharAtGenerator::GenerateSlow( 4662 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4663 char_code_at_generator_.GenerateSlow(masm, call_helper); 4664 char_from_code_generator_.GenerateSlow(masm, call_helper); 4665} 4666 4667 4668class StringHelper : public AllStatic { 4669 public: 4670 // Generate code for copying characters using a simple loop. This should only 4671 // be used in places where the number of characters is small and the 4672 // additional setup and checking in GenerateCopyCharactersLong adds too much 4673 // overhead. Copying of overlapping regions is not supported. 4674 // Dest register ends at the position after the last character written. 4675 static void GenerateCopyCharacters(MacroAssembler* masm, 4676 Register dest, 4677 Register src, 4678 Register count, 4679 Register scratch, 4680 bool ascii); 4681 4682 // Generate code for copying a large number of characters. This function 4683 // is allowed to spend extra time setting up conditions to make copying 4684 // faster. Copying of overlapping regions is not supported. 4685 // Dest register ends at the position after the last character written. 4686 static void GenerateCopyCharactersLong(MacroAssembler* masm, 4687 Register dest, 4688 Register src, 4689 Register count, 4690 Register scratch1, 4691 Register scratch2, 4692 Register scratch3, 4693 Register scratch4, 4694 Register scratch5, 4695 int flags); 4696 4697 4698 // Probe the symbol table for a two character string. If the string is 4699 // not found by probing a jump to the label not_found is performed. This jump 4700 // does not guarantee that the string is not in the symbol table. If the 4701 // string is found the code falls through with the string in register r0. 4702 // Contents of both c1 and c2 registers are modified. At the exit c1 is 4703 // guaranteed to contain halfword with low and high bytes equal to 4704 // initial contents of c1 and c2 respectively. 4705 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, 4706 Register c1, 4707 Register c2, 4708 Register scratch1, 4709 Register scratch2, 4710 Register scratch3, 4711 Register scratch4, 4712 Register scratch5, 4713 Label* not_found); 4714 4715 // Generate string hash. 4716 static void GenerateHashInit(MacroAssembler* masm, 4717 Register hash, 4718 Register character); 4719 4720 static void GenerateHashAddCharacter(MacroAssembler* masm, 4721 Register hash, 4722 Register character); 4723 4724 static void GenerateHashGetHash(MacroAssembler* masm, 4725 Register hash); 4726 4727 private: 4728 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); 4729}; 4730 4731 4732void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 4733 Register dest, 4734 Register src, 4735 Register count, 4736 Register scratch, 4737 bool ascii) { 4738 Label loop; 4739 Label done; 4740 // This loop just copies one character at a time, as it is only used for very 4741 // short strings. 4742 if (!ascii) { 4743 __ add(count, count, Operand(count), SetCC); 4744 } else { 4745 __ cmp(count, Operand(0, RelocInfo::NONE)); 4746 } 4747 __ b(eq, &done); 4748 4749 __ bind(&loop); 4750 __ ldrb(scratch, MemOperand(src, 1, PostIndex)); 4751 // Perform sub between load and dependent store to get the load time to 4752 // complete. 4753 __ sub(count, count, Operand(1), SetCC); 4754 __ strb(scratch, MemOperand(dest, 1, PostIndex)); 4755 // last iteration. 4756 __ b(gt, &loop); 4757 4758 __ bind(&done); 4759} 4760 4761 4762enum CopyCharactersFlags { 4763 COPY_ASCII = 1, 4764 DEST_ALWAYS_ALIGNED = 2 4765}; 4766 4767 4768void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, 4769 Register dest, 4770 Register src, 4771 Register count, 4772 Register scratch1, 4773 Register scratch2, 4774 Register scratch3, 4775 Register scratch4, 4776 Register scratch5, 4777 int flags) { 4778 bool ascii = (flags & COPY_ASCII) != 0; 4779 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; 4780 4781 if (dest_always_aligned && FLAG_debug_code) { 4782 // Check that destination is actually word aligned if the flag says 4783 // that it is. 4784 __ tst(dest, Operand(kPointerAlignmentMask)); 4785 __ Check(eq, "Destination of copy not aligned."); 4786 } 4787 4788 const int kReadAlignment = 4; 4789 const int kReadAlignmentMask = kReadAlignment - 1; 4790 // Ensure that reading an entire aligned word containing the last character 4791 // of a string will not read outside the allocated area (because we pad up 4792 // to kObjectAlignment). 4793 STATIC_ASSERT(kObjectAlignment >= kReadAlignment); 4794 // Assumes word reads and writes are little endian. 4795 // Nothing to do for zero characters. 4796 Label done; 4797 if (!ascii) { 4798 __ add(count, count, Operand(count), SetCC); 4799 } else { 4800 __ cmp(count, Operand(0, RelocInfo::NONE)); 4801 } 4802 __ b(eq, &done); 4803 4804 // Assume that you cannot read (or write) unaligned. 4805 Label byte_loop; 4806 // Must copy at least eight bytes, otherwise just do it one byte at a time. 4807 __ cmp(count, Operand(8)); 4808 __ add(count, dest, Operand(count)); 4809 Register limit = count; // Read until src equals this. 4810 __ b(lt, &byte_loop); 4811 4812 if (!dest_always_aligned) { 4813 // Align dest by byte copying. Copies between zero and three bytes. 4814 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); 4815 Label dest_aligned; 4816 __ b(eq, &dest_aligned); 4817 __ cmp(scratch4, Operand(2)); 4818 __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); 4819 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); 4820 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); 4821 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4822 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); 4823 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); 4824 __ bind(&dest_aligned); 4825 } 4826 4827 Label simple_loop; 4828 4829 __ sub(scratch4, dest, Operand(src)); 4830 __ and_(scratch4, scratch4, Operand(0x03), SetCC); 4831 __ b(eq, &simple_loop); 4832 // Shift register is number of bits in a source word that 4833 // must be combined with bits in the next source word in order 4834 // to create a destination word. 4835 4836 // Complex loop for src/dst that are not aligned the same way. 4837 { 4838 Label loop; 4839 __ mov(scratch4, Operand(scratch4, LSL, 3)); 4840 Register left_shift = scratch4; 4841 __ and_(src, src, Operand(~3)); // Round down to load previous word. 4842 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); 4843 // Store the "shift" most significant bits of scratch in the least 4844 // signficant bits (i.e., shift down by (32-shift)). 4845 __ rsb(scratch2, left_shift, Operand(32)); 4846 Register right_shift = scratch2; 4847 __ mov(scratch1, Operand(scratch1, LSR, right_shift)); 4848 4849 __ bind(&loop); 4850 __ ldr(scratch3, MemOperand(src, 4, PostIndex)); 4851 __ sub(scratch5, limit, Operand(dest)); 4852 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); 4853 __ str(scratch1, MemOperand(dest, 4, PostIndex)); 4854 __ mov(scratch1, Operand(scratch3, LSR, right_shift)); 4855 // Loop if four or more bytes left to copy. 4856 // Compare to eight, because we did the subtract before increasing dst. 4857 __ sub(scratch5, scratch5, Operand(8), SetCC); 4858 __ b(ge, &loop); 4859 } 4860 // There is now between zero and three bytes left to copy (negative that 4861 // number is in scratch5), and between one and three bytes already read into 4862 // scratch1 (eight times that number in scratch4). We may have read past 4863 // the end of the string, but because objects are aligned, we have not read 4864 // past the end of the object. 4865 // Find the minimum of remaining characters to move and preloaded characters 4866 // and write those as bytes. 4867 __ add(scratch5, scratch5, Operand(4), SetCC); 4868 __ b(eq, &done); 4869 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); 4870 // Move minimum of bytes read and bytes left to copy to scratch4. 4871 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); 4872 // Between one and three (value in scratch5) characters already read into 4873 // scratch ready to write. 4874 __ cmp(scratch5, Operand(2)); 4875 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4876 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); 4877 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); 4878 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); 4879 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); 4880 // Copy any remaining bytes. 4881 __ b(&byte_loop); 4882 4883 // Simple loop. 4884 // Copy words from src to dst, until less than four bytes left. 4885 // Both src and dest are word aligned. 4886 __ bind(&simple_loop); 4887 { 4888 Label loop; 4889 __ bind(&loop); 4890 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); 4891 __ sub(scratch3, limit, Operand(dest)); 4892 __ str(scratch1, MemOperand(dest, 4, PostIndex)); 4893 // Compare to 8, not 4, because we do the substraction before increasing 4894 // dest. 4895 __ cmp(scratch3, Operand(8)); 4896 __ b(ge, &loop); 4897 } 4898 4899 // Copy bytes from src to dst until dst hits limit. 4900 __ bind(&byte_loop); 4901 __ cmp(dest, Operand(limit)); 4902 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); 4903 __ b(ge, &done); 4904 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4905 __ b(&byte_loop); 4906 4907 __ bind(&done); 4908} 4909 4910 4911void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, 4912 Register c1, 4913 Register c2, 4914 Register scratch1, 4915 Register scratch2, 4916 Register scratch3, 4917 Register scratch4, 4918 Register scratch5, 4919 Label* not_found) { 4920 // Register scratch3 is the general scratch register in this function. 4921 Register scratch = scratch3; 4922 4923 // Make sure that both characters are not digits as such strings has a 4924 // different hash algorithm. Don't try to look for these in the symbol table. 4925 Label not_array_index; 4926 __ sub(scratch, c1, Operand(static_cast<int>('0'))); 4927 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); 4928 __ b(hi, ¬_array_index); 4929 __ sub(scratch, c2, Operand(static_cast<int>('0'))); 4930 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); 4931 4932 // If check failed combine both characters into single halfword. 4933 // This is required by the contract of the method: code at the 4934 // not_found branch expects this combination in c1 register 4935 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); 4936 __ b(ls, not_found); 4937 4938 __ bind(¬_array_index); 4939 // Calculate the two character string hash. 4940 Register hash = scratch1; 4941 StringHelper::GenerateHashInit(masm, hash, c1); 4942 StringHelper::GenerateHashAddCharacter(masm, hash, c2); 4943 StringHelper::GenerateHashGetHash(masm, hash); 4944 4945 // Collect the two characters in a register. 4946 Register chars = c1; 4947 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); 4948 4949 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 4950 // hash: hash of two character string. 4951 4952 // Load symbol table 4953 // Load address of first element of the symbol table. 4954 Register symbol_table = c2; 4955 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); 4956 4957 Register undefined = scratch4; 4958 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); 4959 4960 // Calculate capacity mask from the symbol table capacity. 4961 Register mask = scratch2; 4962 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); 4963 __ mov(mask, Operand(mask, ASR, 1)); 4964 __ sub(mask, mask, Operand(1)); 4965 4966 // Calculate untagged address of the first element of the symbol table. 4967 Register first_symbol_table_element = symbol_table; 4968 __ add(first_symbol_table_element, symbol_table, 4969 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); 4970 4971 // Registers 4972 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 4973 // hash: hash of two character string 4974 // mask: capacity mask 4975 // first_symbol_table_element: address of the first element of 4976 // the symbol table 4977 // undefined: the undefined object 4978 // scratch: - 4979 4980 // Perform a number of probes in the symbol table. 4981 static const int kProbes = 4; 4982 Label found_in_symbol_table; 4983 Label next_probe[kProbes]; 4984 for (int i = 0; i < kProbes; i++) { 4985 Register candidate = scratch5; // Scratch register contains candidate. 4986 4987 // Calculate entry in symbol table. 4988 if (i > 0) { 4989 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); 4990 } else { 4991 __ mov(candidate, hash); 4992 } 4993 4994 __ and_(candidate, candidate, Operand(mask)); 4995 4996 // Load the entry from the symble table. 4997 STATIC_ASSERT(SymbolTable::kEntrySize == 1); 4998 __ ldr(candidate, 4999 MemOperand(first_symbol_table_element, 5000 candidate, 5001 LSL, 5002 kPointerSizeLog2)); 5003 5004 // If entry is undefined no string with this hash can be found. 5005 Label is_string; 5006 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE); 5007 __ b(ne, &is_string); 5008 5009 __ cmp(undefined, candidate); 5010 __ b(eq, not_found); 5011 // Must be null (deleted entry). 5012 if (FLAG_debug_code) { 5013 __ LoadRoot(ip, Heap::kNullValueRootIndex); 5014 __ cmp(ip, candidate); 5015 __ Assert(eq, "oddball in symbol table is not undefined or null"); 5016 } 5017 __ jmp(&next_probe[i]); 5018 5019 __ bind(&is_string); 5020 5021 // Check that the candidate is a non-external ASCII string. The instance 5022 // type is still in the scratch register from the CompareObjectType 5023 // operation. 5024 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); 5025 5026 // If length is not 2 the string is not a candidate. 5027 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); 5028 __ cmp(scratch, Operand(Smi::FromInt(2))); 5029 __ b(ne, &next_probe[i]); 5030 5031 // Check if the two characters match. 5032 // Assumes that word load is little endian. 5033 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); 5034 __ cmp(chars, scratch); 5035 __ b(eq, &found_in_symbol_table); 5036 __ bind(&next_probe[i]); 5037 } 5038 5039 // No matching 2 character string found by probing. 5040 __ jmp(not_found); 5041 5042 // Scratch register contains result when we fall through to here. 5043 Register result = scratch; 5044 __ bind(&found_in_symbol_table); 5045 __ Move(r0, result); 5046} 5047 5048 5049void StringHelper::GenerateHashInit(MacroAssembler* masm, 5050 Register hash, 5051 Register character) { 5052 // hash = character + (character << 10); 5053 __ add(hash, character, Operand(character, LSL, 10)); 5054 // hash ^= hash >> 6; 5055 __ eor(hash, hash, Operand(hash, ASR, 6)); 5056} 5057 5058 5059void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, 5060 Register hash, 5061 Register character) { 5062 // hash += character; 5063 __ add(hash, hash, Operand(character)); 5064 // hash += hash << 10; 5065 __ add(hash, hash, Operand(hash, LSL, 10)); 5066 // hash ^= hash >> 6; 5067 __ eor(hash, hash, Operand(hash, ASR, 6)); 5068} 5069 5070 5071void StringHelper::GenerateHashGetHash(MacroAssembler* masm, 5072 Register hash) { 5073 // hash += hash << 3; 5074 __ add(hash, hash, Operand(hash, LSL, 3)); 5075 // hash ^= hash >> 11; 5076 __ eor(hash, hash, Operand(hash, ASR, 11)); 5077 // hash += hash << 15; 5078 __ add(hash, hash, Operand(hash, LSL, 15), SetCC); 5079 5080 // if (hash == 0) hash = 27; 5081 __ mov(hash, Operand(27), LeaveCC, ne); 5082} 5083 5084 5085void SubStringStub::Generate(MacroAssembler* masm) { 5086 Label runtime; 5087 5088 // Stack frame on entry. 5089 // lr: return address 5090 // sp[0]: to 5091 // sp[4]: from 5092 // sp[8]: string 5093 5094 // This stub is called from the native-call %_SubString(...), so 5095 // nothing can be assumed about the arguments. It is tested that: 5096 // "string" is a sequential string, 5097 // both "from" and "to" are smis, and 5098 // 0 <= from <= to <= string.length. 5099 // If any of these assumptions fail, we call the runtime system. 5100 5101 static const int kToOffset = 0 * kPointerSize; 5102 static const int kFromOffset = 1 * kPointerSize; 5103 static const int kStringOffset = 2 * kPointerSize; 5104 5105 // Check bounds and smi-ness. 5106 Register to = r6; 5107 Register from = r7; 5108 __ Ldrd(to, from, MemOperand(sp, kToOffset)); 5109 STATIC_ASSERT(kFromOffset == kToOffset + 4); 5110 STATIC_ASSERT(kSmiTag == 0); 5111 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 5112 // I.e., arithmetic shift right by one un-smi-tags. 5113 __ mov(r2, Operand(to, ASR, 1), SetCC); 5114 __ mov(r3, Operand(from, ASR, 1), SetCC, cc); 5115 // If either to or from had the smi tag bit set, then carry is set now. 5116 __ b(cs, &runtime); // Either "from" or "to" is not a smi. 5117 __ b(mi, &runtime); // From is negative. 5118 5119 // Both to and from are smis. 5120 5121 __ sub(r2, r2, Operand(r3), SetCC); 5122 __ b(mi, &runtime); // Fail if from > to. 5123 // Special handling of sub-strings of length 1 and 2. One character strings 5124 // are handled in the runtime system (looked up in the single character 5125 // cache). Two character strings are looked for in the symbol cache. 5126 __ cmp(r2, Operand(2)); 5127 __ b(lt, &runtime); 5128 5129 // r2: length 5130 // r3: from index (untaged smi) 5131 // r6 (a.k.a. to): to (smi) 5132 // r7 (a.k.a. from): from offset (smi) 5133 5134 // Make sure first argument is a sequential (or flat) string. 5135 __ ldr(r5, MemOperand(sp, kStringOffset)); 5136 STATIC_ASSERT(kSmiTag == 0); 5137 __ tst(r5, Operand(kSmiTagMask)); 5138 __ b(eq, &runtime); 5139 Condition is_string = masm->IsObjectStringType(r5, r1); 5140 __ b(NegateCondition(is_string), &runtime); 5141 5142 // r1: instance type 5143 // r2: length 5144 // r3: from index (untagged smi) 5145 // r5: string 5146 // r6 (a.k.a. to): to (smi) 5147 // r7 (a.k.a. from): from offset (smi) 5148 Label seq_string; 5149 __ and_(r4, r1, Operand(kStringRepresentationMask)); 5150 STATIC_ASSERT(kSeqStringTag < kConsStringTag); 5151 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 5152 __ cmp(r4, Operand(kConsStringTag)); 5153 __ b(gt, &runtime); // External strings go to runtime. 5154 __ b(lt, &seq_string); // Sequential strings are handled directly. 5155 5156 // Cons string. Try to recurse (once) on the first substring. 5157 // (This adds a little more generality than necessary to handle flattened 5158 // cons strings, but not much). 5159 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); 5160 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); 5161 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5162 __ tst(r1, Operand(kStringRepresentationMask)); 5163 STATIC_ASSERT(kSeqStringTag == 0); 5164 __ b(ne, &runtime); // Cons and External strings go to runtime. 5165 5166 // Definitly a sequential string. 5167 __ bind(&seq_string); 5168 5169 // r1: instance type. 5170 // r2: length 5171 // r3: from index (untaged smi) 5172 // r5: string 5173 // r6 (a.k.a. to): to (smi) 5174 // r7 (a.k.a. from): from offset (smi) 5175 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); 5176 __ cmp(r4, Operand(to)); 5177 __ b(lt, &runtime); // Fail if to > length. 5178 to = no_reg; 5179 5180 // r1: instance type. 5181 // r2: result string length. 5182 // r3: from index (untaged smi) 5183 // r5: string. 5184 // r7 (a.k.a. from): from offset (smi) 5185 // Check for flat ASCII string. 5186 Label non_ascii_flat; 5187 __ tst(r1, Operand(kStringEncodingMask)); 5188 STATIC_ASSERT(kTwoByteStringTag == 0); 5189 __ b(eq, &non_ascii_flat); 5190 5191 Label result_longer_than_two; 5192 __ cmp(r2, Operand(2)); 5193 __ b(gt, &result_longer_than_two); 5194 5195 // Sub string of length 2 requested. 5196 // Get the two characters forming the sub string. 5197 __ add(r5, r5, Operand(r3)); 5198 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); 5199 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); 5200 5201 // Try to lookup two character string in symbol table. 5202 Label make_two_character_string; 5203 StringHelper::GenerateTwoCharacterSymbolTableProbe( 5204 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); 5205 Counters* counters = masm->isolate()->counters(); 5206 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5207 __ add(sp, sp, Operand(3 * kPointerSize)); 5208 __ Ret(); 5209 5210 // r2: result string length. 5211 // r3: two characters combined into halfword in little endian byte order. 5212 __ bind(&make_two_character_string); 5213 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); 5214 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5215 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5216 __ add(sp, sp, Operand(3 * kPointerSize)); 5217 __ Ret(); 5218 5219 __ bind(&result_longer_than_two); 5220 5221 // Allocate the result. 5222 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); 5223 5224 // r0: result string. 5225 // r2: result string length. 5226 // r5: string. 5227 // r7 (a.k.a. from): from offset (smi) 5228 // Locate first character of result. 5229 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5230 // Locate 'from' character of string. 5231 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5232 __ add(r5, r5, Operand(from, ASR, 1)); 5233 5234 // r0: result string. 5235 // r1: first character of result string. 5236 // r2: result string length. 5237 // r5: first character of sub string to copy. 5238 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); 5239 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, 5240 COPY_ASCII | DEST_ALWAYS_ALIGNED); 5241 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5242 __ add(sp, sp, Operand(3 * kPointerSize)); 5243 __ Ret(); 5244 5245 __ bind(&non_ascii_flat); 5246 // r2: result string length. 5247 // r5: string. 5248 // r7 (a.k.a. from): from offset (smi) 5249 // Check for flat two byte string. 5250 5251 // Allocate the result. 5252 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); 5253 5254 // r0: result string. 5255 // r2: result string length. 5256 // r5: string. 5257 // Locate first character of result. 5258 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5259 // Locate 'from' character of string. 5260 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5261 // As "from" is a smi it is 2 times the value which matches the size of a two 5262 // byte character. 5263 __ add(r5, r5, Operand(from)); 5264 from = no_reg; 5265 5266 // r0: result string. 5267 // r1: first character of result. 5268 // r2: result length. 5269 // r5: first character of string to copy. 5270 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 5271 StringHelper::GenerateCopyCharactersLong( 5272 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); 5273 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5274 __ add(sp, sp, Operand(3 * kPointerSize)); 5275 __ Ret(); 5276 5277 // Just jump to runtime to create the sub string. 5278 __ bind(&runtime); 5279 __ TailCallRuntime(Runtime::kSubString, 3, 1); 5280} 5281 5282 5283void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, 5284 Register left, 5285 Register right, 5286 Register scratch1, 5287 Register scratch2, 5288 Register scratch3, 5289 Register scratch4) { 5290 Label compare_lengths; 5291 // Find minimum length and length difference. 5292 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); 5293 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); 5294 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); 5295 Register length_delta = scratch3; 5296 __ mov(scratch1, scratch2, LeaveCC, gt); 5297 Register min_length = scratch1; 5298 STATIC_ASSERT(kSmiTag == 0); 5299 __ tst(min_length, Operand(min_length)); 5300 __ b(eq, &compare_lengths); 5301 5302 // Untag smi. 5303 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); 5304 5305 // Setup registers so that we only need to increment one register 5306 // in the loop. 5307 __ add(scratch2, min_length, 5308 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5309 __ add(left, left, Operand(scratch2)); 5310 __ add(right, right, Operand(scratch2)); 5311 // Registers left and right points to the min_length character of strings. 5312 __ rsb(min_length, min_length, Operand(-1)); 5313 Register index = min_length; 5314 // Index starts at -min_length. 5315 5316 { 5317 // Compare loop. 5318 Label loop; 5319 __ bind(&loop); 5320 // Compare characters. 5321 __ add(index, index, Operand(1), SetCC); 5322 __ ldrb(scratch2, MemOperand(left, index), ne); 5323 __ ldrb(scratch4, MemOperand(right, index), ne); 5324 // Skip to compare lengths with eq condition true. 5325 __ b(eq, &compare_lengths); 5326 __ cmp(scratch2, scratch4); 5327 __ b(eq, &loop); 5328 // Fallthrough with eq condition false. 5329 } 5330 // Compare lengths - strings up to min-length are equal. 5331 __ bind(&compare_lengths); 5332 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); 5333 // Use zero length_delta as result. 5334 __ mov(r0, Operand(length_delta), SetCC, eq); 5335 // Fall through to here if characters compare not-equal. 5336 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); 5337 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); 5338 __ Ret(); 5339} 5340 5341 5342void StringCompareStub::Generate(MacroAssembler* masm) { 5343 Label runtime; 5344 5345 Counters* counters = masm->isolate()->counters(); 5346 5347 // Stack frame on entry. 5348 // sp[0]: right string 5349 // sp[4]: left string 5350 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. 5351 5352 Label not_same; 5353 __ cmp(r0, r1); 5354 __ b(ne, ¬_same); 5355 STATIC_ASSERT(EQUAL == 0); 5356 STATIC_ASSERT(kSmiTag == 0); 5357 __ mov(r0, Operand(Smi::FromInt(EQUAL))); 5358 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); 5359 __ add(sp, sp, Operand(2 * kPointerSize)); 5360 __ Ret(); 5361 5362 __ bind(¬_same); 5363 5364 // Check that both objects are sequential ASCII strings. 5365 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); 5366 5367 // Compare flat ASCII strings natively. Remove arguments from stack first. 5368 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); 5369 __ add(sp, sp, Operand(2 * kPointerSize)); 5370 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); 5371 5372 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) 5373 // tagged as a small integer. 5374 __ bind(&runtime); 5375 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); 5376} 5377 5378 5379void StringAddStub::Generate(MacroAssembler* masm) { 5380 Label string_add_runtime, call_builtin; 5381 Builtins::JavaScript builtin_id = Builtins::ADD; 5382 5383 Counters* counters = masm->isolate()->counters(); 5384 5385 // Stack on entry: 5386 // sp[0]: second argument (right). 5387 // sp[4]: first argument (left). 5388 5389 // Load the two arguments. 5390 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. 5391 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. 5392 5393 // Make sure that both arguments are strings if not known in advance. 5394 if (flags_ == NO_STRING_ADD_FLAGS) { 5395 __ JumpIfEitherSmi(r0, r1, &string_add_runtime); 5396 // Load instance types. 5397 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5398 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5399 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5400 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5401 STATIC_ASSERT(kStringTag == 0); 5402 // If either is not a string, go to runtime. 5403 __ tst(r4, Operand(kIsNotStringMask)); 5404 __ tst(r5, Operand(kIsNotStringMask), eq); 5405 __ b(ne, &string_add_runtime); 5406 } else { 5407 // Here at least one of the arguments is definitely a string. 5408 // We convert the one that is not known to be a string. 5409 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { 5410 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); 5411 GenerateConvertArgument( 5412 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin); 5413 builtin_id = Builtins::STRING_ADD_RIGHT; 5414 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { 5415 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); 5416 GenerateConvertArgument( 5417 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin); 5418 builtin_id = Builtins::STRING_ADD_LEFT; 5419 } 5420 } 5421 5422 // Both arguments are strings. 5423 // r0: first string 5424 // r1: second string 5425 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5426 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5427 { 5428 Label strings_not_empty; 5429 // Check if either of the strings are empty. In that case return the other. 5430 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); 5431 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); 5432 STATIC_ASSERT(kSmiTag == 0); 5433 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. 5434 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. 5435 STATIC_ASSERT(kSmiTag == 0); 5436 // Else test if second string is empty. 5437 __ cmp(r3, Operand(Smi::FromInt(0)), ne); 5438 __ b(ne, &strings_not_empty); // If either string was empty, return r0. 5439 5440 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5441 __ add(sp, sp, Operand(2 * kPointerSize)); 5442 __ Ret(); 5443 5444 __ bind(&strings_not_empty); 5445 } 5446 5447 __ mov(r2, Operand(r2, ASR, kSmiTagSize)); 5448 __ mov(r3, Operand(r3, ASR, kSmiTagSize)); 5449 // Both strings are non-empty. 5450 // r0: first string 5451 // r1: second string 5452 // r2: length of first string 5453 // r3: length of second string 5454 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5455 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5456 // Look at the length of the result of adding the two strings. 5457 Label string_add_flat_result, longer_than_two; 5458 // Adding two lengths can't overflow. 5459 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); 5460 __ add(r6, r2, Operand(r3)); 5461 // Use the symbol table when adding two one character strings, as it 5462 // helps later optimizations to return a symbol here. 5463 __ cmp(r6, Operand(2)); 5464 __ b(ne, &longer_than_two); 5465 5466 // Check that both strings are non-external ASCII strings. 5467 if (flags_ != NO_STRING_ADD_FLAGS) { 5468 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5469 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5470 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5471 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5472 } 5473 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, 5474 &string_add_runtime); 5475 5476 // Get the two characters forming the sub string. 5477 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5478 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); 5479 5480 // Try to lookup two character string in symbol table. If it is not found 5481 // just allocate a new one. 5482 Label make_two_character_string; 5483 StringHelper::GenerateTwoCharacterSymbolTableProbe( 5484 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); 5485 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5486 __ add(sp, sp, Operand(2 * kPointerSize)); 5487 __ Ret(); 5488 5489 __ bind(&make_two_character_string); 5490 // Resulting string has length 2 and first chars of two strings 5491 // are combined into single halfword in r2 register. 5492 // So we can fill resulting string without two loops by a single 5493 // halfword store instruction (which assumes that processor is 5494 // in a little endian mode) 5495 __ mov(r6, Operand(2)); 5496 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); 5497 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5498 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5499 __ add(sp, sp, Operand(2 * kPointerSize)); 5500 __ Ret(); 5501 5502 __ bind(&longer_than_two); 5503 // Check if resulting string will be flat. 5504 __ cmp(r6, Operand(String::kMinNonFlatLength)); 5505 __ b(lt, &string_add_flat_result); 5506 // Handle exceptionally long strings in the runtime system. 5507 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); 5508 ASSERT(IsPowerOf2(String::kMaxLength + 1)); 5509 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. 5510 __ cmp(r6, Operand(String::kMaxLength + 1)); 5511 __ b(hs, &string_add_runtime); 5512 5513 // If result is not supposed to be flat, allocate a cons string object. 5514 // If both strings are ASCII the result is an ASCII cons string. 5515 if (flags_ != NO_STRING_ADD_FLAGS) { 5516 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5517 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5518 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5519 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5520 } 5521 Label non_ascii, allocated, ascii_data; 5522 STATIC_ASSERT(kTwoByteStringTag == 0); 5523 __ tst(r4, Operand(kStringEncodingMask)); 5524 __ tst(r5, Operand(kStringEncodingMask), ne); 5525 __ b(eq, &non_ascii); 5526 5527 // Allocate an ASCII cons string. 5528 __ bind(&ascii_data); 5529 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); 5530 __ bind(&allocated); 5531 // Fill the fields of the cons string. 5532 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); 5533 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); 5534 __ mov(r0, Operand(r7)); 5535 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5536 __ add(sp, sp, Operand(2 * kPointerSize)); 5537 __ Ret(); 5538 5539 __ bind(&non_ascii); 5540 // At least one of the strings is two-byte. Check whether it happens 5541 // to contain only ASCII characters. 5542 // r4: first instance type. 5543 // r5: second instance type. 5544 __ tst(r4, Operand(kAsciiDataHintMask)); 5545 __ tst(r5, Operand(kAsciiDataHintMask), ne); 5546 __ b(ne, &ascii_data); 5547 __ eor(r4, r4, Operand(r5)); 5548 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); 5549 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); 5550 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); 5551 __ b(eq, &ascii_data); 5552 5553 // Allocate a two byte cons string. 5554 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); 5555 __ jmp(&allocated); 5556 5557 // Handle creating a flat result. First check that both strings are 5558 // sequential and that they have the same encoding. 5559 // r0: first string 5560 // r1: second string 5561 // r2: length of first string 5562 // r3: length of second string 5563 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5564 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5565 // r6: sum of lengths. 5566 __ bind(&string_add_flat_result); 5567 if (flags_ != NO_STRING_ADD_FLAGS) { 5568 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5569 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5570 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5571 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5572 } 5573 // Check that both strings are sequential. 5574 STATIC_ASSERT(kSeqStringTag == 0); 5575 __ tst(r4, Operand(kStringRepresentationMask)); 5576 __ tst(r5, Operand(kStringRepresentationMask), eq); 5577 __ b(ne, &string_add_runtime); 5578 // Now check if both strings have the same encoding (ASCII/Two-byte). 5579 // r0: first string. 5580 // r1: second string. 5581 // r2: length of first string. 5582 // r3: length of second string. 5583 // r6: sum of lengths.. 5584 Label non_ascii_string_add_flat_result; 5585 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. 5586 __ eor(r7, r4, Operand(r5)); 5587 __ tst(r7, Operand(kStringEncodingMask)); 5588 __ b(ne, &string_add_runtime); 5589 // And see if it's ASCII or two-byte. 5590 __ tst(r4, Operand(kStringEncodingMask)); 5591 __ b(eq, &non_ascii_string_add_flat_result); 5592 5593 // Both strings are sequential ASCII strings. We also know that they are 5594 // short (since the sum of the lengths is less than kMinNonFlatLength). 5595 // r6: length of resulting flat string 5596 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); 5597 // Locate first character of result. 5598 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5599 // Locate first character of first argument. 5600 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5601 // r0: first character of first string. 5602 // r1: second string. 5603 // r2: length of first string. 5604 // r3: length of second string. 5605 // r6: first character of result. 5606 // r7: result string. 5607 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); 5608 5609 // Load second argument and locate first character. 5610 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5611 // r1: first character of second string. 5612 // r3: length of second string. 5613 // r6: next character of result. 5614 // r7: result string. 5615 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); 5616 __ mov(r0, Operand(r7)); 5617 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5618 __ add(sp, sp, Operand(2 * kPointerSize)); 5619 __ Ret(); 5620 5621 __ bind(&non_ascii_string_add_flat_result); 5622 // Both strings are sequential two byte strings. 5623 // r0: first string. 5624 // r1: second string. 5625 // r2: length of first string. 5626 // r3: length of second string. 5627 // r6: sum of length of strings. 5628 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); 5629 // r0: first string. 5630 // r1: second string. 5631 // r2: length of first string. 5632 // r3: length of second string. 5633 // r7: result string. 5634 5635 // Locate first character of result. 5636 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5637 // Locate first character of first argument. 5638 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5639 5640 // r0: first character of first string. 5641 // r1: second string. 5642 // r2: length of first string. 5643 // r3: length of second string. 5644 // r6: first character of result. 5645 // r7: result string. 5646 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); 5647 5648 // Locate first character of second argument. 5649 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5650 5651 // r1: first character of second string. 5652 // r3: length of second string. 5653 // r6: next character of result (after copy of first string). 5654 // r7: result string. 5655 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); 5656 5657 __ mov(r0, Operand(r7)); 5658 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5659 __ add(sp, sp, Operand(2 * kPointerSize)); 5660 __ Ret(); 5661 5662 // Just jump to runtime to add the two strings. 5663 __ bind(&string_add_runtime); 5664 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); 5665 5666 if (call_builtin.is_linked()) { 5667 __ bind(&call_builtin); 5668 __ InvokeBuiltin(builtin_id, JUMP_JS); 5669 } 5670} 5671 5672 5673void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, 5674 int stack_offset, 5675 Register arg, 5676 Register scratch1, 5677 Register scratch2, 5678 Register scratch3, 5679 Register scratch4, 5680 Label* slow) { 5681 // First check if the argument is already a string. 5682 Label not_string, done; 5683 __ JumpIfSmi(arg, ¬_string); 5684 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE); 5685 __ b(lt, &done); 5686 5687 // Check the number to string cache. 5688 Label not_cached; 5689 __ bind(¬_string); 5690 // Puts the cached result into scratch1. 5691 NumberToStringStub::GenerateLookupNumberStringCache(masm, 5692 arg, 5693 scratch1, 5694 scratch2, 5695 scratch3, 5696 scratch4, 5697 false, 5698 ¬_cached); 5699 __ mov(arg, scratch1); 5700 __ str(arg, MemOperand(sp, stack_offset)); 5701 __ jmp(&done); 5702 5703 // Check if the argument is a safe string wrapper. 5704 __ bind(¬_cached); 5705 __ JumpIfSmi(arg, slow); 5706 __ CompareObjectType( 5707 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1. 5708 __ b(ne, slow); 5709 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); 5710 __ and_(scratch2, 5711 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 5712 __ cmp(scratch2, 5713 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 5714 __ b(ne, slow); 5715 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset)); 5716 __ str(arg, MemOperand(sp, stack_offset)); 5717 5718 __ bind(&done); 5719} 5720 5721 5722void ICCompareStub::GenerateSmis(MacroAssembler* masm) { 5723 ASSERT(state_ == CompareIC::SMIS); 5724 Label miss; 5725 __ orr(r2, r1, r0); 5726 __ tst(r2, Operand(kSmiTagMask)); 5727 __ b(ne, &miss); 5728 5729 if (GetCondition() == eq) { 5730 // For equality we do not care about the sign of the result. 5731 __ sub(r0, r0, r1, SetCC); 5732 } else { 5733 // Untag before subtracting to avoid handling overflow. 5734 __ SmiUntag(r1); 5735 __ sub(r0, r1, SmiUntagOperand(r0)); 5736 } 5737 __ Ret(); 5738 5739 __ bind(&miss); 5740 GenerateMiss(masm); 5741} 5742 5743 5744void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { 5745 ASSERT(state_ == CompareIC::HEAP_NUMBERS); 5746 5747 Label generic_stub; 5748 Label unordered; 5749 Label miss; 5750 __ and_(r2, r1, Operand(r0)); 5751 __ tst(r2, Operand(kSmiTagMask)); 5752 __ b(eq, &generic_stub); 5753 5754 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE); 5755 __ b(ne, &miss); 5756 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); 5757 __ b(ne, &miss); 5758 5759 // Inlining the double comparison and falling back to the general compare 5760 // stub if NaN is involved or VFP3 is unsupported. 5761 if (CpuFeatures::IsSupported(VFP3)) { 5762 CpuFeatures::Scope scope(VFP3); 5763 5764 // Load left and right operand 5765 __ sub(r2, r1, Operand(kHeapObjectTag)); 5766 __ vldr(d0, r2, HeapNumber::kValueOffset); 5767 __ sub(r2, r0, Operand(kHeapObjectTag)); 5768 __ vldr(d1, r2, HeapNumber::kValueOffset); 5769 5770 // Compare operands 5771 __ VFPCompareAndSetFlags(d0, d1); 5772 5773 // Don't base result on status bits when a NaN is involved. 5774 __ b(vs, &unordered); 5775 5776 // Return a result of -1, 0, or 1, based on status bits. 5777 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 5778 __ mov(r0, Operand(LESS), LeaveCC, lt); 5779 __ mov(r0, Operand(GREATER), LeaveCC, gt); 5780 __ Ret(); 5781 5782 __ bind(&unordered); 5783 } 5784 5785 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0); 5786 __ bind(&generic_stub); 5787 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 5788 5789 __ bind(&miss); 5790 GenerateMiss(masm); 5791} 5792 5793 5794void ICCompareStub::GenerateObjects(MacroAssembler* masm) { 5795 ASSERT(state_ == CompareIC::OBJECTS); 5796 Label miss; 5797 __ and_(r2, r1, Operand(r0)); 5798 __ tst(r2, Operand(kSmiTagMask)); 5799 __ b(eq, &miss); 5800 5801 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); 5802 __ b(ne, &miss); 5803 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); 5804 __ b(ne, &miss); 5805 5806 ASSERT(GetCondition() == eq); 5807 __ sub(r0, r0, Operand(r1)); 5808 __ Ret(); 5809 5810 __ bind(&miss); 5811 GenerateMiss(masm); 5812} 5813 5814 5815void ICCompareStub::GenerateMiss(MacroAssembler* masm) { 5816 __ Push(r1, r0); 5817 __ push(lr); 5818 5819 // Call the runtime system in a fresh internal frame. 5820 ExternalReference miss = 5821 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); 5822 __ EnterInternalFrame(); 5823 __ Push(r1, r0); 5824 __ mov(ip, Operand(Smi::FromInt(op_))); 5825 __ push(ip); 5826 __ CallExternalReference(miss, 3); 5827 __ LeaveInternalFrame(); 5828 // Compute the entry point of the rewritten stub. 5829 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); 5830 // Restore registers. 5831 __ pop(lr); 5832 __ pop(r0); 5833 __ pop(r1); 5834 __ Jump(r2); 5835} 5836 5837 5838void DirectCEntryStub::Generate(MacroAssembler* masm) { 5839 __ ldr(pc, MemOperand(sp, 0)); 5840} 5841 5842 5843void DirectCEntryStub::GenerateCall(MacroAssembler* masm, 5844 ExternalReference function) { 5845 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), 5846 RelocInfo::CODE_TARGET)); 5847 __ mov(r2, Operand(function)); 5848 // Push return address (accessible to GC through exit frame pc). 5849 __ str(pc, MemOperand(sp, 0)); 5850 __ Jump(r2); // Call the api function. 5851} 5852 5853 5854void DirectCEntryStub::GenerateCall(MacroAssembler* masm, 5855 Register target) { 5856 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), 5857 RelocInfo::CODE_TARGET)); 5858 // Push return address (accessible to GC through exit frame pc). 5859 __ str(pc, MemOperand(sp, 0)); 5860 __ Jump(target); // Call the C++ function. 5861} 5862 5863 5864#undef __ 5865 5866} } // namespace v8::internal 5867 5868#endif // V8_TARGET_ARCH_ARM 5869