assembler-x64.h revision 0d5e116f6aee03185f237311a943491bb079a768
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
40#include "serialize.h"
41
42namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49  static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
50  return static_cast<uint64_t>(x) <= kMaxUInt32;
51}
52
53static inline bool is_int32(int64_t x) {
54  static const int64_t kMinInt32 = -V8_INT64_C(0x80000000);
55  return is_uint32(x - kMinInt32);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59  static const uint64_t kMaxInt32 = V8_UINT64_C(0x7fffffff);
60  return x <= kMaxInt32;
61}
62
63static inline bool is_uint32(uint64_t x) {
64  static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
65  return x <= kMaxUInt32;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91  static Register toRegister(int code) {
92    Register r = { code };
93    return r;
94  }
95  bool is_valid() const { return 0 <= code_ && code_ < 16; }
96  bool is(Register reg) const { return code_ == reg.code_; }
97  int code() const {
98    ASSERT(is_valid());
99    return code_;
100  }
101  int bit() const {
102    return 1 << code_;
103  }
104
105  // Return the high bit of the register code as a 0 or 1.  Used often
106  // when constructing the REX prefix byte.
107  int high_bit() const {
108    return code_ >> 3;
109  }
110  // Return the 3 low bits of the register code.  Used when encoding registers
111  // in modR/M, SIB, and opcode bytes.
112  int low_bits() const {
113    return code_ & 0x7;
114  }
115
116  // Unfortunately we can't make this private in a struct when initializing
117  // by assignment.
118  int code_;
119};
120
121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
138
139
140struct XMMRegister {
141  bool is_valid() const { return 0 <= code_ && code_ < 16; }
142  int code() const {
143    ASSERT(is_valid());
144    return code_;
145  }
146
147  // Return the high bit of the register code as a 0 or 1.  Used often
148  // when constructing the REX prefix byte.
149  int high_bit() const {
150    return code_ >> 3;
151  }
152  // Return the 3 low bits of the register code.  Used when encoding registers
153  // in modR/M, SIB, and opcode bytes.
154  int low_bits() const {
155    return code_ & 0x7;
156  }
157
158  int code_;
159};
160
161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
177
178enum Condition {
179  // any value < 0 is considered no_condition
180  no_condition  = -1,
181
182  overflow      =  0,
183  no_overflow   =  1,
184  below         =  2,
185  above_equal   =  3,
186  equal         =  4,
187  not_equal     =  5,
188  below_equal   =  6,
189  above         =  7,
190  negative      =  8,
191  positive      =  9,
192  parity_even   = 10,
193  parity_odd    = 11,
194  less          = 12,
195  greater_equal = 13,
196  less_equal    = 14,
197  greater       = 15,
198
199  // Fake conditions that are handled by the
200  // opcodes using them.
201  always        = 16,
202  never         = 17,
203  // aliases
204  carry         = below,
205  not_carry     = above_equal,
206  zero          = equal,
207  not_zero      = not_equal,
208  sign          = negative,
209  not_sign      = positive,
210  last_condition = greater
211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
218inline Condition NegateCondition(Condition cc) {
219  return static_cast<Condition>(cc ^ 1);
220}
221
222
223// Corresponds to transposing the operands of a comparison.
224inline Condition ReverseCondition(Condition cc) {
225  switch (cc) {
226    case below:
227      return above;
228    case above:
229      return below;
230    case above_equal:
231      return below_equal;
232    case below_equal:
233      return above_equal;
234    case less:
235      return greater;
236    case greater:
237      return less;
238    case greater_equal:
239      return less_equal;
240    case less_equal:
241      return greater_equal;
242    default:
243      return cc;
244  };
245}
246
247
248enum Hint {
249  no_hint = 0,
250  not_taken = 0x2e,
251  taken = 0x3e
252};
253
254// The result of negating a hint is as if the corresponding condition
255// were negated by NegateCondition.  That is, no_hint is mapped to
256// itself and not_taken and taken are mapped to each other.
257inline Hint NegateHint(Hint hint) {
258  return (hint == no_hint)
259      ? no_hint
260      : ((hint == not_taken) ? taken : not_taken);
261}
262
263
264// -----------------------------------------------------------------------------
265// Machine instruction Immediates
266
267class Immediate BASE_EMBEDDED {
268 public:
269  explicit Immediate(int32_t value) : value_(value) {}
270
271 private:
272  int32_t value_;
273
274  friend class Assembler;
275};
276
277
278// -----------------------------------------------------------------------------
279// Machine instruction Operands
280
281enum ScaleFactor {
282  times_1 = 0,
283  times_2 = 1,
284  times_4 = 2,
285  times_8 = 3,
286  times_int_size = times_4,
287  times_pointer_size = times_8
288};
289
290
291class Operand BASE_EMBEDDED {
292 public:
293  // [base + disp/r]
294  Operand(Register base, int32_t disp);
295
296  // [base + index*scale + disp/r]
297  Operand(Register base,
298          Register index,
299          ScaleFactor scale,
300          int32_t disp);
301
302  // [index*scale + disp/r]
303  Operand(Register index,
304          ScaleFactor scale,
305          int32_t disp);
306
307  // Offset from existing memory operand.
308  // Offset is added to existing displacement as 32-bit signed values and
309  // this must not overflow.
310  Operand(const Operand& base, int32_t offset);
311
312 private:
313  byte rex_;
314  byte buf_[6];
315  // The number of bytes in buf_.
316  unsigned int len_;
317
318  // Set the ModR/M byte without an encoded 'reg' register. The
319  // register is encoded later as part of the emit_operand operation.
320  // set_modrm can be called before or after set_sib and set_disp*.
321  inline void set_modrm(int mod, Register rm);
322
323  // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
324  inline void set_sib(ScaleFactor scale, Register index, Register base);
325
326  // Adds operand displacement fields (offsets added to the memory address).
327  // Needs to be called after set_sib, not before it.
328  inline void set_disp8(int disp);
329  inline void set_disp32(int disp);
330
331  friend class Assembler;
332};
333
334
335// CpuFeatures keeps track of which features are supported by the target CPU.
336// Supported features must be enabled by a Scope before use.
337// Example:
338//   if (CpuFeatures::IsSupported(SSE3)) {
339//     CpuFeatures::Scope fscope(SSE3);
340//     // Generate SSE3 floating point code.
341//   } else {
342//     // Generate standard x87 or SSE2 floating point code.
343//   }
344class CpuFeatures : public AllStatic {
345 public:
346  // Detect features of the target CPU. Set safe defaults if the serializer
347  // is enabled (snapshots must be portable).
348  static void Probe();
349  // Check whether a feature is supported by the target CPU.
350  static bool IsSupported(CpuFeature f) {
351    if (f == SSE2 && !FLAG_enable_sse2) return false;
352    if (f == SSE3 && !FLAG_enable_sse3) return false;
353    if (f == CMOV && !FLAG_enable_cmov) return false;
354    if (f == RDTSC && !FLAG_enable_rdtsc) return false;
355    if (f == SAHF && !FLAG_enable_sahf) return false;
356    return (supported_ & (V8_UINT64_C(1) << f)) != 0;
357  }
358  // Check whether a feature is currently enabled.
359  static bool IsEnabled(CpuFeature f) {
360    return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
361  }
362  // Enable a specified feature within a scope.
363  class Scope BASE_EMBEDDED {
364#ifdef DEBUG
365   public:
366    explicit Scope(CpuFeature f) {
367      uint64_t mask = (V8_UINT64_C(1) << f);
368      ASSERT(CpuFeatures::IsSupported(f));
369      ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
370      old_enabled_ = CpuFeatures::enabled_;
371      CpuFeatures::enabled_ |= mask;
372    }
373    ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
374   private:
375    uint64_t old_enabled_;
376#else
377   public:
378    explicit Scope(CpuFeature f) {}
379#endif
380  };
381 private:
382  // Safe defaults include SSE2 and CMOV for X64. It is always available, if
383  // anyone checks, but they shouldn't need to check.
384  static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
385  static uint64_t supported_;
386  static uint64_t enabled_;
387  static uint64_t found_by_runtime_probing_;
388};
389
390
391class Assembler : public Malloced {
392 private:
393  // We check before assembling an instruction that there is sufficient
394  // space to write an instruction and its relocation information.
395  // The relocation writer's position must be kGap bytes above the end of
396  // the generated instructions. This leaves enough space for the
397  // longest possible x64 instruction, 15 bytes, and the longest possible
398  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
399  // (There is a 15 byte limit on x64 instruction length that rules out some
400  // otherwise valid instructions.)
401  // This allows for a single, fast space check per instruction.
402  static const int kGap = 32;
403
404 public:
405  // Create an assembler. Instructions and relocation information are emitted
406  // into a buffer, with the instructions starting from the beginning and the
407  // relocation information starting from the end of the buffer. See CodeDesc
408  // for a detailed comment on the layout (globals.h).
409  //
410  // If the provided buffer is NULL, the assembler allocates and grows its own
411  // buffer, and buffer_size determines the initial buffer size. The buffer is
412  // owned by the assembler and deallocated upon destruction of the assembler.
413  //
414  // If the provided buffer is not NULL, the assembler uses the provided buffer
415  // for code generation and assumes its size to be buffer_size. If the buffer
416  // is too small, a fatal error occurs. No deallocation of the buffer is done
417  // upon destruction of the assembler.
418  Assembler(void* buffer, int buffer_size);
419  ~Assembler();
420
421  // GetCode emits any pending (non-emitted) code and fills the descriptor
422  // desc. GetCode() is idempotent; it returns the same result if no other
423  // Assembler functions are invoked in between GetCode() calls.
424  void GetCode(CodeDesc* desc);
425
426  // Read/Modify the code target in the relative branch/call instruction at pc.
427  // On the x64 architecture, we use relative jumps with a 32-bit displacement
428  // to jump to other Code objects in the Code space in the heap.
429  // Jumps to C functions are done indirectly through a 64-bit register holding
430  // the absolute address of the target.
431  // These functions convert between absolute Addresses of Code objects and
432  // the relative displacements stored in the code.
433  static inline Address target_address_at(Address pc);
434  static inline void set_target_address_at(Address pc, Address target);
435
436  // This sets the branch destination (which is in the instruction on x64).
437  // This is for calls and branches within generated code.
438  inline static void set_target_at(Address instruction_payload,
439                                   Address target) {
440    set_target_address_at(instruction_payload, target);
441  }
442
443  // This sets the branch destination (which is a load instruction on x64).
444  // This is for calls and branches to runtime code.
445  inline static void set_external_target_at(Address instruction_payload,
446                                            Address target) {
447    *reinterpret_cast<Address*>(instruction_payload) = target;
448  }
449
450  inline Handle<Object> code_target_object_handle_at(Address pc);
451  // Number of bytes taken up by the branch target in the code.
452  static const int kCallTargetSize = 4;      // Use 32-bit displacement.
453  static const int kExternalTargetSize = 8;  // Use 64-bit absolute.
454  // Distance between the address of the code target in the call instruction
455  // and the return address pushed on the stack.
456  static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
457  // Distance between the start of the JS return sequence and where the
458  // 32-bit displacement of a near call would be, relative to the pushed
459  // return address.  TODO: Use return sequence length instead.
460  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
461  static const int kPatchReturnSequenceAddressOffset = 13 - 4;
462  // Distance between start of patched debug break slot and where the
463  // 32-bit displacement of a near call would be, relative to the pushed
464  // return address.  TODO: Use return sequence length instead.
465  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
466  static const int kPatchDebugBreakSlotAddressOffset = 13 - 4;
467  // TODO(X64): Rename this, removing the "Real", after changing the above.
468  static const int kRealPatchReturnSequenceAddressOffset = 2;
469
470  // The x64 JS return sequence is padded with int3 to make it large
471  // enough to hold a call instruction when the debugger patches it.
472  static const int kCallInstructionLength = 13;
473  static const int kJSReturnSequenceLength = 13;
474
475  // The debug break slot must be able to contain a call instruction.
476  static const int kDebugBreakSlotLength = kCallInstructionLength;
477
478
479  // ---------------------------------------------------------------------------
480  // Code generation
481  //
482  // Function names correspond one-to-one to x64 instruction mnemonics.
483  // Unless specified otherwise, instructions operate on 64-bit operands.
484  //
485  // If we need versions of an assembly instruction that operate on different
486  // width arguments, we add a single-letter suffix specifying the width.
487  // This is done for the following instructions: mov, cmp, inc, dec,
488  // add, sub, and test.
489  // There are no versions of these instructions without the suffix.
490  // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
491  // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
492  // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
493  // - Instructions on 64-bit (quadword) operands/registers use 'q'.
494  //
495  // Some mnemonics, such as "and", are the same as C++ keywords.
496  // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
497
498  // Insert the smallest number of nop instructions
499  // possible to align the pc offset to a multiple
500  // of m. m must be a power of 2.
501  void Align(int m);
502  // Aligns code to something that's optimal for a jump target for the platform.
503  void CodeTargetAlign();
504
505  // Stack
506  void pushfq();
507  void popfq();
508
509  void push(Immediate value);
510  void push(Register src);
511  void push(const Operand& src);
512
513  void pop(Register dst);
514  void pop(const Operand& dst);
515
516  void enter(Immediate size);
517  void leave();
518
519  // Moves
520  void movb(Register dst, const Operand& src);
521  void movb(Register dst, Immediate imm);
522  void movb(const Operand& dst, Register src);
523
524  // Move the low 16 bits of a 64-bit register value to a 16-bit
525  // memory location.
526  void movw(const Operand& dst, Register src);
527
528  void movl(Register dst, Register src);
529  void movl(Register dst, const Operand& src);
530  void movl(const Operand& dst, Register src);
531  void movl(const Operand& dst, Immediate imm);
532  // Load a 32-bit immediate value, zero-extended to 64 bits.
533  void movl(Register dst, Immediate imm32);
534
535  // Move 64 bit register value to 64-bit memory location.
536  void movq(const Operand& dst, Register src);
537  // Move 64 bit memory location to 64-bit register value.
538  void movq(Register dst, const Operand& src);
539  void movq(Register dst, Register src);
540  // Sign extends immediate 32-bit value to 64 bits.
541  void movq(Register dst, Immediate x);
542  // Move the offset of the label location relative to the current
543  // position (after the move) to the destination.
544  void movl(const Operand& dst, Label* src);
545
546  // Move sign extended immediate to memory location.
547  void movq(const Operand& dst, Immediate value);
548  // New x64 instructions to load a 64-bit immediate into a register.
549  // All 64-bit immediates must have a relocation mode.
550  void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
551  void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
552  void movq(Register dst, const char* s, RelocInfo::Mode rmode);
553  // Moves the address of the external reference into the register.
554  void movq(Register dst, ExternalReference ext);
555  void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
556
557  void movsxbq(Register dst, const Operand& src);
558  void movsxwq(Register dst, const Operand& src);
559  void movsxlq(Register dst, Register src);
560  void movsxlq(Register dst, const Operand& src);
561  void movzxbq(Register dst, const Operand& src);
562  void movzxbl(Register dst, const Operand& src);
563  void movzxwq(Register dst, const Operand& src);
564  void movzxwl(Register dst, const Operand& src);
565
566  // Repeated moves.
567
568  void repmovsb();
569  void repmovsw();
570  void repmovsl();
571  void repmovsq();
572
573  // New x64 instruction to load from an immediate 64-bit pointer into RAX.
574  void load_rax(void* ptr, RelocInfo::Mode rmode);
575  void load_rax(ExternalReference ext);
576
577  // Conditional moves.
578  void cmovq(Condition cc, Register dst, Register src);
579  void cmovq(Condition cc, Register dst, const Operand& src);
580  void cmovl(Condition cc, Register dst, Register src);
581  void cmovl(Condition cc, Register dst, const Operand& src);
582
583  // Exchange two registers
584  void xchg(Register dst, Register src);
585
586  // Arithmetics
587  void addl(Register dst, Register src) {
588    arithmetic_op_32(0x03, dst, src);
589  }
590
591  void addl(Register dst, Immediate src) {
592    immediate_arithmetic_op_32(0x0, dst, src);
593  }
594
595  void addl(Register dst, const Operand& src) {
596    arithmetic_op_32(0x03, dst, src);
597  }
598
599  void addl(const Operand& dst, Immediate src) {
600    immediate_arithmetic_op_32(0x0, dst, src);
601  }
602
603  void addq(Register dst, Register src) {
604    arithmetic_op(0x03, dst, src);
605  }
606
607  void addq(Register dst, const Operand& src) {
608    arithmetic_op(0x03, dst, src);
609  }
610
611  void addq(const Operand& dst, Register src) {
612    arithmetic_op(0x01, src, dst);
613  }
614
615  void addq(Register dst, Immediate src) {
616    immediate_arithmetic_op(0x0, dst, src);
617  }
618
619  void addq(const Operand& dst, Immediate src) {
620    immediate_arithmetic_op(0x0, dst, src);
621  }
622
623  void sbbl(Register dst, Register src) {
624    arithmetic_op_32(0x1b, dst, src);
625  }
626
627  void cmpb(Register dst, Immediate src) {
628    immediate_arithmetic_op_8(0x7, dst, src);
629  }
630
631  void cmpb_al(Immediate src);
632
633  void cmpb(Register dst, Register src) {
634    arithmetic_op(0x3A, dst, src);
635  }
636
637  void cmpb(Register dst, const Operand& src) {
638    arithmetic_op(0x3A, dst, src);
639  }
640
641  void cmpb(const Operand& dst, Register src) {
642    arithmetic_op(0x38, src, dst);
643  }
644
645  void cmpb(const Operand& dst, Immediate src) {
646    immediate_arithmetic_op_8(0x7, dst, src);
647  }
648
649  void cmpw(const Operand& dst, Immediate src) {
650    immediate_arithmetic_op_16(0x7, dst, src);
651  }
652
653  void cmpw(Register dst, Immediate src) {
654    immediate_arithmetic_op_16(0x7, dst, src);
655  }
656
657  void cmpw(Register dst, const Operand& src) {
658    arithmetic_op_16(0x3B, dst, src);
659  }
660
661  void cmpw(Register dst, Register src) {
662    arithmetic_op_16(0x3B, dst, src);
663  }
664
665  void cmpw(const Operand& dst, Register src) {
666    arithmetic_op_16(0x39, src, dst);
667  }
668
669  void cmpl(Register dst, Register src) {
670    arithmetic_op_32(0x3B, dst, src);
671  }
672
673  void cmpl(Register dst, const Operand& src) {
674    arithmetic_op_32(0x3B, dst, src);
675  }
676
677  void cmpl(const Operand& dst, Register src) {
678    arithmetic_op_32(0x39, src, dst);
679  }
680
681  void cmpl(Register dst, Immediate src) {
682    immediate_arithmetic_op_32(0x7, dst, src);
683  }
684
685  void cmpl(const Operand& dst, Immediate src) {
686    immediate_arithmetic_op_32(0x7, dst, src);
687  }
688
689  void cmpq(Register dst, Register src) {
690    arithmetic_op(0x3B, dst, src);
691  }
692
693  void cmpq(Register dst, const Operand& src) {
694    arithmetic_op(0x3B, dst, src);
695  }
696
697  void cmpq(const Operand& dst, Register src) {
698    arithmetic_op(0x39, src, dst);
699  }
700
701  void cmpq(Register dst, Immediate src) {
702    immediate_arithmetic_op(0x7, dst, src);
703  }
704
705  void cmpq(const Operand& dst, Immediate src) {
706    immediate_arithmetic_op(0x7, dst, src);
707  }
708
709  void and_(Register dst, Register src) {
710    arithmetic_op(0x23, dst, src);
711  }
712
713  void and_(Register dst, const Operand& src) {
714    arithmetic_op(0x23, dst, src);
715  }
716
717  void and_(const Operand& dst, Register src) {
718    arithmetic_op(0x21, src, dst);
719  }
720
721  void and_(Register dst, Immediate src) {
722    immediate_arithmetic_op(0x4, dst, src);
723  }
724
725  void and_(const Operand& dst, Immediate src) {
726    immediate_arithmetic_op(0x4, dst, src);
727  }
728
729  void andl(Register dst, Immediate src) {
730    immediate_arithmetic_op_32(0x4, dst, src);
731  }
732
733  void andl(Register dst, Register src) {
734    arithmetic_op_32(0x23, dst, src);
735  }
736
737  void andb(Register dst, Immediate src) {
738    immediate_arithmetic_op_8(0x4, dst, src);
739  }
740
741  void decq(Register dst);
742  void decq(const Operand& dst);
743  void decl(Register dst);
744  void decl(const Operand& dst);
745  void decb(Register dst);
746  void decb(const Operand& dst);
747
748  // Sign-extends rax into rdx:rax.
749  void cqo();
750  // Sign-extends eax into edx:eax.
751  void cdq();
752
753  // Divide rdx:rax by src.  Quotient in rax, remainder in rdx.
754  void idivq(Register src);
755  // Divide edx:eax by lower 32 bits of src.  Quotient in eax, rem. in edx.
756  void idivl(Register src);
757
758  // Signed multiply instructions.
759  void imul(Register src);                               // rdx:rax = rax * src.
760  void imul(Register dst, Register src);                 // dst = dst * src.
761  void imul(Register dst, const Operand& src);           // dst = dst * src.
762  void imul(Register dst, Register src, Immediate imm);  // dst = src * imm.
763  // Signed 32-bit multiply instructions.
764  void imull(Register dst, Register src);                 // dst = dst * src.
765  void imull(Register dst, Register src, Immediate imm);  // dst = src * imm.
766
767  void incq(Register dst);
768  void incq(const Operand& dst);
769  void incl(Register dst);
770  void incl(const Operand& dst);
771
772  void lea(Register dst, const Operand& src);
773  void leal(Register dst, const Operand& src);
774
775  // Multiply rax by src, put the result in rdx:rax.
776  void mul(Register src);
777
778  void neg(Register dst);
779  void neg(const Operand& dst);
780  void negl(Register dst);
781
782  void not_(Register dst);
783  void not_(const Operand& dst);
784  void notl(Register dst);
785
786  void or_(Register dst, Register src) {
787    arithmetic_op(0x0B, dst, src);
788  }
789
790  void orl(Register dst, Register src) {
791    arithmetic_op_32(0x0B, dst, src);
792  }
793
794  void or_(Register dst, const Operand& src) {
795    arithmetic_op(0x0B, dst, src);
796  }
797
798  void or_(const Operand& dst, Register src) {
799    arithmetic_op(0x09, src, dst);
800  }
801
802  void or_(Register dst, Immediate src) {
803    immediate_arithmetic_op(0x1, dst, src);
804  }
805
806  void orl(Register dst, Immediate src) {
807    immediate_arithmetic_op_32(0x1, dst, src);
808  }
809
810  void or_(const Operand& dst, Immediate src) {
811    immediate_arithmetic_op(0x1, dst, src);
812  }
813
814  void orl(const Operand& dst, Immediate src) {
815    immediate_arithmetic_op_32(0x1, dst, src);
816  }
817
818
819  void rcl(Register dst, Immediate imm8) {
820    shift(dst, imm8, 0x2);
821  }
822
823  void rol(Register dst, Immediate imm8) {
824    shift(dst, imm8, 0x0);
825  }
826
827  void rcr(Register dst, Immediate imm8) {
828    shift(dst, imm8, 0x3);
829  }
830
831  void ror(Register dst, Immediate imm8) {
832    shift(dst, imm8, 0x1);
833  }
834
835  // Shifts dst:src left by cl bits, affecting only dst.
836  void shld(Register dst, Register src);
837
838  // Shifts src:dst right by cl bits, affecting only dst.
839  void shrd(Register dst, Register src);
840
841  // Shifts dst right, duplicating sign bit, by shift_amount bits.
842  // Shifting by 1 is handled efficiently.
843  void sar(Register dst, Immediate shift_amount) {
844    shift(dst, shift_amount, 0x7);
845  }
846
847  // Shifts dst right, duplicating sign bit, by shift_amount bits.
848  // Shifting by 1 is handled efficiently.
849  void sarl(Register dst, Immediate shift_amount) {
850    shift_32(dst, shift_amount, 0x7);
851  }
852
853  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
854  void sar_cl(Register dst) {
855    shift(dst, 0x7);
856  }
857
858  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
859  void sarl_cl(Register dst) {
860    shift_32(dst, 0x7);
861  }
862
863  void shl(Register dst, Immediate shift_amount) {
864    shift(dst, shift_amount, 0x4);
865  }
866
867  void shl_cl(Register dst) {
868    shift(dst, 0x4);
869  }
870
871  void shll_cl(Register dst) {
872    shift_32(dst, 0x4);
873  }
874
875  void shll(Register dst, Immediate shift_amount) {
876    shift_32(dst, shift_amount, 0x4);
877  }
878
879  void shr(Register dst, Immediate shift_amount) {
880    shift(dst, shift_amount, 0x5);
881  }
882
883  void shr_cl(Register dst) {
884    shift(dst, 0x5);
885  }
886
887  void shrl_cl(Register dst) {
888    shift_32(dst, 0x5);
889  }
890
891  void shrl(Register dst, Immediate shift_amount) {
892    shift_32(dst, shift_amount, 0x5);
893  }
894
895  void store_rax(void* dst, RelocInfo::Mode mode);
896  void store_rax(ExternalReference ref);
897
898  void subq(Register dst, Register src) {
899    arithmetic_op(0x2B, dst, src);
900  }
901
902  void subq(Register dst, const Operand& src) {
903    arithmetic_op(0x2B, dst, src);
904  }
905
906  void subq(const Operand& dst, Register src) {
907    arithmetic_op(0x29, src, dst);
908  }
909
910  void subq(Register dst, Immediate src) {
911    immediate_arithmetic_op(0x5, dst, src);
912  }
913
914  void subq(const Operand& dst, Immediate src) {
915    immediate_arithmetic_op(0x5, dst, src);
916  }
917
918  void subl(Register dst, Register src) {
919    arithmetic_op_32(0x2B, dst, src);
920  }
921
922  void subl(Register dst, const Operand& src) {
923    arithmetic_op_32(0x2B, dst, src);
924  }
925
926  void subl(const Operand& dst, Immediate src) {
927    immediate_arithmetic_op_32(0x5, dst, src);
928  }
929
930  void subl(Register dst, Immediate src) {
931    immediate_arithmetic_op_32(0x5, dst, src);
932  }
933
934  void subb(Register dst, Immediate src) {
935    immediate_arithmetic_op_8(0x5, dst, src);
936  }
937
938  void testb(Register dst, Register src);
939  void testb(Register reg, Immediate mask);
940  void testb(const Operand& op, Immediate mask);
941  void testb(const Operand& op, Register reg);
942  void testl(Register dst, Register src);
943  void testl(Register reg, Immediate mask);
944  void testl(const Operand& op, Immediate mask);
945  void testq(const Operand& op, Register reg);
946  void testq(Register dst, Register src);
947  void testq(Register dst, Immediate mask);
948
949  void xor_(Register dst, Register src) {
950    if (dst.code() == src.code()) {
951      arithmetic_op_32(0x33, dst, src);
952    } else {
953      arithmetic_op(0x33, dst, src);
954    }
955  }
956
957  void xorl(Register dst, Register src) {
958    arithmetic_op_32(0x33, dst, src);
959  }
960
961  void xor_(Register dst, const Operand& src) {
962    arithmetic_op(0x33, dst, src);
963  }
964
965  void xor_(const Operand& dst, Register src) {
966    arithmetic_op(0x31, src, dst);
967  }
968
969  void xor_(Register dst, Immediate src) {
970    immediate_arithmetic_op(0x6, dst, src);
971  }
972
973  void xor_(const Operand& dst, Immediate src) {
974    immediate_arithmetic_op(0x6, dst, src);
975  }
976
977  // Bit operations.
978  void bt(const Operand& dst, Register src);
979  void bts(const Operand& dst, Register src);
980
981  // Miscellaneous
982  void clc();
983  void cpuid();
984  void hlt();
985  void int3();
986  void nop();
987  void nop(int n);
988  void rdtsc();
989  void ret(int imm16);
990  void setcc(Condition cc, Register reg);
991
992  // Label operations & relative jumps (PPUM Appendix D)
993  //
994  // Takes a branch opcode (cc) and a label (L) and generates
995  // either a backward branch or a forward branch and links it
996  // to the label fixup chain. Usage:
997  //
998  // Label L;    // unbound label
999  // j(cc, &L);  // forward branch to unbound label
1000  // bind(&L);   // bind label to the current pc
1001  // j(cc, &L);  // backward branch to bound label
1002  // bind(&L);   // illegal: a label may be bound only once
1003  //
1004  // Note: The same Label can be used for forward and backward branches
1005  // but it may be bound only once.
1006
1007  void bind(Label* L);  // binds an unbound label L to the current code position
1008  void bind(NearLabel* L);
1009
1010  // Calls
1011  // Call near relative 32-bit displacement, relative to next instruction.
1012  void call(Label* L);
1013  void call(Handle<Code> target, RelocInfo::Mode rmode);
1014
1015  // Call near absolute indirect, address in register
1016  void call(Register adr);
1017
1018  // Call near indirect
1019  void call(const Operand& operand);
1020
1021  // Jumps
1022  // Jump short or near relative.
1023  // Use a 32-bit signed displacement.
1024  void jmp(Label* L);  // unconditional jump to L
1025  void jmp(Handle<Code> target, RelocInfo::Mode rmode);
1026
1027  // Jump near absolute indirect (r64)
1028  void jmp(Register adr);
1029
1030  // Jump near absolute indirect (m64)
1031  void jmp(const Operand& src);
1032
1033  // Short jump
1034  void jmp(NearLabel* L);
1035
1036  // Conditional jumps
1037  void j(Condition cc, Label* L);
1038  void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
1039
1040  // Conditional short jump
1041  void j(Condition cc, NearLabel* L, Hint hint = no_hint);
1042
1043  // Floating-point operations
1044  void fld(int i);
1045
1046  void fld1();
1047  void fldz();
1048  void fldpi();
1049
1050  void fld_s(const Operand& adr);
1051  void fld_d(const Operand& adr);
1052
1053  void fstp_s(const Operand& adr);
1054  void fstp_d(const Operand& adr);
1055  void fstp(int index);
1056
1057  void fild_s(const Operand& adr);
1058  void fild_d(const Operand& adr);
1059
1060  void fist_s(const Operand& adr);
1061
1062  void fistp_s(const Operand& adr);
1063  void fistp_d(const Operand& adr);
1064
1065  void fisttp_s(const Operand& adr);
1066  void fisttp_d(const Operand& adr);
1067
1068  void fabs();
1069  void fchs();
1070
1071  void fadd(int i);
1072  void fsub(int i);
1073  void fmul(int i);
1074  void fdiv(int i);
1075
1076  void fisub_s(const Operand& adr);
1077
1078  void faddp(int i = 1);
1079  void fsubp(int i = 1);
1080  void fsubrp(int i = 1);
1081  void fmulp(int i = 1);
1082  void fdivp(int i = 1);
1083  void fprem();
1084  void fprem1();
1085
1086  void fxch(int i = 1);
1087  void fincstp();
1088  void ffree(int i = 0);
1089
1090  void ftst();
1091  void fucomp(int i);
1092  void fucompp();
1093  void fucomi(int i);
1094  void fucomip();
1095
1096  void fcompp();
1097  void fnstsw_ax();
1098  void fwait();
1099  void fnclex();
1100
1101  void fsin();
1102  void fcos();
1103
1104  void frndint();
1105
1106  void sahf();
1107
1108  // SSE2 instructions
1109  void movd(XMMRegister dst, Register src);
1110  void movd(Register dst, XMMRegister src);
1111  void movq(XMMRegister dst, Register src);
1112  void movq(Register dst, XMMRegister src);
1113  void extractps(Register dst, XMMRegister src, byte imm8);
1114
1115  void movsd(const Operand& dst, XMMRegister src);
1116  void movsd(XMMRegister dst, XMMRegister src);
1117  void movsd(XMMRegister dst, const Operand& src);
1118
1119  void movss(XMMRegister dst, const Operand& src);
1120  void movss(const Operand& dst, XMMRegister src);
1121
1122  void cvttss2si(Register dst, const Operand& src);
1123  void cvttsd2si(Register dst, const Operand& src);
1124  void cvttsd2siq(Register dst, XMMRegister src);
1125
1126  void cvtlsi2sd(XMMRegister dst, const Operand& src);
1127  void cvtlsi2sd(XMMRegister dst, Register src);
1128  void cvtqsi2sd(XMMRegister dst, const Operand& src);
1129  void cvtqsi2sd(XMMRegister dst, Register src);
1130
1131  void cvtlsi2ss(XMMRegister dst, Register src);
1132
1133  void cvtss2sd(XMMRegister dst, XMMRegister src);
1134  void cvtss2sd(XMMRegister dst, const Operand& src);
1135  void cvtsd2ss(XMMRegister dst, XMMRegister src);
1136
1137  void cvtsd2si(Register dst, XMMRegister src);
1138  void cvtsd2siq(Register dst, XMMRegister src);
1139
1140  void addsd(XMMRegister dst, XMMRegister src);
1141  void subsd(XMMRegister dst, XMMRegister src);
1142  void mulsd(XMMRegister dst, XMMRegister src);
1143  void divsd(XMMRegister dst, XMMRegister src);
1144
1145  void xorpd(XMMRegister dst, XMMRegister src);
1146  void sqrtsd(XMMRegister dst, XMMRegister src);
1147
1148  void ucomisd(XMMRegister dst, XMMRegister src);
1149  void ucomisd(XMMRegister dst, const Operand& src);
1150
1151  // The first argument is the reg field, the second argument is the r/m field.
1152  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1153  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1154  void emit_sse_operand(XMMRegister dst, Register src);
1155  void emit_sse_operand(Register dst, XMMRegister src);
1156
1157  // Use either movsd or movlpd.
1158  // void movdbl(XMMRegister dst, const Operand& src);
1159  // void movdbl(const Operand& dst, XMMRegister src);
1160
1161  // Debugging
1162  void Print();
1163
1164  // Check the code size generated from label to here.
1165  int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1166
1167  // Mark address of the ExitJSFrame code.
1168  void RecordJSReturn();
1169
1170  // Mark address of a debug break slot.
1171  void RecordDebugBreakSlot();
1172
1173  // Record a comment relocation entry that can be used by a disassembler.
1174  // Use --debug_code to enable.
1175  void RecordComment(const char* msg);
1176
1177  void RecordPosition(int pos);
1178  void RecordStatementPosition(int pos);
1179  bool WriteRecordedPositions();
1180
1181  int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
1182  int current_statement_position() const { return current_statement_position_; }
1183  int current_position() const { return current_position_; }
1184
1185  // Check if there is less than kGap bytes available in the buffer.
1186  // If this is the case, we need to grow the buffer before emitting
1187  // an instruction or relocation information.
1188  inline bool buffer_overflow() const {
1189    return pc_ >= reloc_info_writer.pos() - kGap;
1190  }
1191
1192  // Get the number of bytes available in the buffer.
1193  inline int available_space() const {
1194    return static_cast<int>(reloc_info_writer.pos() - pc_);
1195  }
1196
1197  static bool IsNop(Address addr) { return *addr == 0x90; }
1198
1199  // Avoid overflows for displacements etc.
1200  static const int kMaximalBufferSize = 512*MB;
1201  static const int kMinimalBufferSize = 4*KB;
1202
1203 private:
1204  byte* addr_at(int pos)  { return buffer_ + pos; }
1205  byte byte_at(int pos)  { return buffer_[pos]; }
1206  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1207  uint32_t long_at(int pos)  {
1208    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1209  }
1210  void long_at_put(int pos, uint32_t x)  {
1211    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1212  }
1213
1214  // code emission
1215  void GrowBuffer();
1216
1217  void emit(byte x) { *pc_++ = x; }
1218  inline void emitl(uint32_t x);
1219  inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1220  inline void emitw(uint16_t x);
1221  inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
1222  void emit(Immediate x) { emitl(x.value_); }
1223
1224  // Emits a REX prefix that encodes a 64-bit operand size and
1225  // the top bit of both register codes.
1226  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1227  // REX.W is set.
1228  inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1229  inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1230  inline void emit_rex_64(Register reg, Register rm_reg);
1231
1232  // Emits a REX prefix that encodes a 64-bit operand size and
1233  // the top bit of the destination, index, and base register codes.
1234  // The high bit of reg is used for REX.R, the high bit of op's base
1235  // register is used for REX.B, and the high bit of op's index register
1236  // is used for REX.X.  REX.W is set.
1237  inline void emit_rex_64(Register reg, const Operand& op);
1238  inline void emit_rex_64(XMMRegister reg, const Operand& op);
1239
1240  // Emits a REX prefix that encodes a 64-bit operand size and
1241  // the top bit of the register code.
1242  // The high bit of register is used for REX.B.
1243  // REX.W is set and REX.R and REX.X are clear.
1244  inline void emit_rex_64(Register rm_reg);
1245
1246  // Emits a REX prefix that encodes a 64-bit operand size and
1247  // the top bit of the index and base register codes.
1248  // The high bit of op's base register is used for REX.B, and the high
1249  // bit of op's index register is used for REX.X.
1250  // REX.W is set and REX.R clear.
1251  inline void emit_rex_64(const Operand& op);
1252
1253  // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1254  void emit_rex_64() { emit(0x48); }
1255
1256  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1257  // REX.W is clear.
1258  inline void emit_rex_32(Register reg, Register rm_reg);
1259
1260  // The high bit of reg is used for REX.R, the high bit of op's base
1261  // register is used for REX.B, and the high bit of op's index register
1262  // is used for REX.X.  REX.W is cleared.
1263  inline void emit_rex_32(Register reg, const Operand& op);
1264
1265  // High bit of rm_reg goes to REX.B.
1266  // REX.W, REX.R and REX.X are clear.
1267  inline void emit_rex_32(Register rm_reg);
1268
1269  // High bit of base goes to REX.B and high bit of index to REX.X.
1270  // REX.W and REX.R are clear.
1271  inline void emit_rex_32(const Operand& op);
1272
1273  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1274  // REX.W is cleared.  If no REX bits are set, no byte is emitted.
1275  inline void emit_optional_rex_32(Register reg, Register rm_reg);
1276
1277  // The high bit of reg is used for REX.R, the high bit of op's base
1278  // register is used for REX.B, and the high bit of op's index register
1279  // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
1280  // is emitted.
1281  inline void emit_optional_rex_32(Register reg, const Operand& op);
1282
1283  // As for emit_optional_rex_32(Register, Register), except that
1284  // the registers are XMM registers.
1285  inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1286
1287  // As for emit_optional_rex_32(Register, Register), except that
1288  // one of the registers is an XMM registers.
1289  inline void emit_optional_rex_32(XMMRegister reg, Register base);
1290
1291  // As for emit_optional_rex_32(Register, Register), except that
1292  // one of the registers is an XMM registers.
1293  inline void emit_optional_rex_32(Register reg, XMMRegister base);
1294
1295  // As for emit_optional_rex_32(Register, const Operand&), except that
1296  // the register is an XMM register.
1297  inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1298
1299  // Optionally do as emit_rex_32(Register) if the register number has
1300  // the high bit set.
1301  inline void emit_optional_rex_32(Register rm_reg);
1302
1303  // Optionally do as emit_rex_32(const Operand&) if the operand register
1304  // numbers have a high bit set.
1305  inline void emit_optional_rex_32(const Operand& op);
1306
1307
1308  // Emit the ModR/M byte, and optionally the SIB byte and
1309  // 1- or 4-byte offset for a memory operand.  Also encodes
1310  // the second operand of the operation, a register or operation
1311  // subcode, into the reg field of the ModR/M byte.
1312  void emit_operand(Register reg, const Operand& adr) {
1313    emit_operand(reg.low_bits(), adr);
1314  }
1315
1316  // Emit the ModR/M byte, and optionally the SIB byte and
1317  // 1- or 4-byte offset for a memory operand.  Also used to encode
1318  // a three-bit opcode extension into the ModR/M byte.
1319  void emit_operand(int rm, const Operand& adr);
1320
1321  // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1322  void emit_modrm(Register reg, Register rm_reg) {
1323    emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1324  }
1325
1326  // Emit a ModR/M byte with an operation subcode in the reg field and
1327  // a register in the rm_reg field.
1328  void emit_modrm(int code, Register rm_reg) {
1329    ASSERT(is_uint3(code));
1330    emit(0xC0 | code << 3 | rm_reg.low_bits());
1331  }
1332
1333  // Emit the code-object-relative offset of the label's position
1334  inline void emit_code_relative_offset(Label* label);
1335
1336  // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1337  // AND, OR, XOR, or CMP.  The encodings of these operations are all
1338  // similar, differing just in the opcode or in the reg field of the
1339  // ModR/M byte.
1340  void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1341  void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1342  void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1343  void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1344  void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1345  void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1346  void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1347  void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1348  // Operate on a byte in memory or register.
1349  void immediate_arithmetic_op_8(byte subcode,
1350                                 Register dst,
1351                                 Immediate src);
1352  void immediate_arithmetic_op_8(byte subcode,
1353                                 const Operand& dst,
1354                                 Immediate src);
1355  // Operate on a word in memory or register.
1356  void immediate_arithmetic_op_16(byte subcode,
1357                                  Register dst,
1358                                  Immediate src);
1359  void immediate_arithmetic_op_16(byte subcode,
1360                                  const Operand& dst,
1361                                  Immediate src);
1362  // Operate on a 32-bit word in memory or register.
1363  void immediate_arithmetic_op_32(byte subcode,
1364                                  Register dst,
1365                                  Immediate src);
1366  void immediate_arithmetic_op_32(byte subcode,
1367                                  const Operand& dst,
1368                                  Immediate src);
1369
1370  // Emit machine code for a shift operation.
1371  void shift(Register dst, Immediate shift_amount, int subcode);
1372  void shift_32(Register dst, Immediate shift_amount, int subcode);
1373  // Shift dst by cl % 64 bits.
1374  void shift(Register dst, int subcode);
1375  void shift_32(Register dst, int subcode);
1376
1377  void emit_farith(int b1, int b2, int i);
1378
1379  // labels
1380  // void print(Label* L);
1381  void bind_to(Label* L, int pos);
1382
1383  // record reloc info for current pc_
1384  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1385
1386  friend class CodePatcher;
1387  friend class EnsureSpace;
1388  friend class RegExpMacroAssemblerX64;
1389
1390  // Code buffer:
1391  // The buffer into which code and relocation info are generated.
1392  byte* buffer_;
1393  int buffer_size_;
1394  // True if the assembler owns the buffer, false if buffer is external.
1395  bool own_buffer_;
1396  // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1397  static byte* spare_buffer_;
1398
1399  // code generation
1400  byte* pc_;  // the program counter; moves forward
1401  RelocInfoWriter reloc_info_writer;
1402
1403  List< Handle<Code> > code_targets_;
1404  // push-pop elimination
1405  byte* last_pc_;
1406
1407  // source position information
1408  int current_statement_position_;
1409  int current_position_;
1410  int written_statement_position_;
1411  int written_position_;
1412};
1413
1414
1415// Helper class that ensures that there is enough space for generating
1416// instructions and relocation information.  The constructor makes
1417// sure that there is enough space and (in debug mode) the destructor
1418// checks that we did not generate too much.
1419class EnsureSpace BASE_EMBEDDED {
1420 public:
1421  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1422    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1423#ifdef DEBUG
1424    space_before_ = assembler_->available_space();
1425#endif
1426  }
1427
1428#ifdef DEBUG
1429  ~EnsureSpace() {
1430    int bytes_generated = space_before_ - assembler_->available_space();
1431    ASSERT(bytes_generated < assembler_->kGap);
1432  }
1433#endif
1434
1435 private:
1436  Assembler* assembler_;
1437#ifdef DEBUG
1438  int space_before_;
1439#endif
1440};
1441
1442} }  // namespace v8::internal
1443
1444#endif  // V8_X64_ASSEMBLER_X64_H_
1445