InputDispatcher.h revision 0029c66203ab9ded4342976bf7a17bb63af8c44a
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef _UI_INPUT_DISPATCHER_H
18#define _UI_INPUT_DISPATCHER_H
19
20#include <ui/Input.h>
21#include <ui/InputTransport.h>
22#include <utils/KeyedVector.h>
23#include <utils/Vector.h>
24#include <utils/threads.h>
25#include <utils/Timers.h>
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Looper.h>
29#include <utils/Pool.h>
30#include <utils/BitSet.h>
31
32#include <stddef.h>
33#include <unistd.h>
34#include <limits.h>
35
36#include "InputWindow.h"
37#include "InputApplication.h"
38
39
40namespace android {
41
42/*
43 * Constants used to report the outcome of input event injection.
44 */
45enum {
46    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
47    INPUT_EVENT_INJECTION_PENDING = -1,
48
49    /* Injection succeeded. */
50    INPUT_EVENT_INJECTION_SUCCEEDED = 0,
51
52    /* Injection failed because the injector did not have permission to inject
53     * into the application with input focus. */
54    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
55
56    /* Injection failed because there were no available input targets. */
57    INPUT_EVENT_INJECTION_FAILED = 2,
58
59    /* Injection failed due to a timeout. */
60    INPUT_EVENT_INJECTION_TIMED_OUT = 3
61};
62
63/*
64 * Constants used to determine the input event injection synchronization mode.
65 */
66enum {
67    /* Injection is asynchronous and is assumed always to be successful. */
68    INPUT_EVENT_INJECTION_SYNC_NONE = 0,
69
70    /* Waits for previous events to be dispatched so that the input dispatcher can determine
71     * whether input event injection willbe permitted based on the current input focus.
72     * Does not wait for the input event to finish processing. */
73    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
74
75    /* Waits for the input event to be completely processed. */
76    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
77};
78
79
80/*
81 * An input target specifies how an input event is to be dispatched to a particular window
82 * including the window's input channel, control flags, a timeout, and an X / Y offset to
83 * be added to input event coordinates to compensate for the absolute position of the
84 * window area.
85 */
86struct InputTarget {
87    enum {
88        /* This flag indicates that the event is being delivered to a foreground application. */
89        FLAG_FOREGROUND = 1 << 0,
90
91        /* This flag indicates that the target of a MotionEvent is partly or wholly
92         * obscured by another visible window above it.  The motion event should be
93         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
94        FLAG_WINDOW_IS_OBSCURED = 1 << 1,
95
96        /* This flag indicates that a motion event is being split across multiple windows. */
97        FLAG_SPLIT = 1 << 2,
98
99        /* This flag indicates that the event should be sent as is.
100         * Should always be set unless the event is to be transmuted. */
101        FLAG_DISPATCH_AS_IS = 1 << 8,
102
103        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
104         * of the area of this target and so should instead be delivered as an
105         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
106        FLAG_DISPATCH_AS_OUTSIDE = 1 << 9,
107
108        /* This flag indicates that a hover sequence is starting in the given window.
109         * The event is transmuted into ACTION_HOVER_ENTER. */
110        FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10,
111
112        /* This flag indicates that a hover event happened outside of a window which handled
113         * previous hover events, signifying the end of the current hover sequence for that
114         * window.
115         * The event is transmuted into ACTION_HOVER_ENTER. */
116        FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11,
117
118        /* Mask for all dispatch modes. */
119        FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS
120                | FLAG_DISPATCH_AS_OUTSIDE
121                | FLAG_DISPATCH_AS_HOVER_ENTER
122                | FLAG_DISPATCH_AS_HOVER_EXIT,
123    };
124
125    // The input channel to be targeted.
126    sp<InputChannel> inputChannel;
127
128    // Flags for the input target.
129    int32_t flags;
130
131    // The x and y offset to add to a MotionEvent as it is delivered.
132    // (ignored for KeyEvents)
133    float xOffset, yOffset;
134
135    // The subset of pointer ids to include in motion events dispatched to this input target
136    // if FLAG_SPLIT is set.
137    BitSet32 pointerIds;
138};
139
140
141/*
142 * Input dispatcher policy interface.
143 *
144 * The input reader policy is used by the input reader to interact with the Window Manager
145 * and other system components.
146 *
147 * The actual implementation is partially supported by callbacks into the DVM
148 * via JNI.  This interface is also mocked in the unit tests.
149 */
150class InputDispatcherPolicyInterface : public virtual RefBase {
151protected:
152    InputDispatcherPolicyInterface() { }
153    virtual ~InputDispatcherPolicyInterface() { }
154
155public:
156    /* Notifies the system that a configuration change has occurred. */
157    virtual void notifyConfigurationChanged(nsecs_t when) = 0;
158
159    /* Notifies the system that an application is not responding.
160     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
161    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
162            const sp<InputWindowHandle>& inputWindowHandle) = 0;
163
164    /* Notifies the system that an input channel is unrecoverably broken. */
165    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
166
167    /* Gets the key repeat initial timeout or -1 if automatic key repeating is disabled. */
168    virtual nsecs_t getKeyRepeatTimeout() = 0;
169
170    /* Gets the key repeat inter-key delay. */
171    virtual nsecs_t getKeyRepeatDelay() = 0;
172
173    /* Gets the maximum suggested event delivery rate per second.
174     * This value is used to throttle motion event movement actions on a per-device
175     * basis.  It is not intended to be a hard limit.
176     */
177    virtual int32_t getMaxEventsPerSecond() = 0;
178
179    /* Filters an input event.
180     * Return true to dispatch the event unmodified, false to consume the event.
181     * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED
182     * to injectInputEvent.
183     */
184    virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0;
185
186    /* Intercepts a key event immediately before queueing it.
187     * The policy can use this method as an opportunity to perform power management functions
188     * and early event preprocessing such as updating policy flags.
189     *
190     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
191     * should be dispatched to applications.
192     */
193    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
194
195    /* Intercepts a touch, trackball or other motion event before queueing it.
196     * The policy can use this method as an opportunity to perform power management functions
197     * and early event preprocessing such as updating policy flags.
198     *
199     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
200     * should be dispatched to applications.
201     */
202    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
203
204    /* Allows the policy a chance to intercept a key before dispatching. */
205    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
206            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
207
208    /* Allows the policy a chance to perform default processing for an unhandled key.
209     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
210    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
211            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
212
213    /* Notifies the policy about switch events.
214     */
215    virtual void notifySwitch(nsecs_t when,
216            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
217
218    /* Poke user activity for an event dispatched to a window. */
219    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
220
221    /* Checks whether a given application pid/uid has permission to inject input events
222     * into other applications.
223     *
224     * This method is special in that its implementation promises to be non-reentrant and
225     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
226     */
227    virtual bool checkInjectEventsPermissionNonReentrant(
228            int32_t injectorPid, int32_t injectorUid) = 0;
229};
230
231
232/* Notifies the system about input events generated by the input reader.
233 * The dispatcher is expected to be mostly asynchronous. */
234class InputDispatcherInterface : public virtual RefBase {
235protected:
236    InputDispatcherInterface() { }
237    virtual ~InputDispatcherInterface() { }
238
239public:
240    /* Dumps the state of the input dispatcher.
241     *
242     * This method may be called on any thread (usually by the input manager). */
243    virtual void dump(String8& dump) = 0;
244
245    /* Runs a single iteration of the dispatch loop.
246     * Nominally processes one queued event, a timeout, or a response from an input consumer.
247     *
248     * This method should only be called on the input dispatcher thread.
249     */
250    virtual void dispatchOnce() = 0;
251
252    /* Notifies the dispatcher about new events.
253     *
254     * These methods should only be called on the input reader thread.
255     */
256    virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
257    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
258            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
259            int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
260    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
261            uint32_t policyFlags, int32_t action, int32_t flags,
262            int32_t metaState, int32_t edgeFlags,
263            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
264            float xPrecision, float yPrecision, nsecs_t downTime) = 0;
265    virtual void notifySwitch(nsecs_t when,
266            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
267
268    /* Injects an input event and optionally waits for sync.
269     * The synchronization mode determines whether the method blocks while waiting for
270     * input injection to proceed.
271     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
272     *
273     * This method may be called on any thread (usually by the input manager).
274     */
275    virtual int32_t injectInputEvent(const InputEvent* event,
276            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
277            uint32_t policyFlags) = 0;
278
279    /* Sets the list of input windows.
280     *
281     * This method may be called on any thread (usually by the input manager).
282     */
283    virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
284
285    /* Sets the focused application.
286     *
287     * This method may be called on any thread (usually by the input manager).
288     */
289    virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
290
291    /* Sets the input dispatching mode.
292     *
293     * This method may be called on any thread (usually by the input manager).
294     */
295    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
296
297    /* Sets whether input event filtering is enabled.
298     * When enabled, incoming input events are sent to the policy's filterInputEvent
299     * method instead of being dispatched.  The filter is expected to use
300     * injectInputEvent to inject the events it would like to have dispatched.
301     * It should include POLICY_FLAG_FILTERED in the policy flags during injection.
302     */
303    virtual void setInputFilterEnabled(bool enabled) = 0;
304
305    /* Transfers touch focus from the window associated with one channel to the
306     * window associated with the other channel.
307     *
308     * Returns true on success.  False if the window did not actually have touch focus.
309     */
310    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
311            const sp<InputChannel>& toChannel) = 0;
312
313    /* Registers or unregister input channels that may be used as targets for input events.
314     * If monitor is true, the channel will receive a copy of all input events.
315     *
316     * These methods may be called on any thread (usually by the input manager).
317     */
318    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
319            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
320    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
321};
322
323/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
324 * identifying input targets, are controlled by a separate policy object.
325 *
326 * IMPORTANT INVARIANT:
327 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
328 *     the input dispatcher never calls into the policy while holding its internal locks.
329 *     The implementation is also carefully designed to recover from scenarios such as an
330 *     input channel becoming unregistered while identifying input targets or processing timeouts.
331 *
332 *     Methods marked 'Locked' must be called with the lock acquired.
333 *
334 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
335 *     may during the course of their execution release the lock, call into the policy, and
336 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
337 *
338 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
339 */
340class InputDispatcher : public InputDispatcherInterface {
341protected:
342    virtual ~InputDispatcher();
343
344public:
345    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
346
347    virtual void dump(String8& dump);
348
349    virtual void dispatchOnce();
350
351    virtual void notifyConfigurationChanged(nsecs_t eventTime);
352    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
353            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
354            int32_t scanCode, int32_t metaState, nsecs_t downTime);
355    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
356            uint32_t policyFlags, int32_t action, int32_t flags,
357            int32_t metaState, int32_t edgeFlags,
358            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
359            float xPrecision, float yPrecision, nsecs_t downTime);
360    virtual void notifySwitch(nsecs_t when,
361            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;
362
363    virtual int32_t injectInputEvent(const InputEvent* event,
364            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
365            uint32_t policyFlags);
366
367    virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
368    virtual void setFocusedApplication(const InputApplication* inputApplication);
369    virtual void setInputDispatchMode(bool enabled, bool frozen);
370    virtual void setInputFilterEnabled(bool enabled);
371
372    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
373            const sp<InputChannel>& toChannel);
374
375    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
376            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
377    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
378
379private:
380    template <typename T>
381    struct Link {
382        T* next;
383        T* prev;
384    };
385
386    struct InjectionState {
387        mutable int32_t refCount;
388
389        int32_t injectorPid;
390        int32_t injectorUid;
391        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
392        bool injectionIsAsync; // set to true if injection is not waiting for the result
393        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
394    };
395
396    struct EventEntry : Link<EventEntry> {
397        enum {
398            TYPE_SENTINEL,
399            TYPE_CONFIGURATION_CHANGED,
400            TYPE_KEY,
401            TYPE_MOTION
402        };
403
404        mutable int32_t refCount;
405        int32_t type;
406        nsecs_t eventTime;
407        uint32_t policyFlags;
408        InjectionState* injectionState;
409
410        bool dispatchInProgress; // initially false, set to true while dispatching
411
412        inline bool isInjected() { return injectionState != NULL; }
413    };
414
415    struct ConfigurationChangedEntry : EventEntry {
416    };
417
418    struct KeyEntry : EventEntry {
419        int32_t deviceId;
420        uint32_t source;
421        int32_t action;
422        int32_t flags;
423        int32_t keyCode;
424        int32_t scanCode;
425        int32_t metaState;
426        int32_t repeatCount;
427        nsecs_t downTime;
428
429        bool syntheticRepeat; // set to true for synthetic key repeats
430
431        enum InterceptKeyResult {
432            INTERCEPT_KEY_RESULT_UNKNOWN,
433            INTERCEPT_KEY_RESULT_SKIP,
434            INTERCEPT_KEY_RESULT_CONTINUE,
435        };
436        InterceptKeyResult interceptKeyResult; // set based on the interception result
437    };
438
439    struct MotionSample {
440        MotionSample* next;
441
442        nsecs_t eventTime;
443        PointerCoords pointerCoords[MAX_POINTERS];
444    };
445
446    struct MotionEntry : EventEntry {
447        int32_t deviceId;
448        uint32_t source;
449        int32_t action;
450        int32_t flags;
451        int32_t metaState;
452        int32_t edgeFlags;
453        float xPrecision;
454        float yPrecision;
455        nsecs_t downTime;
456        uint32_t pointerCount;
457        int32_t pointerIds[MAX_POINTERS];
458
459        // Linked list of motion samples associated with this motion event.
460        MotionSample firstSample;
461        MotionSample* lastSample;
462
463        uint32_t countSamples() const;
464    };
465
466    // Tracks the progress of dispatching a particular event to a particular connection.
467    struct DispatchEntry : Link<DispatchEntry> {
468        EventEntry* eventEntry; // the event to dispatch
469        int32_t targetFlags;
470        float xOffset;
471        float yOffset;
472
473        // True if dispatch has started.
474        bool inProgress;
475
476        // For motion events:
477        //   Pointer to the first motion sample to dispatch in this cycle.
478        //   Usually NULL to indicate that the list of motion samples begins at
479        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
480        //   cycle and this pointer indicates the location of the first remainining sample
481        //   to dispatch during the current cycle.
482        MotionSample* headMotionSample;
483        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
484        //   unable to send all motion samples during this cycle.  On the next cycle,
485        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
486        //   will be set to NULL.
487        MotionSample* tailMotionSample;
488
489        inline bool hasForegroundTarget() const {
490            return targetFlags & InputTarget::FLAG_FOREGROUND;
491        }
492
493        inline bool isSplit() const {
494            return targetFlags & InputTarget::FLAG_SPLIT;
495        }
496    };
497
498    // A command entry captures state and behavior for an action to be performed in the
499    // dispatch loop after the initial processing has taken place.  It is essentially
500    // a kind of continuation used to postpone sensitive policy interactions to a point
501    // in the dispatch loop where it is safe to release the lock (generally after finishing
502    // the critical parts of the dispatch cycle).
503    //
504    // The special thing about commands is that they can voluntarily release and reacquire
505    // the dispatcher lock at will.  Initially when the command starts running, the
506    // dispatcher lock is held.  However, if the command needs to call into the policy to
507    // do some work, it can release the lock, do the work, then reacquire the lock again
508    // before returning.
509    //
510    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
511    // never calls into the policy while holding its lock.
512    //
513    // Commands are implicitly 'LockedInterruptible'.
514    struct CommandEntry;
515    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
516
517    class Connection;
518    struct CommandEntry : Link<CommandEntry> {
519        CommandEntry();
520        ~CommandEntry();
521
522        Command command;
523
524        // parameters for the command (usage varies by command)
525        sp<Connection> connection;
526        nsecs_t eventTime;
527        KeyEntry* keyEntry;
528        sp<InputChannel> inputChannel;
529        sp<InputApplicationHandle> inputApplicationHandle;
530        sp<InputWindowHandle> inputWindowHandle;
531        int32_t userActivityEventType;
532        bool handled;
533    };
534
535    // Generic queue implementation.
536    template <typename T>
537    struct Queue {
538        T headSentinel;
539        T tailSentinel;
540
541        inline Queue() {
542            headSentinel.prev = NULL;
543            headSentinel.next = & tailSentinel;
544            tailSentinel.prev = & headSentinel;
545            tailSentinel.next = NULL;
546        }
547
548        inline bool isEmpty() const {
549            return headSentinel.next == & tailSentinel;
550        }
551
552        inline void enqueueAtTail(T* entry) {
553            T* last = tailSentinel.prev;
554            last->next = entry;
555            entry->prev = last;
556            entry->next = & tailSentinel;
557            tailSentinel.prev = entry;
558        }
559
560        inline void enqueueAtHead(T* entry) {
561            T* first = headSentinel.next;
562            headSentinel.next = entry;
563            entry->prev = & headSentinel;
564            entry->next = first;
565            first->prev = entry;
566        }
567
568        inline void dequeue(T* entry) {
569            entry->prev->next = entry->next;
570            entry->next->prev = entry->prev;
571        }
572
573        inline T* dequeueAtHead() {
574            T* first = headSentinel.next;
575            dequeue(first);
576            return first;
577        }
578
579        uint32_t count() const;
580    };
581
582    /* Allocates queue entries and performs reference counting as needed. */
583    class Allocator {
584    public:
585        Allocator();
586
587        InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
588        ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
589        KeyEntry* obtainKeyEntry(nsecs_t eventTime,
590                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
591                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
592                int32_t repeatCount, nsecs_t downTime);
593        MotionEntry* obtainMotionEntry(nsecs_t eventTime,
594                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
595                int32_t flags, int32_t metaState, int32_t edgeFlags,
596                float xPrecision, float yPrecision,
597                nsecs_t downTime, uint32_t pointerCount,
598                const int32_t* pointerIds, const PointerCoords* pointerCoords);
599        DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
600                int32_t targetFlags, float xOffset, float yOffset);
601        CommandEntry* obtainCommandEntry(Command command);
602
603        void releaseInjectionState(InjectionState* injectionState);
604        void releaseEventEntry(EventEntry* entry);
605        void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
606        void releaseKeyEntry(KeyEntry* entry);
607        void releaseMotionEntry(MotionEntry* entry);
608        void freeMotionSample(MotionSample* sample);
609        void releaseDispatchEntry(DispatchEntry* entry);
610        void releaseCommandEntry(CommandEntry* entry);
611
612        void recycleKeyEntry(KeyEntry* entry);
613
614        void appendMotionSample(MotionEntry* motionEntry,
615                nsecs_t eventTime, const PointerCoords* pointerCoords);
616
617    private:
618        Pool<InjectionState> mInjectionStatePool;
619        Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
620        Pool<KeyEntry> mKeyEntryPool;
621        Pool<MotionEntry> mMotionEntryPool;
622        Pool<MotionSample> mMotionSamplePool;
623        Pool<DispatchEntry> mDispatchEntryPool;
624        Pool<CommandEntry> mCommandEntryPool;
625
626        void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
627                uint32_t policyFlags);
628        void releaseEventEntryInjectionState(EventEntry* entry);
629    };
630
631    /* Specifies which events are to be canceled and why. */
632    struct CancelationOptions {
633        enum Mode {
634            CANCEL_ALL_EVENTS = 0,
635            CANCEL_POINTER_EVENTS = 1,
636            CANCEL_NON_POINTER_EVENTS = 2,
637            CANCEL_FALLBACK_EVENTS = 3,
638        };
639
640        // The criterion to use to determine which events should be canceled.
641        Mode mode;
642
643        // Descriptive reason for the cancelation.
644        const char* reason;
645
646        // The specific keycode of the key event to cancel, or -1 to cancel any key event.
647        int32_t keyCode;
648
649        CancelationOptions(Mode mode, const char* reason) :
650                mode(mode), reason(reason), keyCode(-1) { }
651    };
652
653    /* Tracks dispatched key and motion event state so that cancelation events can be
654     * synthesized when events are dropped. */
655    class InputState {
656    public:
657        InputState();
658        ~InputState();
659
660        // Returns true if there is no state to be canceled.
661        bool isNeutral() const;
662
663        // Records tracking information for an event that has just been published.
664        void trackEvent(const EventEntry* entry, int32_t action);
665
666        // Records tracking information for a key event that has just been published.
667        void trackKey(const KeyEntry* entry, int32_t action);
668
669        // Records tracking information for a motion event that has just been published.
670        void trackMotion(const MotionEntry* entry, int32_t action);
671
672        // Synthesizes cancelation events for the current state and resets the tracked state.
673        void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
674                Vector<EventEntry*>& outEvents, const CancelationOptions& options);
675
676        // Clears the current state.
677        void clear();
678
679        // Copies pointer-related parts of the input state to another instance.
680        void copyPointerStateTo(InputState& other) const;
681
682        // Gets the fallback key associated with a keycode.
683        // Returns -1 if none.
684        // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
685        int32_t getFallbackKey(int32_t originalKeyCode);
686
687        // Sets the fallback key for a particular keycode.
688        void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
689
690        // Removes the fallback key for a particular keycode.
691        void removeFallbackKey(int32_t originalKeyCode);
692
693        inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
694            return mFallbackKeys;
695        }
696
697    private:
698        struct KeyMemento {
699            int32_t deviceId;
700            uint32_t source;
701            int32_t keyCode;
702            int32_t scanCode;
703            int32_t flags;
704            nsecs_t downTime;
705        };
706
707        struct MotionMemento {
708            int32_t deviceId;
709            uint32_t source;
710            float xPrecision;
711            float yPrecision;
712            nsecs_t downTime;
713            uint32_t pointerCount;
714            int32_t pointerIds[MAX_POINTERS];
715            PointerCoords pointerCoords[MAX_POINTERS];
716            bool hovering;
717
718            void setPointers(const MotionEntry* entry);
719        };
720
721        Vector<KeyMemento> mKeyMementos;
722        Vector<MotionMemento> mMotionMementos;
723        KeyedVector<int32_t, int32_t> mFallbackKeys;
724
725        static bool shouldCancelKey(const KeyMemento& memento,
726                const CancelationOptions& options);
727        static bool shouldCancelMotion(const MotionMemento& memento,
728                const CancelationOptions& options);
729    };
730
731    /* Manages the dispatch state associated with a single input channel. */
732    class Connection : public RefBase {
733    protected:
734        virtual ~Connection();
735
736    public:
737        enum Status {
738            // Everything is peachy.
739            STATUS_NORMAL,
740            // An unrecoverable communication error has occurred.
741            STATUS_BROKEN,
742            // The input channel has been unregistered.
743            STATUS_ZOMBIE
744        };
745
746        Status status;
747        sp<InputChannel> inputChannel; // never null
748        sp<InputWindowHandle> inputWindowHandle; // may be null
749        InputPublisher inputPublisher;
750        InputState inputState;
751        Queue<DispatchEntry> outboundQueue;
752
753        nsecs_t lastEventTime; // the time when the event was originally captured
754        nsecs_t lastDispatchTime; // the time when the last event was dispatched
755
756        explicit Connection(const sp<InputChannel>& inputChannel,
757                const sp<InputWindowHandle>& inputWindowHandle);
758
759        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
760
761        const char* getStatusLabel() const;
762
763        // Finds a DispatchEntry in the outbound queue associated with the specified event.
764        // Returns NULL if not found.
765        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
766
767        // Gets the time since the current event was originally obtained from the input driver.
768        inline double getEventLatencyMillis(nsecs_t currentTime) const {
769            return (currentTime - lastEventTime) / 1000000.0;
770        }
771
772        // Gets the time since the current event entered the outbound dispatch queue.
773        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
774            return (currentTime - lastDispatchTime) / 1000000.0;
775        }
776
777        status_t initialize();
778    };
779
780    enum DropReason {
781        DROP_REASON_NOT_DROPPED = 0,
782        DROP_REASON_POLICY = 1,
783        DROP_REASON_APP_SWITCH = 2,
784        DROP_REASON_DISABLED = 3,
785        DROP_REASON_BLOCKED = 4,
786        DROP_REASON_STALE = 5,
787    };
788
789    sp<InputDispatcherPolicyInterface> mPolicy;
790
791    Mutex mLock;
792
793    Allocator mAllocator;
794    sp<Looper> mLooper;
795
796    EventEntry* mPendingEvent;
797    Queue<EventEntry> mInboundQueue;
798    Queue<CommandEntry> mCommandQueue;
799
800    Vector<EventEntry*> mTempCancelationEvents;
801
802    void dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay,
803            nsecs_t* nextWakeupTime);
804
805    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
806    bool enqueueInboundEventLocked(EventEntry* entry);
807
808    // Cleans up input state when dropping an inbound event.
809    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
810
811    // App switch latency optimization.
812    bool mAppSwitchSawKeyDown;
813    nsecs_t mAppSwitchDueTime;
814
815    static bool isAppSwitchKeyCode(int32_t keyCode);
816    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
817    bool isAppSwitchPendingLocked();
818    void resetPendingAppSwitchLocked(bool handled);
819
820    // Stale event latency optimization.
821    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
822
823    // Blocked event latency optimization.  Drops old events when the user intends
824    // to transfer focus to a new application.
825    EventEntry* mNextUnblockedEvent;
826
827    const InputWindow* findTouchedWindowAtLocked(int32_t x, int32_t y);
828
829    // All registered connections mapped by receive pipe file descriptor.
830    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
831
832    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
833
834    // Active connections are connections that have a non-empty outbound queue.
835    // We don't use a ref-counted pointer here because we explicitly abort connections
836    // during unregistration which causes the connection's outbound queue to be cleared
837    // and the connection itself to be deactivated.
838    Vector<Connection*> mActiveConnections;
839
840    // Input channels that will receive a copy of all input events.
841    Vector<sp<InputChannel> > mMonitoringChannels;
842
843    // Event injection and synchronization.
844    Condition mInjectionResultAvailableCondition;
845    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
846    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
847
848    Condition mInjectionSyncFinishedCondition;
849    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
850    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
851
852    // Throttling state.
853    struct ThrottleState {
854        nsecs_t minTimeBetweenEvents;
855
856        nsecs_t lastEventTime;
857        int32_t lastDeviceId;
858        uint32_t lastSource;
859
860        uint32_t originalSampleCount; // only collected during debugging
861    } mThrottleState;
862
863    // Key repeat tracking.
864    struct KeyRepeatState {
865        KeyEntry* lastKeyEntry; // or null if no repeat
866        nsecs_t nextRepeatTime;
867    } mKeyRepeatState;
868
869    void resetKeyRepeatLocked();
870    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime, nsecs_t keyRepeatTimeout);
871
872    // Deferred command processing.
873    bool runCommandsLockedInterruptible();
874    CommandEntry* postCommandLocked(Command command);
875
876    // Inbound event processing.
877    void drainInboundQueueLocked();
878    void releasePendingEventLocked();
879    void releaseInboundEventLocked(EventEntry* entry);
880
881    // Dispatch state.
882    bool mDispatchEnabled;
883    bool mDispatchFrozen;
884    bool mInputFilterEnabled;
885
886    Vector<InputWindow> mWindows;
887
888    const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);
889
890    // Focus tracking for keys, trackball, etc.
891    const InputWindow* mFocusedWindow;
892
893    // Focus tracking for touch.
894    struct TouchedWindow {
895        const InputWindow* window;
896        int32_t targetFlags;
897        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
898        sp<InputChannel> channel;
899    };
900    struct TouchState {
901        bool down;
902        bool split;
903        int32_t deviceId; // id of the device that is currently down, others are rejected
904        uint32_t source;  // source of the device that is current down, others are rejected
905        Vector<TouchedWindow> windows;
906
907        TouchState();
908        ~TouchState();
909        void reset();
910        void copyFrom(const TouchState& other);
911        void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
912        void filterNonAsIsTouchWindows();
913        const InputWindow* getFirstForegroundWindow();
914    };
915
916    TouchState mTouchState;
917    TouchState mTempTouchState;
918
919    // Focused application.
920    InputApplication* mFocusedApplication;
921    InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
922    void releaseFocusedApplicationLocked();
923
924    // Dispatch inbound events.
925    bool dispatchConfigurationChangedLocked(
926            nsecs_t currentTime, ConfigurationChangedEntry* entry);
927    bool dispatchKeyLocked(
928            nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
929            DropReason* dropReason, nsecs_t* nextWakeupTime);
930    bool dispatchMotionLocked(
931            nsecs_t currentTime, MotionEntry* entry,
932            DropReason* dropReason, nsecs_t* nextWakeupTime);
933    void dispatchEventToCurrentInputTargetsLocked(
934            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
935
936    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
937    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
938
939    // The input targets that were most recently identified for dispatch.
940    bool mCurrentInputTargetsValid; // false while targets are being recomputed
941    Vector<InputTarget> mCurrentInputTargets;
942
943    enum InputTargetWaitCause {
944        INPUT_TARGET_WAIT_CAUSE_NONE,
945        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
946        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
947    };
948
949    InputTargetWaitCause mInputTargetWaitCause;
950    nsecs_t mInputTargetWaitStartTime;
951    nsecs_t mInputTargetWaitTimeoutTime;
952    bool mInputTargetWaitTimeoutExpired;
953    sp<InputApplicationHandle> mInputTargetWaitApplication;
954
955    // Contains the last window which received a hover event.
956    const InputWindow* mLastHoverWindow;
957
958    // Finding targets for input events.
959    void resetTargetsLocked();
960    void commitTargetsLocked();
961    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
962            const InputApplication* application, const InputWindow* window,
963            nsecs_t* nextWakeupTime);
964    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
965            const sp<InputChannel>& inputChannel);
966    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
967    void resetANRTimeoutsLocked();
968
969    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
970            nsecs_t* nextWakeupTime);
971    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
972            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions,
973            const MotionSample** outSplitBatchAfterSample);
974
975    void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
976            BitSet32 pointerIds);
977    void addMonitoringTargetsLocked();
978    void pokeUserActivityLocked(const EventEntry* eventEntry);
979    bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
980    bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
981    bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
982    String8 getApplicationWindowLabelLocked(const InputApplication* application,
983            const InputWindow* window);
984
985    // Manage the dispatch cycle for a single connection.
986    // These methods are deliberately not Interruptible because doing all of the work
987    // with the mutex held makes it easier to ensure that connection invariants are maintained.
988    // If needed, the methods post commands to run later once the critical bits are done.
989    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
990            EventEntry* eventEntry, const InputTarget* inputTarget,
991            bool resumeWithAppendedMotionSample);
992    void enqueueDispatchEntryLocked(const sp<Connection>& connection,
993            EventEntry* eventEntry, const InputTarget* inputTarget,
994            bool resumeWithAppendedMotionSample, int32_t dispatchMode);
995    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
996    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
997            bool handled);
998    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
999    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1000    void drainOutboundQueueLocked(Connection* connection);
1001    static int handleReceiveCallback(int receiveFd, int events, void* data);
1002
1003    void synthesizeCancelationEventsForAllConnectionsLocked(
1004            const CancelationOptions& options);
1005    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
1006            const CancelationOptions& options);
1007    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
1008            const CancelationOptions& options);
1009
1010    // Splitting motion events across windows.
1011    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
1012
1013    // Reset and drop everything the dispatcher is doing.
1014    void resetAndDropEverythingLocked(const char* reason);
1015
1016    // Dump state.
1017    void dumpDispatchStateLocked(String8& dump);
1018    void logDispatchStateLocked();
1019
1020    // Add or remove a connection to the mActiveConnections vector.
1021    void activateConnectionLocked(Connection* connection);
1022    void deactivateConnectionLocked(Connection* connection);
1023
1024    // Interesting events that we might like to log or tell the framework about.
1025    void onDispatchCycleStartedLocked(
1026            nsecs_t currentTime, const sp<Connection>& connection);
1027    void onDispatchCycleFinishedLocked(
1028            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
1029    void onDispatchCycleBrokenLocked(
1030            nsecs_t currentTime, const sp<Connection>& connection);
1031    void onANRLocked(
1032            nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
1033            nsecs_t eventTime, nsecs_t waitStartTime);
1034
1035    // Outbound policy interactions.
1036    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
1037    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
1038    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
1039    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
1040    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
1041    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
1042    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
1043
1044    // Statistics gathering.
1045    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
1046            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
1047};
1048
1049/* Enqueues and dispatches input events, endlessly. */
1050class InputDispatcherThread : public Thread {
1051public:
1052    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
1053    ~InputDispatcherThread();
1054
1055private:
1056    virtual bool threadLoop();
1057
1058    sp<InputDispatcherInterface> mDispatcher;
1059};
1060
1061} // namespace android
1062
1063#endif // _UI_INPUT_DISPATCHER_H
1064