fs_mgr.c revision 5bc31a2632f453e03edac714b865773970bba608
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdio.h>
18#include <stdlib.h>
19#include <string.h>
20#include <unistd.h>
21#include <fcntl.h>
22#include <ctype.h>
23#include <sys/mount.h>
24#include <sys/stat.h>
25#include <errno.h>
26#include <sys/types.h>
27#include <sys/wait.h>
28#include <libgen.h>
29#include <time.h>
30#include <sys/swap.h>
31/* XXX These need to be obtained from kernel headers. See b/9336527 */
32#define SWAP_FLAG_PREFER        0x8000
33#define SWAP_FLAG_PRIO_MASK     0x7fff
34#define SWAP_FLAG_PRIO_SHIFT    0
35#define SWAP_FLAG_DISCARD       0x10000
36
37#include <private/android_filesystem_config.h>
38#include <cutils/partition_utils.h>
39#include <cutils/properties.h>
40#include <logwrap/logwrap.h>
41
42#include "fs_mgr_priv.h"
43
44#define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
45#define KEY_IN_FOOTER  "footer"
46
47#define E2FSCK_BIN      "/system/bin/e2fsck"
48#define MKSWAP_BIN      "/system/bin/mkswap"
49
50#define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
51
52#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
53
54struct flag_list {
55    const char *name;
56    unsigned flag;
57};
58
59static struct flag_list mount_flags[] = {
60    { "noatime",    MS_NOATIME },
61    { "noexec",     MS_NOEXEC },
62    { "nosuid",     MS_NOSUID },
63    { "nodev",      MS_NODEV },
64    { "nodiratime", MS_NODIRATIME },
65    { "ro",         MS_RDONLY },
66    { "rw",         0 },
67    { "remount",    MS_REMOUNT },
68    { "bind",       MS_BIND },
69    { "rec",        MS_REC },
70    { "unbindable", MS_UNBINDABLE },
71    { "private",    MS_PRIVATE },
72    { "slave",      MS_SLAVE },
73    { "shared",     MS_SHARED },
74    { "defaults",   0 },
75    { 0,            0 },
76};
77
78static struct flag_list fs_mgr_flags[] = {
79    { "wait",        MF_WAIT },
80    { "check",       MF_CHECK },
81    { "encryptable=",MF_CRYPT },
82    { "nonremovable",MF_NONREMOVABLE },
83    { "voldmanaged=",MF_VOLDMANAGED},
84    { "length=",     MF_LENGTH },
85    { "recoveryonly",MF_RECOVERYONLY },
86    { "swapprio=",   MF_SWAPPRIO },
87    { "zramsize=",   MF_ZRAMSIZE },
88    { "defaults",    0 },
89    { 0,             0 },
90};
91
92struct fs_mgr_flag_values {
93    char *key_loc;
94    long long part_length;
95    char *label;
96    int partnum;
97    int swap_prio;
98    unsigned int zram_size;
99};
100
101/*
102 * gettime() - returns the time in seconds of the system's monotonic clock or
103 * zero on error.
104 */
105static time_t gettime(void)
106{
107    struct timespec ts;
108    int ret;
109
110    ret = clock_gettime(CLOCK_MONOTONIC, &ts);
111    if (ret < 0) {
112        ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno));
113        return 0;
114    }
115
116    return ts.tv_sec;
117}
118
119static int wait_for_file(const char *filename, int timeout)
120{
121    struct stat info;
122    time_t timeout_time = gettime() + timeout;
123    int ret = -1;
124
125    while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0))
126        usleep(10000);
127
128    return ret;
129}
130
131static int parse_flags(char *flags, struct flag_list *fl,
132                       struct fs_mgr_flag_values *flag_vals,
133                       char *fs_options, int fs_options_len)
134{
135    int f = 0;
136    int i;
137    char *p;
138    char *savep;
139
140    /* initialize flag values.  If we find a relevant flag, we'll
141     * update the value */
142    if (flag_vals) {
143        memset(flag_vals, 0, sizeof(*flag_vals));
144        flag_vals->partnum = -1;
145        flag_vals->swap_prio = -1; /* negative means it wasn't specified. */
146    }
147
148    /* initialize fs_options to the null string */
149    if (fs_options && (fs_options_len > 0)) {
150        fs_options[0] = '\0';
151    }
152
153    p = strtok_r(flags, ",", &savep);
154    while (p) {
155        /* Look for the flag "p" in the flag list "fl"
156         * If not found, the loop exits with fl[i].name being null.
157         */
158        for (i = 0; fl[i].name; i++) {
159            if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
160                f |= fl[i].flag;
161                if ((fl[i].flag == MF_CRYPT) && flag_vals) {
162                    /* The encryptable flag is followed by an = and the
163                     * location of the keys.  Get it and return it.
164                     */
165                    flag_vals->key_loc = strdup(strchr(p, '=') + 1);
166                } else if ((fl[i].flag == MF_LENGTH) && flag_vals) {
167                    /* The length flag is followed by an = and the
168                     * size of the partition.  Get it and return it.
169                     */
170                    flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0);
171                } else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) {
172                    /* The voldmanaged flag is followed by an = and the
173                     * label, a colon and the partition number or the
174                     * word "auto", e.g.
175                     *   voldmanaged=sdcard:3
176                     * Get and return them.
177                     */
178                    char *label_start;
179                    char *label_end;
180                    char *part_start;
181
182                    label_start = strchr(p, '=') + 1;
183                    label_end = strchr(p, ':');
184                    if (label_end) {
185                        flag_vals->label = strndup(label_start,
186                                                   (int) (label_end - label_start));
187                        part_start = strchr(p, ':') + 1;
188                        if (!strcmp(part_start, "auto")) {
189                            flag_vals->partnum = -1;
190                        } else {
191                            flag_vals->partnum = strtol(part_start, NULL, 0);
192                        }
193                    } else {
194                        ERROR("Warning: voldmanaged= flag malformed\n");
195                    }
196                } else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) {
197                    flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0);
198                } else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) {
199                    flag_vals->zram_size = strtoll(strchr(p, '=') + 1, NULL, 0);
200                }
201                break;
202            }
203        }
204
205        if (!fl[i].name) {
206            if (fs_options) {
207                /* It's not a known flag, so it must be a filesystem specific
208                 * option.  Add it to fs_options if it was passed in.
209                 */
210                strlcat(fs_options, p, fs_options_len);
211                strlcat(fs_options, ",", fs_options_len);
212            } else {
213                /* fs_options was not passed in, so if the flag is unknown
214                 * it's an error.
215                 */
216                ERROR("Warning: unknown flag %s\n", p);
217            }
218        }
219        p = strtok_r(NULL, ",", &savep);
220    }
221
222out:
223    if (fs_options && fs_options[0]) {
224        /* remove the last trailing comma from the list of options */
225        fs_options[strlen(fs_options) - 1] = '\0';
226    }
227
228    return f;
229}
230
231/* Read a line of text till the next newline character.
232 * If no newline is found before the buffer is full, continue reading till a new line is seen,
233 * then return an empty buffer.  This effectively ignores lines that are too long.
234 * On EOF, return null.
235 */
236static char *fs_getline(char *buf, int size, FILE *file)
237{
238    int cnt = 0;
239    int eof = 0;
240    int eol = 0;
241    int c;
242
243    if (size < 1) {
244        return NULL;
245    }
246
247    while (cnt < (size - 1)) {
248        c = getc(file);
249        if (c == EOF) {
250            eof = 1;
251            break;
252        }
253
254        *(buf + cnt) = c;
255        cnt++;
256
257        if (c == '\n') {
258            eol = 1;
259            break;
260        }
261    }
262
263    /* Null terminate what we've read */
264    *(buf + cnt) = '\0';
265
266    if (eof) {
267        if (cnt) {
268            return buf;
269        } else {
270            return NULL;
271        }
272    } else if (eol) {
273        return buf;
274    } else {
275        /* The line is too long.  Read till a newline or EOF.
276         * If EOF, return null, if newline, return an empty buffer.
277         */
278        while(1) {
279            c = getc(file);
280            if (c == EOF) {
281                return NULL;
282            } else if (c == '\n') {
283                *buf = '\0';
284                return buf;
285            }
286        }
287    }
288}
289
290struct fstab *fs_mgr_read_fstab(const char *fstab_path)
291{
292    FILE *fstab_file;
293    int cnt, entries;
294    int len;
295    char line[256];
296    const char *delim = " \t";
297    char *save_ptr, *p;
298    struct fstab *fstab;
299    struct fstab_rec *recs;
300    struct fs_mgr_flag_values flag_vals;
301#define FS_OPTIONS_LEN 1024
302    char tmp_fs_options[FS_OPTIONS_LEN];
303
304    fstab_file = fopen(fstab_path, "r");
305    if (!fstab_file) {
306        ERROR("Cannot open file %s\n", fstab_path);
307        return 0;
308    }
309
310    entries = 0;
311    while (fs_getline(line, sizeof(line), fstab_file)) {
312        /* if the last character is a newline, shorten the string by 1 byte */
313        len = strlen(line);
314        if (line[len - 1] == '\n') {
315            line[len - 1] = '\0';
316        }
317        /* Skip any leading whitespace */
318        p = line;
319        while (isspace(*p)) {
320            p++;
321        }
322        /* ignore comments or empty lines */
323        if (*p == '#' || *p == '\0')
324            continue;
325        entries++;
326    }
327
328    if (!entries) {
329        ERROR("No entries found in fstab\n");
330        return 0;
331    }
332
333    /* Allocate and init the fstab structure */
334    fstab = calloc(1, sizeof(struct fstab));
335    fstab->num_entries = entries;
336    fstab->fstab_filename = strdup(fstab_path);
337    fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec));
338
339    fseek(fstab_file, 0, SEEK_SET);
340
341    cnt = 0;
342    while (fs_getline(line, sizeof(line), fstab_file)) {
343        /* if the last character is a newline, shorten the string by 1 byte */
344        len = strlen(line);
345        if (line[len - 1] == '\n') {
346            line[len - 1] = '\0';
347        }
348
349        /* Skip any leading whitespace */
350        p = line;
351        while (isspace(*p)) {
352            p++;
353        }
354        /* ignore comments or empty lines */
355        if (*p == '#' || *p == '\0')
356            continue;
357
358        /* If a non-comment entry is greater than the size we allocated, give an
359         * error and quit.  This can happen in the unlikely case the file changes
360         * between the two reads.
361         */
362        if (cnt >= entries) {
363            ERROR("Tried to process more entries than counted\n");
364            break;
365        }
366
367        if (!(p = strtok_r(line, delim, &save_ptr))) {
368            ERROR("Error parsing mount source\n");
369            return 0;
370        }
371        fstab->recs[cnt].blk_device = strdup(p);
372
373        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
374            ERROR("Error parsing mount_point\n");
375            return 0;
376        }
377        fstab->recs[cnt].mount_point = strdup(p);
378
379        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
380            ERROR("Error parsing fs_type\n");
381            return 0;
382        }
383        fstab->recs[cnt].fs_type = strdup(p);
384
385        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
386            ERROR("Error parsing mount_flags\n");
387            return 0;
388        }
389        tmp_fs_options[0] = '\0';
390        fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL,
391                                       tmp_fs_options, FS_OPTIONS_LEN);
392
393        /* fs_options are optional */
394        if (tmp_fs_options[0]) {
395            fstab->recs[cnt].fs_options = strdup(tmp_fs_options);
396        } else {
397            fstab->recs[cnt].fs_options = NULL;
398        }
399
400        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
401            ERROR("Error parsing fs_mgr_options\n");
402            return 0;
403        }
404        fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags,
405                                                    &flag_vals, NULL, 0);
406        fstab->recs[cnt].key_loc = flag_vals.key_loc;
407        fstab->recs[cnt].length = flag_vals.part_length;
408        fstab->recs[cnt].label = flag_vals.label;
409        fstab->recs[cnt].partnum = flag_vals.partnum;
410        fstab->recs[cnt].swap_prio = flag_vals.swap_prio;
411        fstab->recs[cnt].zram_size = flag_vals.zram_size;
412        cnt++;
413    }
414    fclose(fstab_file);
415
416    return fstab;
417}
418
419void fs_mgr_free_fstab(struct fstab *fstab)
420{
421    int i;
422
423    for (i = 0; i < fstab->num_entries; i++) {
424        /* Free the pointers return by strdup(3) */
425        free(fstab->recs[i].blk_device);
426        free(fstab->recs[i].mount_point);
427        free(fstab->recs[i].fs_type);
428        free(fstab->recs[i].fs_options);
429        free(fstab->recs[i].key_loc);
430        free(fstab->recs[i].label);
431        i++;
432    }
433
434    /* Free the fstab_recs array created by calloc(3) */
435    free(fstab->recs);
436
437    /* Free the fstab filename */
438    free(fstab->fstab_filename);
439
440    /* Free fstab */
441    free(fstab);
442}
443
444static void check_fs(char *blk_device, char *fs_type, char *target)
445{
446    int status;
447    int ret;
448    long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
449    char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro";
450    char *e2fsck_argv[] = {
451        E2FSCK_BIN,
452        "-y",
453        blk_device
454    };
455
456    /* Check for the types of filesystems we know how to check */
457    if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) {
458        /*
459         * First try to mount and unmount the filesystem.  We do this because
460         * the kernel is more efficient than e2fsck in running the journal and
461         * processing orphaned inodes, and on at least one device with a
462         * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
463         * to do what the kernel does in about a second.
464         *
465         * After mounting and unmounting the filesystem, run e2fsck, and if an
466         * error is recorded in the filesystem superblock, e2fsck will do a full
467         * check.  Otherwise, it does nothing.  If the kernel cannot mount the
468         * filesytsem due to an error, e2fsck is still run to do a full check
469         * fix the filesystem.
470         */
471        ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts);
472        if (!ret) {
473            umount(target);
474        }
475
476        INFO("Running %s on %s\n", E2FSCK_BIN, blk_device);
477
478        ret = android_fork_execvp_ext(ARRAY_SIZE(e2fsck_argv), e2fsck_argv,
479                                      &status, true, LOG_KLOG, true);
480
481        if (ret < 0) {
482            /* No need to check for error in fork, we can't really handle it now */
483            ERROR("Failed trying to run %s\n", E2FSCK_BIN);
484        }
485    }
486
487    return;
488}
489
490static void remove_trailing_slashes(char *n)
491{
492    int len;
493
494    len = strlen(n) - 1;
495    while ((*(n + len) == '/') && len) {
496      *(n + len) = '\0';
497      len--;
498    }
499}
500
501/*
502 * Mark the given block device as read-only, using the BLKROSET ioctl.
503 * Return 0 on success, and -1 on error.
504 */
505static void fs_set_blk_ro(const char *blockdev)
506{
507    int fd;
508    int ON = 1;
509
510    fd = open(blockdev, O_RDONLY);
511    if (fd < 0) {
512        // should never happen
513        return;
514    }
515
516    ioctl(fd, BLKROSET, &ON);
517    close(fd);
518}
519
520/*
521 * __mount(): wrapper around the mount() system call which also
522 * sets the underlying block device to read-only if the mount is read-only.
523 * See "man 2 mount" for return values.
524 */
525static int __mount(const char *source, const char *target,
526                   const char *filesystemtype, unsigned long mountflags,
527                   const void *data)
528{
529    int ret = mount(source, target, filesystemtype, mountflags, data);
530
531    if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
532        fs_set_blk_ro(source);
533    }
534
535    return ret;
536}
537
538static int fs_match(char *in1, char *in2)
539{
540    char *n1;
541    char *n2;
542    int ret;
543
544    n1 = strdup(in1);
545    n2 = strdup(in2);
546
547    remove_trailing_slashes(n1);
548    remove_trailing_slashes(n2);
549
550    ret = !strcmp(n1, n2);
551
552    free(n1);
553    free(n2);
554
555    return ret;
556}
557
558int fs_mgr_mount_all(struct fstab *fstab)
559{
560    int i = 0;
561    int encrypted = 0;
562    int ret = -1;
563    int mret;
564
565    if (!fstab) {
566        return ret;
567    }
568
569    for (i = 0; i < fstab->num_entries; i++) {
570        /* Don't mount entries that are managed by vold */
571        if (fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) {
572            continue;
573        }
574
575        /* Skip swap and raw partition entries such as boot, recovery, etc */
576        if (!strcmp(fstab->recs[i].fs_type, "swap") ||
577            !strcmp(fstab->recs[i].fs_type, "emmc") ||
578            !strcmp(fstab->recs[i].fs_type, "mtd")) {
579            continue;
580        }
581
582        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
583            wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
584        }
585
586        if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
587            check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
588                     fstab->recs[i].mount_point);
589        }
590
591        mret = __mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point,
592                       fstab->recs[i].fs_type, fstab->recs[i].flags,
593                       fstab->recs[i].fs_options);
594        if (!mret) {
595            /* Success!  Go get the next one */
596            continue;
597        }
598
599        /* mount(2) returned an error, check if it's encrypted and deal with it */
600        if ((fstab->recs[i].fs_mgr_flags & MF_CRYPT) &&
601            !partition_wiped(fstab->recs[i].blk_device)) {
602            /* Need to mount a tmpfs at this mountpoint for now, and set
603             * properties that vold will query later for decrypting
604             */
605            if (mount("tmpfs", fstab->recs[i].mount_point, "tmpfs",
606                  MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS) < 0) {
607                ERROR("Cannot mount tmpfs filesystem for encrypted fs at %s\n",
608                        fstab->recs[i].mount_point);
609                goto out;
610            }
611            encrypted = 1;
612        } else {
613            ERROR("Cannot mount filesystem on %s at %s\n",
614                    fstab->recs[i].blk_device, fstab->recs[i].mount_point);
615            goto out;
616        }
617    }
618
619    if (encrypted) {
620        ret = 1;
621    } else {
622        ret = 0;
623    }
624
625out:
626    return ret;
627}
628
629/* If tmp_mount_point is non-null, mount the filesystem there.  This is for the
630 * tmp mount we do to check the user password
631 */
632int fs_mgr_do_mount(struct fstab *fstab, char *n_name, char *n_blk_device,
633                    char *tmp_mount_point)
634{
635    int i = 0;
636    int ret = -1;
637    char *m;
638
639    if (!fstab) {
640        return ret;
641    }
642
643    for (i = 0; i < fstab->num_entries; i++) {
644        if (!fs_match(fstab->recs[i].mount_point, n_name)) {
645            continue;
646        }
647
648        /* We found our match */
649        /* If this swap or a raw partition, report an error */
650        if (!strcmp(fstab->recs[i].fs_type, "swap") ||
651            !strcmp(fstab->recs[i].fs_type, "emmc") ||
652            !strcmp(fstab->recs[i].fs_type, "mtd")) {
653            ERROR("Cannot mount filesystem of type %s on %s\n",
654                  fstab->recs[i].fs_type, n_blk_device);
655            goto out;
656        }
657
658        /* First check the filesystem if requested */
659        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
660            wait_for_file(n_blk_device, WAIT_TIMEOUT);
661        }
662
663        if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
664            check_fs(n_blk_device, fstab->recs[i].fs_type,
665                     fstab->recs[i].mount_point);
666        }
667
668        /* Now mount it where requested */
669        if (tmp_mount_point) {
670            m = tmp_mount_point;
671        } else {
672            m = fstab->recs[i].mount_point;
673        }
674        if (__mount(n_blk_device, m, fstab->recs[i].fs_type,
675                    fstab->recs[i].flags, fstab->recs[i].fs_options)) {
676            ERROR("Cannot mount filesystem on %s at %s\n",
677                    n_blk_device, m);
678            goto out;
679        } else {
680            ret = 0;
681            goto out;
682        }
683    }
684
685    /* We didn't find a match, say so and return an error */
686    ERROR("Cannot find mount point %s in fstab\n", fstab->recs[i].mount_point);
687
688out:
689    return ret;
690}
691
692/*
693 * mount a tmpfs filesystem at the given point.
694 * return 0 on success, non-zero on failure.
695 */
696int fs_mgr_do_tmpfs_mount(char *n_name)
697{
698    int ret;
699
700    ret = mount("tmpfs", n_name, "tmpfs",
701                MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS);
702    if (ret < 0) {
703        ERROR("Cannot mount tmpfs filesystem at %s\n", n_name);
704        return -1;
705    }
706
707    /* Success */
708    return 0;
709}
710
711int fs_mgr_unmount_all(struct fstab *fstab)
712{
713    int i = 0;
714    int ret = 0;
715
716    if (!fstab) {
717        return -1;
718    }
719
720    while (fstab->recs[i].blk_device) {
721        if (umount(fstab->recs[i].mount_point)) {
722            ERROR("Cannot unmount filesystem at %s\n", fstab->recs[i].mount_point);
723            ret = -1;
724        }
725        i++;
726    }
727
728    return ret;
729}
730
731/* This must be called after mount_all, because the mkswap command needs to be
732 * available.
733 */
734int fs_mgr_swapon_all(struct fstab *fstab)
735{
736    int i = 0;
737    int flags = 0;
738    int err = 0;
739    int ret = 0;
740    int status;
741    char *mkswap_argv[2] = {
742        MKSWAP_BIN,
743        NULL
744    };
745
746    if (!fstab) {
747        return -1;
748    }
749
750    for (i = 0; i < fstab->num_entries; i++) {
751        /* Skip non-swap entries */
752        if (strcmp(fstab->recs[i].fs_type, "swap")) {
753            continue;
754        }
755
756        if (fstab->recs[i].zram_size > 0) {
757            /* A zram_size was specified, so we need to configure the
758             * device.  There is no point in having multiple zram devices
759             * on a system (all the memory comes from the same pool) so
760             * we can assume the device number is 0.
761             */
762            FILE *zram_fp;
763
764            zram_fp = fopen(ZRAM_CONF_DEV, "r+");
765            if (zram_fp == NULL) {
766                ERROR("Unable to open zram conf device " ZRAM_CONF_DEV);
767                ret = -1;
768                continue;
769            }
770            fprintf(zram_fp, "%d\n", fstab->recs[i].zram_size);
771            fclose(zram_fp);
772        }
773
774        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
775            wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
776        }
777
778        /* Initialize the swap area */
779        mkswap_argv[1] = fstab->recs[i].blk_device;
780        err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), mkswap_argv,
781                                      &status, true, LOG_KLOG, false);
782        if (err) {
783            ERROR("mkswap failed for %s\n", fstab->recs[i].blk_device);
784            ret = -1;
785            continue;
786        }
787
788        /* If -1, then no priority was specified in fstab, so don't set
789         * SWAP_FLAG_PREFER or encode the priority */
790        if (fstab->recs[i].swap_prio >= 0) {
791            flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) &
792                    SWAP_FLAG_PRIO_MASK;
793            flags |= SWAP_FLAG_PREFER;
794        } else {
795            flags = 0;
796        }
797        err = swapon(fstab->recs[i].blk_device, flags);
798        if (err) {
799            ERROR("swapon failed for %s\n", fstab->recs[i].blk_device);
800            ret = -1;
801        }
802    }
803
804    return ret;
805}
806
807/*
808 * key_loc must be at least PROPERTY_VALUE_MAX bytes long
809 *
810 * real_blk_device must be at least PROPERTY_VALUE_MAX bytes long
811 */
812int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size)
813{
814    int i = 0;
815
816    if (!fstab) {
817        return -1;
818    }
819    /* Initialize return values to null strings */
820    if (key_loc) {
821        *key_loc = '\0';
822    }
823    if (real_blk_device) {
824        *real_blk_device = '\0';
825    }
826
827    /* Look for the encryptable partition to find the data */
828    for (i = 0; i < fstab->num_entries; i++) {
829        /* Don't deal with vold managed enryptable partitions here */
830        if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) {
831            continue;
832        }
833        if (!(fstab->recs[i].fs_mgr_flags & MF_CRYPT)) {
834            continue;
835        }
836
837        /* We found a match */
838        if (key_loc) {
839            strlcpy(key_loc, fstab->recs[i].key_loc, size);
840        }
841        if (real_blk_device) {
842            strlcpy(real_blk_device, fstab->recs[i].blk_device, size);
843        }
844        break;
845    }
846
847    return 0;
848}
849
850/* Add an entry to the fstab, and return 0 on success or -1 on error */
851int fs_mgr_add_entry(struct fstab *fstab,
852                     const char *mount_point, const char *fs_type,
853                     const char *blk_device, long long length)
854{
855    struct fstab_rec *new_fstab_recs;
856    int n = fstab->num_entries;
857
858    new_fstab_recs = (struct fstab_rec *)
859                     realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1));
860
861    if (!new_fstab_recs) {
862        return -1;
863    }
864
865    /* A new entry was added, so initialize it */
866     memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec));
867     new_fstab_recs[n].mount_point = strdup(mount_point);
868     new_fstab_recs[n].fs_type = strdup(fs_type);
869     new_fstab_recs[n].blk_device = strdup(blk_device);
870     new_fstab_recs[n].length = 0;
871
872     /* Update the fstab struct */
873     fstab->recs = new_fstab_recs;
874     fstab->num_entries++;
875
876     return 0;
877}
878
879struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path)
880{
881    int i;
882
883    if (!fstab) {
884        return NULL;
885    }
886
887    for (i = 0; i < fstab->num_entries; i++) {
888        int len = strlen(fstab->recs[i].mount_point);
889        if (strncmp(path, fstab->recs[i].mount_point, len) == 0 &&
890            (path[len] == '\0' || path[len] == '/')) {
891            return &fstab->recs[i];
892        }
893    }
894
895    return NULL;
896}
897
898int fs_mgr_is_voldmanaged(struct fstab_rec *fstab)
899{
900    return fstab->fs_mgr_flags & MF_VOLDMANAGED;
901}
902
903int fs_mgr_is_nonremovable(struct fstab_rec *fstab)
904{
905    return fstab->fs_mgr_flags & MF_NONREMOVABLE;
906}
907
908int fs_mgr_is_encryptable(struct fstab_rec *fstab)
909{
910    return fstab->fs_mgr_flags & MF_CRYPT;
911}
912
913