/* * Copyright (c) 2009-2012 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.renderer; import com.jme3.material.Material; import com.jme3.material.MaterialDef; import com.jme3.material.RenderState; import com.jme3.material.Technique; import com.jme3.math.*; import com.jme3.post.SceneProcessor; import com.jme3.renderer.queue.GeometryList; import com.jme3.renderer.queue.RenderQueue; import com.jme3.renderer.queue.RenderQueue.Bucket; import com.jme3.renderer.queue.RenderQueue.ShadowMode; import com.jme3.scene.*; import com.jme3.shader.Uniform; import com.jme3.shader.UniformBinding; import com.jme3.shader.VarType; import com.jme3.system.NullRenderer; import com.jme3.system.Timer; import com.jme3.util.IntMap.Entry; import com.jme3.util.TempVars; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.logging.Logger; /** * RenderManager is a high-level rendering interface that is * above the Renderer implementation. RenderManager takes care * of rendering the scene graphs attached to each viewport and * handling SceneProcessors. * * @see SceneProcessor * @see ViewPort * @see Spatial */ public class RenderManager { private static final Logger logger = Logger.getLogger(RenderManager.class.getName()); private Renderer renderer; private Timer timer; private ArrayList preViewPorts = new ArrayList(); private ArrayList viewPorts = new ArrayList(); private ArrayList postViewPorts = new ArrayList(); private Camera prevCam = null; private Material forcedMaterial = null; private String forcedTechnique = null; private RenderState forcedRenderState = null; private boolean shader; private int viewX, viewY, viewWidth, viewHeight; private float near, far; private Matrix4f orthoMatrix = new Matrix4f(); private Matrix4f viewMatrix = new Matrix4f(); private Matrix4f projMatrix = new Matrix4f(); private Matrix4f viewProjMatrix = new Matrix4f(); private Matrix4f worldMatrix = new Matrix4f(); private Vector3f camUp = new Vector3f(), camLeft = new Vector3f(), camDir = new Vector3f(), camLoc = new Vector3f(); //temp technique private String tmpTech; private boolean handleTranlucentBucket = true; /** * Create a high-level rendering interface over the * low-level rendering interface. * @param renderer */ public RenderManager(Renderer renderer) { this.renderer = renderer; //this.shader = renderer.getCaps().contains(Caps.GLSL100); } /** * Returns the pre ViewPort with the given name. * * @param viewName The name of the pre ViewPort to look up * @return The ViewPort, or null if not found. * * @see #createPreView(java.lang.String, com.jme3.renderer.Camera) */ public ViewPort getPreView(String viewName) { for (int i = 0; i < preViewPorts.size(); i++) { if (preViewPorts.get(i).getName().equals(viewName)) { return preViewPorts.get(i); } } return null; } /** * Removes the specified pre ViewPort. * * @param view The pre ViewPort to remove * @return True if the ViewPort was removed successfully. * * @see #createPreView(java.lang.String, com.jme3.renderer.Camera) */ public boolean removePreView(ViewPort view) { return preViewPorts.remove(view); } /** * Returns the main ViewPort with the given name. * * @param viewName The name of the main ViewPort to look up * @return The ViewPort, or null if not found. * * @see #createMainView(java.lang.String, com.jme3.renderer.Camera) */ public ViewPort getMainView(String viewName) { for (int i = 0; i < viewPorts.size(); i++) { if (viewPorts.get(i).getName().equals(viewName)) { return viewPorts.get(i); } } return null; } /** * Removes the main ViewPort with the specified name. * * @param viewName The main ViewPort name to remove * @return True if the ViewPort was removed successfully. * * @see #createMainView(java.lang.String, com.jme3.renderer.Camera) */ public boolean removeMainView(String viewName) { for (int i = 0; i < viewPorts.size(); i++) { if (viewPorts.get(i).getName().equals(viewName)) { viewPorts.remove(i); return true; } } return false; } /** * Removes the specified main ViewPort. * * @param view The main ViewPort to remove * @return True if the ViewPort was removed successfully. * * @see #createMainView(java.lang.String, com.jme3.renderer.Camera) */ public boolean removeMainView(ViewPort view) { return viewPorts.remove(view); } /** * Returns the post ViewPort with the given name. * * @param viewName The name of the post ViewPort to look up * @return The ViewPort, or null if not found. * * @see #createPostView(java.lang.String, com.jme3.renderer.Camera) */ public ViewPort getPostView(String viewName) { for (int i = 0; i < postViewPorts.size(); i++) { if (postViewPorts.get(i).getName().equals(viewName)) { return postViewPorts.get(i); } } return null; } /** * Removes the post ViewPort with the specified name. * * @param viewName The post ViewPort name to remove * @return True if the ViewPort was removed successfully. * * @see #createPostView(java.lang.String, com.jme3.renderer.Camera) */ public boolean removePostView(String viewName) { for (int i = 0; i < postViewPorts.size(); i++) { if (postViewPorts.get(i).getName().equals(viewName)) { postViewPorts.remove(i); return true; } } return false; } /** * Removes the specified post ViewPort. * * @param view The post ViewPort to remove * @return True if the ViewPort was removed successfully. * * @see #createPostView(java.lang.String, com.jme3.renderer.Camera) */ public boolean removePostView(ViewPort view) { return postViewPorts.remove(view); } /** * Returns a read-only list of all pre ViewPorts * @return a read-only list of all pre ViewPorts * @see #createPreView(java.lang.String, com.jme3.renderer.Camera) */ public List getPreViews() { return Collections.unmodifiableList(preViewPorts); } /** * Returns a read-only list of all main ViewPorts * @return a read-only list of all main ViewPorts * @see #createMainView(java.lang.String, com.jme3.renderer.Camera) */ public List getMainViews() { return Collections.unmodifiableList(viewPorts); } /** * Returns a read-only list of all post ViewPorts * @return a read-only list of all post ViewPorts * @see #createPostView(java.lang.String, com.jme3.renderer.Camera) */ public List getPostViews() { return Collections.unmodifiableList(postViewPorts); } /** * Creates a new pre ViewPort, to display the given camera's content. *

* The view will be processed before the main and post viewports. */ public ViewPort createPreView(String viewName, Camera cam) { ViewPort vp = new ViewPort(viewName, cam); preViewPorts.add(vp); return vp; } /** * Creates a new main ViewPort, to display the given camera's content. *

* The view will be processed before the post viewports but after * the pre viewports. */ public ViewPort createMainView(String viewName, Camera cam) { ViewPort vp = new ViewPort(viewName, cam); viewPorts.add(vp); return vp; } /** * Creates a new post ViewPort, to display the given camera's content. *

* The view will be processed after the pre and main viewports. */ public ViewPort createPostView(String viewName, Camera cam) { ViewPort vp = new ViewPort(viewName, cam); postViewPorts.add(vp); return vp; } private void notifyReshape(ViewPort vp, int w, int h) { List processors = vp.getProcessors(); for (SceneProcessor proc : processors) { if (!proc.isInitialized()) { proc.initialize(this, vp); } else { proc.reshape(vp, w, h); } } } /** * Internal use only. * Updates the resolution of all on-screen cameras to match * the given width and height. */ public void notifyReshape(int w, int h) { for (ViewPort vp : preViewPorts) { if (vp.getOutputFrameBuffer() == null) { Camera cam = vp.getCamera(); cam.resize(w, h, true); } notifyReshape(vp, w, h); } for (ViewPort vp : viewPorts) { if (vp.getOutputFrameBuffer() == null) { Camera cam = vp.getCamera(); cam.resize(w, h, true); } notifyReshape(vp, w, h); } for (ViewPort vp : postViewPorts) { if (vp.getOutputFrameBuffer() == null) { Camera cam = vp.getCamera(); cam.resize(w, h, true); } notifyReshape(vp, w, h); } } /** * Internal use only. * Updates the given list of uniforms with {@link UniformBinding uniform bindings} * based on the current world state. */ public void updateUniformBindings(List params) { // assums worldMatrix is properly set. TempVars vars = TempVars.get(); Matrix4f tempMat4 = vars.tempMat4; Matrix3f tempMat3 = vars.tempMat3; Vector2f tempVec2 = vars.vect2d; Quaternion tempVec4 = vars.quat1; for (int i = 0; i < params.size(); i++) { Uniform u = params.get(i); switch (u.getBinding()) { case WorldMatrix: u.setValue(VarType.Matrix4, worldMatrix); break; case ViewMatrix: u.setValue(VarType.Matrix4, viewMatrix); break; case ProjectionMatrix: u.setValue(VarType.Matrix4, projMatrix); break; case ViewProjectionMatrix: u.setValue(VarType.Matrix4, viewProjMatrix); break; case WorldViewMatrix: tempMat4.set(viewMatrix); tempMat4.multLocal(worldMatrix); u.setValue(VarType.Matrix4, tempMat4); break; case NormalMatrix: tempMat4.set(viewMatrix); tempMat4.multLocal(worldMatrix); tempMat4.toRotationMatrix(tempMat3); tempMat3.invertLocal(); tempMat3.transposeLocal(); u.setValue(VarType.Matrix3, tempMat3); break; case WorldViewProjectionMatrix: tempMat4.set(viewProjMatrix); tempMat4.multLocal(worldMatrix); u.setValue(VarType.Matrix4, tempMat4); break; case WorldMatrixInverse: tempMat4.set(worldMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case WorldMatrixInverseTranspose: worldMatrix.toRotationMatrix(tempMat3); tempMat3.invertLocal().transposeLocal(); u.setValue(VarType.Matrix3, tempMat3); break; case ViewMatrixInverse: tempMat4.set(viewMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case ProjectionMatrixInverse: tempMat4.set(projMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case ViewProjectionMatrixInverse: tempMat4.set(viewProjMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case WorldViewMatrixInverse: tempMat4.set(viewMatrix); tempMat4.multLocal(worldMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case NormalMatrixInverse: tempMat4.set(viewMatrix); tempMat4.multLocal(worldMatrix); tempMat4.toRotationMatrix(tempMat3); tempMat3.invertLocal(); tempMat3.transposeLocal(); tempMat3.invertLocal(); u.setValue(VarType.Matrix3, tempMat3); break; case WorldViewProjectionMatrixInverse: tempMat4.set(viewProjMatrix); tempMat4.multLocal(worldMatrix); tempMat4.invertLocal(); u.setValue(VarType.Matrix4, tempMat4); break; case ViewPort: tempVec4.set(viewX, viewY, viewWidth, viewHeight); u.setValue(VarType.Vector4, tempVec4); break; case Resolution: tempVec2.set(viewWidth, viewHeight); u.setValue(VarType.Vector2, tempVec2); break; case ResolutionInverse: tempVec2.set(1f / viewWidth, 1f / viewHeight); u.setValue(VarType.Vector2, tempVec2); break; case Aspect: float aspect = ((float) viewWidth) / viewHeight; u.setValue(VarType.Float, aspect); break; case FrustumNearFar: tempVec2.set(near, far); u.setValue(VarType.Vector2, tempVec2); break; case CameraPosition: u.setValue(VarType.Vector3, camLoc); break; case CameraDirection: u.setValue(VarType.Vector3, camDir); break; case CameraLeft: u.setValue(VarType.Vector3, camLeft); break; case CameraUp: u.setValue(VarType.Vector3, camUp); break; case Time: u.setValue(VarType.Float, timer.getTimeInSeconds()); break; case Tpf: u.setValue(VarType.Float, timer.getTimePerFrame()); break; case FrameRate: u.setValue(VarType.Float, timer.getFrameRate()); break; } } vars.release(); } /** * Set the material to use to render all future objects. * This overrides the material set on the geometry and renders * with the provided material instead. * Use null to clear the material and return renderer to normal * functionality. * @param mat The forced material to set, or null to return to normal */ public void setForcedMaterial(Material mat) { forcedMaterial = mat; } /** * Returns the forced render state previously set with * {@link #setForcedRenderState(com.jme3.material.RenderState) }. * @return the forced render state */ public RenderState getForcedRenderState() { return forcedRenderState; } /** * Set the render state to use for all future objects. * This overrides the render state set on the material and instead * forces this render state to be applied for all future materials * rendered. Set to null to return to normal functionality. * * @param forcedRenderState The forced render state to set, or null * to return to normal */ public void setForcedRenderState(RenderState forcedRenderState) { this.forcedRenderState = forcedRenderState; } /** * Set the timer that should be used to query the time based * {@link UniformBinding}s for material world parameters. * * @param timer The timer to query time world parameters */ public void setTimer(Timer timer) { this.timer = timer; } /** * Returns the forced technique name set. * * @return the forced technique name set. * * @see #setForcedTechnique(java.lang.String) */ public String getForcedTechnique() { return forcedTechnique; } /** * Sets the forced technique to use when rendering geometries. *

* If the specified technique name is available on the geometry's * material, then it is used, otherwise, the * {@link #setForcedMaterial(com.jme3.material.Material) forced material} is used. * If a forced material is not set and the forced technique name cannot * be found on the material, the geometry will not be rendered. * * @param forcedTechnique The forced technique name to use, set to null * to return to normal functionality. * * @see #renderGeometry(com.jme3.scene.Geometry) */ public void setForcedTechnique(String forcedTechnique) { this.forcedTechnique = forcedTechnique; } /** * Enable or disable alpha-to-coverage. *

* When alpha to coverage is enabled and the renderer implementation * supports it, then alpha blending will be replaced with alpha dissolve * if multi-sampling is also set on the renderer. * This feature allows avoiding of alpha blending artifacts due to * lack of triangle-level back-to-front sorting. * * @param value True to enable alpha-to-coverage, false otherwise. */ public void setAlphaToCoverage(boolean value) { renderer.setAlphaToCoverage(value); } /** * True if the translucent bucket should automatically be rendered * by the RenderManager. * * @return Whether or not the translucent bucket is rendered. * * @see #setHandleTranslucentBucket(boolean) */ public boolean isHandleTranslucentBucket() { return handleTranlucentBucket; } /** * Enable or disable rendering of the * {@link Bucket#Translucent translucent bucket} * by the RenderManager. The default is enabled. * * @param handleTranslucentBucket Whether or not the translucent bucket should * be rendered. */ public void setHandleTranslucentBucket(boolean handleTranslucentBucket) { this.handleTranlucentBucket = handleTranslucentBucket; } /** * Internal use only. Sets the world matrix to use for future * rendering. This has no effect unless objects are rendered manually * using {@link Material#render(com.jme3.scene.Geometry, com.jme3.renderer.RenderManager) }. * Using {@link #renderGeometry(com.jme3.scene.Geometry) } will * override this value. * * @param mat The world matrix to set */ public void setWorldMatrix(Matrix4f mat) { if (shader) { worldMatrix.set(mat); } else { renderer.setWorldMatrix(mat); } } /** * Renders the given geometry. *

* First the proper world matrix is set, if * the geometry's {@link Geometry#setIgnoreTransform(boolean) ignore transform} * feature is enabled, the identity world matrix is used, otherwise, the * geometry's {@link Geometry#getWorldMatrix() world transform matrix} is used. *

* Once the world matrix is applied, the proper material is chosen for rendering. * If a {@link #setForcedMaterial(com.jme3.material.Material) forced material} is * set on this RenderManager, then it is used for rendering the geometry, * otherwise, the {@link Geometry#getMaterial() geometry's material} is used. *

* If a {@link #setForcedTechnique(java.lang.String) forced technique} is * set on this RenderManager, then it is selected automatically * on the geometry's material and is used for rendering. Otherwise, one * of the {@link MaterialDef#getDefaultTechniques() default techniques} is * used. *

* If a {@link #setForcedRenderState(com.jme3.material.RenderState) forced * render state} is set on this RenderManager, then it is used * for rendering the material, and the material's own render state is ignored. * Otherwise, the material's render state is used as intended. * * @param g The geometry to render * * @see Technique * @see RenderState * @see Material#selectTechnique(java.lang.String, com.jme3.renderer.RenderManager) * @see Material#render(com.jme3.scene.Geometry, com.jme3.renderer.RenderManager) */ public void renderGeometry(Geometry g) { if (g.isIgnoreTransform()) { setWorldMatrix(Matrix4f.IDENTITY); } else { setWorldMatrix(g.getWorldMatrix()); } //if forcedTechnique we try to force it for render, //if it does not exists in the mat def, we check for forcedMaterial and render the geom if not null //else the geom is not rendered if (forcedTechnique != null) { if (g.getMaterial().getMaterialDef().getTechniqueDef(forcedTechnique) != null) { tmpTech = g.getMaterial().getActiveTechnique() != null ? g.getMaterial().getActiveTechnique().getDef().getName() : "Default"; g.getMaterial().selectTechnique(forcedTechnique, this); // use geometry's material g.getMaterial().render(g, this); g.getMaterial().selectTechnique(tmpTech, this); //Reverted this part from revision 6197 //If forcedTechnique does not exists, and frocedMaterial is not set, the geom MUST NOT be rendered } else if (forcedMaterial != null) { // use forced material forcedMaterial.render(g, this); } } else if (forcedMaterial != null) { // use forced material forcedMaterial.render(g, this); } else { g.getMaterial().render(g, this); } } /** * Renders the given GeometryList. *

* For every geometry in the list, the * {@link #renderGeometry(com.jme3.scene.Geometry) } method is called. * * @param gl The geometry list to render. * * @see GeometryList * @see #renderGeometry(com.jme3.scene.Geometry) */ public void renderGeometryList(GeometryList gl) { for (int i = 0; i < gl.size(); i++) { renderGeometry(gl.get(i)); } } /** * If a spatial is not inside the eye frustum, it * is still rendered in the shadow frustum (shadow casting queue) * through this recursive method. */ private void renderShadow(Spatial s, RenderQueue rq) { if (s instanceof Node) { Node n = (Node) s; List children = n.getChildren(); for (int i = 0; i < children.size(); i++) { renderShadow(children.get(i), rq); } } else if (s instanceof Geometry) { Geometry gm = (Geometry) s; RenderQueue.ShadowMode shadowMode = s.getShadowMode(); if (shadowMode != RenderQueue.ShadowMode.Off && shadowMode != RenderQueue.ShadowMode.Receive) { //forcing adding to shadow cast mode, culled objects doesn't have to be in the receiver queue rq.addToShadowQueue(gm, RenderQueue.ShadowMode.Cast); } } } /** * Preloads a scene for rendering. *

* After invocation of this method, the underlying * renderer would have uploaded any textures, shaders and meshes * used by the given scene to the video driver. * Using this method is useful when wishing to avoid the initial pause * when rendering a scene for the first time. Note that it is not * guaranteed that the underlying renderer will actually choose to upload * the data to the GPU so some pause is still to be expected. * * @param scene The scene to preload */ public void preloadScene(Spatial scene) { if (scene instanceof Node) { // recurse for all children Node n = (Node) scene; List children = n.getChildren(); for (int i = 0; i < children.size(); i++) { preloadScene(children.get(i)); } } else if (scene instanceof Geometry) { // add to the render queue Geometry gm = (Geometry) scene; if (gm.getMaterial() == null) { throw new IllegalStateException("No material is set for Geometry: " + gm.getName()); } gm.getMaterial().preload(this); Mesh mesh = gm.getMesh(); if (mesh != null) { for (VertexBuffer vb : mesh.getBufferList().getArray()) { if (vb.getData() != null) { renderer.updateBufferData(vb); } } } } } /** * Flattens the given scene graph into the ViewPort's RenderQueue, * checking for culling as the call goes down the graph recursively. *

* First, the scene is checked for culling based on the Spatials * {@link Spatial#setCullHint(com.jme3.scene.Spatial.CullHint) cull hint}, * if the camera frustum contains the scene, then this method is recursively * called on its children. *

* When the scene's leaves or {@link Geometry geometries} are reached, * they are each enqueued into the * {@link ViewPort#getQueue() ViewPort's render queue}. *

* In addition to enqueuing the visible geometries, this method * also scenes which cast or receive shadows, by putting them into the * RenderQueue's * {@link RenderQueue#addToShadowQueue(com.jme3.scene.Geometry, com.jme3.renderer.queue.RenderQueue.ShadowMode) * shadow queue}. Each Spatial which has its * {@link Spatial#setShadowMode(com.jme3.renderer.queue.RenderQueue.ShadowMode) shadow mode} * set to not off, will be put into the appropriate shadow queue, note that * this process does not check for frustum culling on any * {@link ShadowMode#Cast shadow casters}, as they don't have to be * in the eye camera frustum to cast shadows on objects that are inside it. * * @param scene The scene to flatten into the queue * @param vp The ViewPort provides the {@link ViewPort#getCamera() camera} * used for culling and the {@link ViewPort#getQueue() queue} used to * contain the flattened scene graph. */ public void renderScene(Spatial scene, ViewPort vp) { if (scene.getParent() == null) { vp.getCamera().setPlaneState(0); } // check culling first. if (!scene.checkCulling(vp.getCamera())) { // move on to shadow-only render if ((scene.getShadowMode() != RenderQueue.ShadowMode.Off || scene instanceof Node) && scene.getCullHint()!=Spatial.CullHint.Always) { renderShadow(scene, vp.getQueue()); } return; } scene.runControlRender(this, vp); if (scene instanceof Node) { // recurse for all children Node n = (Node) scene; List children = n.getChildren(); //saving cam state for culling int camState = vp.getCamera().getPlaneState(); for (int i = 0; i < children.size(); i++) { //restoring cam state before proceeding children recusively vp.getCamera().setPlaneState(camState); renderScene(children.get(i), vp); } } else if (scene instanceof Geometry) { // add to the render queue Geometry gm = (Geometry) scene; if (gm.getMaterial() == null) { throw new IllegalStateException("No material is set for Geometry: " + gm.getName()); } vp.getQueue().addToQueue(gm, scene.getQueueBucket()); // add to shadow queue if needed RenderQueue.ShadowMode shadowMode = scene.getShadowMode(); if (shadowMode != RenderQueue.ShadowMode.Off) { vp.getQueue().addToShadowQueue(gm, shadowMode); } } } /** * Returns the camera currently used for rendering. *

* The camera can be set with {@link #setCamera(com.jme3.renderer.Camera, boolean) }. * * @return the camera currently used for rendering. */ public Camera getCurrentCamera() { return prevCam; } /** * The renderer implementation used for rendering operations. * * @return The renderer implementation * * @see #RenderManager(com.jme3.renderer.Renderer) * @see Renderer */ public Renderer getRenderer() { return renderer; } /** * Flushes the ViewPort's {@link ViewPort#getQueue() render queue} * by rendering each of its visible buckets. * By default the queues will automatically be cleared after rendering, * so there's no need to clear them manually. * * @param vp The ViewPort of which the queue will be flushed * * @see RenderQueue#renderQueue(com.jme3.renderer.queue.RenderQueue.Bucket, com.jme3.renderer.RenderManager, com.jme3.renderer.Camera) * @see #renderGeometryList(com.jme3.renderer.queue.GeometryList) */ public void flushQueue(ViewPort vp) { renderViewPortQueues(vp, true); } /** * Clears the queue of the given ViewPort. * Simply calls {@link RenderQueue#clear() } on the ViewPort's * {@link ViewPort#getQueue() render queue}. * * @param vp The ViewPort of which the queue will be cleared. * * @see RenderQueue#clear() * @see ViewPort#getQueue() */ public void clearQueue(ViewPort vp) { vp.getQueue().clear(); } /** * Render the given viewport queues. *

* Changes the {@link Renderer#setDepthRange(float, float) depth range} * appropriately as expected by each queue and then calls * {@link RenderQueue#renderQueue(com.jme3.renderer.queue.RenderQueue.Bucket, com.jme3.renderer.RenderManager, com.jme3.renderer.Camera, boolean) } * on the queue. Makes sure to restore the depth range to [0, 1] * at the end of the call. * Note that the {@link Bucket#Translucent translucent bucket} is NOT * rendered by this method. Instead the user should call * {@link #renderTranslucentQueue(com.jme3.renderer.ViewPort) } * after this call. * * @param vp the viewport of which queue should be rendered * @param flush If true, the queues will be cleared after * rendering. * * @see RenderQueue * @see #renderTranslucentQueue(com.jme3.renderer.ViewPort) */ public void renderViewPortQueues(ViewPort vp, boolean flush) { RenderQueue rq = vp.getQueue(); Camera cam = vp.getCamera(); boolean depthRangeChanged = false; // render opaque objects with default depth range // opaque objects are sorted front-to-back, reducing overdraw rq.renderQueue(Bucket.Opaque, this, cam, flush); // render the sky, with depth range set to the farthest if (!rq.isQueueEmpty(Bucket.Sky)) { renderer.setDepthRange(1, 1); rq.renderQueue(Bucket.Sky, this, cam, flush); depthRangeChanged = true; } // transparent objects are last because they require blending with the // rest of the scene's objects. Consequently, they are sorted // back-to-front. if (!rq.isQueueEmpty(Bucket.Transparent)) { if (depthRangeChanged) { renderer.setDepthRange(0, 1); depthRangeChanged = false; } rq.renderQueue(Bucket.Transparent, this, cam, flush); } if (!rq.isQueueEmpty(Bucket.Gui)) { renderer.setDepthRange(0, 0); setCamera(cam, true); rq.renderQueue(Bucket.Gui, this, cam, flush); setCamera(cam, false); depthRangeChanged = true; } // restore range to default if (depthRangeChanged) { renderer.setDepthRange(0, 1); } } /** * Renders the {@link Bucket#Translucent translucent queue} on the viewPort. *

* This call does nothing unless {@link #setHandleTranslucentBucket(boolean) } * is set to true. This method clears the translucent queue after rendering * it. * * @param vp The viewport of which the translucent queue should be rendered. * * @see #renderViewPortQueues(com.jme3.renderer.ViewPort, boolean) * @see #setHandleTranslucentBucket(boolean) */ public void renderTranslucentQueue(ViewPort vp) { RenderQueue rq = vp.getQueue(); if (!rq.isQueueEmpty(Bucket.Translucent) && handleTranlucentBucket) { rq.renderQueue(Bucket.Translucent, this, vp.getCamera(), true); } } private void setViewPort(Camera cam) { // this will make sure to update viewport only if needed if (cam != prevCam || cam.isViewportChanged()) { viewX = (int) (cam.getViewPortLeft() * cam.getWidth()); viewY = (int) (cam.getViewPortBottom() * cam.getHeight()); viewWidth = (int) ((cam.getViewPortRight() - cam.getViewPortLeft()) * cam.getWidth()); viewHeight = (int) ((cam.getViewPortTop() - cam.getViewPortBottom()) * cam.getHeight()); renderer.setViewPort(viewX, viewY, viewWidth, viewHeight); renderer.setClipRect(viewX, viewY, viewWidth, viewHeight); cam.clearViewportChanged(); prevCam = cam; // float translateX = viewWidth == viewX ? 0 : -(viewWidth + viewX) / (viewWidth - viewX); // float translateY = viewHeight == viewY ? 0 : -(viewHeight + viewY) / (viewHeight - viewY); // float scaleX = viewWidth == viewX ? 1f : 2f / (viewWidth - viewX); // float scaleY = viewHeight == viewY ? 1f : 2f / (viewHeight - viewY); // // orthoMatrix.loadIdentity(); // orthoMatrix.setTranslation(translateX, translateY, 0); // orthoMatrix.setScale(scaleX, scaleY, 0); orthoMatrix.loadIdentity(); orthoMatrix.setTranslation(-1f, -1f, 0f); orthoMatrix.setScale(2f / cam.getWidth(), 2f / cam.getHeight(), 0f); } } private void setViewProjection(Camera cam, boolean ortho) { if (shader) { if (ortho) { viewMatrix.set(Matrix4f.IDENTITY); projMatrix.set(orthoMatrix); viewProjMatrix.set(orthoMatrix); } else { viewMatrix.set(cam.getViewMatrix()); projMatrix.set(cam.getProjectionMatrix()); viewProjMatrix.set(cam.getViewProjectionMatrix()); } camLoc.set(cam.getLocation()); cam.getLeft(camLeft); cam.getUp(camUp); cam.getDirection(camDir); near = cam.getFrustumNear(); far = cam.getFrustumFar(); } else { if (ortho) { renderer.setViewProjectionMatrices(Matrix4f.IDENTITY, orthoMatrix); } else { renderer.setViewProjectionMatrices(cam.getViewMatrix(), cam.getProjectionMatrix()); } } } /** * Set the camera to use for rendering. *

* First, the camera's * {@link Camera#setViewPort(float, float, float, float) view port parameters} * are applied. Then, the camera's {@link Camera#getViewMatrix() view} and * {@link Camera#getProjectionMatrix() projection} matrices are set * on the renderer. If ortho is true, then * instead of using the camera's view and projection matrices, an ortho * matrix is computed and used instead of the view projection matrix. * The ortho matrix converts from the range (0 ~ Width, 0 ~ Height, -1 ~ +1) * to the clip range (-1 ~ +1, -1 ~ +1, -1 ~ +1). * * @param cam The camera to set * @param ortho True if to use orthographic projection (for GUI rendering), * false if to use the camera's view and projection matrices. */ public void setCamera(Camera cam, boolean ortho) { setViewPort(cam); setViewProjection(cam, ortho); } /** * Draws the viewport but without notifying {@link SceneProcessor scene * processors} of any rendering events. * * @param vp The ViewPort to render * * @see #renderViewPort(com.jme3.renderer.ViewPort, float) */ public void renderViewPortRaw(ViewPort vp) { setCamera(vp.getCamera(), false); List scenes = vp.getScenes(); for (int i = scenes.size() - 1; i >= 0; i--) { renderScene(scenes.get(i), vp); } flushQueue(vp); } /** * Renders the {@link ViewPort}. *

* If the ViewPort is {@link ViewPort#isEnabled() disabled}, this method * returns immediately. Otherwise, the ViewPort is rendered by * the following process:
*

    *
  • All {@link SceneProcessor scene processors} that are attached * to the ViewPort are {@link SceneProcessor#initialize(com.jme3.renderer.RenderManager, com.jme3.renderer.ViewPort) initialized}. *
  • *
  • The SceneProcessors' {@link SceneProcessor#preFrame(float) } method * is called.
  • *
  • The ViewPort's {@link ViewPort#getOutputFrameBuffer() output framebuffer} * is set on the Renderer
  • *
  • The camera is set on the renderer, including its view port parameters. * (see {@link #setCamera(com.jme3.renderer.Camera, boolean) })
  • *
  • Any buffers that the ViewPort requests to be cleared are cleared * and the {@link ViewPort#getBackgroundColor() background color} is set
  • *
  • Every scene that is attached to the ViewPort is flattened into * the ViewPort's render queue * (see {@link #renderViewPortQueues(com.jme3.renderer.ViewPort, boolean) }) *
  • *
  • The SceneProcessors' {@link SceneProcessor#postQueue(com.jme3.renderer.queue.RenderQueue) } * method is called.
  • *
  • The render queue is sorted and then flushed, sending * rendering commands to the underlying Renderer implementation. * (see {@link #flushQueue(com.jme3.renderer.ViewPort) })
  • *
  • The SceneProcessors' {@link SceneProcessor#postFrame(com.jme3.texture.FrameBuffer) } * method is called.
  • *
  • The translucent queue of the ViewPort is sorted and then flushed * (see {@link #renderTranslucentQueue(com.jme3.renderer.ViewPort) })
  • *
  • If any objects remained in the render queue, they are removed * from the queue. This is generally objects added to the * {@link RenderQueue#renderShadowQueue(com.jme3.renderer.queue.RenderQueue.ShadowMode, com.jme3.renderer.RenderManager, com.jme3.renderer.Camera, boolean) * shadow queue} * which were not rendered because of a missing shadow renderer.
  • *
* * @param vp * @param tpf */ public void renderViewPort(ViewPort vp, float tpf) { if (!vp.isEnabled()) { return; } List processors = vp.getProcessors(); if (processors.isEmpty()) { processors = null; } if (processors != null) { for (SceneProcessor proc : processors) { if (!proc.isInitialized()) { proc.initialize(this, vp); } proc.preFrame(tpf); } } renderer.setFrameBuffer(vp.getOutputFrameBuffer()); setCamera(vp.getCamera(), false); if (vp.isClearDepth() || vp.isClearColor() || vp.isClearStencil()) { if (vp.isClearColor()) { renderer.setBackgroundColor(vp.getBackgroundColor()); } renderer.clearBuffers(vp.isClearColor(), vp.isClearDepth(), vp.isClearStencil()); } List scenes = vp.getScenes(); for (int i = scenes.size() - 1; i >= 0; i--) { renderScene(scenes.get(i), vp); } if (processors != null) { for (SceneProcessor proc : processors) { proc.postQueue(vp.getQueue()); } } flushQueue(vp); if (processors != null) { for (SceneProcessor proc : processors) { proc.postFrame(vp.getOutputFrameBuffer()); } } //renders the translucent objects queue after processors have been rendered renderTranslucentQueue(vp); // clear any remaining spatials that were not rendered. clearQueue(vp); } /** * Called by the application to render any ViewPorts * added to this RenderManager. *

* Renders any viewports that were added using the following methods: *

    *
  • {@link #createPreView(java.lang.String, com.jme3.renderer.Camera) }
  • *
  • {@link #createMainView(java.lang.String, com.jme3.renderer.Camera) }
  • *
  • {@link #createPostView(java.lang.String, com.jme3.renderer.Camera) }
  • *
* * @param tpf Time per frame value */ public void render(float tpf, boolean mainFrameBufferActive) { if (renderer instanceof NullRenderer) { return; } this.shader = renderer.getCaps().contains(Caps.GLSL100); for (int i = 0; i < preViewPorts.size(); i++) { ViewPort vp = preViewPorts.get(i); if (vp.getOutputFrameBuffer() != null || mainFrameBufferActive){ renderViewPort(vp, tpf); } } for (int i = 0; i < viewPorts.size(); i++) { ViewPort vp = viewPorts.get(i); if (vp.getOutputFrameBuffer() != null || mainFrameBufferActive){ renderViewPort(vp, tpf); } } for (int i = 0; i < postViewPorts.size(); i++) { ViewPort vp = postViewPorts.get(i); if (vp.getOutputFrameBuffer() != null || mainFrameBufferActive){ renderViewPort(vp, tpf); } } } }