java_lang_System.cc revision 54e7df1896a4066cbb9fe6f72249829f0b8c49c6
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "jni_internal.h"
18#include "object.h"
19
20#include "JniConstants.h" // Last to avoid problems with LOG redefinition.
21
22/*
23 * We make guarantees about the atomicity of accesses to primitive
24 * variables.  These guarantees also apply to elements of arrays.
25 * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
26 * must not cause "word tearing".  Accesses to 64-bit array elements must
27 * either be atomic or treated as two 32-bit operations.  References are
28 * always read and written atomically, regardless of the number of bits
29 * used to represent them.
30 *
31 * We can't rely on standard libc functions like memcpy(3) and memmove(3)
32 * in our implementation of System.arraycopy, because they may copy
33 * byte-by-byte (either for the full run or for "unaligned" parts at the
34 * start or end).  We need to use functions that guarantee 16-bit or 32-bit
35 * atomicity as appropriate.
36 *
37 * System.arraycopy() is heavily used, so having an efficient implementation
38 * is important.  The bionic libc provides a platform-optimized memory move
39 * function that should be used when possible.  If it's not available,
40 * the trivial "reference implementation" versions below can be used until
41 * a proper version can be written.
42 *
43 * For these functions, The caller must guarantee that dst/src are aligned
44 * appropriately for the element type, and that n is a multiple of the
45 * element size.
46 */
47#ifdef __BIONIC__
48#define HAVE_MEMMOVE_WORDS
49#endif
50
51#ifdef HAVE_MEMMOVE_WORDS
52extern "C" void _memmove_words(void* dst, const void* src, size_t n);
53#define move16 _memmove_words
54#define move32 _memmove_words
55#else
56static void move16(void* dst, const void* src, size_t n) {
57  DCHECK((((uintptr_t) dst | (uintptr_t) src | n) & 0x01) == 0);
58
59  uint16_t* d = reinterpret_cast<uint16_t*>(dst);
60  const uint16_t* s = reinterpret_cast<const uint16_t*>(src);
61
62  n /= sizeof(uint16_t);
63
64  if (d < s) {
65    // Copy forwards.
66    while (n--) {
67      *d++ = *s++;
68    }
69  } else {
70    // Copy backwards.
71    d += n;
72    s += n;
73    while (n--) {
74      *--d = *--s;
75    }
76  }
77}
78
79static void move32(void* dst, const void* src, size_t n) {
80  DCHECK((((uintptr_t) dst | (uintptr_t) src | n) & 0x03) == 0);
81
82  uint32_t* d = reinterpret_cast<uint32_t*>(dst);
83  const uint32_t* s = reinterpret_cast<const uint32_t*>(src);
84
85  n /= sizeof(uint32_t);
86
87  if (d < s) {
88    // Copy forwards.
89    while (n--) {
90      *d++ = *s++;
91    }
92  } else {
93    // Copy backwards.
94    d += n;
95    s += n;
96    while (n--) {
97      *--d = *--s;
98    }
99  }
100}
101#endif // HAVE_MEMMOVE_WORDS
102
103namespace art {
104
105namespace {
106
107void ThrowArrayStoreException_NotAnArray(const char* identifier, Object* array) {
108  std::string actualType(PrettyTypeOf(array));
109  Thread::Current()->ThrowNewException("Ljava/lang/ArrayStoreException;", "%s is not an array: %s", identifier, actualType.c_str());
110}
111
112void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) {
113  Thread* self = Thread::Current();
114
115  // Null pointer checks.
116  if (javaSrc == NULL) {
117    self->ThrowNewException("Ljava/lang/NullPointerException;", "src == null");
118    return;
119  }
120  if (javaDst == NULL) {
121    self->ThrowNewException("Ljava/lang/NullPointerException;", "dst == null");
122    return;
123  }
124
125  // Make sure source and destination are both arrays.
126  Object* srcObject = Decode<Object*>(env, javaSrc);
127  Object* dstObject = Decode<Object*>(env, javaDst);
128  if (!srcObject->IsArrayInstance()) {
129    ThrowArrayStoreException_NotAnArray("src", srcObject);
130    return;
131  }
132  if (!dstObject->IsArrayInstance()) {
133    ThrowArrayStoreException_NotAnArray("dst", dstObject);
134    return;
135  }
136  Array* srcArray = srcObject->AsArray();
137  Array* dstArray = dstObject->AsArray();
138  Class* srcComponentType = srcArray->GetClass()->GetComponentType();
139  Class* dstComponentType = dstArray->GetClass()->GetComponentType();
140
141  // Bounds checking.
142  if (srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length) {
143    self->ThrowNewException("Ljava/lang/ArrayIndexOutOfBoundsException;",
144        "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
145        srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length);
146    return;
147  }
148
149  uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData());
150  const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData());
151
152  // Handle primitive arrays.
153  if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) {
154    // If one of the arrays holds a primitive type the other array must hold the exact same type.
155    if (srcComponentType->IsPrimitive() != dstComponentType->IsPrimitive() || srcComponentType != dstComponentType) {
156      std::string srcType(PrettyTypeOf(srcArray));
157      std::string dstType(PrettyTypeOf(dstArray));
158      self->ThrowNewException("Ljava/lang/ArrayStoreException;",
159          "Incompatible types: src=%s, dst=%s", srcType.c_str(), dstType.c_str());
160      return;
161    }
162
163    switch (srcArray->GetClass()->GetComponentSize()) {
164    case 1:
165      memmove(dstBytes + dstPos, srcBytes + srcPos, length);
166      break;
167    case 2:
168      move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2);
169      break;
170    case 4:
171      move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4);
172      break;
173    case 8:
174      // We don't need to guarantee atomicity of the entire 64-bit word.
175      move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8);
176      break;
177    default:
178      LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray);
179    }
180
181    return;
182  }
183
184  // Neither class is primitive. Are the types trivially compatible?
185  const int width = sizeof(Object*);
186  bool sameDimensions = srcArray->GetClass()->GetArrayRank() == dstArray->GetClass()->GetArrayRank();
187  if (sameDimensions && srcComponentType->InstanceOf(dstComponentType)) {
188    // Yes. Bulk copy.
189    move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width);
190    Heap::WriteBarrier(dstArray);
191    return;
192  }
193
194  // The arrays are not trivially compatible.  However, we
195  // may still be able to do this if the destination object is
196  // compatible (e.g. copy Object[] to String[], but the Object
197  // being copied is actually a String).  We need to copy elements
198  // one by one until something goes wrong.
199  //
200  // Because of overlapping moves, what we really want to do
201  // is compare the types and count up how many we can move,
202  // then call move32() to shift the actual data.  If we just
203  // start from the front we could do a smear rather than a move.
204
205  // TODO: this idea is flawed. a malicious caller could exploit the check-use
206  // race by modifying the source array after we check but before we copy,
207  // and cause us to copy incompatible elements.
208
209  Object* const * srcObj = reinterpret_cast<Object* const *>(srcBytes + srcPos * width);
210  Class* dstClass = dstArray->GetClass();
211
212  Class* initialElementClass = NULL;
213  if (length > 0 && srcObj[0] != NULL) {
214    initialElementClass = srcObj[0]->GetClass();
215    if (!Class::CanPutArrayElement(initialElementClass, dstClass)) {
216      initialElementClass = NULL;
217    }
218  }
219
220  int copyCount;
221  for (copyCount = 0; copyCount < length; copyCount++) {
222    if (srcObj[copyCount] != NULL && srcObj[copyCount]->GetClass() != initialElementClass && !Class::CanPutArrayElement(srcObj[copyCount]->GetClass(), dstClass)) {
223      // Can't put this element into the array.
224      // We'll copy up to this point, then throw.
225      break;
226    }
227  }
228
229  move32(dstBytes + dstPos * width, srcBytes + srcPos * width, copyCount * width);
230  Heap::WriteBarrier(dstArray);
231  if (copyCount != length) {
232    std::string actualSrcType(PrettyTypeOf(srcObj[copyCount]));
233    std::string dstType(PrettyTypeOf(dstArray));
234    self->ThrowNewException("Ljava/lang/ArrayStoreException;",
235        "source[%d] of type %s cannot be stored in destination array of type %s",
236        srcPos + copyCount, actualSrcType.c_str(), dstType.c_str());
237    return;
238  }
239}
240
241jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) {
242  Object* o = Decode<Object*>(env, javaObject);
243  return static_cast<jint>(reinterpret_cast<uintptr_t>(o));
244}
245
246JNINativeMethod gMethods[] = {
247  NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"),
248  NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"),
249};
250
251}  // namespace
252
253void register_java_lang_System(JNIEnv* env) {
254    jniRegisterNativeMethods(env, "java/lang/System", gMethods, NELEM(gMethods));
255}
256
257}  // namespace art
258