thread.cc revision 7dc5166ea740359d381097a7ab382c1dd404055f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "thread.h"
18
19#include <dynamic_annotations.h>
20#include <pthread.h>
21#include <signal.h>
22#include <sys/mman.h>
23#include <sys/resource.h>
24#include <sys/time.h>
25
26#include <algorithm>
27#include <bitset>
28#include <cerrno>
29#include <iostream>
30#include <list>
31
32#include "debugger.h"
33#include "class_linker.h"
34#include "class_loader.h"
35#include "heap.h"
36#include "jni_internal.h"
37#include "monitor.h"
38#include "oat/runtime/context.h"
39#include "object.h"
40#include "object_utils.h"
41#include "reflection.h"
42#include "runtime.h"
43#include "runtime_support.h"
44#include "ScopedLocalRef.h"
45#include "scoped_jni_thread_state.h"
46#include "shadow_frame.h"
47#include "space.h"
48#include "stack.h"
49#include "stack_indirect_reference_table.h"
50#include "thread_list.h"
51#include "utils.h"
52#include "verifier/gc_map.h"
53
54namespace art {
55
56pthread_key_t Thread::pthread_key_self_;
57
58static Class* gThreadGroup = NULL;
59static Class* gThreadLock = NULL;
60static Field* gThread_daemon = NULL;
61static Field* gThread_group = NULL;
62static Field* gThread_lock = NULL;
63static Field* gThread_name = NULL;
64static Field* gThread_priority = NULL;
65static Field* gThread_uncaughtHandler = NULL;
66static Field* gThread_vmData = NULL;
67static Field* gThreadGroup_mMain = NULL;
68static Field* gThreadGroup_mSystem = NULL;
69static Field* gThreadGroup_name = NULL;
70static Field* gThreadLock_thread = NULL;
71static Method* gThread_run = NULL;
72static Method* gThreadGroup_removeThread = NULL;
73static Method* gUncaughtExceptionHandler_uncaughtException = NULL;
74
75static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
76
77void Thread::InitCardTable() {
78  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
79}
80
81#if !defined(__APPLE__)
82static void UnimplementedEntryPoint() {
83  UNIMPLEMENTED(FATAL);
84}
85#endif
86
87void Thread::InitFunctionPointers() {
88#if !defined(__APPLE__) // The Mac GCC is too old to accept this code.
89  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
90  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_);
91  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_));
92  for (uintptr_t* it = begin; it != end; ++it) {
93    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
94  }
95#endif
96  InitEntryPoints(&entrypoints_);
97}
98
99void Thread::SetDebuggerUpdatesEnabled(bool enabled) {
100  LOG(INFO) << "Turning debugger updates " << (enabled ? "on" : "off") << " for " << *this;
101#if !defined(ART_USE_LLVM_COMPILER)
102  ChangeDebuggerEntryPoint(&entrypoints_, enabled);
103#else
104  UNIMPLEMENTED(FATAL);
105#endif
106}
107
108void Thread::InitTid() {
109  tid_ = ::art::GetTid();
110}
111
112void Thread::InitAfterFork() {
113  InitTid();
114
115#if defined(__BIONIC__)
116  // Work around a bionic bug.
117  struct bionic_pthread_internal_t {
118    void*  next;
119    void** pref;
120    pthread_attr_t attr;
121    pid_t kernel_id;
122    // et cetera. we just need 'kernel_id' so we can stop here.
123  };
124  bionic_pthread_internal_t* self = reinterpret_cast<bionic_pthread_internal_t*>(pthread_self());
125  if (self->kernel_id == tid_) {
126    // TODO: if you see this logging, you can remove this code!
127    LOG(INFO) << "*** this tree doesn't have the bionic pthread kernel_id bug";
128  }
129  self->kernel_id = tid_;
130#endif
131}
132
133void* Thread::CreateCallback(void* arg) {
134  Thread* self = reinterpret_cast<Thread*>(arg);
135  self->Init();
136
137  // Wait until it's safe to start running code. (There may have been a suspend-all
138  // in progress while we were starting up.)
139  Runtime* runtime = Runtime::Current();
140  runtime->GetThreadList()->WaitForGo();
141
142  {
143    CHECK_EQ(self->GetState(), kRunnable);
144    SirtRef<String> thread_name(self->GetThreadName());
145    self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
146  }
147
148  Dbg::PostThreadStart(self);
149
150  // Invoke the 'run' method of our java.lang.Thread.
151  CHECK(self->peer_ != NULL);
152  Object* receiver = self->peer_;
153  Method* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(gThread_run);
154  m->Invoke(self, receiver, NULL, NULL);
155
156  // Detach.
157  runtime->GetThreadList()->Unregister();
158
159  return NULL;
160}
161
162static void SetVmData(Object* managed_thread, Thread* native_thread) {
163  gThread_vmData->SetInt(managed_thread, reinterpret_cast<uintptr_t>(native_thread));
164}
165
166Thread* Thread::FromManagedThread(Object* thread_peer) {
167  return reinterpret_cast<Thread*>(static_cast<uintptr_t>(gThread_vmData->GetInt(thread_peer)));
168}
169
170Thread* Thread::FromManagedThread(JNIEnv* env, jobject java_thread) {
171  return FromManagedThread(Decode<Object*>(env, java_thread));
172}
173
174static size_t FixStackSize(size_t stack_size) {
175  // A stack size of zero means "use the default".
176  if (stack_size == 0) {
177    stack_size = Runtime::Current()->GetDefaultStackSize();
178  }
179
180  // Dalvik used the bionic pthread default stack size for native threads,
181  // so include that here to support apps that expect large native stacks.
182  stack_size += 1 * MB;
183
184
185  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
186  if (stack_size < PTHREAD_STACK_MIN) {
187    stack_size = PTHREAD_STACK_MIN;
188  }
189
190  // It's likely that callers are trying to ensure they have at least a certain amount of
191  // stack space, so we should add our reserved space on top of what they requested, rather
192  // than implicitly take it away from them.
193  stack_size += Thread::kStackOverflowReservedBytes;
194
195  // Some systems require the stack size to be a multiple of the system page size, so round up.
196  stack_size = RoundUp(stack_size, kPageSize);
197
198  return stack_size;
199}
200
201static void SigAltStack(stack_t* new_stack, stack_t* old_stack) {
202  if (sigaltstack(new_stack, old_stack) == -1) {
203    PLOG(FATAL) << "sigaltstack failed";
204  }
205}
206
207static void SetUpAlternateSignalStack() {
208  // Create and set an alternate signal stack.
209  stack_t ss;
210  ss.ss_sp = new uint8_t[SIGSTKSZ];
211  ss.ss_size = SIGSTKSZ;
212  ss.ss_flags = 0;
213  CHECK(ss.ss_sp != NULL);
214  SigAltStack(&ss, NULL);
215
216  // Double-check that it worked.
217  ss.ss_sp = NULL;
218  SigAltStack(NULL, &ss);
219  VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp;
220}
221
222static void TearDownAlternateSignalStack() {
223  // Get the pointer so we can free the memory.
224  stack_t ss;
225  SigAltStack(NULL, &ss);
226  uint8_t* allocated_signal_stack = reinterpret_cast<uint8_t*>(ss.ss_sp);
227
228  // Tell the kernel to stop using it.
229  ss.ss_sp = NULL;
230  ss.ss_flags = SS_DISABLE;
231  ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc.
232  SigAltStack(&ss, NULL);
233
234  // Free it.
235  delete[] allocated_signal_stack;
236}
237
238void Thread::Create(Object* peer, size_t stack_size) {
239  CHECK(peer != NULL);
240
241  stack_size = FixStackSize(stack_size);
242
243  Thread* native_thread = new Thread;
244  native_thread->peer_ = peer;
245
246  // Thread.start is synchronized, so we know that vmData is 0,
247  // and know that we're not racing to assign it.
248  SetVmData(peer, native_thread);
249
250  {
251    ScopedThreadStateChange tsc(Thread::Current(), kVmWait);
252    pthread_t new_pthread;
253    pthread_attr_t attr;
254    CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
255    CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
256    CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
257    CHECK_PTHREAD_CALL(pthread_create, (&new_pthread, &attr, Thread::CreateCallback, native_thread), "new thread");
258    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
259  }
260
261  // Let the child know when it's safe to start running.
262  Runtime::Current()->GetThreadList()->SignalGo(native_thread);
263}
264
265void Thread::Init() {
266  // This function does all the initialization that must be run by the native thread it applies to.
267  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
268  // we can handshake with the corresponding native thread when it's ready.) Check this native
269  // thread hasn't been through here already...
270  CHECK(Thread::Current() == NULL);
271
272  SetUpAlternateSignalStack();
273  InitCpu();
274  InitFunctionPointers();
275  InitCardTable();
276
277  Runtime* runtime = Runtime::Current();
278  CHECK(runtime != NULL);
279
280  thin_lock_id_ = runtime->GetThreadList()->AllocThreadId();
281
282  InitTid();
283  InitStackHwm();
284
285  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach");
286
287  jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM());
288
289  runtime->GetThreadList()->Register();
290}
291
292Thread* Thread::Attach(const char* thread_name, bool as_daemon, Object* thread_group) {
293  Thread* self = new Thread;
294  self->Init();
295
296  self->SetState(kNative);
297
298  // If we're the main thread, ClassLinker won't be created until after we're attached,
299  // so that thread needs a two-stage attach. Regular threads don't need this hack.
300  // In the compiler, all threads need this hack, because no-one's going to be getting
301  // a native peer!
302  if (self->thin_lock_id_ != ThreadList::kMainId && !Runtime::Current()->IsCompiler()) {
303    self->CreatePeer(thread_name, as_daemon, thread_group);
304  } else {
305    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
306    if (thread_name != NULL) {
307      self->name_->assign(thread_name);
308      ::art::SetThreadName(thread_name);
309    }
310  }
311
312  self->GetJniEnv()->locals.AssertEmpty();
313  return self;
314}
315
316Object* Thread::GetMainThreadGroup() {
317  if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(gThreadGroup, true, true)) {
318    return NULL;
319  }
320  return gThreadGroup_mMain->GetObject(NULL);
321}
322
323Object* Thread::GetSystemThreadGroup() {
324  if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(gThreadGroup, true, true)) {
325    return NULL;
326  }
327  return gThreadGroup_mSystem->GetObject(NULL);
328}
329
330void Thread::CreatePeer(const char* name, bool as_daemon, Object* thread_group) {
331  CHECK(Runtime::Current()->IsStarted());
332  JNIEnv* env = jni_env_;
333
334  if (thread_group == NULL) {
335    thread_group = Thread::GetMainThreadGroup();
336  }
337  ScopedLocalRef<jobject> java_thread_group(env, AddLocalReference<jobject>(env, thread_group));
338  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
339  jint thread_priority = GetNativePriority();
340  jboolean thread_is_daemon = as_daemon;
341
342  ScopedLocalRef<jclass> c(env, env->FindClass("java/lang/Thread"));
343  ScopedLocalRef<jobject> peer(env, env->AllocObject(c.get()));
344  peer_ = DecodeJObject(peer.get());
345  if (peer_ == NULL) {
346    CHECK(IsExceptionPending());
347    return;
348  }
349  jmethodID mid = env->GetMethodID(c.get(), "<init>", "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
350  env->CallNonvirtualVoidMethod(peer.get(), c.get(), mid, java_thread_group.get(), thread_name.get(), thread_priority, thread_is_daemon);
351  CHECK(!IsExceptionPending()) << " " << PrettyTypeOf(GetException());
352  SetVmData(peer_, Thread::Current());
353
354  SirtRef<String> peer_thread_name(GetThreadName());
355  if (peer_thread_name.get() == NULL) {
356    // The Thread constructor should have set the Thread.name to a
357    // non-null value. However, because we can run without code
358    // available (in the compiler, in tests), we manually assign the
359    // fields the constructor should have set.
360    gThread_daemon->SetBoolean(peer_, thread_is_daemon);
361    gThread_group->SetObject(peer_, thread_group);
362    gThread_name->SetObject(peer_, Decode<Object*>(env, thread_name.get()));
363    gThread_priority->SetInt(peer_, thread_priority);
364    peer_thread_name.reset(GetThreadName());
365  }
366  // thread_name may have been null, so don't trust this to be non-null
367  if (peer_thread_name.get() != NULL) {
368    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
369  }
370
371  // Pre-allocate an OutOfMemoryError for the double-OOME case.
372  ThrowNewException("Ljava/lang/OutOfMemoryError;",
373      "OutOfMemoryError thrown while trying to throw OutOfMemoryError; no stack available");
374  ScopedLocalRef<jthrowable> exception(env, env->ExceptionOccurred());
375  env->ExceptionClear();
376  pre_allocated_OutOfMemoryError_ = Decode<Throwable*>(env, exception.get());
377}
378
379void Thread::SetThreadName(const char* name) {
380  name_->assign(name);
381  ::art::SetThreadName(name);
382  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
383}
384
385void Thread::InitStackHwm() {
386  void* stack_base;
387  size_t stack_size;
388  GetThreadStack(stack_base, stack_size);
389
390  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
391  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
392
393  stack_begin_ = reinterpret_cast<byte*>(stack_base);
394  stack_size_ = stack_size;
395
396  if (stack_size_ <= kStackOverflowReservedBytes) {
397    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
398  }
399
400  // TODO: move this into the Linux GetThreadStack implementation.
401#if !defined(__APPLE__)
402  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
403  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
404  // will be broken because we'll die long before we get close to 2GB.
405  if (thin_lock_id_ == 1) {
406    rlimit stack_limit;
407    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
408      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
409    }
410    if (stack_limit.rlim_cur == RLIM_INFINITY) {
411      // Find the default stack size for new threads...
412      pthread_attr_t default_attributes;
413      size_t default_stack_size;
414      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
415      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
416                         "default stack size query");
417      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
418
419      // ...and use that as our limit.
420      size_t old_stack_size = stack_size_;
421      stack_size_ = default_stack_size;
422      stack_begin_ += (old_stack_size - stack_size_);
423      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
424                    << " to " << PrettySize(stack_size_)
425                    << " with base " << reinterpret_cast<void*>(stack_begin_);
426    }
427  }
428#endif
429
430  // Set stack_end_ to the bottom of the stack saving space of stack overflows
431  ResetDefaultStackEnd();
432
433  // Sanity check.
434  int stack_variable;
435  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
436}
437
438void Thread::Dump(std::ostream& os, bool full) const {
439  if (full) {
440    DumpState(os);
441    DumpStack(os);
442  } else {
443    os << "Thread[";
444    if (GetThinLockId() != 0) {
445      // If we're in kStarting, we won't have a thin lock id or tid yet.
446      os << GetThinLockId()
447         << ",tid=" << GetTid() << ',';
448    }
449    os << GetState()
450       << ",Thread*=" << this
451       << ",peer=" << peer_
452       << ",\"" << *name_ << "\""
453       << "]";
454  }
455}
456
457String* Thread::GetThreadName() const {
458  return (peer_ != NULL) ? reinterpret_cast<String*>(gThread_name->GetObject(peer_)) : NULL;
459}
460
461void Thread::GetThreadName(std::string& name) const {
462  name.assign(*name_);
463}
464
465void Thread::DumpState(std::ostream& os) const {
466  std::string group_name;
467  int priority;
468  bool is_daemon = false;
469
470  if (peer_ != NULL) {
471    priority = gThread_priority->GetInt(peer_);
472    is_daemon = gThread_daemon->GetBoolean(peer_);
473
474    Object* thread_group = GetThreadGroup();
475    if (thread_group != NULL) {
476      String* group_name_string = reinterpret_cast<String*>(gThreadGroup_name->GetObject(thread_group));
477      group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
478    }
479  } else {
480    priority = GetNativePriority();
481  }
482
483  int policy;
484  sched_param sp;
485  CHECK_PTHREAD_CALL(pthread_getschedparam, (pthread_self(), &policy, &sp), __FUNCTION__);
486
487  std::string scheduler_group_name(GetSchedulerGroupName(GetTid()));
488  if (scheduler_group_name.empty()) {
489    scheduler_group_name = "default";
490  }
491
492  os << '"' << *name_ << '"';
493  if (is_daemon) {
494    os << " daemon";
495  }
496  os << " prio=" << priority
497     << " tid=" << GetThinLockId()
498     << " " << GetState() << "\n";
499
500  os << "  | group=\"" << group_name << "\""
501     << " sCount=" << suspend_count_
502     << " dsCount=" << debug_suspend_count_
503     << " obj=" << reinterpret_cast<void*>(peer_)
504     << " self=" << reinterpret_cast<const void*>(this) << "\n";
505  os << "  | sysTid=" << GetTid()
506     << " nice=" << getpriority(PRIO_PROCESS, GetTid())
507     << " sched=" << policy << "/" << sp.sched_priority
508     << " cgrp=" << scheduler_group_name
509     << " handle=" << pthread_self() << "\n";
510
511  // Grab the scheduler stats for this thread.
512  std::string scheduler_stats;
513  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", GetTid()), &scheduler_stats)) {
514    scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
515  } else {
516    scheduler_stats = "0 0 0";
517  }
518
519  int utime = 0;
520  int stime = 0;
521  int task_cpu = 0;
522  GetTaskStats(GetTid(), utime, stime, task_cpu);
523
524  os << "  | schedstat=( " << scheduler_stats << " )"
525     << " utm=" << utime
526     << " stm=" << stime
527     << " core=" << task_cpu
528     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
529
530  os << "  | stackSize=" << PrettySize(stack_size_)
531     << " stack=" << reinterpret_cast<void*>(stack_begin_) << "-" << reinterpret_cast<void*>(stack_end_) << "\n";
532}
533
534#if !defined(ART_USE_LLVM_COMPILER)
535void Thread::PushNativeToManagedRecord(NativeToManagedRecord* record) {
536  Method **sp = top_of_managed_stack_.GetSP();
537#ifndef NDEBUG
538  if (sp != NULL) {
539    Method* m = *sp;
540    Runtime::Current()->GetHeap()->VerifyObject(m);
541    DCHECK((m == NULL) || m->IsMethod());
542  }
543#endif
544  record->last_top_of_managed_stack_ = reinterpret_cast<void*>(sp);
545  record->last_top_of_managed_stack_pc_ = top_of_managed_stack_pc_;
546  record->link_ = native_to_managed_record_;
547  native_to_managed_record_ = record;
548  top_of_managed_stack_.SetSP(NULL);
549}
550#else
551void Thread::PushNativeToManagedRecord(NativeToManagedRecord*) {
552  LOG(FATAL) << "Called non-LLVM method with LLVM";
553}
554#endif
555
556#if !defined(ART_USE_LLVM_COMPILER)
557void Thread::PopNativeToManagedRecord(const NativeToManagedRecord& record) {
558  native_to_managed_record_ = record.link_;
559  top_of_managed_stack_.SetSP(reinterpret_cast<Method**>(record.last_top_of_managed_stack_));
560  top_of_managed_stack_pc_ = record.last_top_of_managed_stack_pc_;
561}
562#else
563void Thread::PopNativeToManagedRecord(const NativeToManagedRecord&) {
564  LOG(FATAL) << "Called non-LLVM method with LLVM";
565}
566#endif
567
568struct StackDumpVisitor : public Thread::StackVisitor {
569  StackDumpVisitor(std::ostream& os, const Thread* thread)
570      : last_method(NULL), last_line_number(0), repetition_count(0), os(os), thread(thread),
571        frame_count(0) {
572  }
573
574  virtual ~StackDumpVisitor() {
575    if (frame_count == 0) {
576      os << "  (no managed stack frames)\n";
577    }
578  }
579
580  bool VisitFrame(const Frame& frame, uintptr_t pc) {
581    if (!frame.HasMethod()) {
582      return true;
583    }
584    const int kMaxRepetition = 3;
585    Method* m = frame.GetMethod();
586    Class* c = m->GetDeclaringClass();
587    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
588    const DexCache* dex_cache = c->GetDexCache();
589    int line_number = -1;
590    if (dex_cache != NULL) {  // be tolerant of bad input
591      const DexFile& dex_file = class_linker->FindDexFile(dex_cache);
592      line_number = dex_file.GetLineNumFromPC(m, m->ToDexPC(pc));
593    }
594    if (line_number == last_line_number && last_method == m) {
595      repetition_count++;
596    } else {
597      if (repetition_count >= kMaxRepetition) {
598        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
599      }
600      repetition_count = 0;
601      last_line_number = line_number;
602      last_method = m;
603    }
604    if (repetition_count < kMaxRepetition) {
605      os << "  at " << PrettyMethod(m, false);
606      if (m->IsNative()) {
607        os << "(Native method)";
608      } else {
609        mh.ChangeMethod(m);
610        const char* source_file(mh.GetDeclaringClassSourceFile());
611        os << "(" << (source_file != NULL ? source_file : "unavailable")
612           << ":" << line_number << ")";
613      }
614      os << "\n";
615    }
616
617    if (frame_count++ == 0) {
618      Monitor::DescribeWait(os, thread);
619    }
620    return true;
621  }
622  MethodHelper mh;
623  Method* last_method;
624  int last_line_number;
625  int repetition_count;
626  std::ostream& os;
627  const Thread* thread;
628  int frame_count;
629};
630
631void Thread::DumpStack(std::ostream& os) const {
632  // If we're currently in native code, dump that stack before dumping the managed stack.
633  if (GetState() == kNative || GetState() == kVmWait) {
634    DumpKernelStack(os);
635    DumpNativeStack(os);
636  }
637  StackDumpVisitor dumper(os, this);
638  WalkStack(&dumper);
639}
640
641#if !defined(__APPLE__)
642void Thread::DumpKernelStack(std::ostream& os) const {
643  std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", GetTid()));
644  std::string kernel_stack;
645  if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
646    os << "  (couldn't read " << kernel_stack_filename << ")";
647  }
648
649  std::vector<std::string> kernel_stack_frames;
650  Split(kernel_stack, '\n', kernel_stack_frames);
651  // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
652  // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
653  kernel_stack_frames.pop_back();
654  for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
655    os << "  kernel: " << kernel_stack_frames[i] << "\n";
656  }
657}
658#else
659// TODO: can we get the kernel stack on Mac OS?
660void Thread::DumpKernelStack(std::ostream&) const {}
661#endif
662
663void Thread::SetStateWithoutSuspendCheck(ThreadState new_state) {
664  volatile void* raw = reinterpret_cast<volatile void*>(&state_);
665  volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
666  android_atomic_release_store(new_state, addr);
667}
668
669ThreadState Thread::SetState(ThreadState new_state) {
670  ThreadState old_state = state_;
671  if (old_state == new_state) {
672    return old_state;
673  }
674
675  volatile void* raw = reinterpret_cast<volatile void*>(&state_);
676  volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
677
678  if (new_state == kRunnable) {
679    /*
680     * Change our status to kRunnable.  The transition requires
681     * that we check for pending suspension, because the runtime considers
682     * us to be "asleep" in all other states, and another thread could
683     * be performing a GC now.
684     *
685     * The order of operations is very significant here.  One way to
686     * do this wrong is:
687     *
688     *   GCing thread                   Our thread (in kNative)
689     *   ------------                   ----------------------
690     *                                  check suspend count (== 0)
691     *   SuspendAllThreads()
692     *   grab suspend-count lock
693     *   increment all suspend counts
694     *   release suspend-count lock
695     *   check thread state (== kNative)
696     *   all are suspended, begin GC
697     *                                  set state to kRunnable
698     *                                  (continue executing)
699     *
700     * We can correct this by grabbing the suspend-count lock and
701     * performing both of our operations (check suspend count, set
702     * state) while holding it, now we need to grab a mutex on every
703     * transition to kRunnable.
704     *
705     * What we do instead is change the order of operations so that
706     * the transition to kRunnable happens first.  If we then detect
707     * that the suspend count is nonzero, we switch to kSuspended.
708     *
709     * Appropriate compiler and memory barriers are required to ensure
710     * that the operations are observed in the expected order.
711     *
712     * This does create a small window of opportunity where a GC in
713     * progress could observe what appears to be a running thread (if
714     * it happens to look between when we set to kRunnable and when we
715     * switch to kSuspended).  At worst this only affects assertions
716     * and thread logging.  (We could work around it with some sort
717     * of intermediate "pre-running" state that is generally treated
718     * as equivalent to running, but that doesn't seem worthwhile.)
719     *
720     * We can also solve this by combining the "status" and "suspend
721     * count" fields into a single 32-bit value.  This trades the
722     * store/load barrier on transition to kRunnable for an atomic RMW
723     * op on all transitions and all suspend count updates (also, all
724     * accesses to status or the thread count require bit-fiddling).
725     * It also eliminates the brief transition through kRunnable when
726     * the thread is supposed to be suspended.  This is possibly faster
727     * on SMP and slightly more correct, but less convenient.
728     */
729    android_atomic_acquire_store(new_state, addr);
730    ANNOTATE_IGNORE_READS_BEGIN();
731    int suspend_count = suspend_count_;
732    ANNOTATE_IGNORE_READS_END();
733    if (suspend_count != 0) {
734      Runtime::Current()->GetThreadList()->FullSuspendCheck(this);
735    }
736  } else {
737    /*
738     * Not changing to kRunnable. No additional work required.
739     *
740     * We use a releasing store to ensure that, if we were runnable,
741     * any updates we previously made to objects on the managed heap
742     * will be observed before the state change.
743     */
744    android_atomic_release_store(new_state, addr);
745  }
746
747  return old_state;
748}
749
750bool Thread::IsSuspended() {
751  ANNOTATE_IGNORE_READS_BEGIN();
752  int suspend_count = suspend_count_;
753  ANNOTATE_IGNORE_READS_END();
754  return suspend_count != 0 && GetState() != kRunnable;
755}
756
757static void ReportThreadSuspendTimeout(Thread* waiting_thread) {
758  Runtime* runtime = Runtime::Current();
759  std::ostringstream ss;
760  ss << "Thread suspend timeout waiting for thread " << *waiting_thread << "\n";
761  runtime->DumpLockHolders(ss);
762  ss << "\n";
763  runtime->GetThreadList()->DumpLocked(ss);
764  LOG(FATAL) << ss.str();
765}
766
767void Thread::WaitUntilSuspended() {
768  static const useconds_t kTimeoutUs = 30 * 1000000; // 30s.
769
770  useconds_t total_delay = 0;
771  useconds_t delay = 0;
772  while (GetState() == kRunnable) {
773    if (total_delay >= kTimeoutUs) {
774      ReportThreadSuspendTimeout(this);
775    }
776    useconds_t new_delay = delay * 2;
777    CHECK_GE(new_delay, delay);
778    delay = new_delay;
779    if (delay == 0) {
780      sched_yield();
781      delay = 10000;
782    } else {
783      usleep(delay);
784      total_delay += delay;
785    }
786  }
787}
788
789void Thread::ThreadExitCallback(void* arg) {
790  Thread* self = reinterpret_cast<Thread*>(arg);
791  LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
792}
793
794void Thread::Startup() {
795  // Allocate a TLS slot.
796  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
797
798  // Double-check the TLS slot allocation.
799  if (pthread_getspecific(pthread_key_self_) != NULL) {
800    LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
801  }
802}
803
804// TODO: make more accessible?
805static Class* FindClassOrDie(ClassLinker* class_linker, const char* descriptor) {
806  Class* c = class_linker->FindSystemClass(descriptor);
807  CHECK(c != NULL) << descriptor;
808  return c;
809}
810
811// TODO: make more accessible?
812static Field* FindFieldOrDie(Class* c, const char* name, const char* descriptor) {
813  Field* f = c->FindDeclaredInstanceField(name, descriptor);
814  CHECK(f != NULL) << PrettyClass(c) << " " << name << " " << descriptor;
815  return f;
816}
817
818// TODO: make more accessible?
819static Method* FindMethodOrDie(Class* c, const char* name, const char* signature) {
820  Method* m = c->FindVirtualMethod(name, signature);
821  CHECK(m != NULL) << PrettyClass(c) << " " << name << " " << signature;
822  return m;
823}
824
825// TODO: make more accessible?
826static Field* FindStaticFieldOrDie(Class* c, const char* name, const char* descriptor) {
827  Field* f = c->FindDeclaredStaticField(name, descriptor);
828  CHECK(f != NULL) << PrettyClass(c) << " " << name << " " << descriptor;
829  return f;
830}
831
832void Thread::FinishStartup() {
833  CHECK(Runtime::Current()->IsStarted());
834  Thread* self = Thread::Current();
835
836  // Need to be kRunnable for FindClass
837  ScopedThreadStateChange tsc(self, kRunnable);
838
839  // Now the ClassLinker is ready, we can find the various Class*, Field*, and Method*s we need.
840  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
841
842  Class* Thread_class = FindClassOrDie(class_linker, "Ljava/lang/Thread;");
843  Class* UncaughtExceptionHandler_class = FindClassOrDie(class_linker, "Ljava/lang/Thread$UncaughtExceptionHandler;");
844  gThreadGroup = FindClassOrDie(class_linker, "Ljava/lang/ThreadGroup;");
845  gThreadLock = FindClassOrDie(class_linker, "Ljava/lang/ThreadLock;");
846
847  gThread_daemon = FindFieldOrDie(Thread_class, "daemon", "Z");
848  gThread_group = FindFieldOrDie(Thread_class, "group", "Ljava/lang/ThreadGroup;");
849  gThread_lock = FindFieldOrDie(Thread_class, "lock", "Ljava/lang/ThreadLock;");
850  gThread_name = FindFieldOrDie(Thread_class, "name", "Ljava/lang/String;");
851  gThread_priority = FindFieldOrDie(Thread_class, "priority", "I");
852  gThread_uncaughtHandler = FindFieldOrDie(Thread_class, "uncaughtHandler", "Ljava/lang/Thread$UncaughtExceptionHandler;");
853  gThread_vmData = FindFieldOrDie(Thread_class, "vmData", "I");
854  gThreadGroup_name = FindFieldOrDie(gThreadGroup, "name", "Ljava/lang/String;");
855  gThreadGroup_mMain = FindStaticFieldOrDie(gThreadGroup, "mMain", "Ljava/lang/ThreadGroup;");
856  gThreadGroup_mSystem = FindStaticFieldOrDie(gThreadGroup, "mSystem", "Ljava/lang/ThreadGroup;");
857  gThreadLock_thread = FindFieldOrDie(gThreadLock, "thread", "Ljava/lang/Thread;");
858
859  gThread_run = FindMethodOrDie(Thread_class, "run", "()V");
860  gThreadGroup_removeThread = FindMethodOrDie(gThreadGroup, "removeThread", "(Ljava/lang/Thread;)V");
861  gUncaughtExceptionHandler_uncaughtException = FindMethodOrDie(UncaughtExceptionHandler_class,
862      "uncaughtException", "(Ljava/lang/Thread;Ljava/lang/Throwable;)V");
863
864  // Finish attaching the main thread.
865  Thread::Current()->CreatePeer("main", false, Thread::GetMainThreadGroup());
866
867  InitBoxingMethods();
868  class_linker->RunRootClinits();
869}
870
871void Thread::Shutdown() {
872  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
873}
874
875uint32_t Thread::LockOwnerFromThreadLock(Object* thread_lock) {
876  if (thread_lock == NULL || thread_lock->GetClass() != gThreadLock) {
877    return ThreadList::kInvalidId;
878  }
879  Object* managed_thread = gThreadLock_thread->GetObject(thread_lock);
880  if (managed_thread == NULL) {
881    return ThreadList::kInvalidId;
882  }
883  uintptr_t vmData = static_cast<uintptr_t>(gThread_vmData->GetInt(managed_thread));
884  Thread* thread = reinterpret_cast<Thread*>(vmData);
885  if (thread == NULL) {
886    return ThreadList::kInvalidId;
887  }
888  return thread->GetThinLockId();
889}
890
891Thread::Thread()
892    : thin_lock_id_(0),
893      tid_(0),
894      peer_(NULL),
895      top_of_managed_stack_(),
896      top_of_managed_stack_pc_(0),
897      wait_mutex_(new Mutex("a thread wait mutex")),
898      wait_cond_(new ConditionVariable("a thread wait condition variable")),
899      wait_monitor_(NULL),
900      interrupted_(false),
901      wait_next_(NULL),
902      monitor_enter_object_(NULL),
903      card_table_(0),
904      stack_end_(NULL),
905      native_to_managed_record_(NULL),
906      top_sirt_(NULL),
907      top_shadow_frame_(NULL),
908      jni_env_(NULL),
909      state_(kNative),
910      self_(NULL),
911      runtime_(NULL),
912      exception_(NULL),
913      suspend_count_(0),
914      debug_suspend_count_(0),
915      class_loader_override_(NULL),
916      long_jump_context_(NULL),
917      throwing_OutOfMemoryError_(false),
918      pre_allocated_OutOfMemoryError_(NULL),
919      debug_invoke_req_(new DebugInvokeReq),
920      trace_stack_(new std::vector<TraceStackFrame>),
921      name_(new std::string(kThreadNameDuringStartup)) {
922  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
923  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
924}
925
926bool Thread::IsStillStarting() const {
927  // You might think you can check whether the state is kStarting, but for much of thread startup,
928  // the thread might also be in kVmWait.
929  // You might think you can check whether the peer is NULL, but the peer is actually created and
930  // assigned fairly early on, and needs to be.
931  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
932  // this thread _ever_ entered kRunnable".
933  return (*name_ == kThreadNameDuringStartup);
934}
935
936static void MonitorExitVisitor(const Object* object, void*) {
937  Object* entered_monitor = const_cast<Object*>(object);
938  LOG(WARNING) << "Calling MonitorExit on object " << object << " (" << PrettyTypeOf(object) << ")"
939               << " left locked by native thread " << *Thread::Current() << " which is detaching";
940  entered_monitor->MonitorExit(Thread::Current());
941}
942
943void Thread::Destroy() {
944  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
945  if (jni_env_ != NULL) {
946    jni_env_->monitors.VisitRoots(MonitorExitVisitor, NULL);
947  }
948
949  if (peer_ != NULL) {
950    Thread* self = this;
951
952    // We may need to call user-supplied managed code.
953    SetState(kRunnable);
954
955    HandleUncaughtExceptions();
956    RemoveFromThreadGroup();
957
958    // this.vmData = 0;
959    SetVmData(peer_, NULL);
960
961    Dbg::PostThreadDeath(self);
962
963    // Thread.join() is implemented as an Object.wait() on the Thread.lock
964    // object. Signal anyone who is waiting.
965    Object* lock = gThread_lock->GetObject(peer_);
966    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
967    if (lock != NULL) {
968      lock->MonitorEnter(self);
969      lock->NotifyAll();
970      lock->MonitorExit(self);
971    }
972  }
973}
974
975Thread::~Thread() {
976  delete jni_env_;
977  jni_env_ = NULL;
978
979  SetState(kTerminated);
980
981  delete wait_cond_;
982  delete wait_mutex_;
983
984#if !defined(ART_USE_LLVM_COMPILER)
985  delete long_jump_context_;
986#endif
987
988  delete debug_invoke_req_;
989  delete trace_stack_;
990  delete name_;
991
992  TearDownAlternateSignalStack();
993}
994
995void Thread::HandleUncaughtExceptions() {
996  if (!IsExceptionPending()) {
997    return;
998  }
999
1000  // Get and clear the exception.
1001  Object* exception = GetException();
1002  ClearException();
1003
1004  // If the thread has its own handler, use that.
1005  Object* handler = gThread_uncaughtHandler->GetObject(peer_);
1006  if (handler == NULL) {
1007    // Otherwise use the thread group's default handler.
1008    handler = GetThreadGroup();
1009  }
1010
1011  // Call the handler.
1012  Method* m = handler->GetClass()->FindVirtualMethodForVirtualOrInterface(gUncaughtExceptionHandler_uncaughtException);
1013  JValue args[2];
1014  args[0].SetL(peer_);
1015  args[1].SetL(exception);
1016  m->Invoke(this, handler, args, NULL);
1017
1018  // If the handler threw, clear that exception too.
1019  ClearException();
1020}
1021
1022Object* Thread::GetThreadGroup() const {
1023  return gThread_group->GetObject(peer_);
1024}
1025
1026void Thread::RemoveFromThreadGroup() {
1027  // this.group.removeThread(this);
1028  // group can be null if we're in the compiler or a test.
1029  Object* group = GetThreadGroup();
1030  if (group != NULL) {
1031    Method* m = group->GetClass()->FindVirtualMethodForVirtualOrInterface(gThreadGroup_removeThread);
1032    JValue args[1];
1033    args[0].SetL(peer_);
1034    m->Invoke(this, group, args, NULL);
1035  }
1036}
1037
1038size_t Thread::NumSirtReferences() {
1039  size_t count = 0;
1040  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1041    count += cur->NumberOfReferences();
1042  }
1043  return count;
1044}
1045
1046size_t Thread::NumShadowFrameReferences() {
1047  size_t count = 0;
1048  for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
1049    count += cur->NumberOfReferences();
1050  }
1051  return count;
1052}
1053
1054bool Thread::SirtContains(jobject obj) {
1055  Object** sirt_entry = reinterpret_cast<Object**>(obj);
1056  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1057    if (cur->Contains(sirt_entry)) {
1058      return true;
1059    }
1060  }
1061  return false;
1062}
1063
1064bool Thread::ShadowFrameContains(jobject obj) {
1065  Object** shadow_frame_entry = reinterpret_cast<Object**>(obj);
1066  for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
1067    if (cur->Contains(shadow_frame_entry)) {
1068      return true;
1069    }
1070  }
1071  return false;
1072}
1073
1074bool Thread::StackReferencesContain(jobject obj) {
1075  return SirtContains(obj) || ShadowFrameContains(obj);
1076}
1077
1078void Thread::SirtVisitRoots(Heap::RootVisitor* visitor, void* arg) {
1079  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1080    size_t num_refs = cur->NumberOfReferences();
1081    for (size_t j = 0; j < num_refs; j++) {
1082      Object* object = cur->GetReference(j);
1083      if (object != NULL) {
1084        visitor(object, arg);
1085      }
1086    }
1087  }
1088}
1089
1090void Thread::ShadowFrameVisitRoots(Heap::RootVisitor* visitor, void* arg) {
1091  for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
1092    size_t num_refs = cur->NumberOfReferences();
1093    for (size_t j = 0; j < num_refs; j++) {
1094      Object* object = cur->GetReference(j);
1095      if (object != NULL) {
1096        visitor(object, arg);
1097      }
1098    }
1099  }
1100}
1101
1102Object* Thread::DecodeJObject(jobject obj) {
1103  DCHECK(CanAccessDirectReferences());
1104  if (obj == NULL) {
1105    return NULL;
1106  }
1107  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1108  IndirectRefKind kind = GetIndirectRefKind(ref);
1109  Object* result;
1110  switch (kind) {
1111  case kLocal:
1112    {
1113      IndirectReferenceTable& locals = jni_env_->locals;
1114      result = const_cast<Object*>(locals.Get(ref));
1115      break;
1116    }
1117  case kGlobal:
1118    {
1119      JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1120      IndirectReferenceTable& globals = vm->globals;
1121      MutexLock mu(vm->globals_lock);
1122      result = const_cast<Object*>(globals.Get(ref));
1123      break;
1124    }
1125  case kWeakGlobal:
1126    {
1127      JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1128      IndirectReferenceTable& weak_globals = vm->weak_globals;
1129      MutexLock mu(vm->weak_globals_lock);
1130      result = const_cast<Object*>(weak_globals.Get(ref));
1131      if (result == kClearedJniWeakGlobal) {
1132        // This is a special case where it's okay to return NULL.
1133        return NULL;
1134      }
1135      break;
1136    }
1137  case kSirtOrInvalid:
1138  default:
1139    // TODO: make stack indirect reference table lookup more efficient
1140    // Check if this is a local reference in the SIRT
1141    if (StackReferencesContain(obj)) {
1142      result = *reinterpret_cast<Object**>(obj);  // Read from SIRT
1143    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1144      // Assume an invalid local reference is actually a direct pointer.
1145      result = reinterpret_cast<Object*>(obj);
1146    } else {
1147      result = kInvalidIndirectRefObject;
1148    }
1149  }
1150
1151  if (result == NULL) {
1152    LOG(ERROR) << "JNI ERROR (app bug): use of deleted " << kind << ": " << obj;
1153    JniAbort(NULL);
1154  } else {
1155    if (result != kInvalidIndirectRefObject) {
1156      Runtime::Current()->GetHeap()->VerifyObject(result);
1157    }
1158  }
1159  return result;
1160}
1161
1162class CountStackDepthVisitor : public Thread::StackVisitor {
1163 public:
1164  CountStackDepthVisitor() : depth_(0), skip_depth_(0), skipping_(true) {}
1165
1166  bool VisitFrame(const Frame& frame, uintptr_t /*pc*/) {
1167    // We want to skip frames up to and including the exception's constructor.
1168    // Note we also skip the frame if it doesn't have a method (namely the callee
1169    // save frame)
1170    if (skipping_ && frame.HasMethod() &&
1171        !Throwable::GetJavaLangThrowable()->IsAssignableFrom(frame.GetMethod()->GetDeclaringClass())) {
1172      skipping_ = false;
1173    }
1174    if (!skipping_) {
1175      if (frame.HasMethod()) {  // ignore callee save frames
1176        ++depth_;
1177      }
1178    } else {
1179      ++skip_depth_;
1180    }
1181    return true;
1182  }
1183
1184  int GetDepth() const {
1185    return depth_;
1186  }
1187
1188  int GetSkipDepth() const {
1189    return skip_depth_;
1190  }
1191
1192 private:
1193  uint32_t depth_;
1194  uint32_t skip_depth_;
1195  bool skipping_;
1196};
1197
1198class BuildInternalStackTraceVisitor : public Thread::StackVisitor {
1199 public:
1200  explicit BuildInternalStackTraceVisitor(int skip_depth)
1201      : skip_depth_(skip_depth), count_(0), pc_trace_(NULL), method_trace_(NULL), local_ref_(NULL) {
1202  }
1203
1204  bool Init(int depth, ScopedJniThreadState& ts) {
1205    // Allocate method trace with an extra slot that will hold the PC trace
1206    method_trace_ = Runtime::Current()->GetClassLinker()->AllocObjectArray<Object>(depth + 1);
1207    if (method_trace_ == NULL) {
1208      return false;
1209    }
1210    // Register a local reference as IntArray::Alloc may trigger GC
1211    local_ref_ = AddLocalReference<jobject>(ts.Env(), method_trace_);
1212    pc_trace_ = IntArray::Alloc(depth);
1213    if (pc_trace_ == NULL) {
1214      return false;
1215    }
1216#ifdef MOVING_GARBAGE_COLLECTOR
1217    // Re-read after potential GC
1218    method_trace_ = Decode<ObjectArray<Object>*>(ts.Env(), local_ref_);
1219#endif
1220    // Save PC trace in last element of method trace, also places it into the
1221    // object graph.
1222    method_trace_->Set(depth, pc_trace_);
1223    return true;
1224  }
1225
1226  virtual ~BuildInternalStackTraceVisitor() {}
1227
1228  bool VisitFrame(const Frame& frame, uintptr_t pc) {
1229    if (method_trace_ == NULL || pc_trace_ == NULL) {
1230      return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1231    }
1232    if (skip_depth_ > 0) {
1233      skip_depth_--;
1234      return true;
1235    }
1236    if (!frame.HasMethod()) {
1237      return true;  // ignore callee save frames
1238    }
1239    method_trace_->Set(count_, frame.GetMethod());
1240    pc_trace_->Set(count_, pc);
1241    ++count_;
1242    return true;
1243  }
1244
1245  jobject GetInternalStackTrace() const {
1246    return local_ref_;
1247  }
1248
1249 private:
1250  // How many more frames to skip.
1251  int32_t skip_depth_;
1252  // Current position down stack trace
1253  uint32_t count_;
1254  // Array of return PC values
1255  IntArray* pc_trace_;
1256  // An array of the methods on the stack, the last entry is a reference to the
1257  // PC trace
1258  ObjectArray<Object>* method_trace_;
1259  // Local indirect reference table entry for method trace
1260  jobject local_ref_;
1261};
1262
1263#if !defined(ART_USE_LLVM_COMPILER)
1264// TODO: remove this.
1265static uintptr_t ManglePc(uintptr_t pc) {
1266  // Move the PC back 2 bytes as a call will frequently terminate the
1267  // decoding of a particular instruction and we want to make sure we
1268  // get the Dex PC of the instruction with the call and not the
1269  // instruction following.
1270  if (pc > 0) { pc -= 2; }
1271  return pc;
1272}
1273#endif
1274
1275// TODO: remove this.
1276static uintptr_t DemanglePc(uintptr_t pc) {
1277  // Revert mangling for the case where we need the PC to return to the upcall
1278  if (pc > 0) { pc +=  2; }
1279  return pc;
1280}
1281
1282void Thread::PushShadowFrame(ShadowFrame* frame) {
1283  frame->SetLink(top_shadow_frame_);
1284  top_shadow_frame_ = frame;
1285}
1286
1287ShadowFrame* Thread::PopShadowFrame() {
1288  CHECK(top_shadow_frame_ != NULL);
1289  ShadowFrame* frame = top_shadow_frame_;
1290  top_shadow_frame_ = frame->GetLink();
1291  return frame;
1292}
1293
1294void Thread::PushSirt(StackIndirectReferenceTable* sirt) {
1295  sirt->SetLink(top_sirt_);
1296  top_sirt_ = sirt;
1297}
1298
1299StackIndirectReferenceTable* Thread::PopSirt() {
1300  CHECK(top_sirt_ != NULL);
1301  StackIndirectReferenceTable* sirt = top_sirt_;
1302  top_sirt_ = top_sirt_->GetLink();
1303  return sirt;
1304}
1305
1306#if !defined(ART_USE_LLVM_COMPILER) // LLVM use ShadowFrame
1307
1308void Thread::WalkStack(StackVisitor* visitor, bool include_upcalls) const {
1309  Frame frame = GetTopOfStack();
1310  uintptr_t pc = ManglePc(top_of_managed_stack_pc_);
1311  uint32_t trace_stack_depth = 0;
1312  // TODO: enable this CHECK after native_to_managed_record_ is initialized during startup.
1313  // CHECK(native_to_managed_record_ != NULL);
1314  NativeToManagedRecord* record = native_to_managed_record_;
1315  bool method_tracing_active = Runtime::Current()->IsMethodTracingActive();
1316  while (frame.GetSP() != NULL) {
1317    for ( ; frame.GetMethod() != NULL; frame.Next()) {
1318      frame.GetMethod()->AssertPcIsWithinCode(pc);
1319      bool should_continue = visitor->VisitFrame(frame, pc);
1320      if (UNLIKELY(!should_continue)) {
1321        return;
1322      }
1323      uintptr_t return_pc = frame.GetReturnPC();
1324      if (LIKELY(!method_tracing_active)) {
1325        pc = ManglePc(return_pc);
1326      } else {
1327        // While profiling, the return pc is restored from the side stack, except when walking
1328        // the stack for an exception where the side stack will be unwound in VisitFrame.
1329        if (IsTraceExitPc(return_pc) && !include_upcalls) {
1330          TraceStackFrame trace_frame = GetTraceStackFrame(trace_stack_depth++);
1331          CHECK(trace_frame.method_ == frame.GetMethod());
1332          pc = ManglePc(trace_frame.return_pc_);
1333        } else {
1334          pc = ManglePc(return_pc);
1335        }
1336      }
1337    }
1338    if (include_upcalls) {
1339      bool should_continue = visitor->VisitFrame(frame, pc);
1340      if (!should_continue) {
1341        return;
1342      }
1343    }
1344    if (record == NULL) {
1345      return;
1346    }
1347    // last_tos should return Frame instead of sp?
1348    frame.SetSP(reinterpret_cast<Method**>(record->last_top_of_managed_stack_));
1349    pc = ManglePc(record->last_top_of_managed_stack_pc_);
1350    record = record->link_;
1351  }
1352}
1353
1354#else // defined(ART_USE_LLVM_COMPILER) // LLVM uses ShadowFrame
1355
1356void Thread::WalkStack(StackVisitor* visitor, bool /*include_upcalls*/) const {
1357  for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) {
1358    Frame frame;
1359    frame.SetSP(reinterpret_cast<Method**>(reinterpret_cast<byte*>(cur) +
1360                                           ShadowFrame::MethodOffset()));
1361    bool should_continue = visitor->VisitFrame(frame, cur->GetDexPC());
1362    if (!should_continue) {
1363      return;
1364    }
1365  }
1366}
1367
1368/*
1369 *                                |                        |
1370 *                                |                        |
1371 *                                |                        |
1372 *                                |      .                 |
1373 *                                |      .                 |
1374 *                                |      .                 |
1375 *                                |      .                 |
1376 *                                | Method*                |
1377 *                                |      .                 |
1378 *                                |      .                 | <-- top_shadow_frame_   (ShadowFrame*)
1379 *                              / +------------------------+
1380 *                              ->|      .                 |
1381 *                              . |      .                 |
1382 *                              . |      .                 |
1383 *                               /+------------------------+
1384 *                              / |      .                 |
1385 *                             /  |      .                 |
1386 *     ---                     |  |      .                 |
1387 *      |                      |  |      .                 |
1388 *                             |  | Method*                | <-- frame.GetSP() (Method**)
1389 *  ShadowFrame                \  |      .                 |
1390 *      |                       ->|      .                 | <-- cur           (ShadowFrame*)
1391 *     ---                       /+------------------------+
1392 *                              / |      .                 |
1393 *                             /  |      .                 |
1394 *     ---                     |  |      .                 |
1395 *      |       cur->GetLink() |  |      .                 |
1396 *                             |  | Method*                |
1397 *   ShadowFrame               \  |      .                 |
1398 *      |                       ->|      .                 |
1399 *     ---                        +------------------------+
1400 *                                |      .                 |
1401 *                                |      .                 |
1402 *                                |      .                 |
1403 *                                +========================+
1404 */
1405
1406#endif
1407
1408jobject Thread::CreateInternalStackTrace(JNIEnv* env) const {
1409  // Compute depth of stack
1410  CountStackDepthVisitor count_visitor;
1411  WalkStack(&count_visitor);
1412  int32_t depth = count_visitor.GetDepth();
1413  int32_t skip_depth = count_visitor.GetSkipDepth();
1414
1415  // Transition into runnable state to work on Object*/Array*
1416  ScopedJniThreadState ts(env);
1417
1418  // Build internal stack trace
1419  BuildInternalStackTraceVisitor build_trace_visitor(skip_depth);
1420  if (!build_trace_visitor.Init(depth, ts)) {
1421    return NULL;  // Allocation failed
1422  }
1423  WalkStack(&build_trace_visitor);
1424  return build_trace_visitor.GetInternalStackTrace();
1425}
1426
1427jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1428    jobjectArray output_array, int* stack_depth) {
1429  // Transition into runnable state to work on Object*/Array*
1430  ScopedJniThreadState ts(env);
1431  // Decode the internal stack trace into the depth, method trace and PC trace
1432  ObjectArray<Object>* method_trace =
1433      down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
1434  int32_t depth = method_trace->GetLength() - 1;
1435  IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
1436
1437  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1438
1439  jobjectArray result;
1440  ObjectArray<StackTraceElement>* java_traces;
1441  if (output_array != NULL) {
1442    // Reuse the array we were given.
1443    result = output_array;
1444    java_traces = reinterpret_cast<ObjectArray<StackTraceElement>*>(Decode<Array*>(env,
1445        output_array));
1446    // ...adjusting the number of frames we'll write to not exceed the array length.
1447    depth = std::min(depth, java_traces->GetLength());
1448  } else {
1449    // Create java_trace array and place in local reference table
1450    java_traces = class_linker->AllocStackTraceElementArray(depth);
1451    if (java_traces == NULL) {
1452      return NULL;
1453    }
1454    result = AddLocalReference<jobjectArray>(ts.Env(), java_traces);
1455  }
1456
1457  if (stack_depth != NULL) {
1458    *stack_depth = depth;
1459  }
1460
1461  MethodHelper mh;
1462  for (int32_t i = 0; i < depth; ++i) {
1463    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1464    Method* method = down_cast<Method*>(method_trace->Get(i));
1465    mh.ChangeMethod(method);
1466    uint32_t native_pc = pc_trace->Get(i);
1467    int32_t line_number = mh.GetLineNumFromNativePC(native_pc);
1468    // Allocate element, potentially triggering GC
1469    // TODO: reuse class_name_object via Class::name_?
1470    const char* descriptor = mh.GetDeclaringClassDescriptor();
1471    CHECK(descriptor != NULL);
1472    std::string class_name(PrettyDescriptor(descriptor));
1473    SirtRef<String> class_name_object(String::AllocFromModifiedUtf8(class_name.c_str()));
1474    if (class_name_object.get() == NULL) {
1475      return NULL;
1476    }
1477    const char* method_name = mh.GetName();
1478    CHECK(method_name != NULL);
1479    SirtRef<String> method_name_object(String::AllocFromModifiedUtf8(method_name));
1480    if (method_name_object.get() == NULL) {
1481      return NULL;
1482    }
1483    const char* source_file = mh.GetDeclaringClassSourceFile();
1484    SirtRef<String> source_name_object(String::AllocFromModifiedUtf8(source_file));
1485    StackTraceElement* obj = StackTraceElement::Alloc(class_name_object.get(),
1486                                                      method_name_object.get(),
1487                                                      source_name_object.get(),
1488                                                      line_number);
1489    if (obj == NULL) {
1490      return NULL;
1491    }
1492#ifdef MOVING_GARBAGE_COLLECTOR
1493    // Re-read after potential GC
1494    java_traces = Decode<ObjectArray<Object>*>(ts.Env(), result);
1495    method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal));
1496    pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
1497#endif
1498    java_traces->Set(i, obj);
1499  }
1500  return result;
1501}
1502
1503void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
1504  va_list args;
1505  va_start(args, fmt);
1506  ThrowNewExceptionV(exception_class_descriptor, fmt, args);
1507  va_end(args);
1508}
1509
1510void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) {
1511  std::string msg;
1512  StringAppendV(&msg, fmt, ap);
1513  ThrowNewException(exception_class_descriptor, msg.c_str());
1514}
1515
1516void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) {
1517  // Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception".
1518  CHECK_EQ('L', exception_class_descriptor[0]);
1519  std::string descriptor(exception_class_descriptor + 1);
1520  CHECK_EQ(';', descriptor[descriptor.length() - 1]);
1521  descriptor.erase(descriptor.length() - 1);
1522
1523  JNIEnv* env = GetJniEnv();
1524  ScopedLocalRef<jclass> exception_class(env, env->FindClass(descriptor.c_str()));
1525  if (exception_class.get() == NULL) {
1526    LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI FindClass failed: "
1527               << PrettyTypeOf(GetException());
1528    CHECK(IsExceptionPending());
1529    return;
1530  }
1531  if (!Runtime::Current()->IsStarted()) {
1532    // Something is trying to throw an exception without a started
1533    // runtime, which is the common case in the compiler. We won't be
1534    // able to invoke the constructor of the exception, so use
1535    // AllocObject which will not invoke a constructor.
1536    ScopedLocalRef<jthrowable> exception(
1537        env, reinterpret_cast<jthrowable>(env->AllocObject(exception_class.get())));
1538    if (exception.get() != NULL) {
1539      ScopedJniThreadState ts(env);
1540      Throwable* t = reinterpret_cast<Throwable*>(ts.Self()->DecodeJObject(exception.get()));
1541      t->SetDetailMessage(String::AllocFromModifiedUtf8(msg));
1542      ts.Self()->SetException(t);
1543    } else {
1544      LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI AllocObject failed: "
1545                 << PrettyTypeOf(GetException());
1546      CHECK(IsExceptionPending());
1547    }
1548    return;
1549  }
1550  int rc = env->ThrowNew(exception_class.get(), msg);
1551  if (rc != JNI_OK) {
1552    LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI ThrowNew failed: "
1553               << PrettyTypeOf(GetException());
1554    CHECK(IsExceptionPending());
1555  }
1556}
1557
1558void Thread::ThrowOutOfMemoryError(const char* msg) {
1559  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1560      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1561  if (!throwing_OutOfMemoryError_) {
1562    throwing_OutOfMemoryError_ = true;
1563    ThrowNewException("Ljava/lang/OutOfMemoryError;", NULL);
1564  } else {
1565    SetException(pre_allocated_OutOfMemoryError_);
1566  }
1567  throwing_OutOfMemoryError_ = false;
1568}
1569
1570
1571Thread* Thread::CurrentFromGdb() {
1572  return Thread::Current();
1573}
1574
1575void Thread::DumpFromGdb() const {
1576  std::ostringstream ss;
1577  Dump(ss);
1578  std::string str(ss.str());
1579  // log to stderr for debugging command line processes
1580  std::cerr << str;
1581#ifdef HAVE_ANDROID_OS
1582  // log to logcat for debugging frameworks processes
1583  LOG(INFO) << str;
1584#endif
1585}
1586
1587struct EntryPointInfo {
1588  uint32_t offset;
1589  const char* name;
1590};
1591#define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x }
1592static const EntryPointInfo gThreadEntryPointInfo[] = {
1593  ENTRY_POINT_INFO(pAllocArrayFromCode),
1594  ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck),
1595  ENTRY_POINT_INFO(pAllocObjectFromCode),
1596  ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck),
1597  ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode),
1598  ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck),
1599  ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode),
1600  ENTRY_POINT_INFO(pCanPutArrayElementFromCode),
1601  ENTRY_POINT_INFO(pCheckCastFromCode),
1602  ENTRY_POINT_INFO(pDebugMe),
1603  ENTRY_POINT_INFO(pUpdateDebuggerFromCode),
1604  ENTRY_POINT_INFO(pInitializeStaticStorage),
1605  ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode),
1606  ENTRY_POINT_INFO(pInitializeTypeFromCode),
1607  ENTRY_POINT_INFO(pResolveStringFromCode),
1608  ENTRY_POINT_INFO(pSet32Instance),
1609  ENTRY_POINT_INFO(pSet32Static),
1610  ENTRY_POINT_INFO(pSet64Instance),
1611  ENTRY_POINT_INFO(pSet64Static),
1612  ENTRY_POINT_INFO(pSetObjInstance),
1613  ENTRY_POINT_INFO(pSetObjStatic),
1614  ENTRY_POINT_INFO(pGet32Instance),
1615  ENTRY_POINT_INFO(pGet32Static),
1616  ENTRY_POINT_INFO(pGet64Instance),
1617  ENTRY_POINT_INFO(pGet64Static),
1618  ENTRY_POINT_INFO(pGetObjInstance),
1619  ENTRY_POINT_INFO(pGetObjStatic),
1620  ENTRY_POINT_INFO(pHandleFillArrayDataFromCode),
1621  ENTRY_POINT_INFO(pDecodeJObjectInThread),
1622  ENTRY_POINT_INFO(pFindNativeMethod),
1623  ENTRY_POINT_INFO(pLockObjectFromCode),
1624  ENTRY_POINT_INFO(pUnlockObjectFromCode),
1625  ENTRY_POINT_INFO(pCmpgDouble),
1626  ENTRY_POINT_INFO(pCmpgFloat),
1627  ENTRY_POINT_INFO(pCmplDouble),
1628  ENTRY_POINT_INFO(pCmplFloat),
1629  ENTRY_POINT_INFO(pDadd),
1630  ENTRY_POINT_INFO(pDdiv),
1631  ENTRY_POINT_INFO(pDmul),
1632  ENTRY_POINT_INFO(pDsub),
1633  ENTRY_POINT_INFO(pF2d),
1634  ENTRY_POINT_INFO(pFmod),
1635  ENTRY_POINT_INFO(pI2d),
1636  ENTRY_POINT_INFO(pL2d),
1637  ENTRY_POINT_INFO(pD2f),
1638  ENTRY_POINT_INFO(pFadd),
1639  ENTRY_POINT_INFO(pFdiv),
1640  ENTRY_POINT_INFO(pFmodf),
1641  ENTRY_POINT_INFO(pFmul),
1642  ENTRY_POINT_INFO(pFsub),
1643  ENTRY_POINT_INFO(pI2f),
1644  ENTRY_POINT_INFO(pL2f),
1645  ENTRY_POINT_INFO(pD2iz),
1646  ENTRY_POINT_INFO(pF2iz),
1647  ENTRY_POINT_INFO(pIdivmod),
1648  ENTRY_POINT_INFO(pD2l),
1649  ENTRY_POINT_INFO(pF2l),
1650  ENTRY_POINT_INFO(pLdiv),
1651  ENTRY_POINT_INFO(pLdivmod),
1652  ENTRY_POINT_INFO(pLmul),
1653  ENTRY_POINT_INFO(pShlLong),
1654  ENTRY_POINT_INFO(pShrLong),
1655  ENTRY_POINT_INFO(pUshrLong),
1656  ENTRY_POINT_INFO(pIndexOf),
1657  ENTRY_POINT_INFO(pMemcmp16),
1658  ENTRY_POINT_INFO(pStringCompareTo),
1659  ENTRY_POINT_INFO(pMemcpy),
1660  ENTRY_POINT_INFO(pUnresolvedDirectMethodTrampolineFromCode),
1661  ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1662  ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
1663  ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1664  ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1665  ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1666  ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1667  ENTRY_POINT_INFO(pCheckSuspendFromCode),
1668  ENTRY_POINT_INFO(pTestSuspendFromCode),
1669  ENTRY_POINT_INFO(pDeliverException),
1670  ENTRY_POINT_INFO(pThrowAbstractMethodErrorFromCode),
1671  ENTRY_POINT_INFO(pThrowArrayBoundsFromCode),
1672  ENTRY_POINT_INFO(pThrowDivZeroFromCode),
1673  ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode),
1674  ENTRY_POINT_INFO(pThrowNullPointerFromCode),
1675  ENTRY_POINT_INFO(pThrowStackOverflowFromCode),
1676  ENTRY_POINT_INFO(pThrowVerificationErrorFromCode),
1677};
1678#undef ENTRY_POINT_INFO
1679
1680void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1681  CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets.
1682
1683#define DO_THREAD_OFFSET(x) if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; }
1684  DO_THREAD_OFFSET(card_table_);
1685  DO_THREAD_OFFSET(exception_);
1686  DO_THREAD_OFFSET(jni_env_);
1687  DO_THREAD_OFFSET(self_);
1688  DO_THREAD_OFFSET(stack_end_);
1689  DO_THREAD_OFFSET(state_);
1690  DO_THREAD_OFFSET(suspend_count_);
1691  DO_THREAD_OFFSET(thin_lock_id_);
1692  DO_THREAD_OFFSET(top_of_managed_stack_);
1693  DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1694  DO_THREAD_OFFSET(top_sirt_);
1695#undef DO_THREAD_OFFSET
1696
1697  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1698  CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints));
1699  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_);
1700  for (size_t i = 0; i < entry_point_count; ++i) {
1701    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset);
1702    expected_offset += size_of_pointers;
1703    if (gThreadEntryPointInfo[i].offset == offset) {
1704      os << gThreadEntryPointInfo[i].name;
1705      return;
1706    }
1707  }
1708  os << offset;
1709}
1710
1711class CatchBlockStackVisitor : public Thread::StackVisitor {
1712 public:
1713  CatchBlockStackVisitor(Class* to_find, Context* ljc)
1714      : to_find_(to_find), long_jump_context_(ljc), native_method_count_(0),
1715        method_tracing_active_(Runtime::Current()->IsMethodTracingActive()) {
1716#ifndef NDEBUG
1717    handler_pc_ = 0xEBADC0DE;
1718    handler_frame_.SetSP(reinterpret_cast<Method**>(0xEBADF00D));
1719#endif
1720  }
1721
1722  bool VisitFrame(const Frame& fr, uintptr_t pc) {
1723    Method* method = fr.GetMethod();
1724    if (method == NULL) {
1725      // This is the upcall, we remember the frame and last_pc so that we may
1726      // long jump to them
1727      handler_pc_ = DemanglePc(pc);
1728      handler_frame_ = fr;
1729      return false;  // End stack walk.
1730    }
1731    uint32_t dex_pc = DexFile::kDexNoIndex;
1732    if (method->IsRuntimeMethod()) {
1733      // ignore callee save method
1734      DCHECK(method->IsCalleeSaveMethod());
1735    } else if (method->IsNative()) {
1736      native_method_count_++;
1737    } else {
1738      // Unwind stack when an exception occurs during method tracing
1739      if (UNLIKELY(method_tracing_active_)) {
1740#if !defined(ART_USE_LLVM_COMPILER)
1741        if (IsTraceExitPc(DemanglePc(pc))) {
1742          pc = ManglePc(TraceMethodUnwindFromCode(Thread::Current()));
1743        }
1744#else
1745        UNIMPLEMENTED(FATAL);
1746#endif
1747      }
1748      dex_pc = method->ToDexPC(pc);
1749    }
1750    if (dex_pc != DexFile::kDexNoIndex) {
1751      uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc);
1752      if (found_dex_pc != DexFile::kDexNoIndex) {
1753        handler_pc_ = method->ToNativePC(found_dex_pc);
1754        handler_frame_ = fr;
1755        return false;  // End stack walk.
1756      }
1757    }
1758#if !defined(ART_USE_LLVM_COMPILER)
1759    // Caller may be handler, fill in callee saves in context
1760    long_jump_context_->FillCalleeSaves(fr);
1761#endif
1762    return true;  // Continue stack walk.
1763  }
1764
1765  // The type of the exception catch block to find
1766  Class* to_find_;
1767  // Frame with found handler or last frame if no handler found
1768  Frame handler_frame_;
1769  // PC to branch to for the handler
1770  uintptr_t handler_pc_;
1771  // Context that will be the target of the long jump
1772  Context* long_jump_context_;
1773  // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1774  uint32_t native_method_count_;
1775  // Is method tracing active?
1776  const bool method_tracing_active_;
1777};
1778
1779void Thread::DeliverException() {
1780#if !defined(ART_USE_LLVM_COMPILER)
1781  const bool kDebugExceptionDelivery = false;
1782  Throwable* exception = GetException();  // Get exception from thread
1783  CHECK(exception != NULL);
1784  // Don't leave exception visible while we try to find the handler, which may cause class
1785  // resolution.
1786  ClearException();
1787  if (kDebugExceptionDelivery) {
1788    String* msg = exception->GetDetailMessage();
1789    std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
1790    DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1791                        << ": " << str_msg << std::endl);
1792  }
1793
1794  Context* long_jump_context = GetLongJumpContext();
1795  CatchBlockStackVisitor catch_finder(exception->GetClass(), long_jump_context);
1796  WalkStack(&catch_finder, true);
1797
1798  Method** sp;
1799  uintptr_t throw_native_pc;
1800  Method* throw_method = GetCurrentMethod(&throw_native_pc, &sp);
1801  uintptr_t catch_native_pc = catch_finder.handler_pc_;
1802  Method* catch_method = catch_finder.handler_frame_.GetMethod();
1803  Dbg::PostException(sp, throw_method, throw_native_pc, catch_method, catch_native_pc, exception);
1804
1805  if (kDebugExceptionDelivery) {
1806    if (catch_method == NULL) {
1807      LOG(INFO) << "Handler is upcall";
1808    } else {
1809      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1810      const DexFile& dex_file =
1811          class_linker->FindDexFile(catch_method->GetDeclaringClass()->GetDexCache());
1812      int line_number = dex_file.GetLineNumFromPC(catch_method,
1813          catch_method->ToDexPC(catch_finder.handler_pc_));
1814      LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1815    }
1816  }
1817  SetException(exception);
1818  CHECK_NE(catch_native_pc, 0u);
1819  long_jump_context->SetSP(reinterpret_cast<uintptr_t>(catch_finder.handler_frame_.GetSP()));
1820  long_jump_context->SetPC(catch_native_pc);
1821  long_jump_context->SmashCallerSaves();
1822  long_jump_context->DoLongJump();
1823#endif
1824  LOG(FATAL) << "UNREACHABLE";
1825}
1826
1827Context* Thread::GetLongJumpContext() {
1828  Context* result = long_jump_context_;
1829#if !defined(ART_USE_LLVM_COMPILER)
1830  if (result == NULL) {
1831    result = Context::Create();
1832    long_jump_context_ = result;
1833  }
1834#endif
1835  return result;
1836}
1837
1838#if !defined(ART_USE_LLVM_COMPILER)
1839Method* Thread::GetCurrentMethod(uintptr_t* pc, Method*** sp) const {
1840  Frame f = top_of_managed_stack_;
1841  Method* m = f.GetMethod();
1842  uintptr_t native_pc = top_of_managed_stack_pc_;
1843
1844  // We use JNI internally for exception throwing, so it's possible to arrive
1845  // here via a "FromCode" function, in which case there's a synthetic
1846  // callee-save method at the top of the stack. These shouldn't be user-visible,
1847  // so if we find one, skip it and return the compiled method underneath.
1848  if (m != NULL && m->IsCalleeSaveMethod()) {
1849    native_pc = f.GetReturnPC();
1850    f.Next();
1851    m = f.GetMethod();
1852  }
1853  if (pc != NULL) {
1854    *pc = (m != NULL) ? ManglePc(native_pc) : 0;
1855  }
1856  if (sp != NULL) {
1857    *sp = f.GetSP();
1858  }
1859  return m;
1860}
1861#else
1862Method* Thread::GetCurrentMethod(uintptr_t*, Method***) const {
1863  ShadowFrame* frame = top_shadow_frame_;
1864  if (frame == NULL) {
1865    return NULL;
1866  }
1867  return frame->GetMethod();
1868}
1869#endif
1870
1871bool Thread::HoldsLock(Object* object) {
1872  if (object == NULL) {
1873    return false;
1874  }
1875  return object->GetThinLockId() == thin_lock_id_;
1876}
1877
1878bool Thread::IsDaemon() {
1879  return gThread_daemon->GetBoolean(peer_);
1880}
1881
1882#if !defined(ART_USE_LLVM_COMPILER)
1883class ReferenceMapVisitor : public Thread::StackVisitor {
1884 public:
1885  ReferenceMapVisitor(Context* context, Heap::RootVisitor* root_visitor, void* arg) :
1886    context_(context), root_visitor_(root_visitor), arg_(arg) {
1887  }
1888
1889  bool VisitFrame(const Frame& frame, uintptr_t pc) {
1890    Method* m = frame.GetMethod();
1891    if (false) {
1892      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(m)
1893                << StringPrintf("@ PC:%04x", m->ToDexPC(pc));
1894    }
1895    // Process register map (which native and callee save methods don't have)
1896    if (!m->IsNative() && !m->IsCalleeSaveMethod() && !m->IsProxyMethod()) {
1897      CHECK(m->GetGcMap() != NULL) << PrettyMethod(m);
1898      CHECK_NE(0U, m->GetGcMapLength()) << PrettyMethod(m);
1899      verifier::PcToReferenceMap map(m->GetGcMap(), m->GetGcMapLength());
1900      const uint8_t* reg_bitmap = map.FindBitMap(m->ToDexPC(pc));
1901      CHECK(reg_bitmap != NULL);
1902      const VmapTable vmap_table(m->GetVmapTableRaw());
1903      const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
1904      DCHECK(code_item != NULL);  // can't be NULL or how would we compile its instructions?
1905      uint32_t core_spills = m->GetCoreSpillMask();
1906      uint32_t fp_spills = m->GetFpSpillMask();
1907      size_t frame_size = m->GetFrameSizeInBytes();
1908      // For all dex registers in the bitmap
1909      size_t num_regs = std::min(map.RegWidth() * 8,
1910                                 static_cast<size_t>(code_item->registers_size_));
1911      for (size_t reg = 0; reg < num_regs; ++reg) {
1912        // Does this register hold a reference?
1913        if (TestBitmap(reg, reg_bitmap)) {
1914          uint32_t vmap_offset;
1915          Object* ref;
1916          if (vmap_table.IsInContext(reg, vmap_offset)) {
1917            // Compute the register we need to load from the context
1918            uint32_t spill_mask = m->GetCoreSpillMask();
1919            CHECK_LT(vmap_offset, static_cast<uint32_t>(__builtin_popcount(spill_mask)));
1920            uint32_t matches = 0;
1921            uint32_t spill_shifts = 0;
1922            while (matches != (vmap_offset + 1)) {
1923              DCHECK_NE(spill_mask, 0u);
1924              matches += spill_mask & 1;  // Add 1 if the low bit is set
1925              spill_mask >>= 1;
1926              spill_shifts++;
1927            }
1928            spill_shifts--;  // wind back one as we want the last match
1929            ref = reinterpret_cast<Object*>(context_->GetGPR(spill_shifts));
1930          } else {
1931            ref = reinterpret_cast<Object*>(frame.GetVReg(code_item, core_spills, fp_spills,
1932                                                          frame_size, reg));
1933          }
1934          if (ref != NULL) {
1935            root_visitor_(ref, arg_);
1936          }
1937        }
1938      }
1939    }
1940    context_->FillCalleeSaves(frame);
1941    return true;
1942  }
1943
1944 private:
1945  bool TestBitmap(int reg, const uint8_t* reg_vector) {
1946    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
1947  }
1948
1949  // Context used to build up picture of callee saves
1950  Context* context_;
1951  // Call-back when we visit a root
1952  Heap::RootVisitor* root_visitor_;
1953  // Argument to call-back
1954  void* arg_;
1955};
1956#endif
1957
1958void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) {
1959  if (exception_ != NULL) {
1960    visitor(exception_, arg);
1961  }
1962  if (peer_ != NULL) {
1963    visitor(peer_, arg);
1964  }
1965  if (pre_allocated_OutOfMemoryError_ != NULL) {
1966    visitor(pre_allocated_OutOfMemoryError_, arg);
1967  }
1968  if (class_loader_override_ != NULL) {
1969    visitor(class_loader_override_, arg);
1970  }
1971  jni_env_->locals.VisitRoots(visitor, arg);
1972  jni_env_->monitors.VisitRoots(visitor, arg);
1973
1974  SirtVisitRoots(visitor, arg);
1975  ShadowFrameVisitRoots(visitor, arg);
1976
1977#if !defined(ART_USE_LLVM_COMPILER)
1978  // Cheat and steal the long jump context. Assume that we are not doing a GC during exception
1979  // delivery.
1980  Context* context = GetLongJumpContext();
1981  // Visit roots on this thread's stack
1982  ReferenceMapVisitor mapper(context, visitor, arg);
1983  WalkStack(&mapper);
1984#endif
1985}
1986
1987#if VERIFY_OBJECT_ENABLED
1988static void VerifyObject(const Object* obj, void*) {
1989  Runtime::Current()->GetHeap()->VerifyObject(obj);
1990}
1991
1992void Thread::VerifyStack() {
1993#if !defined(ART_USE_LLVM_COMPILER)
1994  UniquePtr<Context> context(Context::Create());
1995  ReferenceMapVisitor mapper(context.get(), VerifyObject, NULL);
1996  WalkStack(&mapper);
1997#endif
1998}
1999#endif
2000
2001std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2002  thread.Dump(os, false);
2003  return os;
2004}
2005
2006void Thread::CheckSafeToLockOrUnlock(MutexRank rank, bool is_locking) {
2007  if (this == NULL) {
2008    CHECK(Runtime::Current()->IsShuttingDown());
2009    return;
2010  }
2011  if (is_locking) {
2012    if (held_mutexes_[rank] == 0) {
2013      bool bad_mutexes_held = false;
2014      for (int i = kMaxMutexRank; i > rank; --i) {
2015        if (held_mutexes_[i] != 0) {
2016          LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while " << (is_locking ? "locking" : "unlocking") << " " << rank;
2017          bad_mutexes_held = true;
2018        }
2019      }
2020      CHECK(!bad_mutexes_held) << rank;
2021    }
2022    ++held_mutexes_[rank];
2023  } else {
2024    CHECK_GT(held_mutexes_[rank], 0U) << rank;
2025    --held_mutexes_[rank];
2026  }
2027}
2028
2029void Thread::CheckSafeToWait(MutexRank rank) {
2030  if (this == NULL) {
2031    CHECK(Runtime::Current()->IsShuttingDown());
2032    return;
2033  }
2034  bool bad_mutexes_held = false;
2035  for (int i = kMaxMutexRank; i >= 0; --i) {
2036    if (i != rank && held_mutexes_[i] != 0) {
2037      LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while doing condition variable wait on " << rank;
2038      bad_mutexes_held = true;
2039    }
2040  }
2041  if (held_mutexes_[rank] == 0) {
2042    LOG(ERROR) << "*not* holding " << rank << " while doing condition variable wait on it";
2043    bad_mutexes_held = true;
2044  }
2045  CHECK(!bad_mutexes_held);
2046}
2047
2048}  // namespace art
2049