1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkPoint_DEFINED
9#define SkPoint_DEFINED
10
11#include "SkMath.h"
12#include "SkScalar.h"
13
14/** \struct SkIPoint
15
16    SkIPoint holds two 32 bit integer coordinates
17*/
18struct SkIPoint {
19    int32_t fX, fY;
20
21    static SkIPoint Make(int32_t x, int32_t y) {
22        SkIPoint pt;
23        pt.set(x, y);
24        return pt;
25    }
26
27    int32_t x() const { return fX; }
28    int32_t y() const { return fY; }
29    void setX(int32_t x) { fX = x; }
30    void setY(int32_t y) { fY = y; }
31
32    /**
33     *  Returns true iff fX and fY are both zero.
34     */
35    bool isZero() const { return (fX | fY) == 0; }
36
37    /**
38     *  Set both fX and fY to zero. Same as set(0, 0)
39     */
40    void setZero() { fX = fY = 0; }
41
42    /** Set the x and y values of the point. */
43    void set(int32_t x, int32_t y) { fX = x; fY = y; }
44
45    /** Rotate the point clockwise, writing the new point into dst
46        It is legal for dst == this
47    */
48    void rotateCW(SkIPoint* dst) const;
49
50    /** Rotate the point clockwise, writing the new point back into the point
51    */
52
53    void rotateCW() { this->rotateCW(this); }
54
55    /** Rotate the point counter-clockwise, writing the new point into dst.
56        It is legal for dst == this
57    */
58    void rotateCCW(SkIPoint* dst) const;
59
60    /** Rotate the point counter-clockwise, writing the new point back into
61        the point
62    */
63    void rotateCCW() { this->rotateCCW(this); }
64
65    /** Negate the X and Y coordinates of the point.
66    */
67    void negate() { fX = -fX; fY = -fY; }
68
69    /** Return a new point whose X and Y coordinates are the negative of the
70        original point's
71    */
72    SkIPoint operator-() const {
73        SkIPoint neg;
74        neg.fX = -fX;
75        neg.fY = -fY;
76        return neg;
77    }
78
79    /** Add v's coordinates to this point's */
80    void operator+=(const SkIPoint& v) {
81        fX += v.fX;
82        fY += v.fY;
83    }
84
85    /** Subtract v's coordinates from this point's */
86    void operator-=(const SkIPoint& v) {
87        fX -= v.fX;
88        fY -= v.fY;
89    }
90
91    /** Returns true if the point's coordinates equal (x,y) */
92    bool equals(int32_t x, int32_t y) const {
93        return fX == x && fY == y;
94    }
95
96    friend bool operator==(const SkIPoint& a, const SkIPoint& b) {
97        return a.fX == b.fX && a.fY == b.fY;
98    }
99
100    friend bool operator!=(const SkIPoint& a, const SkIPoint& b) {
101        return a.fX != b.fX || a.fY != b.fY;
102    }
103
104    /** Returns a new point whose coordinates are the difference between
105        a and b (i.e. a - b)
106    */
107    friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) {
108        SkIPoint v;
109        v.set(a.fX - b.fX, a.fY - b.fY);
110        return v;
111    }
112
113    /** Returns a new point whose coordinates are the sum of a and b (a + b)
114    */
115    friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) {
116        SkIPoint v;
117        v.set(a.fX + b.fX, a.fY + b.fY);
118        return v;
119    }
120
121    /** Returns the dot product of a and b, treating them as 2D vectors
122    */
123    static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) {
124        return a.fX * b.fX + a.fY * b.fY;
125    }
126
127    /** Returns the cross product of a and b, treating them as 2D vectors
128    */
129    static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) {
130        return a.fX * b.fY - a.fY * b.fX;
131    }
132};
133
134struct SK_API SkPoint {
135    SkScalar    fX, fY;
136
137    static SkPoint Make(SkScalar x, SkScalar y) {
138        SkPoint pt;
139        pt.set(x, y);
140        return pt;
141    }
142
143    SkScalar x() const { return fX; }
144    SkScalar y() const { return fY; }
145
146    /**
147     *  Returns true iff fX and fY are both zero.
148     */
149    bool isZero() const { return (0 == fX) & (0 == fY); }
150
151    /** Set the point's X and Y coordinates */
152    void set(SkScalar x, SkScalar y) { fX = x; fY = y; }
153
154    /** Set the point's X and Y coordinates by automatically promoting (x,y) to
155        SkScalar values.
156    */
157    void iset(int32_t x, int32_t y) {
158        fX = SkIntToScalar(x);
159        fY = SkIntToScalar(y);
160    }
161
162    /** Set the point's X and Y coordinates by automatically promoting p's
163        coordinates to SkScalar values.
164    */
165    void iset(const SkIPoint& p) {
166        fX = SkIntToScalar(p.fX);
167        fY = SkIntToScalar(p.fY);
168    }
169
170    void setAbs(const SkPoint& pt) {
171        fX = SkScalarAbs(pt.fX);
172        fY = SkScalarAbs(pt.fY);
173    }
174
175    // counter-clockwise fan
176    void setIRectFan(int l, int t, int r, int b) {
177        SkPoint* v = this;
178        v[0].set(SkIntToScalar(l), SkIntToScalar(t));
179        v[1].set(SkIntToScalar(l), SkIntToScalar(b));
180        v[2].set(SkIntToScalar(r), SkIntToScalar(b));
181        v[3].set(SkIntToScalar(r), SkIntToScalar(t));
182    }
183    void setIRectFan(int l, int t, int r, int b, size_t stride);
184
185    // counter-clockwise fan
186    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
187        SkPoint* v = this;
188        v[0].set(l, t);
189        v[1].set(l, b);
190        v[2].set(r, b);
191        v[3].set(r, t);
192    }
193    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride);
194
195    static void Offset(SkPoint points[], int count, const SkPoint& offset) {
196        Offset(points, count, offset.fX, offset.fY);
197    }
198
199    static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) {
200        for (int i = 0; i < count; ++i) {
201            points[i].offset(dx, dy);
202        }
203    }
204
205    void offset(SkScalar dx, SkScalar dy) {
206        fX += dx;
207        fY += dy;
208    }
209
210    /** Return the euclidian distance from (0,0) to the point
211    */
212    SkScalar length() const { return SkPoint::Length(fX, fY); }
213    SkScalar distanceToOrigin() const { return this->length(); }
214
215    /**
216     *  Return true if the computed length of the vector is >= the internal
217     *  tolerance (used to avoid dividing by tiny values).
218     */
219    static bool CanNormalize(SkScalar dx, SkScalar dy)
220#ifdef SK_SCALAR_IS_FLOAT
221    // Simple enough (and performance critical sometimes) so we inline it.
222    { return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero); }
223#else
224    ;
225#endif
226
227    bool canNormalize() const {
228        return CanNormalize(fX, fY);
229    }
230
231    /** Set the point (vector) to be unit-length in the same direction as it
232        already points.  If the point has a degenerate length (i.e. nearly 0)
233        then return false and do nothing; otherwise return true.
234    */
235    bool normalize();
236
237    /** Set the point (vector) to be unit-length in the same direction as the
238        x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0)
239        then return false and do nothing, otherwise return true.
240    */
241    bool setNormalize(SkScalar x, SkScalar y);
242
243    /** Scale the point (vector) to have the specified length, and return that
244        length. If the original length is degenerately small (nearly zero),
245        do nothing and return false, otherwise return true.
246    */
247    bool setLength(SkScalar length);
248
249    /** Set the point (vector) to have the specified length in the same
250     direction as (x,y). If the vector (x,y) has a degenerate length
251     (i.e. nearly 0) then return false and do nothing, otherwise return true.
252    */
253    bool setLength(SkScalar x, SkScalar y, SkScalar length);
254
255    /** Scale the point's coordinates by scale, writing the answer into dst.
256        It is legal for dst == this.
257    */
258    void scale(SkScalar scale, SkPoint* dst) const;
259
260    /** Scale the point's coordinates by scale, writing the answer back into
261        the point.
262    */
263    void scale(SkScalar value) { this->scale(value, this); }
264
265    /** Rotate the point clockwise by 90 degrees, writing the answer into dst.
266        It is legal for dst == this.
267    */
268    void rotateCW(SkPoint* dst) const;
269
270    /** Rotate the point clockwise by 90 degrees, writing the answer back into
271        the point.
272    */
273    void rotateCW() { this->rotateCW(this); }
274
275    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
276        into dst. It is legal for dst == this.
277    */
278    void rotateCCW(SkPoint* dst) const;
279
280    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
281        back into the point.
282    */
283    void rotateCCW() { this->rotateCCW(this); }
284
285    /** Negate the point's coordinates
286    */
287    void negate() {
288        fX = -fX;
289        fY = -fY;
290    }
291
292    /** Returns a new point whose coordinates are the negative of the point's
293    */
294    SkPoint operator-() const {
295        SkPoint neg;
296        neg.fX = -fX;
297        neg.fY = -fY;
298        return neg;
299    }
300
301    /** Add v's coordinates to the point's
302    */
303    void operator+=(const SkPoint& v) {
304        fX += v.fX;
305        fY += v.fY;
306    }
307
308    /** Subtract v's coordinates from the point's
309    */
310    void operator-=(const SkPoint& v) {
311        fX -= v.fX;
312        fY -= v.fY;
313    }
314
315    /**
316     *  Returns true if both X and Y are finite (not infinity or NaN)
317     */
318    bool isFinite() const {
319#ifdef SK_SCALAR_IS_FLOAT
320        SkScalar accum = 0;
321        accum *= fX;
322        accum *= fY;
323
324        // accum is either NaN or it is finite (zero).
325        SkASSERT(0 == accum || !(accum == accum));
326
327        // value==value will be true iff value is not NaN
328        // TODO: is it faster to say !accum or accum==accum?
329        return accum == accum;
330#else
331        // use bit-or for speed, since we don't care about short-circuting the
332        // tests, and we expect the common case will be that we need to check all.
333        int isNaN = (SK_FixedNaN == fX) | (SK_FixedNaN == fX));
334        return !isNaN;
335#endif
336    }
337
338    /**
339     *  Returns true if the point's coordinates equal (x,y)
340     */
341    bool equals(SkScalar x, SkScalar y) const {
342        return fX == x && fY == y;
343    }
344
345    friend bool operator==(const SkPoint& a, const SkPoint& b) {
346        return a.fX == b.fX && a.fY == b.fY;
347    }
348
349    friend bool operator!=(const SkPoint& a, const SkPoint& b) {
350        return a.fX != b.fX || a.fY != b.fY;
351    }
352
353    /** Return true if this point and the given point are far enough apart
354        such that a vector between them would be non-degenerate.
355
356        WARNING: Unlike the deprecated version of equalsWithinTolerance(),
357        this method does not use componentwise comparison.  Instead, it
358        uses a comparison designed to match judgments elsewhere regarding
359        degeneracy ("points A and B are so close that the vector between them
360        is essentially zero").
361    */
362    bool equalsWithinTolerance(const SkPoint& p) const {
363        return !CanNormalize(fX - p.fX, fY - p.fY);
364    }
365
366    /** DEPRECATED: Return true if this and the given point are componentwise
367        within tolerance "tol".
368
369        WARNING: There is no guarantee that the result will reflect judgments
370        elsewhere regarding degeneracy ("points A and B are so close that the
371        vector between them is essentially zero").
372    */
373    bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const {
374        return SkScalarNearlyZero(fX - p.fX, tol)
375               && SkScalarNearlyZero(fY - p.fY, tol);
376    }
377
378    /** Returns a new point whose coordinates are the difference between
379        a's and b's (a - b)
380    */
381    friend SkPoint operator-(const SkPoint& a, const SkPoint& b) {
382        SkPoint v;
383        v.set(a.fX - b.fX, a.fY - b.fY);
384        return v;
385    }
386
387    /** Returns a new point whose coordinates are the sum of a's and b's (a + b)
388    */
389    friend SkPoint operator+(const SkPoint& a, const SkPoint& b) {
390        SkPoint v;
391        v.set(a.fX + b.fX, a.fY + b.fY);
392        return v;
393    }
394
395    /** Returns the euclidian distance from (0,0) to (x,y)
396    */
397    static SkScalar Length(SkScalar x, SkScalar y);
398
399    /** Normalize pt, returning its previous length. If the prev length is too
400        small (degenerate), return 0 and leave pt unchanged. This uses the same
401        tolerance as CanNormalize.
402
403        Note that this method may be significantly more expensive than
404        the non-static normalize(), because it has to return the previous length
405        of the point.  If you don't need the previous length, call the
406        non-static normalize() method instead.
407     */
408    static SkScalar Normalize(SkPoint* pt);
409
410    /** Returns the euclidian distance between a and b
411    */
412    static SkScalar Distance(const SkPoint& a, const SkPoint& b) {
413        return Length(a.fX - b.fX, a.fY - b.fY);
414    }
415
416    /** Returns the dot product of a and b, treating them as 2D vectors
417    */
418    static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) {
419        return SkScalarMul(a.fX, b.fX) + SkScalarMul(a.fY, b.fY);
420    }
421
422    /** Returns the cross product of a and b, treating them as 2D vectors
423    */
424    static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) {
425        return SkScalarMul(a.fX, b.fY) - SkScalarMul(a.fY, b.fX);
426    }
427
428    SkScalar cross(const SkPoint& vec) const {
429        return CrossProduct(*this, vec);
430    }
431
432    SkScalar dot(const SkPoint& vec) const {
433        return DotProduct(*this, vec);
434    }
435
436    SkScalar lengthSqd() const {
437        return DotProduct(*this, *this);
438    }
439
440    SkScalar distanceToSqd(const SkPoint& pt) const {
441        SkScalar dx = fX - pt.fX;
442        SkScalar dy = fY - pt.fY;
443        return SkScalarMul(dx, dx) + SkScalarMul(dy, dy);
444    }
445
446    /**
447     * The side of a point relative to a line. If the line is from a to b then
448     * the values are consistent with the sign of (b-a) cross (pt-a)
449     */
450    enum Side {
451        kLeft_Side  = -1,
452        kOn_Side    =  0,
453        kRight_Side =  1
454    };
455
456    /**
457     * Returns the squared distance to the infinite line between two pts. Also
458     * optionally returns the side of the line that the pt falls on (looking
459     * along line from a to b)
460     */
461    SkScalar distanceToLineBetweenSqd(const SkPoint& a,
462                                      const SkPoint& b,
463                                      Side* side = NULL) const;
464
465    /**
466     * Returns the distance to the infinite line between two pts. Also
467     * optionally returns the side of the line that the pt falls on (looking
468     * along the line from a to b)
469     */
470    SkScalar distanceToLineBetween(const SkPoint& a,
471                                   const SkPoint& b,
472                                   Side* side = NULL) const {
473        return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side));
474    }
475
476    /**
477     * Returns the squared distance to the line segment between pts a and b
478     */
479    SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a,
480                                             const SkPoint& b) const;
481
482    /**
483     * Returns the distance to the line segment between pts a and b.
484     */
485    SkScalar distanceToLineSegmentBetween(const SkPoint& a,
486                                          const SkPoint& b) const {
487        return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b));
488    }
489
490    /**
491     * Make this vector be orthogonal to vec. Looking down vec the
492     * new vector will point in direction indicated by side (which
493     * must be kLeft_Side or kRight_Side).
494     */
495    void setOrthog(const SkPoint& vec, Side side = kLeft_Side) {
496        // vec could be this
497        SkScalar tmp = vec.fX;
498        if (kRight_Side == side) {
499            fX = -vec.fY;
500            fY = tmp;
501        } else {
502            SkASSERT(kLeft_Side == side);
503            fX = vec.fY;
504            fY = -tmp;
505        }
506    }
507
508    /**
509     *  cast-safe way to treat the point as an array of (2) SkScalars.
510     */
511    const SkScalar* asScalars() const { return &fX; }
512};
513
514typedef SkPoint SkVector;
515
516#endif
517