Expr.h revision 92ef5d75720c032808181133e4d7c5f82230237e
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37  class TemplateArgumentLoc;
38  class TemplateArgumentListInfo;
39
40/// Expr - This represents one expression.  Note that Expr's are subclasses of
41/// Stmt.  This allows an expression to be transparently used any place a Stmt
42/// is required.
43///
44class Expr : public Stmt {
45  QualType TR;
46
47protected:
48  /// TypeDependent - Whether this expression is type-dependent
49  /// (C++ [temp.dep.expr]).
50  bool TypeDependent : 1;
51
52  /// ValueDependent - Whether this expression is value-dependent
53  /// (C++ [temp.dep.constexpr]).
54  bool ValueDependent : 1;
55
56  // FIXME: Eventually, this constructor should go away and we should
57  // require every subclass to provide type/value-dependence
58  // information.
59  Expr(StmtClass SC, QualType T)
60    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
61    setType(T);
62  }
63
64  Expr(StmtClass SC, QualType T, bool TD, bool VD)
65    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  /// \brief Increases the reference count for this expression.
74  ///
75  /// Invoke the Retain() operation when this expression
76  /// is being shared by another owner.
77  Expr *Retain() {
78    Stmt::Retain();
79    return this;
80  }
81
82  QualType getType() const { return TR; }
83  void setType(QualType t) {
84    // In C++, the type of an expression is always adjusted so that it
85    // will not have reference type an expression will never have
86    // reference type (C++ [expr]p6). Use
87    // QualType::getNonReferenceType() to retrieve the non-reference
88    // type. Additionally, inspect Expr::isLvalue to determine whether
89    // an expression that is adjusted in this manner should be
90    // considered an lvalue.
91    assert((t.isNull() || !t->isReferenceType()) &&
92           "Expressions can't have reference type");
93
94    TR = t;
95  }
96
97  /// isValueDependent - Determines whether this expression is
98  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
99  /// array bound of "Chars" in the following example is
100  /// value-dependent.
101  /// @code
102  /// template<int Size, char (&Chars)[Size]> struct meta_string;
103  /// @endcode
104  bool isValueDependent() const { return ValueDependent; }
105
106  /// \brief Set whether this expression is value-dependent or not.
107  void setValueDependent(bool VD) { ValueDependent = VD; }
108
109  /// isTypeDependent - Determines whether this expression is
110  /// type-dependent (C++ [temp.dep.expr]), which means that its type
111  /// could change from one template instantiation to the next. For
112  /// example, the expressions "x" and "x + y" are type-dependent in
113  /// the following code, but "y" is not type-dependent:
114  /// @code
115  /// template<typename T>
116  /// void add(T x, int y) {
117  ///   x + y;
118  /// }
119  /// @endcode
120  bool isTypeDependent() const { return TypeDependent; }
121
122  /// \brief Set whether this expression is type-dependent or not.
123  void setTypeDependent(bool TD) { TypeDependent = TD; }
124
125  /// SourceLocation tokens are not useful in isolation - they are low level
126  /// value objects created/interpreted by SourceManager. We assume AST
127  /// clients will have a pointer to the respective SourceManager.
128  virtual SourceRange getSourceRange() const = 0;
129
130  /// getExprLoc - Return the preferred location for the arrow when diagnosing
131  /// a problem with a generic expression.
132  virtual SourceLocation getExprLoc() const { return getLocStart(); }
133
134  /// isUnusedResultAWarning - Return true if this immediate expression should
135  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
136  /// with location to warn on and the source range[s] to report with the
137  /// warning.
138  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
139                              SourceRange &R2, ASTContext &Ctx) const;
140
141  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
142  /// incomplete type other than void. Nonarray expressions that can be lvalues:
143  ///  - name, where name must be a variable
144  ///  - e[i]
145  ///  - (e), where e must be an lvalue
146  ///  - e.name, where e must be an lvalue
147  ///  - e->name
148  ///  - *e, the type of e cannot be a function type
149  ///  - string-constant
150  ///  - reference type [C++ [expr]]
151  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
152  ///
153  enum isLvalueResult {
154    LV_Valid,
155    LV_NotObjectType,
156    LV_IncompleteVoidType,
157    LV_DuplicateVectorComponents,
158    LV_InvalidExpression,
159    LV_MemberFunction
160  };
161  isLvalueResult isLvalue(ASTContext &Ctx) const;
162
163  // Same as above, but excluding checks for non-object and void types in C
164  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
165
166  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
167  /// does not have an incomplete type, does not have a const-qualified type,
168  /// and if it is a structure or union, does not have any member (including,
169  /// recursively, any member or element of all contained aggregates or unions)
170  /// with a const-qualified type.
171  ///
172  /// \param Loc [in] [out] - A source location which *may* be filled
173  /// in with the location of the expression making this a
174  /// non-modifiable lvalue, if specified.
175  enum isModifiableLvalueResult {
176    MLV_Valid,
177    MLV_NotObjectType,
178    MLV_IncompleteVoidType,
179    MLV_DuplicateVectorComponents,
180    MLV_InvalidExpression,
181    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
182    MLV_IncompleteType,
183    MLV_ConstQualified,
184    MLV_ArrayType,
185    MLV_NotBlockQualified,
186    MLV_ReadonlyProperty,
187    MLV_NoSetterProperty,
188    MLV_MemberFunction
189  };
190  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
191                                              SourceLocation *Loc = 0) const;
192
193  /// \brief If this expression refers to a bit-field, retrieve the
194  /// declaration of that bit-field.
195  FieldDecl *getBitField();
196
197  const FieldDecl *getBitField() const {
198    return const_cast<Expr*>(this)->getBitField();
199  }
200
201  /// isIntegerConstantExpr - Return true if this expression is a valid integer
202  /// constant expression, and, if so, return its value in Result.  If not a
203  /// valid i-c-e, return false and fill in Loc (if specified) with the location
204  /// of the invalid expression.
205  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
206                             SourceLocation *Loc = 0,
207                             bool isEvaluated = true) const;
208  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
209    llvm::APSInt X;
210    return isIntegerConstantExpr(X, Ctx, Loc);
211  }
212  /// isConstantInitializer - Returns true if this expression is a constant
213  /// initializer, which can be emitted at compile-time.
214  bool isConstantInitializer(ASTContext &Ctx) const;
215
216  /// EvalResult is a struct with detailed info about an evaluated expression.
217  struct EvalResult {
218    /// Val - This is the value the expression can be folded to.
219    APValue Val;
220
221    /// HasSideEffects - Whether the evaluated expression has side effects.
222    /// For example, (f() && 0) can be folded, but it still has side effects.
223    bool HasSideEffects;
224
225    /// Diag - If the expression is unfoldable, then Diag contains a note
226    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
227    /// position for the error, and DiagExpr is the expression that caused
228    /// the error.
229    /// If the expression is foldable, but not an integer constant expression,
230    /// Diag contains a note diagnostic that describes why it isn't an integer
231    /// constant expression. If the expression *is* an integer constant
232    /// expression, then Diag will be zero.
233    unsigned Diag;
234    const Expr *DiagExpr;
235    SourceLocation DiagLoc;
236
237    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
238  };
239
240  /// Evaluate - Return true if this is a constant which we can fold using
241  /// any crazy technique (that has nothing to do with language standards) that
242  /// we want to.  If this function returns true, it returns the folded constant
243  /// in Result.
244  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
245
246  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
247  /// stack based objects.
248  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
249
250  /// isEvaluatable - Call Evaluate to see if this expression can be constant
251  /// folded, but discard the result.
252  bool isEvaluatable(ASTContext &Ctx) const;
253
254  /// HasSideEffects - This routine returns true for all those expressions
255  /// which must be evaluated each time and must not be optimization away
256  /// or evaluated at compile time. Example is a function call, volatile
257  /// variable read.
258  bool HasSideEffects(ASTContext &Ctx) const;
259
260  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
261  /// must be called on an expression that constant folds to an integer.
262  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
263
264  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
265  /// with link time known address.
266  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
267
268  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
269  /// also succeeds on stack based, immutable address lvalues.
270  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
271
272  /// \brief Enumeration used to describe how \c isNullPointerConstant()
273  /// should cope with value-dependent expressions.
274  enum NullPointerConstantValueDependence {
275    /// \brief Specifies that the expression should never be value-dependent.
276    NPC_NeverValueDependent = 0,
277
278    /// \brief Specifies that a value-dependent expression of integral or
279    /// dependent type should be considered a null pointer constant.
280    NPC_ValueDependentIsNull,
281
282    /// \brief Specifies that a value-dependent expression should be considered
283    /// to never be a null pointer constant.
284    NPC_ValueDependentIsNotNull
285  };
286
287  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
288  /// integer constant expression with the value zero, or if this is one that is
289  /// cast to void*.
290  bool isNullPointerConstant(ASTContext &Ctx,
291                             NullPointerConstantValueDependence NPC) const;
292
293  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
294  /// write barrier.
295  bool isOBJCGCCandidate(ASTContext &Ctx) const;
296
297  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
298  ///  its subexpression.  If that subexpression is also a ParenExpr,
299  ///  then this method recursively returns its subexpression, and so forth.
300  ///  Otherwise, the method returns the current Expr.
301  Expr* IgnoreParens();
302
303  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
304  /// or CastExprs, returning their operand.
305  Expr *IgnoreParenCasts();
306
307  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
308  /// value (including ptr->int casts of the same size).  Strip off any
309  /// ParenExpr or CastExprs, returning their operand.
310  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
311
312  const Expr* IgnoreParens() const {
313    return const_cast<Expr*>(this)->IgnoreParens();
314  }
315  const Expr *IgnoreParenCasts() const {
316    return const_cast<Expr*>(this)->IgnoreParenCasts();
317  }
318  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
319    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
320  }
321
322  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
323  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
324
325  static bool classof(const Stmt *T) {
326    return T->getStmtClass() >= firstExprConstant &&
327           T->getStmtClass() <= lastExprConstant;
328  }
329  static bool classof(const Expr *) { return true; }
330};
331
332
333//===----------------------------------------------------------------------===//
334// Primary Expressions.
335//===----------------------------------------------------------------------===//
336
337/// \brief Represents the qualifier that may precede a C++ name, e.g., the
338/// "std::" in "std::sort".
339struct NameQualifier {
340  /// \brief The nested name specifier.
341  NestedNameSpecifier *NNS;
342
343  /// \brief The source range covered by the nested name specifier.
344  SourceRange Range;
345};
346
347/// \brief Represents an explicit template argument list in C++, e.g.,
348/// the "<int>" in "sort<int>".
349struct ExplicitTemplateArgumentList {
350  /// \brief The source location of the left angle bracket ('<');
351  SourceLocation LAngleLoc;
352
353  /// \brief The source location of the right angle bracket ('>');
354  SourceLocation RAngleLoc;
355
356  /// \brief The number of template arguments in TemplateArgs.
357  /// The actual template arguments (if any) are stored after the
358  /// ExplicitTemplateArgumentList structure.
359  unsigned NumTemplateArgs;
360
361  /// \brief Retrieve the template arguments
362  TemplateArgumentLoc *getTemplateArgs() {
363    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
364  }
365
366  /// \brief Retrieve the template arguments
367  const TemplateArgumentLoc *getTemplateArgs() const {
368    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
369  }
370
371  void initializeFrom(const TemplateArgumentListInfo &List);
372  void copyInto(TemplateArgumentListInfo &List) const;
373  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
374};
375
376/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
377/// enum, etc.
378class DeclRefExpr : public Expr {
379  enum {
380    // Flag on DecoratedD that specifies when this declaration reference
381    // expression has a C++ nested-name-specifier.
382    HasQualifierFlag = 0x01,
383    // Flag on DecoratedD that specifies when this declaration reference
384    // expression has an explicit C++ template argument list.
385    HasExplicitTemplateArgumentListFlag = 0x02
386  };
387
388  // DecoratedD - The declaration that we are referencing, plus two bits to
389  // indicate whether (1) the declaration's name was explicitly qualified and
390  // (2) the declaration's name was followed by an explicit template
391  // argument list.
392  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
393
394  // Loc - The location of the declaration name itself.
395  SourceLocation Loc;
396
397  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
398  NameQualifier *getNameQualifier() {
399    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
400      return 0;
401
402    return reinterpret_cast<NameQualifier *> (this + 1);
403  }
404
405  /// \brief Retrieve the qualifier that preceded the member name, if any.
406  const NameQualifier *getNameQualifier() const {
407    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
408  }
409
410  /// \brief Retrieve the explicit template argument list that followed the
411  /// member template name, if any.
412  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
413    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
414      return 0;
415
416    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
417      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
418
419    return reinterpret_cast<ExplicitTemplateArgumentList *>(
420                                                      getNameQualifier() + 1);
421  }
422
423  /// \brief Retrieve the explicit template argument list that followed the
424  /// member template name, if any.
425  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
426    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
427  }
428
429  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
430              ValueDecl *D, SourceLocation NameLoc,
431              const TemplateArgumentListInfo *TemplateArgs,
432              QualType T);
433
434protected:
435  /// \brief Computes the type- and value-dependence flags for this
436  /// declaration reference expression.
437  void computeDependence();
438
439  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
440    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
441    computeDependence();
442  }
443
444public:
445  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
446    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
447    computeDependence();
448  }
449
450  /// \brief Construct an empty declaration reference expression.
451  explicit DeclRefExpr(EmptyShell Empty)
452    : Expr(DeclRefExprClass, Empty) { }
453
454  static DeclRefExpr *Create(ASTContext &Context,
455                             NestedNameSpecifier *Qualifier,
456                             SourceRange QualifierRange,
457                             ValueDecl *D,
458                             SourceLocation NameLoc,
459                             QualType T,
460                             const TemplateArgumentListInfo *TemplateArgs = 0);
461
462  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
463  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
464  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
465
466  SourceLocation getLocation() const { return Loc; }
467  void setLocation(SourceLocation L) { Loc = L; }
468  virtual SourceRange getSourceRange() const;
469
470  /// \brief Determine whether this declaration reference was preceded by a
471  /// C++ nested-name-specifier, e.g., \c N::foo.
472  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
473
474  /// \brief If the name was qualified, retrieves the source range of
475  /// the nested-name-specifier that precedes the name. Otherwise,
476  /// returns an empty source range.
477  SourceRange getQualifierRange() const {
478    if (!hasQualifier())
479      return SourceRange();
480
481    return getNameQualifier()->Range;
482  }
483
484  /// \brief If the name was qualified, retrieves the nested-name-specifier
485  /// that precedes the name. Otherwise, returns NULL.
486  NestedNameSpecifier *getQualifier() const {
487    if (!hasQualifier())
488      return 0;
489
490    return getNameQualifier()->NNS;
491  }
492
493  /// \brief Determines whether this member expression actually had a C++
494  /// template argument list explicitly specified, e.g., x.f<int>.
495  bool hasExplicitTemplateArgumentList() const {
496    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
497  }
498
499  /// \brief Copies the template arguments (if present) into the given
500  /// structure.
501  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
502    if (hasExplicitTemplateArgumentList())
503      getExplicitTemplateArgumentList()->copyInto(List);
504  }
505
506  /// \brief Retrieve the location of the left angle bracket following the
507  /// member name ('<'), if any.
508  SourceLocation getLAngleLoc() const {
509    if (!hasExplicitTemplateArgumentList())
510      return SourceLocation();
511
512    return getExplicitTemplateArgumentList()->LAngleLoc;
513  }
514
515  /// \brief Retrieve the template arguments provided as part of this
516  /// template-id.
517  const TemplateArgumentLoc *getTemplateArgs() const {
518    if (!hasExplicitTemplateArgumentList())
519      return 0;
520
521    return getExplicitTemplateArgumentList()->getTemplateArgs();
522  }
523
524  /// \brief Retrieve the number of template arguments provided as part of this
525  /// template-id.
526  unsigned getNumTemplateArgs() const {
527    if (!hasExplicitTemplateArgumentList())
528      return 0;
529
530    return getExplicitTemplateArgumentList()->NumTemplateArgs;
531  }
532
533  /// \brief Retrieve the location of the right angle bracket following the
534  /// template arguments ('>').
535  SourceLocation getRAngleLoc() const {
536    if (!hasExplicitTemplateArgumentList())
537      return SourceLocation();
538
539    return getExplicitTemplateArgumentList()->RAngleLoc;
540  }
541
542  static bool classof(const Stmt *T) {
543    return T->getStmtClass() == DeclRefExprClass;
544  }
545  static bool classof(const DeclRefExpr *) { return true; }
546
547  // Iterators
548  virtual child_iterator child_begin();
549  virtual child_iterator child_end();
550};
551
552/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
553class PredefinedExpr : public Expr {
554public:
555  enum IdentType {
556    Func,
557    Function,
558    PrettyFunction
559  };
560
561private:
562  SourceLocation Loc;
563  IdentType Type;
564public:
565  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
566    : Expr(PredefinedExprClass, type, type->isDependentType(),
567           type->isDependentType()), Loc(l), Type(IT) {}
568
569  /// \brief Construct an empty predefined expression.
570  explicit PredefinedExpr(EmptyShell Empty)
571    : Expr(PredefinedExprClass, Empty) { }
572
573  IdentType getIdentType() const { return Type; }
574  void setIdentType(IdentType IT) { Type = IT; }
575
576  SourceLocation getLocation() const { return Loc; }
577  void setLocation(SourceLocation L) { Loc = L; }
578
579  static std::string ComputeName(ASTContext &Context, IdentType IT,
580                                 const Decl *CurrentDecl);
581
582  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
583
584  static bool classof(const Stmt *T) {
585    return T->getStmtClass() == PredefinedExprClass;
586  }
587  static bool classof(const PredefinedExpr *) { return true; }
588
589  // Iterators
590  virtual child_iterator child_begin();
591  virtual child_iterator child_end();
592};
593
594class IntegerLiteral : public Expr {
595  llvm::APInt Value;
596  SourceLocation Loc;
597public:
598  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
599  // or UnsignedLongLongTy
600  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
601    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
602    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
603  }
604
605  /// \brief Construct an empty integer literal.
606  explicit IntegerLiteral(EmptyShell Empty)
607    : Expr(IntegerLiteralClass, Empty) { }
608
609  const llvm::APInt &getValue() const { return Value; }
610  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
611
612  /// \brief Retrieve the location of the literal.
613  SourceLocation getLocation() const { return Loc; }
614
615  void setValue(const llvm::APInt &Val) { Value = Val; }
616  void setLocation(SourceLocation Location) { Loc = Location; }
617
618  static bool classof(const Stmt *T) {
619    return T->getStmtClass() == IntegerLiteralClass;
620  }
621  static bool classof(const IntegerLiteral *) { return true; }
622
623  // Iterators
624  virtual child_iterator child_begin();
625  virtual child_iterator child_end();
626};
627
628class CharacterLiteral : public Expr {
629  unsigned Value;
630  SourceLocation Loc;
631  bool IsWide;
632public:
633  // type should be IntTy
634  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
635    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
636  }
637
638  /// \brief Construct an empty character literal.
639  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
640
641  SourceLocation getLocation() const { return Loc; }
642  bool isWide() const { return IsWide; }
643
644  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
645
646  unsigned getValue() const { return Value; }
647
648  void setLocation(SourceLocation Location) { Loc = Location; }
649  void setWide(bool W) { IsWide = W; }
650  void setValue(unsigned Val) { Value = Val; }
651
652  static bool classof(const Stmt *T) {
653    return T->getStmtClass() == CharacterLiteralClass;
654  }
655  static bool classof(const CharacterLiteral *) { return true; }
656
657  // Iterators
658  virtual child_iterator child_begin();
659  virtual child_iterator child_end();
660};
661
662class FloatingLiteral : public Expr {
663  llvm::APFloat Value;
664  bool IsExact : 1;
665  SourceLocation Loc;
666public:
667  FloatingLiteral(const llvm::APFloat &V, bool isexact,
668                  QualType Type, SourceLocation L)
669    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
670
671  /// \brief Construct an empty floating-point literal.
672  explicit FloatingLiteral(EmptyShell Empty)
673    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
674
675  const llvm::APFloat &getValue() const { return Value; }
676  void setValue(const llvm::APFloat &Val) { Value = Val; }
677
678  bool isExact() const { return IsExact; }
679  void setExact(bool E) { IsExact = E; }
680
681  /// getValueAsApproximateDouble - This returns the value as an inaccurate
682  /// double.  Note that this may cause loss of precision, but is useful for
683  /// debugging dumps, etc.
684  double getValueAsApproximateDouble() const;
685
686  SourceLocation getLocation() const { return Loc; }
687  void setLocation(SourceLocation L) { Loc = L; }
688
689  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
690
691  static bool classof(const Stmt *T) {
692    return T->getStmtClass() == FloatingLiteralClass;
693  }
694  static bool classof(const FloatingLiteral *) { return true; }
695
696  // Iterators
697  virtual child_iterator child_begin();
698  virtual child_iterator child_end();
699};
700
701/// ImaginaryLiteral - We support imaginary integer and floating point literals,
702/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
703/// IntegerLiteral classes.  Instances of this class always have a Complex type
704/// whose element type matches the subexpression.
705///
706class ImaginaryLiteral : public Expr {
707  Stmt *Val;
708public:
709  ImaginaryLiteral(Expr *val, QualType Ty)
710    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
711
712  /// \brief Build an empty imaginary literal.
713  explicit ImaginaryLiteral(EmptyShell Empty)
714    : Expr(ImaginaryLiteralClass, Empty) { }
715
716  const Expr *getSubExpr() const { return cast<Expr>(Val); }
717  Expr *getSubExpr() { return cast<Expr>(Val); }
718  void setSubExpr(Expr *E) { Val = E; }
719
720  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
721  static bool classof(const Stmt *T) {
722    return T->getStmtClass() == ImaginaryLiteralClass;
723  }
724  static bool classof(const ImaginaryLiteral *) { return true; }
725
726  // Iterators
727  virtual child_iterator child_begin();
728  virtual child_iterator child_end();
729};
730
731/// StringLiteral - This represents a string literal expression, e.g. "foo"
732/// or L"bar" (wide strings).  The actual string is returned by getStrData()
733/// is NOT null-terminated, and the length of the string is determined by
734/// calling getByteLength().  The C type for a string is always a
735/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
736/// not.
737///
738/// Note that strings in C can be formed by concatenation of multiple string
739/// literal pptokens in translation phase #6.  This keeps track of the locations
740/// of each of these pieces.
741///
742/// Strings in C can also be truncated and extended by assigning into arrays,
743/// e.g. with constructs like:
744///   char X[2] = "foobar";
745/// In this case, getByteLength() will return 6, but the string literal will
746/// have type "char[2]".
747class StringLiteral : public Expr {
748  const char *StrData;
749  unsigned ByteLength;
750  bool IsWide;
751  unsigned NumConcatenated;
752  SourceLocation TokLocs[1];
753
754  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
755
756protected:
757  virtual void DoDestroy(ASTContext &C);
758
759public:
760  /// This is the "fully general" constructor that allows representation of
761  /// strings formed from multiple concatenated tokens.
762  static StringLiteral *Create(ASTContext &C, const char *StrData,
763                               unsigned ByteLength, bool Wide, QualType Ty,
764                               const SourceLocation *Loc, unsigned NumStrs);
765
766  /// Simple constructor for string literals made from one token.
767  static StringLiteral *Create(ASTContext &C, const char *StrData,
768                               unsigned ByteLength,
769                               bool Wide, QualType Ty, SourceLocation Loc) {
770    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
771  }
772
773  /// \brief Construct an empty string literal.
774  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
775
776  llvm::StringRef getString() const {
777    return llvm::StringRef(StrData, ByteLength);
778  }
779  // FIXME: These are deprecated, replace with StringRef.
780  const char *getStrData() const { return StrData; }
781  unsigned getByteLength() const { return ByteLength; }
782
783  /// \brief Sets the string data to the given string data.
784  void setString(ASTContext &C, llvm::StringRef Str);
785
786  bool isWide() const { return IsWide; }
787  void setWide(bool W) { IsWide = W; }
788
789  bool containsNonAsciiOrNull() const {
790    llvm::StringRef Str = getString();
791    for (unsigned i = 0, e = Str.size(); i != e; ++i)
792      if (!isascii(Str[i]) || !Str[i])
793        return true;
794    return false;
795  }
796  /// getNumConcatenated - Get the number of string literal tokens that were
797  /// concatenated in translation phase #6 to form this string literal.
798  unsigned getNumConcatenated() const { return NumConcatenated; }
799
800  SourceLocation getStrTokenLoc(unsigned TokNum) const {
801    assert(TokNum < NumConcatenated && "Invalid tok number");
802    return TokLocs[TokNum];
803  }
804  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
805    assert(TokNum < NumConcatenated && "Invalid tok number");
806    TokLocs[TokNum] = L;
807  }
808
809  typedef const SourceLocation *tokloc_iterator;
810  tokloc_iterator tokloc_begin() const { return TokLocs; }
811  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
812
813  virtual SourceRange getSourceRange() const {
814    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
815  }
816  static bool classof(const Stmt *T) {
817    return T->getStmtClass() == StringLiteralClass;
818  }
819  static bool classof(const StringLiteral *) { return true; }
820
821  // Iterators
822  virtual child_iterator child_begin();
823  virtual child_iterator child_end();
824};
825
826/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
827/// AST node is only formed if full location information is requested.
828class ParenExpr : public Expr {
829  SourceLocation L, R;
830  Stmt *Val;
831public:
832  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
833    : Expr(ParenExprClass, val->getType(),
834           val->isTypeDependent(), val->isValueDependent()),
835      L(l), R(r), Val(val) {}
836
837  /// \brief Construct an empty parenthesized expression.
838  explicit ParenExpr(EmptyShell Empty)
839    : Expr(ParenExprClass, Empty) { }
840
841  const Expr *getSubExpr() const { return cast<Expr>(Val); }
842  Expr *getSubExpr() { return cast<Expr>(Val); }
843  void setSubExpr(Expr *E) { Val = E; }
844
845  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
846
847  /// \brief Get the location of the left parentheses '('.
848  SourceLocation getLParen() const { return L; }
849  void setLParen(SourceLocation Loc) { L = Loc; }
850
851  /// \brief Get the location of the right parentheses ')'.
852  SourceLocation getRParen() const { return R; }
853  void setRParen(SourceLocation Loc) { R = Loc; }
854
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == ParenExprClass;
857  }
858  static bool classof(const ParenExpr *) { return true; }
859
860  // Iterators
861  virtual child_iterator child_begin();
862  virtual child_iterator child_end();
863};
864
865
866/// UnaryOperator - This represents the unary-expression's (except sizeof and
867/// alignof), the postinc/postdec operators from postfix-expression, and various
868/// extensions.
869///
870/// Notes on various nodes:
871///
872/// Real/Imag - These return the real/imag part of a complex operand.  If
873///   applied to a non-complex value, the former returns its operand and the
874///   later returns zero in the type of the operand.
875///
876/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
877///   subexpression is a compound literal with the various MemberExpr and
878///   ArraySubscriptExpr's applied to it.
879///
880class UnaryOperator : public Expr {
881public:
882  // Note that additions to this should also update the StmtVisitor class.
883  enum Opcode {
884    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
885    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
886    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
887    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
888    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
889    Real, Imag,       // "__real expr"/"__imag expr" Extension.
890    Extension,        // __extension__ marker.
891    OffsetOf          // __builtin_offsetof
892  };
893private:
894  Stmt *Val;
895  Opcode Opc;
896  SourceLocation Loc;
897public:
898
899  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
900    : Expr(UnaryOperatorClass, type,
901           input->isTypeDependent() && opc != OffsetOf,
902           input->isValueDependent()),
903      Val(input), Opc(opc), Loc(l) {}
904
905  /// \brief Build an empty unary operator.
906  explicit UnaryOperator(EmptyShell Empty)
907    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
908
909  Opcode getOpcode() const { return Opc; }
910  void setOpcode(Opcode O) { Opc = O; }
911
912  Expr *getSubExpr() const { return cast<Expr>(Val); }
913  void setSubExpr(Expr *E) { Val = E; }
914
915  /// getOperatorLoc - Return the location of the operator.
916  SourceLocation getOperatorLoc() const { return Loc; }
917  void setOperatorLoc(SourceLocation L) { Loc = L; }
918
919  /// isPostfix - Return true if this is a postfix operation, like x++.
920  static bool isPostfix(Opcode Op) {
921    return Op == PostInc || Op == PostDec;
922  }
923
924  /// isPostfix - Return true if this is a prefix operation, like --x.
925  static bool isPrefix(Opcode Op) {
926    return Op == PreInc || Op == PreDec;
927  }
928
929  bool isPrefix() const { return isPrefix(Opc); }
930  bool isPostfix() const { return isPostfix(Opc); }
931  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
932  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
933  bool isOffsetOfOp() const { return Opc == OffsetOf; }
934  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
935  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
936
937  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
938  /// corresponds to, e.g. "sizeof" or "[pre]++"
939  static const char *getOpcodeStr(Opcode Op);
940
941  /// \brief Retrieve the unary opcode that corresponds to the given
942  /// overloaded operator.
943  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
944
945  /// \brief Retrieve the overloaded operator kind that corresponds to
946  /// the given unary opcode.
947  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
948
949  virtual SourceRange getSourceRange() const {
950    if (isPostfix())
951      return SourceRange(Val->getLocStart(), Loc);
952    else
953      return SourceRange(Loc, Val->getLocEnd());
954  }
955  virtual SourceLocation getExprLoc() const { return Loc; }
956
957  static bool classof(const Stmt *T) {
958    return T->getStmtClass() == UnaryOperatorClass;
959  }
960  static bool classof(const UnaryOperator *) { return true; }
961
962  // Iterators
963  virtual child_iterator child_begin();
964  virtual child_iterator child_end();
965};
966
967/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
968/// types and expressions.
969class SizeOfAlignOfExpr : public Expr {
970  bool isSizeof : 1;  // true if sizeof, false if alignof.
971  bool isType : 1;    // true if operand is a type, false if an expression
972  union {
973    TypeSourceInfo *Ty;
974    Stmt *Ex;
975  } Argument;
976  SourceLocation OpLoc, RParenLoc;
977
978protected:
979  virtual void DoDestroy(ASTContext& C);
980
981public:
982  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
983                    QualType resultType, SourceLocation op,
984                    SourceLocation rp) :
985      Expr(SizeOfAlignOfExprClass, resultType,
986           false, // Never type-dependent (C++ [temp.dep.expr]p3).
987           // Value-dependent if the argument is type-dependent.
988           TInfo->getType()->isDependentType()),
989      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
990    Argument.Ty = TInfo;
991  }
992
993  SizeOfAlignOfExpr(bool issizeof, Expr *E,
994                    QualType resultType, SourceLocation op,
995                    SourceLocation rp) :
996      Expr(SizeOfAlignOfExprClass, resultType,
997           false, // Never type-dependent (C++ [temp.dep.expr]p3).
998           // Value-dependent if the argument is type-dependent.
999           E->isTypeDependent()),
1000      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1001    Argument.Ex = E;
1002  }
1003
1004  /// \brief Construct an empty sizeof/alignof expression.
1005  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1006    : Expr(SizeOfAlignOfExprClass, Empty) { }
1007
1008  bool isSizeOf() const { return isSizeof; }
1009  void setSizeof(bool S) { isSizeof = S; }
1010
1011  bool isArgumentType() const { return isType; }
1012  QualType getArgumentType() const {
1013    return getArgumentTypeInfo()->getType();
1014  }
1015  TypeSourceInfo *getArgumentTypeInfo() const {
1016    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1017    return Argument.Ty;
1018  }
1019  Expr *getArgumentExpr() {
1020    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1021    return static_cast<Expr*>(Argument.Ex);
1022  }
1023  const Expr *getArgumentExpr() const {
1024    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1025  }
1026
1027  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1028  void setArgument(TypeSourceInfo *TInfo) {
1029    Argument.Ty = TInfo;
1030    isType = true;
1031  }
1032
1033  /// Gets the argument type, or the type of the argument expression, whichever
1034  /// is appropriate.
1035  QualType getTypeOfArgument() const {
1036    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1037  }
1038
1039  SourceLocation getOperatorLoc() const { return OpLoc; }
1040  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1041
1042  SourceLocation getRParenLoc() const { return RParenLoc; }
1043  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1044
1045  virtual SourceRange getSourceRange() const {
1046    return SourceRange(OpLoc, RParenLoc);
1047  }
1048
1049  static bool classof(const Stmt *T) {
1050    return T->getStmtClass() == SizeOfAlignOfExprClass;
1051  }
1052  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1053
1054  // Iterators
1055  virtual child_iterator child_begin();
1056  virtual child_iterator child_end();
1057};
1058
1059//===----------------------------------------------------------------------===//
1060// Postfix Operators.
1061//===----------------------------------------------------------------------===//
1062
1063/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1064class ArraySubscriptExpr : public Expr {
1065  enum { LHS, RHS, END_EXPR=2 };
1066  Stmt* SubExprs[END_EXPR];
1067  SourceLocation RBracketLoc;
1068public:
1069  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1070                     SourceLocation rbracketloc)
1071  : Expr(ArraySubscriptExprClass, t,
1072         lhs->isTypeDependent() || rhs->isTypeDependent(),
1073         lhs->isValueDependent() || rhs->isValueDependent()),
1074    RBracketLoc(rbracketloc) {
1075    SubExprs[LHS] = lhs;
1076    SubExprs[RHS] = rhs;
1077  }
1078
1079  /// \brief Create an empty array subscript expression.
1080  explicit ArraySubscriptExpr(EmptyShell Shell)
1081    : Expr(ArraySubscriptExprClass, Shell) { }
1082
1083  /// An array access can be written A[4] or 4[A] (both are equivalent).
1084  /// - getBase() and getIdx() always present the normalized view: A[4].
1085  ///    In this case getBase() returns "A" and getIdx() returns "4".
1086  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1087  ///    4[A] getLHS() returns "4".
1088  /// Note: Because vector element access is also written A[4] we must
1089  /// predicate the format conversion in getBase and getIdx only on the
1090  /// the type of the RHS, as it is possible for the LHS to be a vector of
1091  /// integer type
1092  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1093  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1094  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1095
1096  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1097  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1098  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1099
1100  Expr *getBase() {
1101    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1102  }
1103
1104  const Expr *getBase() const {
1105    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1106  }
1107
1108  Expr *getIdx() {
1109    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1110  }
1111
1112  const Expr *getIdx() const {
1113    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1114  }
1115
1116  virtual SourceRange getSourceRange() const {
1117    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1118  }
1119
1120  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1121  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1122
1123  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1124
1125  static bool classof(const Stmt *T) {
1126    return T->getStmtClass() == ArraySubscriptExprClass;
1127  }
1128  static bool classof(const ArraySubscriptExpr *) { return true; }
1129
1130  // Iterators
1131  virtual child_iterator child_begin();
1132  virtual child_iterator child_end();
1133};
1134
1135
1136/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1137/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1138/// while its subclasses may represent alternative syntax that (semantically)
1139/// results in a function call. For example, CXXOperatorCallExpr is
1140/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1141/// "str1 + str2" to resolve to a function call.
1142class CallExpr : public Expr {
1143  enum { FN=0, ARGS_START=1 };
1144  Stmt **SubExprs;
1145  unsigned NumArgs;
1146  SourceLocation RParenLoc;
1147
1148protected:
1149  // This version of the constructor is for derived classes.
1150  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1151           QualType t, SourceLocation rparenloc);
1152
1153  virtual void DoDestroy(ASTContext& C);
1154
1155public:
1156  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1157           SourceLocation rparenloc);
1158
1159  /// \brief Build an empty call expression.
1160  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1161
1162  ~CallExpr() {}
1163
1164  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1165  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1166  void setCallee(Expr *F) { SubExprs[FN] = F; }
1167
1168  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1169  FunctionDecl *getDirectCallee();
1170  const FunctionDecl *getDirectCallee() const {
1171    return const_cast<CallExpr*>(this)->getDirectCallee();
1172  }
1173
1174  /// getNumArgs - Return the number of actual arguments to this call.
1175  ///
1176  unsigned getNumArgs() const { return NumArgs; }
1177
1178  /// getArg - Return the specified argument.
1179  Expr *getArg(unsigned Arg) {
1180    assert(Arg < NumArgs && "Arg access out of range!");
1181    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1182  }
1183  const Expr *getArg(unsigned Arg) const {
1184    assert(Arg < NumArgs && "Arg access out of range!");
1185    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1186  }
1187
1188  /// setArg - Set the specified argument.
1189  void setArg(unsigned Arg, Expr *ArgExpr) {
1190    assert(Arg < NumArgs && "Arg access out of range!");
1191    SubExprs[Arg+ARGS_START] = ArgExpr;
1192  }
1193
1194  /// setNumArgs - This changes the number of arguments present in this call.
1195  /// Any orphaned expressions are deleted by this, and any new operands are set
1196  /// to null.
1197  void setNumArgs(ASTContext& C, unsigned NumArgs);
1198
1199  typedef ExprIterator arg_iterator;
1200  typedef ConstExprIterator const_arg_iterator;
1201
1202  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1203  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1204  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1205  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1206
1207  /// getNumCommas - Return the number of commas that must have been present in
1208  /// this function call.
1209  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1210
1211  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1212  /// not, return 0.
1213  unsigned isBuiltinCall(ASTContext &Context) const;
1214
1215  /// getCallReturnType - Get the return type of the call expr. This is not
1216  /// always the type of the expr itself, if the return type is a reference
1217  /// type.
1218  QualType getCallReturnType() const;
1219
1220  SourceLocation getRParenLoc() const { return RParenLoc; }
1221  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1222
1223  virtual SourceRange getSourceRange() const {
1224    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1225  }
1226
1227  static bool classof(const Stmt *T) {
1228    return T->getStmtClass() == CallExprClass ||
1229           T->getStmtClass() == CXXOperatorCallExprClass ||
1230           T->getStmtClass() == CXXMemberCallExprClass;
1231  }
1232  static bool classof(const CallExpr *) { return true; }
1233  static bool classof(const CXXOperatorCallExpr *) { return true; }
1234  static bool classof(const CXXMemberCallExpr *) { return true; }
1235
1236  // Iterators
1237  virtual child_iterator child_begin();
1238  virtual child_iterator child_end();
1239};
1240
1241/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1242///
1243class MemberExpr : public Expr {
1244  /// Base - the expression for the base pointer or structure references.  In
1245  /// X.F, this is "X".
1246  Stmt *Base;
1247
1248  /// MemberDecl - This is the decl being referenced by the field/member name.
1249  /// In X.F, this is the decl referenced by F.
1250  ValueDecl *MemberDecl;
1251
1252  /// MemberLoc - This is the location of the member name.
1253  SourceLocation MemberLoc;
1254
1255  /// IsArrow - True if this is "X->F", false if this is "X.F".
1256  bool IsArrow : 1;
1257
1258  /// \brief True if this member expression used a nested-name-specifier to
1259  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1260  /// structure is allocated immediately after the MemberExpr.
1261  bool HasQualifier : 1;
1262
1263  /// \brief True if this member expression specified a template argument list
1264  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1265  /// structure (and its TemplateArguments) are allocated immediately after
1266  /// the MemberExpr or, if the member expression also has a qualifier, after
1267  /// the NameQualifier structure.
1268  bool HasExplicitTemplateArgumentList : 1;
1269
1270  /// \brief Retrieve the qualifier that preceded the member name, if any.
1271  NameQualifier *getMemberQualifier() {
1272    if (!HasQualifier)
1273      return 0;
1274
1275    return reinterpret_cast<NameQualifier *> (this + 1);
1276  }
1277
1278  /// \brief Retrieve the qualifier that preceded the member name, if any.
1279  const NameQualifier *getMemberQualifier() const {
1280    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1281  }
1282
1283  /// \brief Retrieve the explicit template argument list that followed the
1284  /// member template name, if any.
1285  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1286    if (!HasExplicitTemplateArgumentList)
1287      return 0;
1288
1289    if (!HasQualifier)
1290      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1291
1292    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1293                                                      getMemberQualifier() + 1);
1294  }
1295
1296  /// \brief Retrieve the explicit template argument list that followed the
1297  /// member template name, if any.
1298  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1299    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1300  }
1301
1302  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1303             SourceRange qualrange, ValueDecl *memberdecl, SourceLocation l,
1304             const TemplateArgumentListInfo *targs, QualType ty);
1305
1306public:
1307  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1308             SourceLocation l, QualType ty)
1309    : Expr(MemberExprClass, ty,
1310           base->isTypeDependent(), base->isValueDependent()),
1311      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1312      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1313
1314  /// \brief Build an empty member reference expression.
1315  explicit MemberExpr(EmptyShell Empty)
1316    : Expr(MemberExprClass, Empty), HasQualifier(false),
1317      HasExplicitTemplateArgumentList(false) { }
1318
1319  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1320                            NestedNameSpecifier *qual, SourceRange qualrange,
1321                            ValueDecl *memberdecl,
1322                            SourceLocation l,
1323                            const TemplateArgumentListInfo *targs,
1324                            QualType ty);
1325
1326  void setBase(Expr *E) { Base = E; }
1327  Expr *getBase() const { return cast<Expr>(Base); }
1328
1329  /// \brief Retrieve the member declaration to which this expression refers.
1330  ///
1331  /// The returned declaration will either be a FieldDecl or (in C++)
1332  /// a CXXMethodDecl.
1333  ValueDecl *getMemberDecl() const { return MemberDecl; }
1334  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1335
1336  /// \brief Determines whether this member expression actually had
1337  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1338  /// x->Base::foo.
1339  bool hasQualifier() const { return HasQualifier; }
1340
1341  /// \brief If the member name was qualified, retrieves the source range of
1342  /// the nested-name-specifier that precedes the member name. Otherwise,
1343  /// returns an empty source range.
1344  SourceRange getQualifierRange() const {
1345    if (!HasQualifier)
1346      return SourceRange();
1347
1348    return getMemberQualifier()->Range;
1349  }
1350
1351  /// \brief If the member name was qualified, retrieves the
1352  /// nested-name-specifier that precedes the member name. Otherwise, returns
1353  /// NULL.
1354  NestedNameSpecifier *getQualifier() const {
1355    if (!HasQualifier)
1356      return 0;
1357
1358    return getMemberQualifier()->NNS;
1359  }
1360
1361  /// \brief Determines whether this member expression actually had a C++
1362  /// template argument list explicitly specified, e.g., x.f<int>.
1363  bool hasExplicitTemplateArgumentList() const {
1364    return HasExplicitTemplateArgumentList;
1365  }
1366
1367  /// \brief Copies the template arguments (if present) into the given
1368  /// structure.
1369  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1370    if (hasExplicitTemplateArgumentList())
1371      getExplicitTemplateArgumentList()->copyInto(List);
1372  }
1373
1374  /// \brief Retrieve the location of the left angle bracket following the
1375  /// member name ('<'), if any.
1376  SourceLocation getLAngleLoc() const {
1377    if (!HasExplicitTemplateArgumentList)
1378      return SourceLocation();
1379
1380    return getExplicitTemplateArgumentList()->LAngleLoc;
1381  }
1382
1383  /// \brief Retrieve the template arguments provided as part of this
1384  /// template-id.
1385  const TemplateArgumentLoc *getTemplateArgs() const {
1386    if (!HasExplicitTemplateArgumentList)
1387      return 0;
1388
1389    return getExplicitTemplateArgumentList()->getTemplateArgs();
1390  }
1391
1392  /// \brief Retrieve the number of template arguments provided as part of this
1393  /// template-id.
1394  unsigned getNumTemplateArgs() const {
1395    if (!HasExplicitTemplateArgumentList)
1396      return 0;
1397
1398    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1399  }
1400
1401  /// \brief Retrieve the location of the right angle bracket following the
1402  /// template arguments ('>').
1403  SourceLocation getRAngleLoc() const {
1404    if (!HasExplicitTemplateArgumentList)
1405      return SourceLocation();
1406
1407    return getExplicitTemplateArgumentList()->RAngleLoc;
1408  }
1409
1410  bool isArrow() const { return IsArrow; }
1411  void setArrow(bool A) { IsArrow = A; }
1412
1413  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1414  /// location of 'F'.
1415  SourceLocation getMemberLoc() const { return MemberLoc; }
1416  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1417
1418  virtual SourceRange getSourceRange() const {
1419    // If we have an implicit base (like a C++ implicit this),
1420    // make sure not to return its location
1421    SourceLocation EndLoc = MemberLoc;
1422    if (HasExplicitTemplateArgumentList)
1423      EndLoc = getRAngleLoc();
1424
1425    SourceLocation BaseLoc = getBase()->getLocStart();
1426    if (BaseLoc.isInvalid())
1427      return SourceRange(MemberLoc, EndLoc);
1428    return SourceRange(BaseLoc, EndLoc);
1429  }
1430
1431  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1432
1433  static bool classof(const Stmt *T) {
1434    return T->getStmtClass() == MemberExprClass;
1435  }
1436  static bool classof(const MemberExpr *) { return true; }
1437
1438  // Iterators
1439  virtual child_iterator child_begin();
1440  virtual child_iterator child_end();
1441};
1442
1443/// CompoundLiteralExpr - [C99 6.5.2.5]
1444///
1445class CompoundLiteralExpr : public Expr {
1446  /// LParenLoc - If non-null, this is the location of the left paren in a
1447  /// compound literal like "(int){4}".  This can be null if this is a
1448  /// synthesized compound expression.
1449  SourceLocation LParenLoc;
1450  Stmt *Init;
1451  bool FileScope;
1452public:
1453  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1454                      bool fileScope)
1455    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1456      FileScope(fileScope) {}
1457
1458  /// \brief Construct an empty compound literal.
1459  explicit CompoundLiteralExpr(EmptyShell Empty)
1460    : Expr(CompoundLiteralExprClass, Empty) { }
1461
1462  const Expr *getInitializer() const { return cast<Expr>(Init); }
1463  Expr *getInitializer() { return cast<Expr>(Init); }
1464  void setInitializer(Expr *E) { Init = E; }
1465
1466  bool isFileScope() const { return FileScope; }
1467  void setFileScope(bool FS) { FileScope = FS; }
1468
1469  SourceLocation getLParenLoc() const { return LParenLoc; }
1470  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1471
1472  virtual SourceRange getSourceRange() const {
1473    // FIXME: Init should never be null.
1474    if (!Init)
1475      return SourceRange();
1476    if (LParenLoc.isInvalid())
1477      return Init->getSourceRange();
1478    return SourceRange(LParenLoc, Init->getLocEnd());
1479  }
1480
1481  static bool classof(const Stmt *T) {
1482    return T->getStmtClass() == CompoundLiteralExprClass;
1483  }
1484  static bool classof(const CompoundLiteralExpr *) { return true; }
1485
1486  // Iterators
1487  virtual child_iterator child_begin();
1488  virtual child_iterator child_end();
1489};
1490
1491/// CastExpr - Base class for type casts, including both implicit
1492/// casts (ImplicitCastExpr) and explicit casts that have some
1493/// representation in the source code (ExplicitCastExpr's derived
1494/// classes).
1495class CastExpr : public Expr {
1496public:
1497  /// CastKind - the kind of cast this represents.
1498  enum CastKind {
1499    /// CK_Unknown - Unknown cast kind.
1500    /// FIXME: The goal is to get rid of this and make all casts have a
1501    /// kind so that the AST client doesn't have to try to figure out what's
1502    /// going on.
1503    CK_Unknown,
1504
1505    /// CK_BitCast - Used for reinterpret_cast.
1506    CK_BitCast,
1507
1508    /// CK_NoOp - Used for const_cast.
1509    CK_NoOp,
1510
1511    /// CK_BaseToDerived - Base to derived class casts.
1512    CK_BaseToDerived,
1513
1514    /// CK_DerivedToBase - Derived to base class casts.
1515    CK_DerivedToBase,
1516
1517    /// CK_Dynamic - Dynamic cast.
1518    CK_Dynamic,
1519
1520    /// CK_ToUnion - Cast to union (GCC extension).
1521    CK_ToUnion,
1522
1523    /// CK_ArrayToPointerDecay - Array to pointer decay.
1524    CK_ArrayToPointerDecay,
1525
1526    // CK_FunctionToPointerDecay - Function to pointer decay.
1527    CK_FunctionToPointerDecay,
1528
1529    /// CK_NullToMemberPointer - Null pointer to member pointer.
1530    CK_NullToMemberPointer,
1531
1532    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1533    /// member pointer in derived class.
1534    CK_BaseToDerivedMemberPointer,
1535
1536    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1537    /// member pointer in base class.
1538    CK_DerivedToBaseMemberPointer,
1539
1540    /// CK_UserDefinedConversion - Conversion using a user defined type
1541    /// conversion function.
1542    CK_UserDefinedConversion,
1543
1544    /// CK_ConstructorConversion - Conversion by constructor
1545    CK_ConstructorConversion,
1546
1547    /// CK_IntegralToPointer - Integral to pointer
1548    CK_IntegralToPointer,
1549
1550    /// CK_PointerToIntegral - Pointer to integral
1551    CK_PointerToIntegral,
1552
1553    /// CK_ToVoid - Cast to void.
1554    CK_ToVoid,
1555
1556    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1557    /// vector type with the same element type as the src type. Splats the
1558    /// src expression into the destination expression.
1559    CK_VectorSplat,
1560
1561    /// CK_IntegralCast - Casting between integral types of different size.
1562    CK_IntegralCast,
1563
1564    /// CK_IntegralToFloating - Integral to floating point.
1565    CK_IntegralToFloating,
1566
1567    /// CK_FloatingToIntegral - Floating point to integral.
1568    CK_FloatingToIntegral,
1569
1570    /// CK_FloatingCast - Casting between floating types of different size.
1571    CK_FloatingCast,
1572
1573    /// CK_MemberPointerToBoolean - Member pointer to boolean
1574    CK_MemberPointerToBoolean,
1575
1576    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1577    /// pointer
1578    CK_AnyPointerToObjCPointerCast
1579
1580  };
1581
1582private:
1583  CastKind Kind;
1584  Stmt *Op;
1585protected:
1586  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1587    Expr(SC, ty,
1588         // Cast expressions are type-dependent if the type is
1589         // dependent (C++ [temp.dep.expr]p3).
1590         ty->isDependentType(),
1591         // Cast expressions are value-dependent if the type is
1592         // dependent or if the subexpression is value-dependent.
1593         ty->isDependentType() || (op && op->isValueDependent())),
1594    Kind(kind), Op(op) {}
1595
1596  /// \brief Construct an empty cast.
1597  CastExpr(StmtClass SC, EmptyShell Empty)
1598    : Expr(SC, Empty) { }
1599
1600public:
1601  CastKind getCastKind() const { return Kind; }
1602  void setCastKind(CastKind K) { Kind = K; }
1603  const char *getCastKindName() const;
1604
1605  Expr *getSubExpr() { return cast<Expr>(Op); }
1606  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1607  void setSubExpr(Expr *E) { Op = E; }
1608
1609  static bool classof(const Stmt *T) {
1610    StmtClass SC = T->getStmtClass();
1611    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1612      return true;
1613
1614    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1615      return true;
1616
1617    return false;
1618  }
1619  static bool classof(const CastExpr *) { return true; }
1620
1621  // Iterators
1622  virtual child_iterator child_begin();
1623  virtual child_iterator child_end();
1624};
1625
1626/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1627/// conversions, which have no direct representation in the original
1628/// source code. For example: converting T[]->T*, void f()->void
1629/// (*f)(), float->double, short->int, etc.
1630///
1631/// In C, implicit casts always produce rvalues. However, in C++, an
1632/// implicit cast whose result is being bound to a reference will be
1633/// an lvalue. For example:
1634///
1635/// @code
1636/// class Base { };
1637/// class Derived : public Base { };
1638/// void f(Derived d) {
1639///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1640/// }
1641/// @endcode
1642class ImplicitCastExpr : public CastExpr {
1643  /// LvalueCast - Whether this cast produces an lvalue.
1644  bool LvalueCast;
1645
1646public:
1647  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1648    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1649
1650  /// \brief Construct an empty implicit cast.
1651  explicit ImplicitCastExpr(EmptyShell Shell)
1652    : CastExpr(ImplicitCastExprClass, Shell) { }
1653
1654
1655  virtual SourceRange getSourceRange() const {
1656    return getSubExpr()->getSourceRange();
1657  }
1658
1659  /// isLvalueCast - Whether this cast produces an lvalue.
1660  bool isLvalueCast() const { return LvalueCast; }
1661
1662  /// setLvalueCast - Set whether this cast produces an lvalue.
1663  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1664
1665  static bool classof(const Stmt *T) {
1666    return T->getStmtClass() == ImplicitCastExprClass;
1667  }
1668  static bool classof(const ImplicitCastExpr *) { return true; }
1669};
1670
1671/// ExplicitCastExpr - An explicit cast written in the source
1672/// code.
1673///
1674/// This class is effectively an abstract class, because it provides
1675/// the basic representation of an explicitly-written cast without
1676/// specifying which kind of cast (C cast, functional cast, static
1677/// cast, etc.) was written; specific derived classes represent the
1678/// particular style of cast and its location information.
1679///
1680/// Unlike implicit casts, explicit cast nodes have two different
1681/// types: the type that was written into the source code, and the
1682/// actual type of the expression as determined by semantic
1683/// analysis. These types may differ slightly. For example, in C++ one
1684/// can cast to a reference type, which indicates that the resulting
1685/// expression will be an lvalue. The reference type, however, will
1686/// not be used as the type of the expression.
1687class ExplicitCastExpr : public CastExpr {
1688  /// TypeAsWritten - The type that this expression is casting to, as
1689  /// written in the source code.
1690  QualType TypeAsWritten;
1691
1692protected:
1693  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1694                   Expr *op, QualType writtenTy)
1695    : CastExpr(SC, exprTy, kind, op), TypeAsWritten(writtenTy) {}
1696
1697  /// \brief Construct an empty explicit cast.
1698  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1699    : CastExpr(SC, Shell) { }
1700
1701public:
1702  /// getTypeAsWritten - Returns the type that this expression is
1703  /// casting to, as written in the source code.
1704  QualType getTypeAsWritten() const { return TypeAsWritten; }
1705  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1706
1707  static bool classof(const Stmt *T) {
1708    StmtClass SC = T->getStmtClass();
1709    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1710      return true;
1711    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1712      return true;
1713
1714    return false;
1715  }
1716  static bool classof(const ExplicitCastExpr *) { return true; }
1717};
1718
1719/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1720/// cast in C++ (C++ [expr.cast]), which uses the syntax
1721/// (Type)expr. For example: @c (int)f.
1722class CStyleCastExpr : public ExplicitCastExpr {
1723  SourceLocation LPLoc; // the location of the left paren
1724  SourceLocation RPLoc; // the location of the right paren
1725public:
1726  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1727                    SourceLocation l, SourceLocation r) :
1728    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1729    LPLoc(l), RPLoc(r) {}
1730
1731  /// \brief Construct an empty C-style explicit cast.
1732  explicit CStyleCastExpr(EmptyShell Shell)
1733    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1734
1735  SourceLocation getLParenLoc() const { return LPLoc; }
1736  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1737
1738  SourceLocation getRParenLoc() const { return RPLoc; }
1739  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1740
1741  virtual SourceRange getSourceRange() const {
1742    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1743  }
1744  static bool classof(const Stmt *T) {
1745    return T->getStmtClass() == CStyleCastExprClass;
1746  }
1747  static bool classof(const CStyleCastExpr *) { return true; }
1748};
1749
1750/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1751///
1752/// This expression node kind describes a builtin binary operation,
1753/// such as "x + y" for integer values "x" and "y". The operands will
1754/// already have been converted to appropriate types (e.g., by
1755/// performing promotions or conversions).
1756///
1757/// In C++, where operators may be overloaded, a different kind of
1758/// expression node (CXXOperatorCallExpr) is used to express the
1759/// invocation of an overloaded operator with operator syntax. Within
1760/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1761/// used to store an expression "x + y" depends on the subexpressions
1762/// for x and y. If neither x or y is type-dependent, and the "+"
1763/// operator resolves to a built-in operation, BinaryOperator will be
1764/// used to express the computation (x and y may still be
1765/// value-dependent). If either x or y is type-dependent, or if the
1766/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1767/// be used to express the computation.
1768class BinaryOperator : public Expr {
1769public:
1770  enum Opcode {
1771    // Operators listed in order of precedence.
1772    // Note that additions to this should also update the StmtVisitor class.
1773    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1774    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1775    Add, Sub,         // [C99 6.5.6] Additive operators.
1776    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1777    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1778    EQ, NE,           // [C99 6.5.9] Equality operators.
1779    And,              // [C99 6.5.10] Bitwise AND operator.
1780    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1781    Or,               // [C99 6.5.12] Bitwise OR operator.
1782    LAnd,             // [C99 6.5.13] Logical AND operator.
1783    LOr,              // [C99 6.5.14] Logical OR operator.
1784    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1785    DivAssign, RemAssign,
1786    AddAssign, SubAssign,
1787    ShlAssign, ShrAssign,
1788    AndAssign, XorAssign,
1789    OrAssign,
1790    Comma             // [C99 6.5.17] Comma operator.
1791  };
1792private:
1793  enum { LHS, RHS, END_EXPR };
1794  Stmt* SubExprs[END_EXPR];
1795  Opcode Opc;
1796  SourceLocation OpLoc;
1797public:
1798
1799  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1800                 SourceLocation opLoc)
1801    : Expr(BinaryOperatorClass, ResTy,
1802           lhs->isTypeDependent() || rhs->isTypeDependent(),
1803           lhs->isValueDependent() || rhs->isValueDependent()),
1804      Opc(opc), OpLoc(opLoc) {
1805    SubExprs[LHS] = lhs;
1806    SubExprs[RHS] = rhs;
1807    assert(!isCompoundAssignmentOp() &&
1808           "Use ArithAssignBinaryOperator for compound assignments");
1809  }
1810
1811  /// \brief Construct an empty binary operator.
1812  explicit BinaryOperator(EmptyShell Empty)
1813    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1814
1815  SourceLocation getOperatorLoc() const { return OpLoc; }
1816  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1817
1818  Opcode getOpcode() const { return Opc; }
1819  void setOpcode(Opcode O) { Opc = O; }
1820
1821  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1822  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1823  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1824  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1825
1826  virtual SourceRange getSourceRange() const {
1827    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1828  }
1829
1830  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1831  /// corresponds to, e.g. "<<=".
1832  static const char *getOpcodeStr(Opcode Op);
1833
1834  /// \brief Retrieve the binary opcode that corresponds to the given
1835  /// overloaded operator.
1836  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1837
1838  /// \brief Retrieve the overloaded operator kind that corresponds to
1839  /// the given binary opcode.
1840  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1841
1842  /// predicates to categorize the respective opcodes.
1843  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1844  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1845  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1846  bool isShiftOp() const { return isShiftOp(Opc); }
1847
1848  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1849  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1850
1851  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1852  bool isRelationalOp() const { return isRelationalOp(Opc); }
1853
1854  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1855  bool isEqualityOp() const { return isEqualityOp(Opc); }
1856
1857  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1858  bool isComparisonOp() const { return isComparisonOp(Opc); }
1859
1860  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1861  bool isLogicalOp() const { return isLogicalOp(Opc); }
1862
1863  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1864  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1865  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1866
1867  static bool classof(const Stmt *S) {
1868    return S->getStmtClass() == BinaryOperatorClass ||
1869           S->getStmtClass() == CompoundAssignOperatorClass;
1870  }
1871  static bool classof(const BinaryOperator *) { return true; }
1872
1873  // Iterators
1874  virtual child_iterator child_begin();
1875  virtual child_iterator child_end();
1876
1877protected:
1878  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1879                 SourceLocation oploc, bool dead)
1880    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1881    SubExprs[LHS] = lhs;
1882    SubExprs[RHS] = rhs;
1883  }
1884
1885  BinaryOperator(StmtClass SC, EmptyShell Empty)
1886    : Expr(SC, Empty), Opc(MulAssign) { }
1887};
1888
1889/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1890/// track of the type the operation is performed in.  Due to the semantics of
1891/// these operators, the operands are promoted, the aritmetic performed, an
1892/// implicit conversion back to the result type done, then the assignment takes
1893/// place.  This captures the intermediate type which the computation is done
1894/// in.
1895class CompoundAssignOperator : public BinaryOperator {
1896  QualType ComputationLHSType;
1897  QualType ComputationResultType;
1898public:
1899  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1900                         QualType ResType, QualType CompLHSType,
1901                         QualType CompResultType,
1902                         SourceLocation OpLoc)
1903    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1904      ComputationLHSType(CompLHSType),
1905      ComputationResultType(CompResultType) {
1906    assert(isCompoundAssignmentOp() &&
1907           "Only should be used for compound assignments");
1908  }
1909
1910  /// \brief Build an empty compound assignment operator expression.
1911  explicit CompoundAssignOperator(EmptyShell Empty)
1912    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1913
1914  // The two computation types are the type the LHS is converted
1915  // to for the computation and the type of the result; the two are
1916  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1917  QualType getComputationLHSType() const { return ComputationLHSType; }
1918  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1919
1920  QualType getComputationResultType() const { return ComputationResultType; }
1921  void setComputationResultType(QualType T) { ComputationResultType = T; }
1922
1923  static bool classof(const CompoundAssignOperator *) { return true; }
1924  static bool classof(const Stmt *S) {
1925    return S->getStmtClass() == CompoundAssignOperatorClass;
1926  }
1927};
1928
1929/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1930/// GNU "missing LHS" extension is in use.
1931///
1932class ConditionalOperator : public Expr {
1933  enum { COND, LHS, RHS, END_EXPR };
1934  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1935  SourceLocation QuestionLoc, ColonLoc;
1936public:
1937  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1938                      SourceLocation CLoc, Expr *rhs, QualType t)
1939    : Expr(ConditionalOperatorClass, t,
1940           // FIXME: the type of the conditional operator doesn't
1941           // depend on the type of the conditional, but the standard
1942           // seems to imply that it could. File a bug!
1943           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1944           (cond->isValueDependent() ||
1945            (lhs && lhs->isValueDependent()) ||
1946            (rhs && rhs->isValueDependent()))),
1947      QuestionLoc(QLoc),
1948      ColonLoc(CLoc) {
1949    SubExprs[COND] = cond;
1950    SubExprs[LHS] = lhs;
1951    SubExprs[RHS] = rhs;
1952  }
1953
1954  /// \brief Build an empty conditional operator.
1955  explicit ConditionalOperator(EmptyShell Empty)
1956    : Expr(ConditionalOperatorClass, Empty) { }
1957
1958  // getCond - Return the expression representing the condition for
1959  //  the ?: operator.
1960  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1961  void setCond(Expr *E) { SubExprs[COND] = E; }
1962
1963  // getTrueExpr - Return the subexpression representing the value of the ?:
1964  //  expression if the condition evaluates to true.  In most cases this value
1965  //  will be the same as getLHS() except a GCC extension allows the left
1966  //  subexpression to be omitted, and instead of the condition be returned.
1967  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1968  //  is only evaluated once.
1969  Expr *getTrueExpr() const {
1970    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1971  }
1972
1973  // getTrueExpr - Return the subexpression representing the value of the ?:
1974  // expression if the condition evaluates to false. This is the same as getRHS.
1975  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1976
1977  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1978  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1979
1980  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1981  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1982
1983  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1984  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1985
1986  SourceLocation getColonLoc() const { return ColonLoc; }
1987  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1988
1989  virtual SourceRange getSourceRange() const {
1990    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1991  }
1992  static bool classof(const Stmt *T) {
1993    return T->getStmtClass() == ConditionalOperatorClass;
1994  }
1995  static bool classof(const ConditionalOperator *) { return true; }
1996
1997  // Iterators
1998  virtual child_iterator child_begin();
1999  virtual child_iterator child_end();
2000};
2001
2002/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2003class AddrLabelExpr : public Expr {
2004  SourceLocation AmpAmpLoc, LabelLoc;
2005  LabelStmt *Label;
2006public:
2007  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2008                QualType t)
2009    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2010
2011  /// \brief Build an empty address of a label expression.
2012  explicit AddrLabelExpr(EmptyShell Empty)
2013    : Expr(AddrLabelExprClass, Empty) { }
2014
2015  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2016  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2017  SourceLocation getLabelLoc() const { return LabelLoc; }
2018  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2019
2020  virtual SourceRange getSourceRange() const {
2021    return SourceRange(AmpAmpLoc, LabelLoc);
2022  }
2023
2024  LabelStmt *getLabel() const { return Label; }
2025  void setLabel(LabelStmt *S) { Label = S; }
2026
2027  static bool classof(const Stmt *T) {
2028    return T->getStmtClass() == AddrLabelExprClass;
2029  }
2030  static bool classof(const AddrLabelExpr *) { return true; }
2031
2032  // Iterators
2033  virtual child_iterator child_begin();
2034  virtual child_iterator child_end();
2035};
2036
2037/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2038/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2039/// takes the value of the last subexpression.
2040class StmtExpr : public Expr {
2041  Stmt *SubStmt;
2042  SourceLocation LParenLoc, RParenLoc;
2043public:
2044  StmtExpr(CompoundStmt *substmt, QualType T,
2045           SourceLocation lp, SourceLocation rp) :
2046    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
2047
2048  /// \brief Build an empty statement expression.
2049  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2050
2051  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2052  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2053  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2054
2055  virtual SourceRange getSourceRange() const {
2056    return SourceRange(LParenLoc, RParenLoc);
2057  }
2058
2059  SourceLocation getLParenLoc() const { return LParenLoc; }
2060  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2061  SourceLocation getRParenLoc() const { return RParenLoc; }
2062  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2063
2064  static bool classof(const Stmt *T) {
2065    return T->getStmtClass() == StmtExprClass;
2066  }
2067  static bool classof(const StmtExpr *) { return true; }
2068
2069  // Iterators
2070  virtual child_iterator child_begin();
2071  virtual child_iterator child_end();
2072};
2073
2074/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2075/// This AST node represents a function that returns 1 if two *types* (not
2076/// expressions) are compatible. The result of this built-in function can be
2077/// used in integer constant expressions.
2078class TypesCompatibleExpr : public Expr {
2079  QualType Type1;
2080  QualType Type2;
2081  SourceLocation BuiltinLoc, RParenLoc;
2082public:
2083  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2084                      QualType t1, QualType t2, SourceLocation RP) :
2085    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
2086    BuiltinLoc(BLoc), RParenLoc(RP) {}
2087
2088  /// \brief Build an empty __builtin_type_compatible_p expression.
2089  explicit TypesCompatibleExpr(EmptyShell Empty)
2090    : Expr(TypesCompatibleExprClass, Empty) { }
2091
2092  QualType getArgType1() const { return Type1; }
2093  void setArgType1(QualType T) { Type1 = T; }
2094  QualType getArgType2() const { return Type2; }
2095  void setArgType2(QualType T) { Type2 = T; }
2096
2097  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2098  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2099
2100  SourceLocation getRParenLoc() const { return RParenLoc; }
2101  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2102
2103  virtual SourceRange getSourceRange() const {
2104    return SourceRange(BuiltinLoc, RParenLoc);
2105  }
2106  static bool classof(const Stmt *T) {
2107    return T->getStmtClass() == TypesCompatibleExprClass;
2108  }
2109  static bool classof(const TypesCompatibleExpr *) { return true; }
2110
2111  // Iterators
2112  virtual child_iterator child_begin();
2113  virtual child_iterator child_end();
2114};
2115
2116/// ShuffleVectorExpr - clang-specific builtin-in function
2117/// __builtin_shufflevector.
2118/// This AST node represents a operator that does a constant
2119/// shuffle, similar to LLVM's shufflevector instruction. It takes
2120/// two vectors and a variable number of constant indices,
2121/// and returns the appropriately shuffled vector.
2122class ShuffleVectorExpr : public Expr {
2123  SourceLocation BuiltinLoc, RParenLoc;
2124
2125  // SubExprs - the list of values passed to the __builtin_shufflevector
2126  // function. The first two are vectors, and the rest are constant
2127  // indices.  The number of values in this list is always
2128  // 2+the number of indices in the vector type.
2129  Stmt **SubExprs;
2130  unsigned NumExprs;
2131
2132protected:
2133  virtual void DoDestroy(ASTContext &C);
2134
2135public:
2136  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2137                    QualType Type, SourceLocation BLoc,
2138                    SourceLocation RP) :
2139    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
2140    RParenLoc(RP), NumExprs(nexpr) {
2141
2142    SubExprs = new (C) Stmt*[nexpr];
2143    for (unsigned i = 0; i < nexpr; i++)
2144      SubExprs[i] = args[i];
2145  }
2146
2147  /// \brief Build an empty vector-shuffle expression.
2148  explicit ShuffleVectorExpr(EmptyShell Empty)
2149    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2150
2151  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2152  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2153
2154  SourceLocation getRParenLoc() const { return RParenLoc; }
2155  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2156
2157  virtual SourceRange getSourceRange() const {
2158    return SourceRange(BuiltinLoc, RParenLoc);
2159  }
2160  static bool classof(const Stmt *T) {
2161    return T->getStmtClass() == ShuffleVectorExprClass;
2162  }
2163  static bool classof(const ShuffleVectorExpr *) { return true; }
2164
2165  ~ShuffleVectorExpr() {}
2166
2167  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2168  /// constant expression, the actual arguments passed in, and the function
2169  /// pointers.
2170  unsigned getNumSubExprs() const { return NumExprs; }
2171
2172  /// getExpr - Return the Expr at the specified index.
2173  Expr *getExpr(unsigned Index) {
2174    assert((Index < NumExprs) && "Arg access out of range!");
2175    return cast<Expr>(SubExprs[Index]);
2176  }
2177  const Expr *getExpr(unsigned Index) const {
2178    assert((Index < NumExprs) && "Arg access out of range!");
2179    return cast<Expr>(SubExprs[Index]);
2180  }
2181
2182  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2183
2184  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2185    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2186    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2187  }
2188
2189  // Iterators
2190  virtual child_iterator child_begin();
2191  virtual child_iterator child_end();
2192};
2193
2194/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2195/// This AST node is similar to the conditional operator (?:) in C, with
2196/// the following exceptions:
2197/// - the test expression must be a integer constant expression.
2198/// - the expression returned acts like the chosen subexpression in every
2199///   visible way: the type is the same as that of the chosen subexpression,
2200///   and all predicates (whether it's an l-value, whether it's an integer
2201///   constant expression, etc.) return the same result as for the chosen
2202///   sub-expression.
2203class ChooseExpr : public Expr {
2204  enum { COND, LHS, RHS, END_EXPR };
2205  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2206  SourceLocation BuiltinLoc, RParenLoc;
2207public:
2208  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2209             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2210    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2211      BuiltinLoc(BLoc), RParenLoc(RP) {
2212      SubExprs[COND] = cond;
2213      SubExprs[LHS] = lhs;
2214      SubExprs[RHS] = rhs;
2215    }
2216
2217  /// \brief Build an empty __builtin_choose_expr.
2218  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2219
2220  /// isConditionTrue - Return whether the condition is true (i.e. not
2221  /// equal to zero).
2222  bool isConditionTrue(ASTContext &C) const;
2223
2224  /// getChosenSubExpr - Return the subexpression chosen according to the
2225  /// condition.
2226  Expr *getChosenSubExpr(ASTContext &C) const {
2227    return isConditionTrue(C) ? getLHS() : getRHS();
2228  }
2229
2230  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2231  void setCond(Expr *E) { SubExprs[COND] = E; }
2232  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2233  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2234  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2235  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2236
2237  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2238  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2239
2240  SourceLocation getRParenLoc() const { return RParenLoc; }
2241  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2242
2243  virtual SourceRange getSourceRange() const {
2244    return SourceRange(BuiltinLoc, RParenLoc);
2245  }
2246  static bool classof(const Stmt *T) {
2247    return T->getStmtClass() == ChooseExprClass;
2248  }
2249  static bool classof(const ChooseExpr *) { return true; }
2250
2251  // Iterators
2252  virtual child_iterator child_begin();
2253  virtual child_iterator child_end();
2254};
2255
2256/// GNUNullExpr - Implements the GNU __null extension, which is a name
2257/// for a null pointer constant that has integral type (e.g., int or
2258/// long) and is the same size and alignment as a pointer. The __null
2259/// extension is typically only used by system headers, which define
2260/// NULL as __null in C++ rather than using 0 (which is an integer
2261/// that may not match the size of a pointer).
2262class GNUNullExpr : public Expr {
2263  /// TokenLoc - The location of the __null keyword.
2264  SourceLocation TokenLoc;
2265
2266public:
2267  GNUNullExpr(QualType Ty, SourceLocation Loc)
2268    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2269
2270  /// \brief Build an empty GNU __null expression.
2271  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2272
2273  /// getTokenLocation - The location of the __null token.
2274  SourceLocation getTokenLocation() const { return TokenLoc; }
2275  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2276
2277  virtual SourceRange getSourceRange() const {
2278    return SourceRange(TokenLoc);
2279  }
2280  static bool classof(const Stmt *T) {
2281    return T->getStmtClass() == GNUNullExprClass;
2282  }
2283  static bool classof(const GNUNullExpr *) { return true; }
2284
2285  // Iterators
2286  virtual child_iterator child_begin();
2287  virtual child_iterator child_end();
2288};
2289
2290/// VAArgExpr, used for the builtin function __builtin_va_start.
2291class VAArgExpr : public Expr {
2292  Stmt *Val;
2293  SourceLocation BuiltinLoc, RParenLoc;
2294public:
2295  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2296    : Expr(VAArgExprClass, t),
2297      Val(e),
2298      BuiltinLoc(BLoc),
2299      RParenLoc(RPLoc) { }
2300
2301  /// \brief Create an empty __builtin_va_start expression.
2302  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2303
2304  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2305  Expr *getSubExpr() { return cast<Expr>(Val); }
2306  void setSubExpr(Expr *E) { Val = E; }
2307
2308  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2309  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2310
2311  SourceLocation getRParenLoc() const { return RParenLoc; }
2312  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2313
2314  virtual SourceRange getSourceRange() const {
2315    return SourceRange(BuiltinLoc, RParenLoc);
2316  }
2317  static bool classof(const Stmt *T) {
2318    return T->getStmtClass() == VAArgExprClass;
2319  }
2320  static bool classof(const VAArgExpr *) { return true; }
2321
2322  // Iterators
2323  virtual child_iterator child_begin();
2324  virtual child_iterator child_end();
2325};
2326
2327/// @brief Describes an C or C++ initializer list.
2328///
2329/// InitListExpr describes an initializer list, which can be used to
2330/// initialize objects of different types, including
2331/// struct/class/union types, arrays, and vectors. For example:
2332///
2333/// @code
2334/// struct foo x = { 1, { 2, 3 } };
2335/// @endcode
2336///
2337/// Prior to semantic analysis, an initializer list will represent the
2338/// initializer list as written by the user, but will have the
2339/// placeholder type "void". This initializer list is called the
2340/// syntactic form of the initializer, and may contain C99 designated
2341/// initializers (represented as DesignatedInitExprs), initializations
2342/// of subobject members without explicit braces, and so on. Clients
2343/// interested in the original syntax of the initializer list should
2344/// use the syntactic form of the initializer list.
2345///
2346/// After semantic analysis, the initializer list will represent the
2347/// semantic form of the initializer, where the initializations of all
2348/// subobjects are made explicit with nested InitListExpr nodes and
2349/// C99 designators have been eliminated by placing the designated
2350/// initializations into the subobject they initialize. Additionally,
2351/// any "holes" in the initialization, where no initializer has been
2352/// specified for a particular subobject, will be replaced with
2353/// implicitly-generated ImplicitValueInitExpr expressions that
2354/// value-initialize the subobjects. Note, however, that the
2355/// initializer lists may still have fewer initializers than there are
2356/// elements to initialize within the object.
2357///
2358/// Given the semantic form of the initializer list, one can retrieve
2359/// the original syntactic form of that initializer list (if it
2360/// exists) using getSyntacticForm(). Since many initializer lists
2361/// have the same syntactic and semantic forms, getSyntacticForm() may
2362/// return NULL, indicating that the current initializer list also
2363/// serves as its syntactic form.
2364class InitListExpr : public Expr {
2365  // FIXME: Eliminate this vector in favor of ASTContext allocation
2366  std::vector<Stmt *> InitExprs;
2367  SourceLocation LBraceLoc, RBraceLoc;
2368
2369  /// Contains the initializer list that describes the syntactic form
2370  /// written in the source code.
2371  InitListExpr *SyntacticForm;
2372
2373  /// If this initializer list initializes a union, specifies which
2374  /// field within the union will be initialized.
2375  FieldDecl *UnionFieldInit;
2376
2377  /// Whether this initializer list originally had a GNU array-range
2378  /// designator in it. This is a temporary marker used by CodeGen.
2379  bool HadArrayRangeDesignator;
2380
2381public:
2382  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2383               SourceLocation rbraceloc);
2384
2385  /// \brief Build an empty initializer list.
2386  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2387
2388  unsigned getNumInits() const { return InitExprs.size(); }
2389
2390  const Expr* getInit(unsigned Init) const {
2391    assert(Init < getNumInits() && "Initializer access out of range!");
2392    return cast_or_null<Expr>(InitExprs[Init]);
2393  }
2394
2395  Expr* getInit(unsigned Init) {
2396    assert(Init < getNumInits() && "Initializer access out of range!");
2397    return cast_or_null<Expr>(InitExprs[Init]);
2398  }
2399
2400  void setInit(unsigned Init, Expr *expr) {
2401    assert(Init < getNumInits() && "Initializer access out of range!");
2402    InitExprs[Init] = expr;
2403  }
2404
2405  /// \brief Reserve space for some number of initializers.
2406  void reserveInits(unsigned NumInits);
2407
2408  /// @brief Specify the number of initializers
2409  ///
2410  /// If there are more than @p NumInits initializers, the remaining
2411  /// initializers will be destroyed. If there are fewer than @p
2412  /// NumInits initializers, NULL expressions will be added for the
2413  /// unknown initializers.
2414  void resizeInits(ASTContext &Context, unsigned NumInits);
2415
2416  /// @brief Updates the initializer at index @p Init with the new
2417  /// expression @p expr, and returns the old expression at that
2418  /// location.
2419  ///
2420  /// When @p Init is out of range for this initializer list, the
2421  /// initializer list will be extended with NULL expressions to
2422  /// accomodate the new entry.
2423  Expr *updateInit(unsigned Init, Expr *expr);
2424
2425  /// \brief If this initializes a union, specifies which field in the
2426  /// union to initialize.
2427  ///
2428  /// Typically, this field is the first named field within the
2429  /// union. However, a designated initializer can specify the
2430  /// initialization of a different field within the union.
2431  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2432  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2433
2434  // Explicit InitListExpr's originate from source code (and have valid source
2435  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2436  bool isExplicit() {
2437    return LBraceLoc.isValid() && RBraceLoc.isValid();
2438  }
2439
2440  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2441  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2442  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2443  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2444
2445  /// @brief Retrieve the initializer list that describes the
2446  /// syntactic form of the initializer.
2447  ///
2448  ///
2449  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2450  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2451
2452  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2453  void sawArrayRangeDesignator(bool ARD = true) {
2454    HadArrayRangeDesignator = ARD;
2455  }
2456
2457  virtual SourceRange getSourceRange() const {
2458    return SourceRange(LBraceLoc, RBraceLoc);
2459  }
2460  static bool classof(const Stmt *T) {
2461    return T->getStmtClass() == InitListExprClass;
2462  }
2463  static bool classof(const InitListExpr *) { return true; }
2464
2465  // Iterators
2466  virtual child_iterator child_begin();
2467  virtual child_iterator child_end();
2468
2469  typedef std::vector<Stmt *>::iterator iterator;
2470  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2471
2472  iterator begin() { return InitExprs.begin(); }
2473  iterator end() { return InitExprs.end(); }
2474  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2475  reverse_iterator rend() { return InitExprs.rend(); }
2476};
2477
2478/// @brief Represents a C99 designated initializer expression.
2479///
2480/// A designated initializer expression (C99 6.7.8) contains one or
2481/// more designators (which can be field designators, array
2482/// designators, or GNU array-range designators) followed by an
2483/// expression that initializes the field or element(s) that the
2484/// designators refer to. For example, given:
2485///
2486/// @code
2487/// struct point {
2488///   double x;
2489///   double y;
2490/// };
2491/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2492/// @endcode
2493///
2494/// The InitListExpr contains three DesignatedInitExprs, the first of
2495/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2496/// designators, one array designator for @c [2] followed by one field
2497/// designator for @c .y. The initalization expression will be 1.0.
2498class DesignatedInitExpr : public Expr {
2499public:
2500  /// \brief Forward declaration of the Designator class.
2501  class Designator;
2502
2503private:
2504  /// The location of the '=' or ':' prior to the actual initializer
2505  /// expression.
2506  SourceLocation EqualOrColonLoc;
2507
2508  /// Whether this designated initializer used the GNU deprecated
2509  /// syntax rather than the C99 '=' syntax.
2510  bool GNUSyntax : 1;
2511
2512  /// The number of designators in this initializer expression.
2513  unsigned NumDesignators : 15;
2514
2515  /// \brief The designators in this designated initialization
2516  /// expression.
2517  Designator *Designators;
2518
2519  /// The number of subexpressions of this initializer expression,
2520  /// which contains both the initializer and any additional
2521  /// expressions used by array and array-range designators.
2522  unsigned NumSubExprs : 16;
2523
2524
2525  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2526                     const Designator *Designators,
2527                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2528                     Expr **IndexExprs, unsigned NumIndexExprs,
2529                     Expr *Init);
2530
2531  explicit DesignatedInitExpr(unsigned NumSubExprs)
2532    : Expr(DesignatedInitExprClass, EmptyShell()),
2533      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2534
2535protected:
2536  virtual void DoDestroy(ASTContext &C);
2537
2538public:
2539  /// A field designator, e.g., ".x".
2540  struct FieldDesignator {
2541    /// Refers to the field that is being initialized. The low bit
2542    /// of this field determines whether this is actually a pointer
2543    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2544    /// initially constructed, a field designator will store an
2545    /// IdentifierInfo*. After semantic analysis has resolved that
2546    /// name, the field designator will instead store a FieldDecl*.
2547    uintptr_t NameOrField;
2548
2549    /// The location of the '.' in the designated initializer.
2550    unsigned DotLoc;
2551
2552    /// The location of the field name in the designated initializer.
2553    unsigned FieldLoc;
2554  };
2555
2556  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2557  struct ArrayOrRangeDesignator {
2558    /// Location of the first index expression within the designated
2559    /// initializer expression's list of subexpressions.
2560    unsigned Index;
2561    /// The location of the '[' starting the array range designator.
2562    unsigned LBracketLoc;
2563    /// The location of the ellipsis separating the start and end
2564    /// indices. Only valid for GNU array-range designators.
2565    unsigned EllipsisLoc;
2566    /// The location of the ']' terminating the array range designator.
2567    unsigned RBracketLoc;
2568  };
2569
2570  /// @brief Represents a single C99 designator.
2571  ///
2572  /// @todo This class is infuriatingly similar to clang::Designator,
2573  /// but minor differences (storing indices vs. storing pointers)
2574  /// keep us from reusing it. Try harder, later, to rectify these
2575  /// differences.
2576  class Designator {
2577    /// @brief The kind of designator this describes.
2578    enum {
2579      FieldDesignator,
2580      ArrayDesignator,
2581      ArrayRangeDesignator
2582    } Kind;
2583
2584    union {
2585      /// A field designator, e.g., ".x".
2586      struct FieldDesignator Field;
2587      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2588      struct ArrayOrRangeDesignator ArrayOrRange;
2589    };
2590    friend class DesignatedInitExpr;
2591
2592  public:
2593    Designator() {}
2594
2595    /// @brief Initializes a field designator.
2596    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2597               SourceLocation FieldLoc)
2598      : Kind(FieldDesignator) {
2599      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2600      Field.DotLoc = DotLoc.getRawEncoding();
2601      Field.FieldLoc = FieldLoc.getRawEncoding();
2602    }
2603
2604    /// @brief Initializes an array designator.
2605    Designator(unsigned Index, SourceLocation LBracketLoc,
2606               SourceLocation RBracketLoc)
2607      : Kind(ArrayDesignator) {
2608      ArrayOrRange.Index = Index;
2609      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2610      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2611      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2612    }
2613
2614    /// @brief Initializes a GNU array-range designator.
2615    Designator(unsigned Index, SourceLocation LBracketLoc,
2616               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2617      : Kind(ArrayRangeDesignator) {
2618      ArrayOrRange.Index = Index;
2619      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2620      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2621      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2622    }
2623
2624    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2625    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2626    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2627
2628    IdentifierInfo * getFieldName();
2629
2630    FieldDecl *getField() {
2631      assert(Kind == FieldDesignator && "Only valid on a field designator");
2632      if (Field.NameOrField & 0x01)
2633        return 0;
2634      else
2635        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2636    }
2637
2638    void setField(FieldDecl *FD) {
2639      assert(Kind == FieldDesignator && "Only valid on a field designator");
2640      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2641    }
2642
2643    SourceLocation getDotLoc() const {
2644      assert(Kind == FieldDesignator && "Only valid on a field designator");
2645      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2646    }
2647
2648    SourceLocation getFieldLoc() const {
2649      assert(Kind == FieldDesignator && "Only valid on a field designator");
2650      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2651    }
2652
2653    SourceLocation getLBracketLoc() const {
2654      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2655             "Only valid on an array or array-range designator");
2656      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2657    }
2658
2659    SourceLocation getRBracketLoc() const {
2660      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2661             "Only valid on an array or array-range designator");
2662      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2663    }
2664
2665    SourceLocation getEllipsisLoc() const {
2666      assert(Kind == ArrayRangeDesignator &&
2667             "Only valid on an array-range designator");
2668      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2669    }
2670
2671    unsigned getFirstExprIndex() const {
2672      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2673             "Only valid on an array or array-range designator");
2674      return ArrayOrRange.Index;
2675    }
2676
2677    SourceLocation getStartLocation() const {
2678      if (Kind == FieldDesignator)
2679        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2680      else
2681        return getLBracketLoc();
2682    }
2683  };
2684
2685  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2686                                    unsigned NumDesignators,
2687                                    Expr **IndexExprs, unsigned NumIndexExprs,
2688                                    SourceLocation EqualOrColonLoc,
2689                                    bool GNUSyntax, Expr *Init);
2690
2691  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2692
2693  /// @brief Returns the number of designators in this initializer.
2694  unsigned size() const { return NumDesignators; }
2695
2696  // Iterator access to the designators.
2697  typedef Designator* designators_iterator;
2698  designators_iterator designators_begin() { return Designators; }
2699  designators_iterator designators_end() {
2700    return Designators + NumDesignators;
2701  }
2702
2703  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2704
2705  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2706
2707  Expr *getArrayIndex(const Designator& D);
2708  Expr *getArrayRangeStart(const Designator& D);
2709  Expr *getArrayRangeEnd(const Designator& D);
2710
2711  /// @brief Retrieve the location of the '=' that precedes the
2712  /// initializer value itself, if present.
2713  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2714  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2715
2716  /// @brief Determines whether this designated initializer used the
2717  /// deprecated GNU syntax for designated initializers.
2718  bool usesGNUSyntax() const { return GNUSyntax; }
2719  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2720
2721  /// @brief Retrieve the initializer value.
2722  Expr *getInit() const {
2723    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2724  }
2725
2726  void setInit(Expr *init) {
2727    *child_begin() = init;
2728  }
2729
2730  /// \brief Retrieve the total number of subexpressions in this
2731  /// designated initializer expression, including the actual
2732  /// initialized value and any expressions that occur within array
2733  /// and array-range designators.
2734  unsigned getNumSubExprs() const { return NumSubExprs; }
2735
2736  Expr *getSubExpr(unsigned Idx) {
2737    assert(Idx < NumSubExprs && "Subscript out of range");
2738    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2739    Ptr += sizeof(DesignatedInitExpr);
2740    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2741  }
2742
2743  void setSubExpr(unsigned Idx, Expr *E) {
2744    assert(Idx < NumSubExprs && "Subscript out of range");
2745    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2746    Ptr += sizeof(DesignatedInitExpr);
2747    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2748  }
2749
2750  /// \brief Replaces the designator at index @p Idx with the series
2751  /// of designators in [First, Last).
2752  void ExpandDesignator(unsigned Idx, const Designator *First,
2753                        const Designator *Last);
2754
2755  virtual SourceRange getSourceRange() const;
2756
2757  static bool classof(const Stmt *T) {
2758    return T->getStmtClass() == DesignatedInitExprClass;
2759  }
2760  static bool classof(const DesignatedInitExpr *) { return true; }
2761
2762  // Iterators
2763  virtual child_iterator child_begin();
2764  virtual child_iterator child_end();
2765};
2766
2767/// \brief Represents an implicitly-generated value initialization of
2768/// an object of a given type.
2769///
2770/// Implicit value initializations occur within semantic initializer
2771/// list expressions (InitListExpr) as placeholders for subobject
2772/// initializations not explicitly specified by the user.
2773///
2774/// \see InitListExpr
2775class ImplicitValueInitExpr : public Expr {
2776public:
2777  explicit ImplicitValueInitExpr(QualType ty)
2778    : Expr(ImplicitValueInitExprClass, ty) { }
2779
2780  /// \brief Construct an empty implicit value initialization.
2781  explicit ImplicitValueInitExpr(EmptyShell Empty)
2782    : Expr(ImplicitValueInitExprClass, Empty) { }
2783
2784  static bool classof(const Stmt *T) {
2785    return T->getStmtClass() == ImplicitValueInitExprClass;
2786  }
2787  static bool classof(const ImplicitValueInitExpr *) { return true; }
2788
2789  virtual SourceRange getSourceRange() const {
2790    return SourceRange();
2791  }
2792
2793  // Iterators
2794  virtual child_iterator child_begin();
2795  virtual child_iterator child_end();
2796};
2797
2798
2799class ParenListExpr : public Expr {
2800  Stmt **Exprs;
2801  unsigned NumExprs;
2802  SourceLocation LParenLoc, RParenLoc;
2803
2804protected:
2805  virtual void DoDestroy(ASTContext& C);
2806
2807public:
2808  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2809                unsigned numexprs, SourceLocation rparenloc);
2810
2811  ~ParenListExpr() {}
2812
2813  /// \brief Build an empty paren list.
2814  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2815
2816  unsigned getNumExprs() const { return NumExprs; }
2817
2818  const Expr* getExpr(unsigned Init) const {
2819    assert(Init < getNumExprs() && "Initializer access out of range!");
2820    return cast_or_null<Expr>(Exprs[Init]);
2821  }
2822
2823  Expr* getExpr(unsigned Init) {
2824    assert(Init < getNumExprs() && "Initializer access out of range!");
2825    return cast_or_null<Expr>(Exprs[Init]);
2826  }
2827
2828  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2829
2830  SourceLocation getLParenLoc() const { return LParenLoc; }
2831  SourceLocation getRParenLoc() const { return RParenLoc; }
2832
2833  virtual SourceRange getSourceRange() const {
2834    return SourceRange(LParenLoc, RParenLoc);
2835  }
2836  static bool classof(const Stmt *T) {
2837    return T->getStmtClass() == ParenListExprClass;
2838  }
2839  static bool classof(const ParenListExpr *) { return true; }
2840
2841  // Iterators
2842  virtual child_iterator child_begin();
2843  virtual child_iterator child_end();
2844};
2845
2846
2847//===----------------------------------------------------------------------===//
2848// Clang Extensions
2849//===----------------------------------------------------------------------===//
2850
2851
2852/// ExtVectorElementExpr - This represents access to specific elements of a
2853/// vector, and may occur on the left hand side or right hand side.  For example
2854/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2855///
2856/// Note that the base may have either vector or pointer to vector type, just
2857/// like a struct field reference.
2858///
2859class ExtVectorElementExpr : public Expr {
2860  Stmt *Base;
2861  IdentifierInfo *Accessor;
2862  SourceLocation AccessorLoc;
2863public:
2864  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2865                       SourceLocation loc)
2866    : Expr(ExtVectorElementExprClass, ty),
2867      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2868
2869  /// \brief Build an empty vector element expression.
2870  explicit ExtVectorElementExpr(EmptyShell Empty)
2871    : Expr(ExtVectorElementExprClass, Empty) { }
2872
2873  const Expr *getBase() const { return cast<Expr>(Base); }
2874  Expr *getBase() { return cast<Expr>(Base); }
2875  void setBase(Expr *E) { Base = E; }
2876
2877  IdentifierInfo &getAccessor() const { return *Accessor; }
2878  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2879
2880  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2881  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2882
2883  /// getNumElements - Get the number of components being selected.
2884  unsigned getNumElements() const;
2885
2886  /// containsDuplicateElements - Return true if any element access is
2887  /// repeated.
2888  bool containsDuplicateElements() const;
2889
2890  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2891  /// aggregate Constant of ConstantInt(s).
2892  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2893
2894  virtual SourceRange getSourceRange() const {
2895    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2896  }
2897
2898  /// isArrow - Return true if the base expression is a pointer to vector,
2899  /// return false if the base expression is a vector.
2900  bool isArrow() const;
2901
2902  static bool classof(const Stmt *T) {
2903    return T->getStmtClass() == ExtVectorElementExprClass;
2904  }
2905  static bool classof(const ExtVectorElementExpr *) { return true; }
2906
2907  // Iterators
2908  virtual child_iterator child_begin();
2909  virtual child_iterator child_end();
2910};
2911
2912
2913/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2914/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2915class BlockExpr : public Expr {
2916protected:
2917  BlockDecl *TheBlock;
2918  bool HasBlockDeclRefExprs;
2919public:
2920  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2921    : Expr(BlockExprClass, ty),
2922      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2923
2924  /// \brief Build an empty block expression.
2925  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2926
2927  const BlockDecl *getBlockDecl() const { return TheBlock; }
2928  BlockDecl *getBlockDecl() { return TheBlock; }
2929  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2930
2931  // Convenience functions for probing the underlying BlockDecl.
2932  SourceLocation getCaretLocation() const;
2933  const Stmt *getBody() const;
2934  Stmt *getBody();
2935
2936  virtual SourceRange getSourceRange() const {
2937    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2938  }
2939
2940  /// getFunctionType - Return the underlying function type for this block.
2941  const FunctionType *getFunctionType() const;
2942
2943  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2944  /// inside of the block that reference values outside the block.
2945  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2946  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2947
2948  static bool classof(const Stmt *T) {
2949    return T->getStmtClass() == BlockExprClass;
2950  }
2951  static bool classof(const BlockExpr *) { return true; }
2952
2953  // Iterators
2954  virtual child_iterator child_begin();
2955  virtual child_iterator child_end();
2956};
2957
2958/// BlockDeclRefExpr - A reference to a declared variable, function,
2959/// enum, etc.
2960class BlockDeclRefExpr : public Expr {
2961  ValueDecl *D;
2962  SourceLocation Loc;
2963  bool IsByRef : 1;
2964  bool ConstQualAdded : 1;
2965public:
2966  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2967                   bool constAdded = false) :
2968       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2969                                       ConstQualAdded(constAdded) {}
2970
2971  // \brief Build an empty reference to a declared variable in a
2972  // block.
2973  explicit BlockDeclRefExpr(EmptyShell Empty)
2974    : Expr(BlockDeclRefExprClass, Empty) { }
2975
2976  ValueDecl *getDecl() { return D; }
2977  const ValueDecl *getDecl() const { return D; }
2978  void setDecl(ValueDecl *VD) { D = VD; }
2979
2980  SourceLocation getLocation() const { return Loc; }
2981  void setLocation(SourceLocation L) { Loc = L; }
2982
2983  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2984
2985  bool isByRef() const { return IsByRef; }
2986  void setByRef(bool BR) { IsByRef = BR; }
2987
2988  bool isConstQualAdded() const { return ConstQualAdded; }
2989  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2990
2991  static bool classof(const Stmt *T) {
2992    return T->getStmtClass() == BlockDeclRefExprClass;
2993  }
2994  static bool classof(const BlockDeclRefExpr *) { return true; }
2995
2996  // Iterators
2997  virtual child_iterator child_begin();
2998  virtual child_iterator child_end();
2999};
3000
3001}  // end namespace clang
3002
3003#endif
3004