Expr.h revision b648023da23e8b227cdda57a241db4c6f368726b
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37
38/// Expr - This represents one expression.  Note that Expr's are subclasses of
39/// Stmt.  This allows an expression to be transparently used any place a Stmt
40/// is required.
41///
42class Expr : public Stmt {
43  QualType TR;
44
45protected:
46  /// TypeDependent - Whether this expression is type-dependent
47  /// (C++ [temp.dep.expr]).
48  bool TypeDependent : 1;
49
50  /// ValueDependent - Whether this expression is value-dependent
51  /// (C++ [temp.dep.constexpr]).
52  bool ValueDependent : 1;
53
54  // FIXME: Eventually, this constructor should go away and we should
55  // require every subclass to provide type/value-dependence
56  // information.
57  Expr(StmtClass SC, QualType T)
58    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
59    setType(T);
60  }
61
62  Expr(StmtClass SC, QualType T, bool TD, bool VD)
63    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
64    setType(T);
65  }
66
67  /// \brief Construct an empty expression.
68  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
69
70public:
71  /// \brief Increases the reference count for this expression.
72  ///
73  /// Invoke the Retain() operation when this expression
74  /// is being shared by another owner.
75  Expr *Retain() {
76    Stmt::Retain();
77    return this;
78  }
79
80  QualType getType() const { return TR; }
81  void setType(QualType t) {
82    // In C++, the type of an expression is always adjusted so that it
83    // will not have reference type an expression will never have
84    // reference type (C++ [expr]p6). Use
85    // QualType::getNonReferenceType() to retrieve the non-reference
86    // type. Additionally, inspect Expr::isLvalue to determine whether
87    // an expression that is adjusted in this manner should be
88    // considered an lvalue.
89    assert((TR.isNull() || !TR->isReferenceType()) &&
90           "Expressions can't have reference type");
91
92    TR = t;
93  }
94
95  /// isValueDependent - Determines whether this expression is
96  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
97  /// array bound of "Chars" in the following example is
98  /// value-dependent.
99  /// @code
100  /// template<int Size, char (&Chars)[Size]> struct meta_string;
101  /// @endcode
102  bool isValueDependent() const { return ValueDependent; }
103
104  /// \brief Set whether this expression is value-dependent or not.
105  void setValueDependent(bool VD) { ValueDependent = VD; }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) { TypeDependent = TD; }
122
123  /// SourceLocation tokens are not useful in isolation - they are low level
124  /// value objects created/interpreted by SourceManager. We assume AST
125  /// clients will have a pointer to the respective SourceManager.
126  virtual SourceRange getSourceRange() const = 0;
127
128  /// getExprLoc - Return the preferred location for the arrow when diagnosing
129  /// a problem with a generic expression.
130  virtual SourceLocation getExprLoc() const { return getLocStart(); }
131
132  /// isUnusedResultAWarning - Return true if this immediate expression should
133  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
134  /// with location to warn on and the source range[s] to report with the
135  /// warning.
136  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
137                              SourceRange &R2) const;
138
139  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
140  /// incomplete type other than void. Nonarray expressions that can be lvalues:
141  ///  - name, where name must be a variable
142  ///  - e[i]
143  ///  - (e), where e must be an lvalue
144  ///  - e.name, where e must be an lvalue
145  ///  - e->name
146  ///  - *e, the type of e cannot be a function type
147  ///  - string-constant
148  ///  - reference type [C++ [expr]]
149  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
150  ///
151  enum isLvalueResult {
152    LV_Valid,
153    LV_NotObjectType,
154    LV_IncompleteVoidType,
155    LV_DuplicateVectorComponents,
156    LV_InvalidExpression,
157    LV_MemberFunction
158  };
159  isLvalueResult isLvalue(ASTContext &Ctx) const;
160
161  // Same as above, but excluding checks for non-object and void types in C
162  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
163
164  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
165  /// does not have an incomplete type, does not have a const-qualified type,
166  /// and if it is a structure or union, does not have any member (including,
167  /// recursively, any member or element of all contained aggregates or unions)
168  /// with a const-qualified type.
169  ///
170  /// \param Loc [in] [out] - A source location which *may* be filled
171  /// in with the location of the expression making this a
172  /// non-modifiable lvalue, if specified.
173  enum isModifiableLvalueResult {
174    MLV_Valid,
175    MLV_NotObjectType,
176    MLV_IncompleteVoidType,
177    MLV_DuplicateVectorComponents,
178    MLV_InvalidExpression,
179    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
180    MLV_IncompleteType,
181    MLV_ConstQualified,
182    MLV_ArrayType,
183    MLV_NotBlockQualified,
184    MLV_ReadonlyProperty,
185    MLV_NoSetterProperty,
186    MLV_MemberFunction
187  };
188  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
189                                              SourceLocation *Loc = 0) const;
190
191  /// \brief If this expression refers to a bit-field, retrieve the
192  /// declaration of that bit-field.
193  FieldDecl *getBitField();
194
195  const FieldDecl *getBitField() const {
196    return const_cast<Expr*>(this)->getBitField();
197  }
198
199  /// isIntegerConstantExpr - Return true if this expression is a valid integer
200  /// constant expression, and, if so, return its value in Result.  If not a
201  /// valid i-c-e, return false and fill in Loc (if specified) with the location
202  /// of the invalid expression.
203  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
204                             SourceLocation *Loc = 0,
205                             bool isEvaluated = true) const;
206  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
207    llvm::APSInt X;
208    return isIntegerConstantExpr(X, Ctx, Loc);
209  }
210  /// isConstantInitializer - Returns true if this expression is a constant
211  /// initializer, which can be emitted at compile-time.
212  bool isConstantInitializer(ASTContext &Ctx) const;
213
214  /// EvalResult is a struct with detailed info about an evaluated expression.
215  struct EvalResult {
216    /// Val - This is the value the expression can be folded to.
217    APValue Val;
218
219    /// HasSideEffects - Whether the evaluated expression has side effects.
220    /// For example, (f() && 0) can be folded, but it still has side effects.
221    bool HasSideEffects;
222
223    /// Diag - If the expression is unfoldable, then Diag contains a note
224    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
225    /// position for the error, and DiagExpr is the expression that caused
226    /// the error.
227    /// If the expression is foldable, but not an integer constant expression,
228    /// Diag contains a note diagnostic that describes why it isn't an integer
229    /// constant expression. If the expression *is* an integer constant
230    /// expression, then Diag will be zero.
231    unsigned Diag;
232    const Expr *DiagExpr;
233    SourceLocation DiagLoc;
234
235    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
236  };
237
238  /// Evaluate - Return true if this is a constant which we can fold using
239  /// any crazy technique (that has nothing to do with language standards) that
240  /// we want to.  If this function returns true, it returns the folded constant
241  /// in Result.
242  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
243
244  /// isEvaluatable - Call Evaluate to see if this expression can be constant
245  /// folded, but discard the result.
246  bool isEvaluatable(ASTContext &Ctx) const;
247
248  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
249  /// must be called on an expression that constant folds to an integer.
250  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
251
252  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
253  /// with link time known address.
254  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
255
256  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
257  /// also succeeds on stack based, immutable address lvalues.
258  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
259
260  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
261  /// integer constant expression with the value zero, or if this is one that is
262  /// cast to void*.
263  bool isNullPointerConstant(ASTContext &Ctx) const;
264
265  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
266  /// write barrier.
267  bool isOBJCGCCandidate(ASTContext &Ctx) const;
268
269  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
270  ///  its subexpression.  If that subexpression is also a ParenExpr,
271  ///  then this method recursively returns its subexpression, and so forth.
272  ///  Otherwise, the method returns the current Expr.
273  Expr* IgnoreParens();
274
275  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
276  /// or CastExprs, returning their operand.
277  Expr *IgnoreParenCasts();
278
279  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
280  /// value (including ptr->int casts of the same size).  Strip off any
281  /// ParenExpr or CastExprs, returning their operand.
282  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
283
284  const Expr* IgnoreParens() const {
285    return const_cast<Expr*>(this)->IgnoreParens();
286  }
287  const Expr *IgnoreParenCasts() const {
288    return const_cast<Expr*>(this)->IgnoreParenCasts();
289  }
290  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
291    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
292  }
293
294  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
295  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
296
297  static bool classof(const Stmt *T) {
298    return T->getStmtClass() >= firstExprConstant &&
299           T->getStmtClass() <= lastExprConstant;
300  }
301  static bool classof(const Expr *) { return true; }
302};
303
304
305//===----------------------------------------------------------------------===//
306// Primary Expressions.
307//===----------------------------------------------------------------------===//
308
309/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
310/// enum, etc.
311class DeclRefExpr : public Expr {
312  NamedDecl *D;
313  SourceLocation Loc;
314
315protected:
316  // FIXME: Eventually, this constructor will go away and all subclasses
317  // will have to provide the type- and value-dependent flags.
318  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
319    Expr(SC, t), D(d), Loc(l) {}
320
321  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
322              bool VD) :
323    Expr(SC, t, TD, VD), D(d), Loc(l) {}
324
325public:
326  // FIXME: Eventually, this constructor will go away and all clients
327  // will have to provide the type- and value-dependent flags.
328  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
329    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
330
331  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
332    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
333
334  /// \brief Construct an empty declaration reference expression.
335  explicit DeclRefExpr(EmptyShell Empty)
336    : Expr(DeclRefExprClass, Empty) { }
337
338  NamedDecl *getDecl() { return D; }
339  const NamedDecl *getDecl() const { return D; }
340  void setDecl(NamedDecl *NewD) { D = NewD; }
341
342  SourceLocation getLocation() const { return Loc; }
343  void setLocation(SourceLocation L) { Loc = L; }
344  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  static bool classof(const Stmt *T) {
347    return T->getStmtClass() == DeclRefExprClass ||
348           T->getStmtClass() == CXXConditionDeclExprClass ||
349           T->getStmtClass() == QualifiedDeclRefExprClass;
350  }
351  static bool classof(const DeclRefExpr *) { return true; }
352
353  // Iterators
354  virtual child_iterator child_begin();
355  virtual child_iterator child_end();
356};
357
358/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
359class PredefinedExpr : public Expr {
360public:
361  enum IdentType {
362    Func,
363    Function,
364    PrettyFunction
365  };
366
367private:
368  SourceLocation Loc;
369  IdentType Type;
370public:
371  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
372    : Expr(PredefinedExprClass, type, type->isDependentType(),
373           type->isDependentType()), Loc(l), Type(IT) {}
374
375  /// \brief Construct an empty predefined expression.
376  explicit PredefinedExpr(EmptyShell Empty)
377    : Expr(PredefinedExprClass, Empty) { }
378
379  IdentType getIdentType() const { return Type; }
380  void setIdentType(IdentType IT) { Type = IT; }
381
382  SourceLocation getLocation() const { return Loc; }
383  void setLocation(SourceLocation L) { Loc = L; }
384
385  static std::string ComputeName(ASTContext &Context, IdentType IT,
386                                 const Decl *CurrentDecl);
387
388  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
389
390  static bool classof(const Stmt *T) {
391    return T->getStmtClass() == PredefinedExprClass;
392  }
393  static bool classof(const PredefinedExpr *) { return true; }
394
395  // Iterators
396  virtual child_iterator child_begin();
397  virtual child_iterator child_end();
398};
399
400class IntegerLiteral : public Expr {
401  llvm::APInt Value;
402  SourceLocation Loc;
403public:
404  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
405  // or UnsignedLongLongTy
406  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
407    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
408    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
409  }
410
411  /// \brief Construct an empty integer literal.
412  explicit IntegerLiteral(EmptyShell Empty)
413    : Expr(IntegerLiteralClass, Empty) { }
414
415  const llvm::APInt &getValue() const { return Value; }
416  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
417
418  /// \brief Retrieve the location of the literal.
419  SourceLocation getLocation() const { return Loc; }
420
421  void setValue(const llvm::APInt &Val) { Value = Val; }
422  void setLocation(SourceLocation Location) { Loc = Location; }
423
424  static bool classof(const Stmt *T) {
425    return T->getStmtClass() == IntegerLiteralClass;
426  }
427  static bool classof(const IntegerLiteral *) { return true; }
428
429  // Iterators
430  virtual child_iterator child_begin();
431  virtual child_iterator child_end();
432};
433
434class CharacterLiteral : public Expr {
435  unsigned Value;
436  SourceLocation Loc;
437  bool IsWide;
438public:
439  // type should be IntTy
440  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
441    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
442  }
443
444  /// \brief Construct an empty character literal.
445  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
446
447  SourceLocation getLocation() const { return Loc; }
448  bool isWide() const { return IsWide; }
449
450  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
451
452  unsigned getValue() const { return Value; }
453
454  void setLocation(SourceLocation Location) { Loc = Location; }
455  void setWide(bool W) { IsWide = W; }
456  void setValue(unsigned Val) { Value = Val; }
457
458  static bool classof(const Stmt *T) {
459    return T->getStmtClass() == CharacterLiteralClass;
460  }
461  static bool classof(const CharacterLiteral *) { return true; }
462
463  // Iterators
464  virtual child_iterator child_begin();
465  virtual child_iterator child_end();
466};
467
468class FloatingLiteral : public Expr {
469  llvm::APFloat Value;
470  bool IsExact : 1;
471  SourceLocation Loc;
472public:
473  FloatingLiteral(const llvm::APFloat &V, bool isexact,
474                  QualType Type, SourceLocation L)
475    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
476
477  /// \brief Construct an empty floating-point literal.
478  explicit FloatingLiteral(EmptyShell Empty)
479    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
480
481  const llvm::APFloat &getValue() const { return Value; }
482  void setValue(const llvm::APFloat &Val) { Value = Val; }
483
484  bool isExact() const { return IsExact; }
485  void setExact(bool E) { IsExact = E; }
486
487  /// getValueAsApproximateDouble - This returns the value as an inaccurate
488  /// double.  Note that this may cause loss of precision, but is useful for
489  /// debugging dumps, etc.
490  double getValueAsApproximateDouble() const;
491
492  SourceLocation getLocation() const { return Loc; }
493  void setLocation(SourceLocation L) { Loc = L; }
494
495  // FIXME: The logic for computing the value of a predefined expr should go
496  // into a method here that takes the inner-most code decl (a block, function
497  // or objc method) that the expr lives in.  This would allow sema and codegen
498  // to be consistent for things like sizeof(__func__) etc.
499
500  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
501
502  static bool classof(const Stmt *T) {
503    return T->getStmtClass() == FloatingLiteralClass;
504  }
505  static bool classof(const FloatingLiteral *) { return true; }
506
507  // Iterators
508  virtual child_iterator child_begin();
509  virtual child_iterator child_end();
510};
511
512/// ImaginaryLiteral - We support imaginary integer and floating point literals,
513/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
514/// IntegerLiteral classes.  Instances of this class always have a Complex type
515/// whose element type matches the subexpression.
516///
517class ImaginaryLiteral : public Expr {
518  Stmt *Val;
519public:
520  ImaginaryLiteral(Expr *val, QualType Ty)
521    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
522
523  /// \brief Build an empty imaginary literal.
524  explicit ImaginaryLiteral(EmptyShell Empty)
525    : Expr(ImaginaryLiteralClass, Empty) { }
526
527  const Expr *getSubExpr() const { return cast<Expr>(Val); }
528  Expr *getSubExpr() { return cast<Expr>(Val); }
529  void setSubExpr(Expr *E) { Val = E; }
530
531  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
532  static bool classof(const Stmt *T) {
533    return T->getStmtClass() == ImaginaryLiteralClass;
534  }
535  static bool classof(const ImaginaryLiteral *) { return true; }
536
537  // Iterators
538  virtual child_iterator child_begin();
539  virtual child_iterator child_end();
540};
541
542/// StringLiteral - This represents a string literal expression, e.g. "foo"
543/// or L"bar" (wide strings).  The actual string is returned by getStrData()
544/// is NOT null-terminated, and the length of the string is determined by
545/// calling getByteLength().  The C type for a string is always a
546/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
547/// not.
548///
549/// Note that strings in C can be formed by concatenation of multiple string
550/// literal pptokens in translation phase #6.  This keeps track of the locations
551/// of each of these pieces.
552///
553/// Strings in C can also be truncated and extended by assigning into arrays,
554/// e.g. with constructs like:
555///   char X[2] = "foobar";
556/// In this case, getByteLength() will return 6, but the string literal will
557/// have type "char[2]".
558class StringLiteral : public Expr {
559  const char *StrData;
560  unsigned ByteLength;
561  bool IsWide;
562  unsigned NumConcatenated;
563  SourceLocation TokLocs[1];
564
565  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
566
567protected:
568  virtual void DoDestroy(ASTContext &C);
569
570public:
571  /// This is the "fully general" constructor that allows representation of
572  /// strings formed from multiple concatenated tokens.
573  static StringLiteral *Create(ASTContext &C, const char *StrData,
574                               unsigned ByteLength, bool Wide, QualType Ty,
575                               const SourceLocation *Loc, unsigned NumStrs);
576
577  /// Simple constructor for string literals made from one token.
578  static StringLiteral *Create(ASTContext &C, const char *StrData,
579                               unsigned ByteLength,
580                               bool Wide, QualType Ty, SourceLocation Loc) {
581    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
582  }
583
584  /// \brief Construct an empty string literal.
585  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
586
587  llvm::StringRef getString() const {
588    return llvm::StringRef(StrData, ByteLength);
589  }
590  // FIXME: These are deprecated, replace with StringRef.
591  const char *getStrData() const { return StrData; }
592  unsigned getByteLength() const { return ByteLength; }
593
594  /// \brief Sets the string data to the given string data.
595  void setString(ASTContext &C, llvm::StringRef Str);
596
597  bool isWide() const { return IsWide; }
598  void setWide(bool W) { IsWide = W; }
599
600  bool containsNonAsciiOrNull() const {
601    llvm::StringRef Str = getString();
602    for (unsigned i = 0, e = Str.size(); i != e; ++i)
603      if (!isascii(Str[i]) || !Str[i])
604        return true;
605    return false;
606  }
607  /// getNumConcatenated - Get the number of string literal tokens that were
608  /// concatenated in translation phase #6 to form this string literal.
609  unsigned getNumConcatenated() const { return NumConcatenated; }
610
611  SourceLocation getStrTokenLoc(unsigned TokNum) const {
612    assert(TokNum < NumConcatenated && "Invalid tok number");
613    return TokLocs[TokNum];
614  }
615  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
616    assert(TokNum < NumConcatenated && "Invalid tok number");
617    TokLocs[TokNum] = L;
618  }
619
620  typedef const SourceLocation *tokloc_iterator;
621  tokloc_iterator tokloc_begin() const { return TokLocs; }
622  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
623
624  virtual SourceRange getSourceRange() const {
625    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
626  }
627  static bool classof(const Stmt *T) {
628    return T->getStmtClass() == StringLiteralClass;
629  }
630  static bool classof(const StringLiteral *) { return true; }
631
632  // Iterators
633  virtual child_iterator child_begin();
634  virtual child_iterator child_end();
635};
636
637/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
638/// AST node is only formed if full location information is requested.
639class ParenExpr : public Expr {
640  SourceLocation L, R;
641  Stmt *Val;
642public:
643  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
644    : Expr(ParenExprClass, val->getType(),
645           val->isTypeDependent(), val->isValueDependent()),
646      L(l), R(r), Val(val) {}
647
648  /// \brief Construct an empty parenthesized expression.
649  explicit ParenExpr(EmptyShell Empty)
650    : Expr(ParenExprClass, Empty) { }
651
652  const Expr *getSubExpr() const { return cast<Expr>(Val); }
653  Expr *getSubExpr() { return cast<Expr>(Val); }
654  void setSubExpr(Expr *E) { Val = E; }
655
656  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
657
658  /// \brief Get the location of the left parentheses '('.
659  SourceLocation getLParen() const { return L; }
660  void setLParen(SourceLocation Loc) { L = Loc; }
661
662  /// \brief Get the location of the right parentheses ')'.
663  SourceLocation getRParen() const { return R; }
664  void setRParen(SourceLocation Loc) { R = Loc; }
665
666  static bool classof(const Stmt *T) {
667    return T->getStmtClass() == ParenExprClass;
668  }
669  static bool classof(const ParenExpr *) { return true; }
670
671  // Iterators
672  virtual child_iterator child_begin();
673  virtual child_iterator child_end();
674};
675
676
677/// UnaryOperator - This represents the unary-expression's (except sizeof and
678/// alignof), the postinc/postdec operators from postfix-expression, and various
679/// extensions.
680///
681/// Notes on various nodes:
682///
683/// Real/Imag - These return the real/imag part of a complex operand.  If
684///   applied to a non-complex value, the former returns its operand and the
685///   later returns zero in the type of the operand.
686///
687/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
688///   subexpression is a compound literal with the various MemberExpr and
689///   ArraySubscriptExpr's applied to it.
690///
691class UnaryOperator : public Expr {
692public:
693  // Note that additions to this should also update the StmtVisitor class.
694  enum Opcode {
695    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
696    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
697    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
698    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
699    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
700    Real, Imag,       // "__real expr"/"__imag expr" Extension.
701    Extension,        // __extension__ marker.
702    OffsetOf          // __builtin_offsetof
703  };
704private:
705  Stmt *Val;
706  Opcode Opc;
707  SourceLocation Loc;
708public:
709
710  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
711    : Expr(UnaryOperatorClass, type,
712           input->isTypeDependent() && opc != OffsetOf,
713           input->isValueDependent()),
714      Val(input), Opc(opc), Loc(l) {}
715
716  /// \brief Build an empty unary operator.
717  explicit UnaryOperator(EmptyShell Empty)
718    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
719
720  Opcode getOpcode() const { return Opc; }
721  void setOpcode(Opcode O) { Opc = O; }
722
723  Expr *getSubExpr() const { return cast<Expr>(Val); }
724  void setSubExpr(Expr *E) { Val = E; }
725
726  /// getOperatorLoc - Return the location of the operator.
727  SourceLocation getOperatorLoc() const { return Loc; }
728  void setOperatorLoc(SourceLocation L) { Loc = L; }
729
730  /// isPostfix - Return true if this is a postfix operation, like x++.
731  static bool isPostfix(Opcode Op) {
732    return Op == PostInc || Op == PostDec;
733  }
734
735  /// isPostfix - Return true if this is a prefix operation, like --x.
736  static bool isPrefix(Opcode Op) {
737    return Op == PreInc || Op == PreDec;
738  }
739
740  bool isPrefix() const { return isPrefix(Opc); }
741  bool isPostfix() const { return isPostfix(Opc); }
742  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
743  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
744  bool isOffsetOfOp() const { return Opc == OffsetOf; }
745  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
746  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
747
748  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
749  /// corresponds to, e.g. "sizeof" or "[pre]++"
750  static const char *getOpcodeStr(Opcode Op);
751
752  /// \brief Retrieve the unary opcode that corresponds to the given
753  /// overloaded operator.
754  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
755
756  /// \brief Retrieve the overloaded operator kind that corresponds to
757  /// the given unary opcode.
758  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
759
760  virtual SourceRange getSourceRange() const {
761    if (isPostfix())
762      return SourceRange(Val->getLocStart(), Loc);
763    else
764      return SourceRange(Loc, Val->getLocEnd());
765  }
766  virtual SourceLocation getExprLoc() const { return Loc; }
767
768  static bool classof(const Stmt *T) {
769    return T->getStmtClass() == UnaryOperatorClass;
770  }
771  static bool classof(const UnaryOperator *) { return true; }
772
773  // Iterators
774  virtual child_iterator child_begin();
775  virtual child_iterator child_end();
776};
777
778/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
779/// types and expressions.
780class SizeOfAlignOfExpr : public Expr {
781  bool isSizeof : 1;  // true if sizeof, false if alignof.
782  bool isType : 1;    // true if operand is a type, false if an expression
783  union {
784    void *Ty;
785    Stmt *Ex;
786  } Argument;
787  SourceLocation OpLoc, RParenLoc;
788
789protected:
790  virtual void DoDestroy(ASTContext& C);
791
792public:
793  SizeOfAlignOfExpr(bool issizeof, QualType T,
794                    QualType resultType, SourceLocation op,
795                    SourceLocation rp) :
796      Expr(SizeOfAlignOfExprClass, resultType,
797           false, // Never type-dependent (C++ [temp.dep.expr]p3).
798           // Value-dependent if the argument is type-dependent.
799           T->isDependentType()),
800      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
801    Argument.Ty = T.getAsOpaquePtr();
802  }
803
804  SizeOfAlignOfExpr(bool issizeof, Expr *E,
805                    QualType resultType, SourceLocation op,
806                    SourceLocation rp) :
807      Expr(SizeOfAlignOfExprClass, resultType,
808           false, // Never type-dependent (C++ [temp.dep.expr]p3).
809           // Value-dependent if the argument is type-dependent.
810           E->isTypeDependent()),
811      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
812    Argument.Ex = E;
813  }
814
815  /// \brief Construct an empty sizeof/alignof expression.
816  explicit SizeOfAlignOfExpr(EmptyShell Empty)
817    : Expr(SizeOfAlignOfExprClass, Empty) { }
818
819  bool isSizeOf() const { return isSizeof; }
820  void setSizeof(bool S) { isSizeof = S; }
821
822  bool isArgumentType() const { return isType; }
823  QualType getArgumentType() const {
824    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
825    return QualType::getFromOpaquePtr(Argument.Ty);
826  }
827  Expr *getArgumentExpr() {
828    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
829    return static_cast<Expr*>(Argument.Ex);
830  }
831  const Expr *getArgumentExpr() const {
832    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
833  }
834
835  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
836  void setArgument(QualType T) {
837    Argument.Ty = T.getAsOpaquePtr();
838    isType = true;
839  }
840
841  /// Gets the argument type, or the type of the argument expression, whichever
842  /// is appropriate.
843  QualType getTypeOfArgument() const {
844    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
845  }
846
847  SourceLocation getOperatorLoc() const { return OpLoc; }
848  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
849
850  SourceLocation getRParenLoc() const { return RParenLoc; }
851  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
852
853  virtual SourceRange getSourceRange() const {
854    return SourceRange(OpLoc, RParenLoc);
855  }
856
857  static bool classof(const Stmt *T) {
858    return T->getStmtClass() == SizeOfAlignOfExprClass;
859  }
860  static bool classof(const SizeOfAlignOfExpr *) { return true; }
861
862  // Iterators
863  virtual child_iterator child_begin();
864  virtual child_iterator child_end();
865};
866
867//===----------------------------------------------------------------------===//
868// Postfix Operators.
869//===----------------------------------------------------------------------===//
870
871/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
872class ArraySubscriptExpr : public Expr {
873  enum { LHS, RHS, END_EXPR=2 };
874  Stmt* SubExprs[END_EXPR];
875  SourceLocation RBracketLoc;
876public:
877  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
878                     SourceLocation rbracketloc)
879  : Expr(ArraySubscriptExprClass, t,
880         lhs->isTypeDependent() || rhs->isTypeDependent(),
881         lhs->isValueDependent() || rhs->isValueDependent()),
882    RBracketLoc(rbracketloc) {
883    SubExprs[LHS] = lhs;
884    SubExprs[RHS] = rhs;
885  }
886
887  /// \brief Create an empty array subscript expression.
888  explicit ArraySubscriptExpr(EmptyShell Shell)
889    : Expr(ArraySubscriptExprClass, Shell) { }
890
891  /// An array access can be written A[4] or 4[A] (both are equivalent).
892  /// - getBase() and getIdx() always present the normalized view: A[4].
893  ///    In this case getBase() returns "A" and getIdx() returns "4".
894  /// - getLHS() and getRHS() present the syntactic view. e.g. for
895  ///    4[A] getLHS() returns "4".
896  /// Note: Because vector element access is also written A[4] we must
897  /// predicate the format conversion in getBase and getIdx only on the
898  /// the type of the RHS, as it is possible for the LHS to be a vector of
899  /// integer type
900  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
901  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
902  void setLHS(Expr *E) { SubExprs[LHS] = E; }
903
904  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
905  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
906  void setRHS(Expr *E) { SubExprs[RHS] = E; }
907
908  Expr *getBase() {
909    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
910  }
911
912  const Expr *getBase() const {
913    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
914  }
915
916  Expr *getIdx() {
917    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
918  }
919
920  const Expr *getIdx() const {
921    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
922  }
923
924  virtual SourceRange getSourceRange() const {
925    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
926  }
927
928  SourceLocation getRBracketLoc() const { return RBracketLoc; }
929  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
930
931  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
932
933  static bool classof(const Stmt *T) {
934    return T->getStmtClass() == ArraySubscriptExprClass;
935  }
936  static bool classof(const ArraySubscriptExpr *) { return true; }
937
938  // Iterators
939  virtual child_iterator child_begin();
940  virtual child_iterator child_end();
941};
942
943
944/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
945/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
946/// while its subclasses may represent alternative syntax that (semantically)
947/// results in a function call. For example, CXXOperatorCallExpr is
948/// a subclass for overloaded operator calls that use operator syntax, e.g.,
949/// "str1 + str2" to resolve to a function call.
950class CallExpr : public Expr {
951  enum { FN=0, ARGS_START=1 };
952  Stmt **SubExprs;
953  unsigned NumArgs;
954  SourceLocation RParenLoc;
955
956protected:
957  // This version of the constructor is for derived classes.
958  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
959           QualType t, SourceLocation rparenloc);
960
961  virtual void DoDestroy(ASTContext& C);
962
963public:
964  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
965           SourceLocation rparenloc);
966
967  /// \brief Build an empty call expression.
968  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
969
970  ~CallExpr() {}
971
972  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
973  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
974  void setCallee(Expr *F) { SubExprs[FN] = F; }
975
976  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
977  FunctionDecl *getDirectCallee();
978
979  /// getNumArgs - Return the number of actual arguments to this call.
980  ///
981  unsigned getNumArgs() const { return NumArgs; }
982
983  /// getArg - Return the specified argument.
984  Expr *getArg(unsigned Arg) {
985    assert(Arg < NumArgs && "Arg access out of range!");
986    return cast<Expr>(SubExprs[Arg+ARGS_START]);
987  }
988  const Expr *getArg(unsigned Arg) const {
989    assert(Arg < NumArgs && "Arg access out of range!");
990    return cast<Expr>(SubExprs[Arg+ARGS_START]);
991  }
992
993  /// setArg - Set the specified argument.
994  void setArg(unsigned Arg, Expr *ArgExpr) {
995    assert(Arg < NumArgs && "Arg access out of range!");
996    SubExprs[Arg+ARGS_START] = ArgExpr;
997  }
998
999  /// setNumArgs - This changes the number of arguments present in this call.
1000  /// Any orphaned expressions are deleted by this, and any new operands are set
1001  /// to null.
1002  void setNumArgs(ASTContext& C, unsigned NumArgs);
1003
1004  typedef ExprIterator arg_iterator;
1005  typedef ConstExprIterator const_arg_iterator;
1006
1007  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1008  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1009  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1010  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1011
1012  /// getNumCommas - Return the number of commas that must have been present in
1013  /// this function call.
1014  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1015
1016  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1017  /// not, return 0.
1018  unsigned isBuiltinCall(ASTContext &Context) const;
1019
1020  /// getCallReturnType - Get the return type of the call expr. This is not
1021  /// always the type of the expr itself, if the return type is a reference
1022  /// type.
1023  QualType getCallReturnType() const;
1024
1025  SourceLocation getRParenLoc() const { return RParenLoc; }
1026  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1027
1028  virtual SourceRange getSourceRange() const {
1029    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1030  }
1031
1032  static bool classof(const Stmt *T) {
1033    return T->getStmtClass() == CallExprClass ||
1034           T->getStmtClass() == CXXOperatorCallExprClass ||
1035           T->getStmtClass() == CXXMemberCallExprClass;
1036  }
1037  static bool classof(const CallExpr *) { return true; }
1038  static bool classof(const CXXOperatorCallExpr *) { return true; }
1039  static bool classof(const CXXMemberCallExpr *) { return true; }
1040
1041  // Iterators
1042  virtual child_iterator child_begin();
1043  virtual child_iterator child_end();
1044};
1045
1046/// \brief Represents the qualifier that may precede a C++ name, e.g., the
1047/// "std::" in "std::sort".
1048struct NameQualifier {
1049  /// \brief The nested name specifier.
1050  NestedNameSpecifier *NNS;
1051
1052  /// \brief The source range covered by the nested name specifier.
1053  SourceRange Range;
1054};
1055
1056/// \brief Represents an explicit template argument list in C++, e.g.,
1057/// the "<int>" in "sort<int>".
1058struct ExplicitTemplateArgumentList {
1059  /// \brief The source location of the left angle bracket ('<');
1060  SourceLocation LAngleLoc;
1061
1062  /// \brief The source location of the right angle bracket ('>');
1063  SourceLocation RAngleLoc;
1064
1065  /// \brief The number of template arguments in TemplateArgs.
1066  /// The actual template arguments (if any) are stored after the
1067  /// ExplicitTemplateArgumentList structure.
1068  unsigned NumTemplateArgs;
1069
1070  /// \brief Retrieve the template arguments
1071  TemplateArgument *getTemplateArgs() {
1072    return reinterpret_cast<TemplateArgument *> (this + 1);
1073  }
1074
1075  /// \brief Retrieve the template arguments
1076  const TemplateArgument *getTemplateArgs() const {
1077    return reinterpret_cast<const TemplateArgument *> (this + 1);
1078  }
1079};
1080
1081/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1082///
1083class MemberExpr : public Expr {
1084  /// Base - the expression for the base pointer or structure references.  In
1085  /// X.F, this is "X".
1086  Stmt *Base;
1087
1088  /// MemberDecl - This is the decl being referenced by the field/member name.
1089  /// In X.F, this is the decl referenced by F.
1090  NamedDecl *MemberDecl;
1091
1092  /// MemberLoc - This is the location of the member name.
1093  SourceLocation MemberLoc;
1094
1095  /// IsArrow - True if this is "X->F", false if this is "X.F".
1096  bool IsArrow : 1;
1097
1098  /// \brief True if this member expression used a nested-name-specifier to
1099  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1100  /// structure is allocated immediately after the MemberExpr.
1101  bool HasQualifier : 1;
1102
1103  /// \brief True if this member expression specified a template argument list
1104  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1105  /// structure (and its TemplateArguments) are allocated immediately after
1106  /// the MemberExpr or, if the member expression also has a qualifier, after
1107  /// the NameQualifier structure.
1108  bool HasExplicitTemplateArgumentList : 1;
1109
1110  /// \brief Retrieve the qualifier that preceded the member name, if any.
1111  NameQualifier *getMemberQualifier() {
1112    if (!HasQualifier)
1113      return 0;
1114
1115    return reinterpret_cast<NameQualifier *> (this + 1);
1116  }
1117
1118  /// \brief Retrieve the qualifier that preceded the member name, if any.
1119  const NameQualifier *getMemberQualifier() const {
1120    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1121  }
1122
1123  /// \brief Retrieve the explicit template argument list that followed the
1124  /// member template name, if any.
1125  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1126    if (!HasExplicitTemplateArgumentList)
1127      return 0;
1128
1129    if (!HasQualifier)
1130      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1131
1132    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1133                                                      getMemberQualifier() + 1);
1134  }
1135
1136  /// \brief Retrieve the explicit template argument list that followed the
1137  /// member template name, if any.
1138  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1139    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1140  }
1141
1142  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1143             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1144             bool has_explicit, SourceLocation langle,
1145             const TemplateArgument *targs, unsigned numtargs,
1146             SourceLocation rangle, QualType ty);
1147
1148public:
1149  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1150             QualType ty)
1151    : Expr(MemberExprClass, ty,
1152           base->isTypeDependent(), base->isValueDependent()),
1153      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1154      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1155
1156  /// \brief Build an empty member reference expression.
1157  explicit MemberExpr(EmptyShell Empty)
1158    : Expr(MemberExprClass, Empty), HasQualifier(false),
1159      HasExplicitTemplateArgumentList(false) { }
1160
1161  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1162                            NestedNameSpecifier *qual, SourceRange qualrange,
1163                            NamedDecl *memberdecl,
1164                            SourceLocation l,
1165                            bool has_explicit,
1166                            SourceLocation langle,
1167                            const TemplateArgument *targs,
1168                            unsigned numtargs,
1169                            SourceLocation rangle,
1170                            QualType ty);
1171
1172  void setBase(Expr *E) { Base = E; }
1173  Expr *getBase() const { return cast<Expr>(Base); }
1174
1175  /// \brief Retrieve the member declaration to which this expression refers.
1176  ///
1177  /// The returned declaration will either be a FieldDecl or (in C++)
1178  /// a CXXMethodDecl.
1179  NamedDecl *getMemberDecl() const { return MemberDecl; }
1180  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1181
1182  /// \brief Determines whether this member expression actually had
1183  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1184  /// x->Base::foo.
1185  bool hasQualifier() const { return HasQualifier; }
1186
1187  /// \brief If the member name was qualified, retrieves the source range of
1188  /// the nested-name-specifier that precedes the member name. Otherwise,
1189  /// returns an empty source range.
1190  SourceRange getQualifierRange() const {
1191    if (!HasQualifier)
1192      return SourceRange();
1193
1194    return getMemberQualifier()->Range;
1195  }
1196
1197  /// \brief If the member name was qualified, retrieves the
1198  /// nested-name-specifier that precedes the member name. Otherwise, returns
1199  /// NULL.
1200  NestedNameSpecifier *getQualifier() const {
1201    if (!HasQualifier)
1202      return 0;
1203
1204    return getMemberQualifier()->NNS;
1205  }
1206
1207  /// \brief Determines whether this member expression actually had a C++
1208  /// template argument list explicitly specified, e.g., x.f<int>.
1209  bool hasExplicitTemplateArgumentList() {
1210    return HasExplicitTemplateArgumentList;
1211  }
1212
1213  /// \brief Retrieve the location of the left angle bracket following the
1214  /// member name ('<'), if any.
1215  SourceLocation getLAngleLoc() const {
1216    if (!HasExplicitTemplateArgumentList)
1217      return SourceLocation();
1218
1219    return getExplicitTemplateArgumentList()->LAngleLoc;
1220  }
1221
1222  /// \brief Retrieve the template arguments provided as part of this
1223  /// template-id.
1224  const TemplateArgument *getTemplateArgs() const {
1225    if (!HasExplicitTemplateArgumentList)
1226      return 0;
1227
1228    return getExplicitTemplateArgumentList()->getTemplateArgs();
1229  }
1230
1231  /// \brief Retrieve the number of template arguments provided as part of this
1232  /// template-id.
1233  unsigned getNumTemplateArgs() const {
1234    if (!HasExplicitTemplateArgumentList)
1235      return 0;
1236
1237    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1238  }
1239
1240  /// \brief Retrieve the location of the right angle bracket following the
1241  /// template arguments ('>').
1242  SourceLocation getRAngleLoc() const {
1243    if (!HasExplicitTemplateArgumentList)
1244      return SourceLocation();
1245
1246    return getExplicitTemplateArgumentList()->RAngleLoc;
1247  }
1248
1249  bool isArrow() const { return IsArrow; }
1250  void setArrow(bool A) { IsArrow = A; }
1251
1252  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1253  /// location of 'F'.
1254  SourceLocation getMemberLoc() const { return MemberLoc; }
1255  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1256
1257  virtual SourceRange getSourceRange() const {
1258    // If we have an implicit base (like a C++ implicit this),
1259    // make sure not to return its location
1260    SourceLocation EndLoc = MemberLoc;
1261    if (HasExplicitTemplateArgumentList)
1262      EndLoc = getRAngleLoc();
1263
1264    SourceLocation BaseLoc = getBase()->getLocStart();
1265    if (BaseLoc.isInvalid())
1266      return SourceRange(MemberLoc, EndLoc);
1267    return SourceRange(BaseLoc, EndLoc);
1268  }
1269
1270  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1271
1272  static bool classof(const Stmt *T) {
1273    return T->getStmtClass() == MemberExprClass;
1274  }
1275  static bool classof(const MemberExpr *) { return true; }
1276
1277  // Iterators
1278  virtual child_iterator child_begin();
1279  virtual child_iterator child_end();
1280};
1281
1282/// CompoundLiteralExpr - [C99 6.5.2.5]
1283///
1284class CompoundLiteralExpr : public Expr {
1285  /// LParenLoc - If non-null, this is the location of the left paren in a
1286  /// compound literal like "(int){4}".  This can be null if this is a
1287  /// synthesized compound expression.
1288  SourceLocation LParenLoc;
1289  Stmt *Init;
1290  bool FileScope;
1291public:
1292  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1293                      bool fileScope)
1294    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1295      FileScope(fileScope) {}
1296
1297  /// \brief Construct an empty compound literal.
1298  explicit CompoundLiteralExpr(EmptyShell Empty)
1299    : Expr(CompoundLiteralExprClass, Empty) { }
1300
1301  const Expr *getInitializer() const { return cast<Expr>(Init); }
1302  Expr *getInitializer() { return cast<Expr>(Init); }
1303  void setInitializer(Expr *E) { Init = E; }
1304
1305  bool isFileScope() const { return FileScope; }
1306  void setFileScope(bool FS) { FileScope = FS; }
1307
1308  SourceLocation getLParenLoc() const { return LParenLoc; }
1309  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1310
1311  virtual SourceRange getSourceRange() const {
1312    // FIXME: Init should never be null.
1313    if (!Init)
1314      return SourceRange();
1315    if (LParenLoc.isInvalid())
1316      return Init->getSourceRange();
1317    return SourceRange(LParenLoc, Init->getLocEnd());
1318  }
1319
1320  static bool classof(const Stmt *T) {
1321    return T->getStmtClass() == CompoundLiteralExprClass;
1322  }
1323  static bool classof(const CompoundLiteralExpr *) { return true; }
1324
1325  // Iterators
1326  virtual child_iterator child_begin();
1327  virtual child_iterator child_end();
1328};
1329
1330/// CastExpr - Base class for type casts, including both implicit
1331/// casts (ImplicitCastExpr) and explicit casts that have some
1332/// representation in the source code (ExplicitCastExpr's derived
1333/// classes).
1334class CastExpr : public Expr {
1335public:
1336  /// CastKind - the kind of cast this represents.
1337  enum CastKind {
1338    /// CK_Unknown - Unknown cast kind.
1339    /// FIXME: The goal is to get rid of this and make all casts have a
1340    /// kind so that the AST client doesn't have to try to figure out what's
1341    /// going on.
1342    CK_Unknown,
1343
1344    /// CK_BitCast - Used for reinterpret_cast.
1345    CK_BitCast,
1346
1347    /// CK_NoOp - Used for const_cast.
1348    CK_NoOp,
1349
1350    /// CK_DerivedToBase - Derived to base class casts.
1351    CK_DerivedToBase,
1352
1353    /// CK_Dynamic - Dynamic cast.
1354    CK_Dynamic,
1355
1356    /// CK_ToUnion - Cast to union (GCC extension).
1357    CK_ToUnion,
1358
1359    /// CK_ArrayToPointerDecay - Array to pointer decay.
1360    CK_ArrayToPointerDecay,
1361
1362    // CK_FunctionToPointerDecay - Function to pointer decay.
1363    CK_FunctionToPointerDecay,
1364
1365    /// CK_NullToMemberPointer - Null pointer to member pointer.
1366    CK_NullToMemberPointer,
1367
1368    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1369    /// member pointer in derived class.
1370    CK_BaseToDerivedMemberPointer,
1371
1372    /// CK_UserDefinedConversion - Conversion using a user defined type
1373    /// conversion function.
1374    CK_UserDefinedConversion,
1375
1376    /// CK_ConstructorConversion - Conversion by constructor
1377    CK_ConstructorConversion,
1378
1379    /// CK_IntegralToPointer - Integral to pointer
1380    CK_IntegralToPointer,
1381
1382    /// CK_PointerToIntegral - Pointer to integral
1383    CK_PointerToIntegral
1384  };
1385
1386private:
1387  CastKind Kind;
1388  Stmt *Op;
1389protected:
1390  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1391    Expr(SC, ty,
1392         // Cast expressions are type-dependent if the type is
1393         // dependent (C++ [temp.dep.expr]p3).
1394         ty->isDependentType(),
1395         // Cast expressions are value-dependent if the type is
1396         // dependent or if the subexpression is value-dependent.
1397         ty->isDependentType() || (op && op->isValueDependent())),
1398    Kind(kind), Op(op) {}
1399
1400  /// \brief Construct an empty cast.
1401  CastExpr(StmtClass SC, EmptyShell Empty)
1402    : Expr(SC, Empty) { }
1403
1404public:
1405  CastKind getCastKind() const { return Kind; }
1406  void setCastKind(CastKind K) { Kind = K; }
1407  const char *getCastKindName() const;
1408
1409  Expr *getSubExpr() { return cast<Expr>(Op); }
1410  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1411  void setSubExpr(Expr *E) { Op = E; }
1412
1413  static bool classof(const Stmt *T) {
1414    StmtClass SC = T->getStmtClass();
1415    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1416      return true;
1417
1418    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1419      return true;
1420
1421    return false;
1422  }
1423  static bool classof(const CastExpr *) { return true; }
1424
1425  // Iterators
1426  virtual child_iterator child_begin();
1427  virtual child_iterator child_end();
1428};
1429
1430/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1431/// conversions, which have no direct representation in the original
1432/// source code. For example: converting T[]->T*, void f()->void
1433/// (*f)(), float->double, short->int, etc.
1434///
1435/// In C, implicit casts always produce rvalues. However, in C++, an
1436/// implicit cast whose result is being bound to a reference will be
1437/// an lvalue. For example:
1438///
1439/// @code
1440/// class Base { };
1441/// class Derived : public Base { };
1442/// void f(Derived d) {
1443///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1444/// }
1445/// @endcode
1446class ImplicitCastExpr : public CastExpr {
1447  /// LvalueCast - Whether this cast produces an lvalue.
1448  bool LvalueCast;
1449
1450public:
1451  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1452    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1453
1454  /// \brief Construct an empty implicit cast.
1455  explicit ImplicitCastExpr(EmptyShell Shell)
1456    : CastExpr(ImplicitCastExprClass, Shell) { }
1457
1458
1459  virtual SourceRange getSourceRange() const {
1460    return getSubExpr()->getSourceRange();
1461  }
1462
1463  /// isLvalueCast - Whether this cast produces an lvalue.
1464  bool isLvalueCast() const { return LvalueCast; }
1465
1466  /// setLvalueCast - Set whether this cast produces an lvalue.
1467  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1468
1469  static bool classof(const Stmt *T) {
1470    return T->getStmtClass() == ImplicitCastExprClass;
1471  }
1472  static bool classof(const ImplicitCastExpr *) { return true; }
1473};
1474
1475/// ExplicitCastExpr - An explicit cast written in the source
1476/// code.
1477///
1478/// This class is effectively an abstract class, because it provides
1479/// the basic representation of an explicitly-written cast without
1480/// specifying which kind of cast (C cast, functional cast, static
1481/// cast, etc.) was written; specific derived classes represent the
1482/// particular style of cast and its location information.
1483///
1484/// Unlike implicit casts, explicit cast nodes have two different
1485/// types: the type that was written into the source code, and the
1486/// actual type of the expression as determined by semantic
1487/// analysis. These types may differ slightly. For example, in C++ one
1488/// can cast to a reference type, which indicates that the resulting
1489/// expression will be an lvalue. The reference type, however, will
1490/// not be used as the type of the expression.
1491class ExplicitCastExpr : public CastExpr {
1492  /// TypeAsWritten - The type that this expression is casting to, as
1493  /// written in the source code.
1494  QualType TypeAsWritten;
1495
1496protected:
1497  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1498                   Expr *op, QualType writtenTy)
1499    : CastExpr(SC, exprTy, kind, op), TypeAsWritten(writtenTy) {}
1500
1501  /// \brief Construct an empty explicit cast.
1502  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1503    : CastExpr(SC, Shell) { }
1504
1505public:
1506  /// getTypeAsWritten - Returns the type that this expression is
1507  /// casting to, as written in the source code.
1508  QualType getTypeAsWritten() const { return TypeAsWritten; }
1509  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1510
1511  static bool classof(const Stmt *T) {
1512    StmtClass SC = T->getStmtClass();
1513    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1514      return true;
1515    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1516      return true;
1517
1518    return false;
1519  }
1520  static bool classof(const ExplicitCastExpr *) { return true; }
1521};
1522
1523/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1524/// cast in C++ (C++ [expr.cast]), which uses the syntax
1525/// (Type)expr. For example: @c (int)f.
1526class CStyleCastExpr : public ExplicitCastExpr {
1527  SourceLocation LPLoc; // the location of the left paren
1528  SourceLocation RPLoc; // the location of the right paren
1529public:
1530  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1531                    SourceLocation l, SourceLocation r) :
1532    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1533    LPLoc(l), RPLoc(r) {}
1534
1535  /// \brief Construct an empty C-style explicit cast.
1536  explicit CStyleCastExpr(EmptyShell Shell)
1537    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1538
1539  SourceLocation getLParenLoc() const { return LPLoc; }
1540  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1541
1542  SourceLocation getRParenLoc() const { return RPLoc; }
1543  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1544
1545  virtual SourceRange getSourceRange() const {
1546    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1547  }
1548  static bool classof(const Stmt *T) {
1549    return T->getStmtClass() == CStyleCastExprClass;
1550  }
1551  static bool classof(const CStyleCastExpr *) { return true; }
1552};
1553
1554/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1555///
1556/// This expression node kind describes a builtin binary operation,
1557/// such as "x + y" for integer values "x" and "y". The operands will
1558/// already have been converted to appropriate types (e.g., by
1559/// performing promotions or conversions).
1560///
1561/// In C++, where operators may be overloaded, a different kind of
1562/// expression node (CXXOperatorCallExpr) is used to express the
1563/// invocation of an overloaded operator with operator syntax. Within
1564/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1565/// used to store an expression "x + y" depends on the subexpressions
1566/// for x and y. If neither x or y is type-dependent, and the "+"
1567/// operator resolves to a built-in operation, BinaryOperator will be
1568/// used to express the computation (x and y may still be
1569/// value-dependent). If either x or y is type-dependent, or if the
1570/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1571/// be used to express the computation.
1572class BinaryOperator : public Expr {
1573public:
1574  enum Opcode {
1575    // Operators listed in order of precedence.
1576    // Note that additions to this should also update the StmtVisitor class.
1577    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1578    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1579    Add, Sub,         // [C99 6.5.6] Additive operators.
1580    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1581    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1582    EQ, NE,           // [C99 6.5.9] Equality operators.
1583    And,              // [C99 6.5.10] Bitwise AND operator.
1584    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1585    Or,               // [C99 6.5.12] Bitwise OR operator.
1586    LAnd,             // [C99 6.5.13] Logical AND operator.
1587    LOr,              // [C99 6.5.14] Logical OR operator.
1588    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1589    DivAssign, RemAssign,
1590    AddAssign, SubAssign,
1591    ShlAssign, ShrAssign,
1592    AndAssign, XorAssign,
1593    OrAssign,
1594    Comma             // [C99 6.5.17] Comma operator.
1595  };
1596private:
1597  enum { LHS, RHS, END_EXPR };
1598  Stmt* SubExprs[END_EXPR];
1599  Opcode Opc;
1600  SourceLocation OpLoc;
1601public:
1602
1603  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1604                 SourceLocation opLoc)
1605    : Expr(BinaryOperatorClass, ResTy,
1606           lhs->isTypeDependent() || rhs->isTypeDependent(),
1607           lhs->isValueDependent() || rhs->isValueDependent()),
1608      Opc(opc), OpLoc(opLoc) {
1609    SubExprs[LHS] = lhs;
1610    SubExprs[RHS] = rhs;
1611    assert(!isCompoundAssignmentOp() &&
1612           "Use ArithAssignBinaryOperator for compound assignments");
1613  }
1614
1615  /// \brief Construct an empty binary operator.
1616  explicit BinaryOperator(EmptyShell Empty)
1617    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1618
1619  SourceLocation getOperatorLoc() const { return OpLoc; }
1620  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1621
1622  Opcode getOpcode() const { return Opc; }
1623  void setOpcode(Opcode O) { Opc = O; }
1624
1625  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1626  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1627  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1628  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1629
1630  virtual SourceRange getSourceRange() const {
1631    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1632  }
1633
1634  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1635  /// corresponds to, e.g. "<<=".
1636  static const char *getOpcodeStr(Opcode Op);
1637
1638  /// \brief Retrieve the binary opcode that corresponds to the given
1639  /// overloaded operator.
1640  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1641
1642  /// \brief Retrieve the overloaded operator kind that corresponds to
1643  /// the given binary opcode.
1644  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1645
1646  /// predicates to categorize the respective opcodes.
1647  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1648  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1649  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1650  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1651
1652  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1653  bool isRelationalOp() const { return isRelationalOp(Opc); }
1654
1655  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1656  bool isEqualityOp() const { return isEqualityOp(Opc); }
1657
1658  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1659  bool isLogicalOp() const { return isLogicalOp(Opc); }
1660
1661  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1662  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1663  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1664
1665  static bool classof(const Stmt *S) {
1666    return S->getStmtClass() == BinaryOperatorClass ||
1667           S->getStmtClass() == CompoundAssignOperatorClass;
1668  }
1669  static bool classof(const BinaryOperator *) { return true; }
1670
1671  // Iterators
1672  virtual child_iterator child_begin();
1673  virtual child_iterator child_end();
1674
1675protected:
1676  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1677                 SourceLocation oploc, bool dead)
1678    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1679    SubExprs[LHS] = lhs;
1680    SubExprs[RHS] = rhs;
1681  }
1682
1683  BinaryOperator(StmtClass SC, EmptyShell Empty)
1684    : Expr(SC, Empty), Opc(MulAssign) { }
1685};
1686
1687/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1688/// track of the type the operation is performed in.  Due to the semantics of
1689/// these operators, the operands are promoted, the aritmetic performed, an
1690/// implicit conversion back to the result type done, then the assignment takes
1691/// place.  This captures the intermediate type which the computation is done
1692/// in.
1693class CompoundAssignOperator : public BinaryOperator {
1694  QualType ComputationLHSType;
1695  QualType ComputationResultType;
1696public:
1697  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1698                         QualType ResType, QualType CompLHSType,
1699                         QualType CompResultType,
1700                         SourceLocation OpLoc)
1701    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1702      ComputationLHSType(CompLHSType),
1703      ComputationResultType(CompResultType) {
1704    assert(isCompoundAssignmentOp() &&
1705           "Only should be used for compound assignments");
1706  }
1707
1708  /// \brief Build an empty compound assignment operator expression.
1709  explicit CompoundAssignOperator(EmptyShell Empty)
1710    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1711
1712  // The two computation types are the type the LHS is converted
1713  // to for the computation and the type of the result; the two are
1714  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1715  QualType getComputationLHSType() const { return ComputationLHSType; }
1716  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1717
1718  QualType getComputationResultType() const { return ComputationResultType; }
1719  void setComputationResultType(QualType T) { ComputationResultType = T; }
1720
1721  static bool classof(const CompoundAssignOperator *) { return true; }
1722  static bool classof(const Stmt *S) {
1723    return S->getStmtClass() == CompoundAssignOperatorClass;
1724  }
1725};
1726
1727/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1728/// GNU "missing LHS" extension is in use.
1729///
1730class ConditionalOperator : public Expr {
1731  enum { COND, LHS, RHS, END_EXPR };
1732  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1733  SourceLocation QuestionLoc, ColonLoc;
1734public:
1735  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1736                      SourceLocation CLoc, Expr *rhs, QualType t)
1737    : Expr(ConditionalOperatorClass, t,
1738           // FIXME: the type of the conditional operator doesn't
1739           // depend on the type of the conditional, but the standard
1740           // seems to imply that it could. File a bug!
1741           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1742           (cond->isValueDependent() ||
1743            (lhs && lhs->isValueDependent()) ||
1744            (rhs && rhs->isValueDependent()))),
1745      QuestionLoc(QLoc),
1746      ColonLoc(CLoc) {
1747    SubExprs[COND] = cond;
1748    SubExprs[LHS] = lhs;
1749    SubExprs[RHS] = rhs;
1750  }
1751
1752  /// \brief Build an empty conditional operator.
1753  explicit ConditionalOperator(EmptyShell Empty)
1754    : Expr(ConditionalOperatorClass, Empty) { }
1755
1756  // getCond - Return the expression representing the condition for
1757  //  the ?: operator.
1758  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1759  void setCond(Expr *E) { SubExprs[COND] = E; }
1760
1761  // getTrueExpr - Return the subexpression representing the value of the ?:
1762  //  expression if the condition evaluates to true.  In most cases this value
1763  //  will be the same as getLHS() except a GCC extension allows the left
1764  //  subexpression to be omitted, and instead of the condition be returned.
1765  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1766  //  is only evaluated once.
1767  Expr *getTrueExpr() const {
1768    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1769  }
1770
1771  // getTrueExpr - Return the subexpression representing the value of the ?:
1772  // expression if the condition evaluates to false. This is the same as getRHS.
1773  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1774
1775  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1776  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1777
1778  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1779  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1780
1781  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1782  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1783
1784  SourceLocation getColonLoc() const { return ColonLoc; }
1785  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1786
1787  virtual SourceRange getSourceRange() const {
1788    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1789  }
1790  static bool classof(const Stmt *T) {
1791    return T->getStmtClass() == ConditionalOperatorClass;
1792  }
1793  static bool classof(const ConditionalOperator *) { return true; }
1794
1795  // Iterators
1796  virtual child_iterator child_begin();
1797  virtual child_iterator child_end();
1798};
1799
1800/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1801class AddrLabelExpr : public Expr {
1802  SourceLocation AmpAmpLoc, LabelLoc;
1803  LabelStmt *Label;
1804public:
1805  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1806                QualType t)
1807    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1808
1809  /// \brief Build an empty address of a label expression.
1810  explicit AddrLabelExpr(EmptyShell Empty)
1811    : Expr(AddrLabelExprClass, Empty) { }
1812
1813  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1814  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1815  SourceLocation getLabelLoc() const { return LabelLoc; }
1816  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1817
1818  virtual SourceRange getSourceRange() const {
1819    return SourceRange(AmpAmpLoc, LabelLoc);
1820  }
1821
1822  LabelStmt *getLabel() const { return Label; }
1823  void setLabel(LabelStmt *S) { Label = S; }
1824
1825  static bool classof(const Stmt *T) {
1826    return T->getStmtClass() == AddrLabelExprClass;
1827  }
1828  static bool classof(const AddrLabelExpr *) { return true; }
1829
1830  // Iterators
1831  virtual child_iterator child_begin();
1832  virtual child_iterator child_end();
1833};
1834
1835/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1836/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1837/// takes the value of the last subexpression.
1838class StmtExpr : public Expr {
1839  Stmt *SubStmt;
1840  SourceLocation LParenLoc, RParenLoc;
1841public:
1842  StmtExpr(CompoundStmt *substmt, QualType T,
1843           SourceLocation lp, SourceLocation rp) :
1844    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1845
1846  /// \brief Build an empty statement expression.
1847  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1848
1849  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1850  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1851  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1852
1853  virtual SourceRange getSourceRange() const {
1854    return SourceRange(LParenLoc, RParenLoc);
1855  }
1856
1857  SourceLocation getLParenLoc() const { return LParenLoc; }
1858  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1859  SourceLocation getRParenLoc() const { return RParenLoc; }
1860  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1861
1862  static bool classof(const Stmt *T) {
1863    return T->getStmtClass() == StmtExprClass;
1864  }
1865  static bool classof(const StmtExpr *) { return true; }
1866
1867  // Iterators
1868  virtual child_iterator child_begin();
1869  virtual child_iterator child_end();
1870};
1871
1872/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
1873/// This AST node represents a function that returns 1 if two *types* (not
1874/// expressions) are compatible. The result of this built-in function can be
1875/// used in integer constant expressions.
1876class TypesCompatibleExpr : public Expr {
1877  QualType Type1;
1878  QualType Type2;
1879  SourceLocation BuiltinLoc, RParenLoc;
1880public:
1881  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1882                      QualType t1, QualType t2, SourceLocation RP) :
1883    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1884    BuiltinLoc(BLoc), RParenLoc(RP) {}
1885
1886  /// \brief Build an empty __builtin_type_compatible_p expression.
1887  explicit TypesCompatibleExpr(EmptyShell Empty)
1888    : Expr(TypesCompatibleExprClass, Empty) { }
1889
1890  QualType getArgType1() const { return Type1; }
1891  void setArgType1(QualType T) { Type1 = T; }
1892  QualType getArgType2() const { return Type2; }
1893  void setArgType2(QualType T) { Type2 = T; }
1894
1895  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1896  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1897
1898  SourceLocation getRParenLoc() const { return RParenLoc; }
1899  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1900
1901  virtual SourceRange getSourceRange() const {
1902    return SourceRange(BuiltinLoc, RParenLoc);
1903  }
1904  static bool classof(const Stmt *T) {
1905    return T->getStmtClass() == TypesCompatibleExprClass;
1906  }
1907  static bool classof(const TypesCompatibleExpr *) { return true; }
1908
1909  // Iterators
1910  virtual child_iterator child_begin();
1911  virtual child_iterator child_end();
1912};
1913
1914/// ShuffleVectorExpr - clang-specific builtin-in function
1915/// __builtin_shufflevector.
1916/// This AST node represents a operator that does a constant
1917/// shuffle, similar to LLVM's shufflevector instruction. It takes
1918/// two vectors and a variable number of constant indices,
1919/// and returns the appropriately shuffled vector.
1920class ShuffleVectorExpr : public Expr {
1921  SourceLocation BuiltinLoc, RParenLoc;
1922
1923  // SubExprs - the list of values passed to the __builtin_shufflevector
1924  // function. The first two are vectors, and the rest are constant
1925  // indices.  The number of values in this list is always
1926  // 2+the number of indices in the vector type.
1927  Stmt **SubExprs;
1928  unsigned NumExprs;
1929
1930protected:
1931  virtual void DoDestroy(ASTContext &C);
1932
1933public:
1934  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
1935                    QualType Type, SourceLocation BLoc,
1936                    SourceLocation RP) :
1937    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1938    RParenLoc(RP), NumExprs(nexpr) {
1939
1940    SubExprs = new (C) Stmt*[nexpr];
1941    for (unsigned i = 0; i < nexpr; i++)
1942      SubExprs[i] = args[i];
1943  }
1944
1945  /// \brief Build an empty vector-shuffle expression.
1946  explicit ShuffleVectorExpr(EmptyShell Empty)
1947    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1948
1949  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1950  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1951
1952  SourceLocation getRParenLoc() const { return RParenLoc; }
1953  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1954
1955  virtual SourceRange getSourceRange() const {
1956    return SourceRange(BuiltinLoc, RParenLoc);
1957  }
1958  static bool classof(const Stmt *T) {
1959    return T->getStmtClass() == ShuffleVectorExprClass;
1960  }
1961  static bool classof(const ShuffleVectorExpr *) { return true; }
1962
1963  ~ShuffleVectorExpr() {}
1964
1965  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1966  /// constant expression, the actual arguments passed in, and the function
1967  /// pointers.
1968  unsigned getNumSubExprs() const { return NumExprs; }
1969
1970  /// getExpr - Return the Expr at the specified index.
1971  Expr *getExpr(unsigned Index) {
1972    assert((Index < NumExprs) && "Arg access out of range!");
1973    return cast<Expr>(SubExprs[Index]);
1974  }
1975  const Expr *getExpr(unsigned Index) const {
1976    assert((Index < NumExprs) && "Arg access out of range!");
1977    return cast<Expr>(SubExprs[Index]);
1978  }
1979
1980  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
1981
1982  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1983    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1984    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1985  }
1986
1987  // Iterators
1988  virtual child_iterator child_begin();
1989  virtual child_iterator child_end();
1990};
1991
1992/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1993/// This AST node is similar to the conditional operator (?:) in C, with
1994/// the following exceptions:
1995/// - the test expression must be a integer constant expression.
1996/// - the expression returned acts like the chosen subexpression in every
1997///   visible way: the type is the same as that of the chosen subexpression,
1998///   and all predicates (whether it's an l-value, whether it's an integer
1999///   constant expression, etc.) return the same result as for the chosen
2000///   sub-expression.
2001class ChooseExpr : public Expr {
2002  enum { COND, LHS, RHS, END_EXPR };
2003  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2004  SourceLocation BuiltinLoc, RParenLoc;
2005public:
2006  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2007             SourceLocation RP)
2008    : Expr(ChooseExprClass, t),
2009      BuiltinLoc(BLoc), RParenLoc(RP) {
2010      SubExprs[COND] = cond;
2011      SubExprs[LHS] = lhs;
2012      SubExprs[RHS] = rhs;
2013    }
2014
2015  /// \brief Build an empty __builtin_choose_expr.
2016  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2017
2018  /// isConditionTrue - Return whether the condition is true (i.e. not
2019  /// equal to zero).
2020  bool isConditionTrue(ASTContext &C) const;
2021
2022  /// getChosenSubExpr - Return the subexpression chosen according to the
2023  /// condition.
2024  Expr *getChosenSubExpr(ASTContext &C) const {
2025    return isConditionTrue(C) ? getLHS() : getRHS();
2026  }
2027
2028  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2029  void setCond(Expr *E) { SubExprs[COND] = E; }
2030  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2031  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2032  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2033  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2034
2035  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2036  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2037
2038  SourceLocation getRParenLoc() const { return RParenLoc; }
2039  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2040
2041  virtual SourceRange getSourceRange() const {
2042    return SourceRange(BuiltinLoc, RParenLoc);
2043  }
2044  static bool classof(const Stmt *T) {
2045    return T->getStmtClass() == ChooseExprClass;
2046  }
2047  static bool classof(const ChooseExpr *) { return true; }
2048
2049  // Iterators
2050  virtual child_iterator child_begin();
2051  virtual child_iterator child_end();
2052};
2053
2054/// GNUNullExpr - Implements the GNU __null extension, which is a name
2055/// for a null pointer constant that has integral type (e.g., int or
2056/// long) and is the same size and alignment as a pointer. The __null
2057/// extension is typically only used by system headers, which define
2058/// NULL as __null in C++ rather than using 0 (which is an integer
2059/// that may not match the size of a pointer).
2060class GNUNullExpr : public Expr {
2061  /// TokenLoc - The location of the __null keyword.
2062  SourceLocation TokenLoc;
2063
2064public:
2065  GNUNullExpr(QualType Ty, SourceLocation Loc)
2066    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2067
2068  /// \brief Build an empty GNU __null expression.
2069  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2070
2071  /// getTokenLocation - The location of the __null token.
2072  SourceLocation getTokenLocation() const { return TokenLoc; }
2073  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2074
2075  virtual SourceRange getSourceRange() const {
2076    return SourceRange(TokenLoc);
2077  }
2078  static bool classof(const Stmt *T) {
2079    return T->getStmtClass() == GNUNullExprClass;
2080  }
2081  static bool classof(const GNUNullExpr *) { return true; }
2082
2083  // Iterators
2084  virtual child_iterator child_begin();
2085  virtual child_iterator child_end();
2086};
2087
2088/// VAArgExpr, used for the builtin function __builtin_va_start.
2089class VAArgExpr : public Expr {
2090  Stmt *Val;
2091  SourceLocation BuiltinLoc, RParenLoc;
2092public:
2093  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2094    : Expr(VAArgExprClass, t),
2095      Val(e),
2096      BuiltinLoc(BLoc),
2097      RParenLoc(RPLoc) { }
2098
2099  /// \brief Create an empty __builtin_va_start expression.
2100  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2101
2102  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2103  Expr *getSubExpr() { return cast<Expr>(Val); }
2104  void setSubExpr(Expr *E) { Val = E; }
2105
2106  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2107  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2108
2109  SourceLocation getRParenLoc() const { return RParenLoc; }
2110  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2111
2112  virtual SourceRange getSourceRange() const {
2113    return SourceRange(BuiltinLoc, RParenLoc);
2114  }
2115  static bool classof(const Stmt *T) {
2116    return T->getStmtClass() == VAArgExprClass;
2117  }
2118  static bool classof(const VAArgExpr *) { return true; }
2119
2120  // Iterators
2121  virtual child_iterator child_begin();
2122  virtual child_iterator child_end();
2123};
2124
2125/// @brief Describes an C or C++ initializer list.
2126///
2127/// InitListExpr describes an initializer list, which can be used to
2128/// initialize objects of different types, including
2129/// struct/class/union types, arrays, and vectors. For example:
2130///
2131/// @code
2132/// struct foo x = { 1, { 2, 3 } };
2133/// @endcode
2134///
2135/// Prior to semantic analysis, an initializer list will represent the
2136/// initializer list as written by the user, but will have the
2137/// placeholder type "void". This initializer list is called the
2138/// syntactic form of the initializer, and may contain C99 designated
2139/// initializers (represented as DesignatedInitExprs), initializations
2140/// of subobject members without explicit braces, and so on. Clients
2141/// interested in the original syntax of the initializer list should
2142/// use the syntactic form of the initializer list.
2143///
2144/// After semantic analysis, the initializer list will represent the
2145/// semantic form of the initializer, where the initializations of all
2146/// subobjects are made explicit with nested InitListExpr nodes and
2147/// C99 designators have been eliminated by placing the designated
2148/// initializations into the subobject they initialize. Additionally,
2149/// any "holes" in the initialization, where no initializer has been
2150/// specified for a particular subobject, will be replaced with
2151/// implicitly-generated ImplicitValueInitExpr expressions that
2152/// value-initialize the subobjects. Note, however, that the
2153/// initializer lists may still have fewer initializers than there are
2154/// elements to initialize within the object.
2155///
2156/// Given the semantic form of the initializer list, one can retrieve
2157/// the original syntactic form of that initializer list (if it
2158/// exists) using getSyntacticForm(). Since many initializer lists
2159/// have the same syntactic and semantic forms, getSyntacticForm() may
2160/// return NULL, indicating that the current initializer list also
2161/// serves as its syntactic form.
2162class InitListExpr : public Expr {
2163  // FIXME: Eliminate this vector in favor of ASTContext allocation
2164  std::vector<Stmt *> InitExprs;
2165  SourceLocation LBraceLoc, RBraceLoc;
2166
2167  /// Contains the initializer list that describes the syntactic form
2168  /// written in the source code.
2169  InitListExpr *SyntacticForm;
2170
2171  /// If this initializer list initializes a union, specifies which
2172  /// field within the union will be initialized.
2173  FieldDecl *UnionFieldInit;
2174
2175  /// Whether this initializer list originally had a GNU array-range
2176  /// designator in it. This is a temporary marker used by CodeGen.
2177  bool HadArrayRangeDesignator;
2178
2179public:
2180  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2181               SourceLocation rbraceloc);
2182
2183  /// \brief Build an empty initializer list.
2184  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2185
2186  unsigned getNumInits() const { return InitExprs.size(); }
2187
2188  const Expr* getInit(unsigned Init) const {
2189    assert(Init < getNumInits() && "Initializer access out of range!");
2190    return cast_or_null<Expr>(InitExprs[Init]);
2191  }
2192
2193  Expr* getInit(unsigned Init) {
2194    assert(Init < getNumInits() && "Initializer access out of range!");
2195    return cast_or_null<Expr>(InitExprs[Init]);
2196  }
2197
2198  void setInit(unsigned Init, Expr *expr) {
2199    assert(Init < getNumInits() && "Initializer access out of range!");
2200    InitExprs[Init] = expr;
2201  }
2202
2203  /// \brief Reserve space for some number of initializers.
2204  void reserveInits(unsigned NumInits);
2205
2206  /// @brief Specify the number of initializers
2207  ///
2208  /// If there are more than @p NumInits initializers, the remaining
2209  /// initializers will be destroyed. If there are fewer than @p
2210  /// NumInits initializers, NULL expressions will be added for the
2211  /// unknown initializers.
2212  void resizeInits(ASTContext &Context, unsigned NumInits);
2213
2214  /// @brief Updates the initializer at index @p Init with the new
2215  /// expression @p expr, and returns the old expression at that
2216  /// location.
2217  ///
2218  /// When @p Init is out of range for this initializer list, the
2219  /// initializer list will be extended with NULL expressions to
2220  /// accomodate the new entry.
2221  Expr *updateInit(unsigned Init, Expr *expr);
2222
2223  /// \brief If this initializes a union, specifies which field in the
2224  /// union to initialize.
2225  ///
2226  /// Typically, this field is the first named field within the
2227  /// union. However, a designated initializer can specify the
2228  /// initialization of a different field within the union.
2229  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2230  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2231
2232  // Explicit InitListExpr's originate from source code (and have valid source
2233  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2234  bool isExplicit() {
2235    return LBraceLoc.isValid() && RBraceLoc.isValid();
2236  }
2237
2238  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2239  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2240  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2241  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2242
2243  /// @brief Retrieve the initializer list that describes the
2244  /// syntactic form of the initializer.
2245  ///
2246  ///
2247  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2248  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2249
2250  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2251  void sawArrayRangeDesignator(bool ARD = true) {
2252    HadArrayRangeDesignator = ARD;
2253  }
2254
2255  virtual SourceRange getSourceRange() const {
2256    return SourceRange(LBraceLoc, RBraceLoc);
2257  }
2258  static bool classof(const Stmt *T) {
2259    return T->getStmtClass() == InitListExprClass;
2260  }
2261  static bool classof(const InitListExpr *) { return true; }
2262
2263  // Iterators
2264  virtual child_iterator child_begin();
2265  virtual child_iterator child_end();
2266
2267  typedef std::vector<Stmt *>::iterator iterator;
2268  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2269
2270  iterator begin() { return InitExprs.begin(); }
2271  iterator end() { return InitExprs.end(); }
2272  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2273  reverse_iterator rend() { return InitExprs.rend(); }
2274};
2275
2276/// @brief Represents a C99 designated initializer expression.
2277///
2278/// A designated initializer expression (C99 6.7.8) contains one or
2279/// more designators (which can be field designators, array
2280/// designators, or GNU array-range designators) followed by an
2281/// expression that initializes the field or element(s) that the
2282/// designators refer to. For example, given:
2283///
2284/// @code
2285/// struct point {
2286///   double x;
2287///   double y;
2288/// };
2289/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2290/// @endcode
2291///
2292/// The InitListExpr contains three DesignatedInitExprs, the first of
2293/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2294/// designators, one array designator for @c [2] followed by one field
2295/// designator for @c .y. The initalization expression will be 1.0.
2296class DesignatedInitExpr : public Expr {
2297public:
2298  /// \brief Forward declaration of the Designator class.
2299  class Designator;
2300
2301private:
2302  /// The location of the '=' or ':' prior to the actual initializer
2303  /// expression.
2304  SourceLocation EqualOrColonLoc;
2305
2306  /// Whether this designated initializer used the GNU deprecated
2307  /// syntax rather than the C99 '=' syntax.
2308  bool GNUSyntax : 1;
2309
2310  /// The number of designators in this initializer expression.
2311  unsigned NumDesignators : 15;
2312
2313  /// \brief The designators in this designated initialization
2314  /// expression.
2315  Designator *Designators;
2316
2317  /// The number of subexpressions of this initializer expression,
2318  /// which contains both the initializer and any additional
2319  /// expressions used by array and array-range designators.
2320  unsigned NumSubExprs : 16;
2321
2322
2323  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2324                     const Designator *Designators,
2325                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2326                     Expr **IndexExprs, unsigned NumIndexExprs,
2327                     Expr *Init);
2328
2329  explicit DesignatedInitExpr(unsigned NumSubExprs)
2330    : Expr(DesignatedInitExprClass, EmptyShell()),
2331      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2332
2333protected:
2334  virtual void DoDestroy(ASTContext &C);
2335
2336public:
2337  /// A field designator, e.g., ".x".
2338  struct FieldDesignator {
2339    /// Refers to the field that is being initialized. The low bit
2340    /// of this field determines whether this is actually a pointer
2341    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2342    /// initially constructed, a field designator will store an
2343    /// IdentifierInfo*. After semantic analysis has resolved that
2344    /// name, the field designator will instead store a FieldDecl*.
2345    uintptr_t NameOrField;
2346
2347    /// The location of the '.' in the designated initializer.
2348    unsigned DotLoc;
2349
2350    /// The location of the field name in the designated initializer.
2351    unsigned FieldLoc;
2352  };
2353
2354  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2355  struct ArrayOrRangeDesignator {
2356    /// Location of the first index expression within the designated
2357    /// initializer expression's list of subexpressions.
2358    unsigned Index;
2359    /// The location of the '[' starting the array range designator.
2360    unsigned LBracketLoc;
2361    /// The location of the ellipsis separating the start and end
2362    /// indices. Only valid for GNU array-range designators.
2363    unsigned EllipsisLoc;
2364    /// The location of the ']' terminating the array range designator.
2365    unsigned RBracketLoc;
2366  };
2367
2368  /// @brief Represents a single C99 designator.
2369  ///
2370  /// @todo This class is infuriatingly similar to clang::Designator,
2371  /// but minor differences (storing indices vs. storing pointers)
2372  /// keep us from reusing it. Try harder, later, to rectify these
2373  /// differences.
2374  class Designator {
2375    /// @brief The kind of designator this describes.
2376    enum {
2377      FieldDesignator,
2378      ArrayDesignator,
2379      ArrayRangeDesignator
2380    } Kind;
2381
2382    union {
2383      /// A field designator, e.g., ".x".
2384      struct FieldDesignator Field;
2385      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2386      struct ArrayOrRangeDesignator ArrayOrRange;
2387    };
2388    friend class DesignatedInitExpr;
2389
2390  public:
2391    Designator() {}
2392
2393    /// @brief Initializes a field designator.
2394    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2395               SourceLocation FieldLoc)
2396      : Kind(FieldDesignator) {
2397      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2398      Field.DotLoc = DotLoc.getRawEncoding();
2399      Field.FieldLoc = FieldLoc.getRawEncoding();
2400    }
2401
2402    /// @brief Initializes an array designator.
2403    Designator(unsigned Index, SourceLocation LBracketLoc,
2404               SourceLocation RBracketLoc)
2405      : Kind(ArrayDesignator) {
2406      ArrayOrRange.Index = Index;
2407      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2408      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2409      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2410    }
2411
2412    /// @brief Initializes a GNU array-range designator.
2413    Designator(unsigned Index, SourceLocation LBracketLoc,
2414               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2415      : Kind(ArrayRangeDesignator) {
2416      ArrayOrRange.Index = Index;
2417      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2418      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2419      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2420    }
2421
2422    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2423    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2424    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2425
2426    IdentifierInfo * getFieldName();
2427
2428    FieldDecl *getField() {
2429      assert(Kind == FieldDesignator && "Only valid on a field designator");
2430      if (Field.NameOrField & 0x01)
2431        return 0;
2432      else
2433        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2434    }
2435
2436    void setField(FieldDecl *FD) {
2437      assert(Kind == FieldDesignator && "Only valid on a field designator");
2438      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2439    }
2440
2441    SourceLocation getDotLoc() const {
2442      assert(Kind == FieldDesignator && "Only valid on a field designator");
2443      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2444    }
2445
2446    SourceLocation getFieldLoc() const {
2447      assert(Kind == FieldDesignator && "Only valid on a field designator");
2448      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2449    }
2450
2451    SourceLocation getLBracketLoc() const {
2452      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2453             "Only valid on an array or array-range designator");
2454      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2455    }
2456
2457    SourceLocation getRBracketLoc() const {
2458      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2459             "Only valid on an array or array-range designator");
2460      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2461    }
2462
2463    SourceLocation getEllipsisLoc() const {
2464      assert(Kind == ArrayRangeDesignator &&
2465             "Only valid on an array-range designator");
2466      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2467    }
2468
2469    unsigned getFirstExprIndex() const {
2470      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2471             "Only valid on an array or array-range designator");
2472      return ArrayOrRange.Index;
2473    }
2474
2475    SourceLocation getStartLocation() const {
2476      if (Kind == FieldDesignator)
2477        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2478      else
2479        return getLBracketLoc();
2480    }
2481  };
2482
2483  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2484                                    unsigned NumDesignators,
2485                                    Expr **IndexExprs, unsigned NumIndexExprs,
2486                                    SourceLocation EqualOrColonLoc,
2487                                    bool GNUSyntax, Expr *Init);
2488
2489  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2490
2491  /// @brief Returns the number of designators in this initializer.
2492  unsigned size() const { return NumDesignators; }
2493
2494  // Iterator access to the designators.
2495  typedef Designator* designators_iterator;
2496  designators_iterator designators_begin() { return Designators; }
2497  designators_iterator designators_end() {
2498    return Designators + NumDesignators;
2499  }
2500
2501  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2502
2503  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2504
2505  Expr *getArrayIndex(const Designator& D);
2506  Expr *getArrayRangeStart(const Designator& D);
2507  Expr *getArrayRangeEnd(const Designator& D);
2508
2509  /// @brief Retrieve the location of the '=' that precedes the
2510  /// initializer value itself, if present.
2511  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2512  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2513
2514  /// @brief Determines whether this designated initializer used the
2515  /// deprecated GNU syntax for designated initializers.
2516  bool usesGNUSyntax() const { return GNUSyntax; }
2517  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2518
2519  /// @brief Retrieve the initializer value.
2520  Expr *getInit() const {
2521    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2522  }
2523
2524  void setInit(Expr *init) {
2525    *child_begin() = init;
2526  }
2527
2528  /// \brief Retrieve the total number of subexpressions in this
2529  /// designated initializer expression, including the actual
2530  /// initialized value and any expressions that occur within array
2531  /// and array-range designators.
2532  unsigned getNumSubExprs() const { return NumSubExprs; }
2533
2534  Expr *getSubExpr(unsigned Idx) {
2535    assert(Idx < NumSubExprs && "Subscript out of range");
2536    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2537    Ptr += sizeof(DesignatedInitExpr);
2538    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2539  }
2540
2541  void setSubExpr(unsigned Idx, Expr *E) {
2542    assert(Idx < NumSubExprs && "Subscript out of range");
2543    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2544    Ptr += sizeof(DesignatedInitExpr);
2545    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2546  }
2547
2548  /// \brief Replaces the designator at index @p Idx with the series
2549  /// of designators in [First, Last).
2550  void ExpandDesignator(unsigned Idx, const Designator *First,
2551                        const Designator *Last);
2552
2553  virtual SourceRange getSourceRange() const;
2554
2555  static bool classof(const Stmt *T) {
2556    return T->getStmtClass() == DesignatedInitExprClass;
2557  }
2558  static bool classof(const DesignatedInitExpr *) { return true; }
2559
2560  // Iterators
2561  virtual child_iterator child_begin();
2562  virtual child_iterator child_end();
2563};
2564
2565/// \brief Represents an implicitly-generated value initialization of
2566/// an object of a given type.
2567///
2568/// Implicit value initializations occur within semantic initializer
2569/// list expressions (InitListExpr) as placeholders for subobject
2570/// initializations not explicitly specified by the user.
2571///
2572/// \see InitListExpr
2573class ImplicitValueInitExpr : public Expr {
2574public:
2575  explicit ImplicitValueInitExpr(QualType ty)
2576    : Expr(ImplicitValueInitExprClass, ty) { }
2577
2578  /// \brief Construct an empty implicit value initialization.
2579  explicit ImplicitValueInitExpr(EmptyShell Empty)
2580    : Expr(ImplicitValueInitExprClass, Empty) { }
2581
2582  static bool classof(const Stmt *T) {
2583    return T->getStmtClass() == ImplicitValueInitExprClass;
2584  }
2585  static bool classof(const ImplicitValueInitExpr *) { return true; }
2586
2587  virtual SourceRange getSourceRange() const {
2588    return SourceRange();
2589  }
2590
2591  // Iterators
2592  virtual child_iterator child_begin();
2593  virtual child_iterator child_end();
2594};
2595
2596
2597class ParenListExpr : public Expr {
2598  Stmt **Exprs;
2599  unsigned NumExprs;
2600  SourceLocation LParenLoc, RParenLoc;
2601
2602protected:
2603  virtual void DoDestroy(ASTContext& C);
2604
2605public:
2606  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2607                unsigned numexprs, SourceLocation rparenloc);
2608
2609  ~ParenListExpr() {}
2610
2611  /// \brief Build an empty paren list.
2612  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2613
2614  unsigned getNumExprs() const { return NumExprs; }
2615
2616  const Expr* getExpr(unsigned Init) const {
2617    assert(Init < getNumExprs() && "Initializer access out of range!");
2618    return cast_or_null<Expr>(Exprs[Init]);
2619  }
2620
2621  Expr* getExpr(unsigned Init) {
2622    assert(Init < getNumExprs() && "Initializer access out of range!");
2623    return cast_or_null<Expr>(Exprs[Init]);
2624  }
2625
2626  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2627
2628  SourceLocation getLParenLoc() const { return LParenLoc; }
2629  SourceLocation getRParenLoc() const { return RParenLoc; }
2630
2631  virtual SourceRange getSourceRange() const {
2632    return SourceRange(LParenLoc, RParenLoc);
2633  }
2634  static bool classof(const Stmt *T) {
2635    return T->getStmtClass() == ParenListExprClass;
2636  }
2637  static bool classof(const ParenListExpr *) { return true; }
2638
2639  // Iterators
2640  virtual child_iterator child_begin();
2641  virtual child_iterator child_end();
2642};
2643
2644
2645//===----------------------------------------------------------------------===//
2646// Clang Extensions
2647//===----------------------------------------------------------------------===//
2648
2649
2650/// ExtVectorElementExpr - This represents access to specific elements of a
2651/// vector, and may occur on the left hand side or right hand side.  For example
2652/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2653///
2654/// Note that the base may have either vector or pointer to vector type, just
2655/// like a struct field reference.
2656///
2657class ExtVectorElementExpr : public Expr {
2658  Stmt *Base;
2659  IdentifierInfo *Accessor;
2660  SourceLocation AccessorLoc;
2661public:
2662  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2663                       SourceLocation loc)
2664    : Expr(ExtVectorElementExprClass, ty),
2665      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2666
2667  /// \brief Build an empty vector element expression.
2668  explicit ExtVectorElementExpr(EmptyShell Empty)
2669    : Expr(ExtVectorElementExprClass, Empty) { }
2670
2671  const Expr *getBase() const { return cast<Expr>(Base); }
2672  Expr *getBase() { return cast<Expr>(Base); }
2673  void setBase(Expr *E) { Base = E; }
2674
2675  IdentifierInfo &getAccessor() const { return *Accessor; }
2676  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2677
2678  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2679  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2680
2681  /// getNumElements - Get the number of components being selected.
2682  unsigned getNumElements() const;
2683
2684  /// containsDuplicateElements - Return true if any element access is
2685  /// repeated.
2686  bool containsDuplicateElements() const;
2687
2688  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2689  /// aggregate Constant of ConstantInt(s).
2690  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2691
2692  virtual SourceRange getSourceRange() const {
2693    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2694  }
2695
2696  /// isArrow - Return true if the base expression is a pointer to vector,
2697  /// return false if the base expression is a vector.
2698  bool isArrow() const;
2699
2700  static bool classof(const Stmt *T) {
2701    return T->getStmtClass() == ExtVectorElementExprClass;
2702  }
2703  static bool classof(const ExtVectorElementExpr *) { return true; }
2704
2705  // Iterators
2706  virtual child_iterator child_begin();
2707  virtual child_iterator child_end();
2708};
2709
2710
2711/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2712/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2713class BlockExpr : public Expr {
2714protected:
2715  BlockDecl *TheBlock;
2716  bool HasBlockDeclRefExprs;
2717public:
2718  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2719    : Expr(BlockExprClass, ty),
2720      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2721
2722  /// \brief Build an empty block expression.
2723  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2724
2725  const BlockDecl *getBlockDecl() const { return TheBlock; }
2726  BlockDecl *getBlockDecl() { return TheBlock; }
2727  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2728
2729  // Convenience functions for probing the underlying BlockDecl.
2730  SourceLocation getCaretLocation() const;
2731  const Stmt *getBody() const;
2732  Stmt *getBody();
2733
2734  virtual SourceRange getSourceRange() const {
2735    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2736  }
2737
2738  /// getFunctionType - Return the underlying function type for this block.
2739  const FunctionType *getFunctionType() const;
2740
2741  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2742  /// inside of the block that reference values outside the block.
2743  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2744  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2745
2746  static bool classof(const Stmt *T) {
2747    return T->getStmtClass() == BlockExprClass;
2748  }
2749  static bool classof(const BlockExpr *) { return true; }
2750
2751  // Iterators
2752  virtual child_iterator child_begin();
2753  virtual child_iterator child_end();
2754};
2755
2756/// BlockDeclRefExpr - A reference to a declared variable, function,
2757/// enum, etc.
2758class BlockDeclRefExpr : public Expr {
2759  ValueDecl *D;
2760  SourceLocation Loc;
2761  bool IsByRef : 1;
2762  bool ConstQualAdded : 1;
2763public:
2764  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2765                   bool constAdded = false) :
2766       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2767                                       ConstQualAdded(constAdded) {}
2768
2769  // \brief Build an empty reference to a declared variable in a
2770  // block.
2771  explicit BlockDeclRefExpr(EmptyShell Empty)
2772    : Expr(BlockDeclRefExprClass, Empty) { }
2773
2774  ValueDecl *getDecl() { return D; }
2775  const ValueDecl *getDecl() const { return D; }
2776  void setDecl(ValueDecl *VD) { D = VD; }
2777
2778  SourceLocation getLocation() const { return Loc; }
2779  void setLocation(SourceLocation L) { Loc = L; }
2780
2781  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2782
2783  bool isByRef() const { return IsByRef; }
2784  void setByRef(bool BR) { IsByRef = BR; }
2785
2786  bool isConstQualAdded() const { return ConstQualAdded; }
2787  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2788
2789  static bool classof(const Stmt *T) {
2790    return T->getStmtClass() == BlockDeclRefExprClass;
2791  }
2792  static bool classof(const BlockDeclRefExpr *) { return true; }
2793
2794  // Iterators
2795  virtual child_iterator child_begin();
2796  virtual child_iterator child_end();
2797};
2798
2799}  // end namespace clang
2800
2801#endif
2802