Expr.h revision cc324ad80ab940efca006b0064f7ca70a6181816
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <cctype>
29#include <vector>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46
47/// \brief A simple array of base specifiers.
48typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57  virtual void ANCHOR(); // key function.
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.ValueKind = VK;
65    ExprBits.ObjectKind = OK;
66    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
67    setType(T);
68  }
69
70  /// \brief Construct an empty expression.
71  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
72
73public:
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ExprBits.ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return ExprBits.TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
116
117  /// \brief Whether this expression contains an unexpanded parameter
118  /// pack (for C++0x variadic templates).
119  ///
120  /// Given the following function template:
121  ///
122  /// \code
123  /// template<typename F, typename ...Types>
124  /// void forward(const F &f, Types &&...args) {
125  ///   f(static_cast<Types&&>(args)...);
126  /// }
127  /// \endcode
128  ///
129  /// The expressions \c args and \c static_cast<Types&&>(args) both
130  /// contain parameter packs.
131  bool containsUnexpandedParameterPack() const {
132    return ExprBits.ContainsUnexpandedParameterPack;
133  }
134
135  /// \brief Set the bit that describes whether this expression
136  /// contains an unexpanded parameter pack.
137  void setContainsUnexpandedParameterPack(bool PP = true) {
138    ExprBits.ContainsUnexpandedParameterPack = PP;
139  }
140
141  /// SourceLocation tokens are not useful in isolation - they are low level
142  /// value objects created/interpreted by SourceManager. We assume AST
143  /// clients will have a pointer to the respective SourceManager.
144  virtual SourceRange getSourceRange() const = 0;
145
146  /// getExprLoc - Return the preferred location for the arrow when diagnosing
147  /// a problem with a generic expression.
148  virtual SourceLocation getExprLoc() const { return getLocStart(); }
149
150  /// isUnusedResultAWarning - Return true if this immediate expression should
151  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
152  /// with location to warn on and the source range[s] to report with the
153  /// warning.
154  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
155                              SourceRange &R2, ASTContext &Ctx) const;
156
157  /// isLValue - True if this expression is an "l-value" according to
158  /// the rules of the current language.  C and C++ give somewhat
159  /// different rules for this concept, but in general, the result of
160  /// an l-value expression identifies a specific object whereas the
161  /// result of an r-value expression is a value detached from any
162  /// specific storage.
163  ///
164  /// C++0x divides the concept of "r-value" into pure r-values
165  /// ("pr-values") and so-called expiring values ("x-values"), which
166  /// identify specific objects that can be safely cannibalized for
167  /// their resources.  This is an unfortunate abuse of terminology on
168  /// the part of the C++ committee.  In Clang, when we say "r-value",
169  /// we generally mean a pr-value.
170  bool isLValue() const { return getValueKind() == VK_LValue; }
171  bool isRValue() const { return getValueKind() == VK_RValue; }
172  bool isXValue() const { return getValueKind() == VK_XValue; }
173  bool isGLValue() const { return getValueKind() != VK_RValue; }
174
175  enum LValueClassification {
176    LV_Valid,
177    LV_NotObjectType,
178    LV_IncompleteVoidType,
179    LV_DuplicateVectorComponents,
180    LV_InvalidExpression,
181    LV_MemberFunction,
182    LV_SubObjCPropertySetting,
183    LV_ClassTemporary
184  };
185  /// Reasons why an expression might not be an l-value.
186  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
187
188  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
189  /// does not have an incomplete type, does not have a const-qualified type,
190  /// and if it is a structure or union, does not have any member (including,
191  /// recursively, any member or element of all contained aggregates or unions)
192  /// with a const-qualified type.
193  ///
194  /// \param Loc [in] [out] - A source location which *may* be filled
195  /// in with the location of the expression making this a
196  /// non-modifiable lvalue, if specified.
197  enum isModifiableLvalueResult {
198    MLV_Valid,
199    MLV_NotObjectType,
200    MLV_IncompleteVoidType,
201    MLV_DuplicateVectorComponents,
202    MLV_InvalidExpression,
203    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
204    MLV_IncompleteType,
205    MLV_ConstQualified,
206    MLV_ArrayType,
207    MLV_NotBlockQualified,
208    MLV_ReadonlyProperty,
209    MLV_NoSetterProperty,
210    MLV_MemberFunction,
211    MLV_SubObjCPropertySetting,
212    MLV_ClassTemporary
213  };
214  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
215                                              SourceLocation *Loc = 0) const;
216
217  /// \brief The return type of classify(). Represents the C++0x expression
218  ///        taxonomy.
219  class Classification {
220  public:
221    /// \brief The various classification results. Most of these mean prvalue.
222    enum Kinds {
223      CL_LValue,
224      CL_XValue,
225      CL_Function, // Functions cannot be lvalues in C.
226      CL_Void, // Void cannot be an lvalue in C.
227      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
228      CL_MemberFunction, // An expression referring to a member function
229      CL_SubObjCPropertySetting,
230      CL_ClassTemporary, // A prvalue of class type
231      CL_PRValue // A prvalue for any other reason, of any other type
232    };
233    /// \brief The results of modification testing.
234    enum ModifiableType {
235      CM_Untested, // testModifiable was false.
236      CM_Modifiable,
237      CM_RValue, // Not modifiable because it's an rvalue
238      CM_Function, // Not modifiable because it's a function; C++ only
239      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
240      CM_NotBlockQualified, // Not captured in the closure
241      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
242      CM_ConstQualified,
243      CM_ArrayType,
244      CM_IncompleteType
245    };
246
247  private:
248    friend class Expr;
249
250    unsigned short Kind;
251    unsigned short Modifiable;
252
253    explicit Classification(Kinds k, ModifiableType m)
254      : Kind(k), Modifiable(m)
255    {}
256
257  public:
258    Classification() {}
259
260    Kinds getKind() const { return static_cast<Kinds>(Kind); }
261    ModifiableType getModifiable() const {
262      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
263      return static_cast<ModifiableType>(Modifiable);
264    }
265    bool isLValue() const { return Kind == CL_LValue; }
266    bool isXValue() const { return Kind == CL_XValue; }
267    bool isGLValue() const { return Kind <= CL_XValue; }
268    bool isPRValue() const { return Kind >= CL_Function; }
269    bool isRValue() const { return Kind >= CL_XValue; }
270    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
271
272    /// \brief Create a simple, modifiably lvalue
273    static Classification makeSimpleLValue() {
274      return Classification(CL_LValue, CM_Modifiable);
275    }
276
277  };
278  /// \brief Classify - Classify this expression according to the C++0x
279  ///        expression taxonomy.
280  ///
281  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
282  /// old lvalue vs rvalue. This function determines the type of expression this
283  /// is. There are three expression types:
284  /// - lvalues are classical lvalues as in C++03.
285  /// - prvalues are equivalent to rvalues in C++03.
286  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
287  ///   function returning an rvalue reference.
288  /// lvalues and xvalues are collectively referred to as glvalues, while
289  /// prvalues and xvalues together form rvalues.
290  Classification Classify(ASTContext &Ctx) const {
291    return ClassifyImpl(Ctx, 0);
292  }
293
294  /// \brief ClassifyModifiable - Classify this expression according to the
295  ///        C++0x expression taxonomy, and see if it is valid on the left side
296  ///        of an assignment.
297  ///
298  /// This function extends classify in that it also tests whether the
299  /// expression is modifiable (C99 6.3.2.1p1).
300  /// \param Loc A source location that might be filled with a relevant location
301  ///            if the expression is not modifiable.
302  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
303    return ClassifyImpl(Ctx, &Loc);
304  }
305
306  /// getValueKindForType - Given a formal return or parameter type,
307  /// give its value kind.
308  static ExprValueKind getValueKindForType(QualType T) {
309    if (const ReferenceType *RT = T->getAs<ReferenceType>())
310      return (isa<LValueReferenceType>(RT)
311                ? VK_LValue
312                : (RT->getPointeeType()->isFunctionType()
313                     ? VK_LValue : VK_XValue));
314    return VK_RValue;
315  }
316
317  /// getValueKind - The value kind that this expression produces.
318  ExprValueKind getValueKind() const {
319    return static_cast<ExprValueKind>(ExprBits.ValueKind);
320  }
321
322  /// getObjectKind - The object kind that this expression produces.
323  /// Object kinds are meaningful only for expressions that yield an
324  /// l-value or x-value.
325  ExprObjectKind getObjectKind() const {
326    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
327  }
328
329  /// setValueKind - Set the value kind produced by this expression.
330  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
331
332  /// setObjectKind - Set the object kind produced by this expression.
333  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
334
335private:
336  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
337
338public:
339
340  /// \brief If this expression refers to a bit-field, retrieve the
341  /// declaration of that bit-field.
342  FieldDecl *getBitField();
343
344  const FieldDecl *getBitField() const {
345    return const_cast<Expr*>(this)->getBitField();
346  }
347
348  /// \brief If this expression is an l-value for an Objective C
349  /// property, find the underlying property reference expression.
350  const ObjCPropertyRefExpr *getObjCProperty() const;
351
352  /// \brief Returns whether this expression refers to a vector element.
353  bool refersToVectorElement() const;
354
355  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
356  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
357  /// but also int expressions which are produced by things like comparisons in
358  /// C.
359  bool isKnownToHaveBooleanValue() const;
360
361  /// isIntegerConstantExpr - Return true if this expression is a valid integer
362  /// constant expression, and, if so, return its value in Result.  If not a
363  /// valid i-c-e, return false and fill in Loc (if specified) with the location
364  /// of the invalid expression.
365  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
366                             SourceLocation *Loc = 0,
367                             bool isEvaluated = true) const;
368  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
369    llvm::APSInt X;
370    return isIntegerConstantExpr(X, Ctx, Loc);
371  }
372  /// isConstantInitializer - Returns true if this expression is a constant
373  /// initializer, which can be emitted at compile-time.
374  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
375
376  /// EvalResult is a struct with detailed info about an evaluated expression.
377  struct EvalResult {
378    /// Val - This is the value the expression can be folded to.
379    APValue Val;
380
381    /// HasSideEffects - Whether the evaluated expression has side effects.
382    /// For example, (f() && 0) can be folded, but it still has side effects.
383    bool HasSideEffects;
384
385    /// Diag - If the expression is unfoldable, then Diag contains a note
386    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
387    /// position for the error, and DiagExpr is the expression that caused
388    /// the error.
389    /// If the expression is foldable, but not an integer constant expression,
390    /// Diag contains a note diagnostic that describes why it isn't an integer
391    /// constant expression. If the expression *is* an integer constant
392    /// expression, then Diag will be zero.
393    unsigned Diag;
394    const Expr *DiagExpr;
395    SourceLocation DiagLoc;
396
397    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
398
399    // isGlobalLValue - Return true if the evaluated lvalue expression
400    // is global.
401    bool isGlobalLValue() const;
402    // hasSideEffects - Return true if the evaluated expression has
403    // side effects.
404    bool hasSideEffects() const {
405      return HasSideEffects;
406    }
407  };
408
409  /// Evaluate - Return true if this is a constant which we can fold using
410  /// any crazy technique (that has nothing to do with language standards) that
411  /// we want to.  If this function returns true, it returns the folded constant
412  /// in Result.
413  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
414
415  /// EvaluateAsBooleanCondition - Return true if this is a constant
416  /// which we we can fold and convert to a boolean condition using
417  /// any crazy technique that we want to.
418  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
419
420  /// isEvaluatable - Call Evaluate to see if this expression can be constant
421  /// folded, but discard the result.
422  bool isEvaluatable(const ASTContext &Ctx) const;
423
424  /// HasSideEffects - This routine returns true for all those expressions
425  /// which must be evaluated each time and must not be optimized away
426  /// or evaluated at compile time. Example is a function call, volatile
427  /// variable read.
428  bool HasSideEffects(const ASTContext &Ctx) const;
429
430  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
431  /// must be called on an expression that constant folds to an integer.
432  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
433
434  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
435  /// with link time known address.
436  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
437
438  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
439  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
440
441  /// \brief Enumeration used to describe how \c isNullPointerConstant()
442  /// should cope with value-dependent expressions.
443  enum NullPointerConstantValueDependence {
444    /// \brief Specifies that the expression should never be value-dependent.
445    NPC_NeverValueDependent = 0,
446
447    /// \brief Specifies that a value-dependent expression of integral or
448    /// dependent type should be considered a null pointer constant.
449    NPC_ValueDependentIsNull,
450
451    /// \brief Specifies that a value-dependent expression should be considered
452    /// to never be a null pointer constant.
453    NPC_ValueDependentIsNotNull
454  };
455
456  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
457  /// integer constant expression with the value zero, or if this is one that is
458  /// cast to void*.
459  bool isNullPointerConstant(ASTContext &Ctx,
460                             NullPointerConstantValueDependence NPC) const;
461
462  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
463  /// write barrier.
464  bool isOBJCGCCandidate(ASTContext &Ctx) const;
465
466  /// \brief Returns true if this expression is a bound member function.
467  bool isBoundMemberFunction(ASTContext &Ctx) const;
468
469  /// \brief Result type of CanThrow().
470  enum CanThrowResult {
471    CT_Cannot,
472    CT_Dependent,
473    CT_Can
474  };
475  /// \brief Test if this expression, if evaluated, might throw, according to
476  ///        the rules of C++ [expr.unary.noexcept].
477  CanThrowResult CanThrow(ASTContext &C) const;
478
479  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
480  ///  its subexpression.  If that subexpression is also a ParenExpr,
481  ///  then this method recursively returns its subexpression, and so forth.
482  ///  Otherwise, the method returns the current Expr.
483  Expr *IgnoreParens();
484
485  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
486  /// or CastExprs, returning their operand.
487  Expr *IgnoreParenCasts();
488
489  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
490  /// ParenExpr or ImplicitCastExprs, returning their operand.
491  Expr *IgnoreParenImpCasts();
492
493  const Expr *IgnoreParenImpCasts() const {
494    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
495  }
496
497  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
498  /// CastExprs that represent lvalue casts, returning their operand.
499  Expr *IgnoreParenLValueCasts();
500
501  const Expr *IgnoreParenLValueCasts() const {
502    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
503  }
504
505  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
506  /// value (including ptr->int casts of the same size).  Strip off any
507  /// ParenExpr or CastExprs, returning their operand.
508  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
509
510  /// \brief Determine whether this expression is a default function argument.
511  ///
512  /// Default arguments are implicitly generated in the abstract syntax tree
513  /// by semantic analysis for function calls, object constructions, etc. in
514  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
515  /// this routine also looks through any implicit casts to determine whether
516  /// the expression is a default argument.
517  bool isDefaultArgument() const;
518
519  /// \brief Determine whether the result of this expression is a
520  /// temporary object of the given class type.
521  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
522
523  const Expr *IgnoreParens() const {
524    return const_cast<Expr*>(this)->IgnoreParens();
525  }
526  const Expr *IgnoreParenCasts() const {
527    return const_cast<Expr*>(this)->IgnoreParenCasts();
528  }
529  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
530    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
531  }
532
533  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
534  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
535
536  static bool classof(const Stmt *T) {
537    return T->getStmtClass() >= firstExprConstant &&
538           T->getStmtClass() <= lastExprConstant;
539  }
540  static bool classof(const Expr *) { return true; }
541};
542
543
544//===----------------------------------------------------------------------===//
545// Primary Expressions.
546//===----------------------------------------------------------------------===//
547
548/// \brief Represents the qualifier that may precede a C++ name, e.g., the
549/// "std::" in "std::sort".
550struct NameQualifier {
551  /// \brief The nested name specifier.
552  NestedNameSpecifier *NNS;
553
554  /// \brief The source range covered by the nested name specifier.
555  SourceRange Range;
556};
557
558/// \brief Represents an explicit template argument list in C++, e.g.,
559/// the "<int>" in "sort<int>".
560struct ExplicitTemplateArgumentList {
561  /// \brief The source location of the left angle bracket ('<');
562  SourceLocation LAngleLoc;
563
564  /// \brief The source location of the right angle bracket ('>');
565  SourceLocation RAngleLoc;
566
567  /// \brief The number of template arguments in TemplateArgs.
568  /// The actual template arguments (if any) are stored after the
569  /// ExplicitTemplateArgumentList structure.
570  unsigned NumTemplateArgs;
571
572  /// \brief Retrieve the template arguments
573  TemplateArgumentLoc *getTemplateArgs() {
574    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
575  }
576
577  /// \brief Retrieve the template arguments
578  const TemplateArgumentLoc *getTemplateArgs() const {
579    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
580  }
581
582  void initializeFrom(const TemplateArgumentListInfo &List);
583  void initializeFrom(const TemplateArgumentListInfo &List,
584                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
585  void copyInto(TemplateArgumentListInfo &List) const;
586  static std::size_t sizeFor(unsigned NumTemplateArgs);
587  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
588};
589
590/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
591/// enum, etc.
592class DeclRefExpr : public Expr {
593  enum {
594    // Flag on DecoratedD that specifies when this declaration reference
595    // expression has a C++ nested-name-specifier.
596    HasQualifierFlag = 0x01,
597    // Flag on DecoratedD that specifies when this declaration reference
598    // expression has an explicit C++ template argument list.
599    HasExplicitTemplateArgumentListFlag = 0x02
600  };
601
602  // DecoratedD - The declaration that we are referencing, plus two bits to
603  // indicate whether (1) the declaration's name was explicitly qualified and
604  // (2) the declaration's name was followed by an explicit template
605  // argument list.
606  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
607
608  // Loc - The location of the declaration name itself.
609  SourceLocation Loc;
610
611  /// DNLoc - Provides source/type location info for the
612  /// declaration name embedded in DecoratedD.
613  DeclarationNameLoc DNLoc;
614
615  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
616  NameQualifier *getNameQualifier() {
617    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
618      return 0;
619
620    return reinterpret_cast<NameQualifier *> (this + 1);
621  }
622
623  /// \brief Retrieve the qualifier that preceded the member name, if any.
624  const NameQualifier *getNameQualifier() const {
625    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
626  }
627
628  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
629              ValueDecl *D, SourceLocation NameLoc,
630              const TemplateArgumentListInfo *TemplateArgs,
631              QualType T, ExprValueKind VK);
632
633  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
634              ValueDecl *D, const DeclarationNameInfo &NameInfo,
635              const TemplateArgumentListInfo *TemplateArgs,
636              QualType T, ExprValueKind VK);
637
638  /// \brief Construct an empty declaration reference expression.
639  explicit DeclRefExpr(EmptyShell Empty)
640    : Expr(DeclRefExprClass, Empty) { }
641
642  /// \brief Computes the type- and value-dependence flags for this
643  /// declaration reference expression.
644  void computeDependence();
645
646public:
647  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
648    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
649    DecoratedD(d, 0), Loc(l) {
650    computeDependence();
651  }
652
653  static DeclRefExpr *Create(ASTContext &Context,
654                             NestedNameSpecifier *Qualifier,
655                             SourceRange QualifierRange,
656                             ValueDecl *D,
657                             SourceLocation NameLoc,
658                             QualType T, ExprValueKind VK,
659                             const TemplateArgumentListInfo *TemplateArgs = 0);
660
661  static DeclRefExpr *Create(ASTContext &Context,
662                             NestedNameSpecifier *Qualifier,
663                             SourceRange QualifierRange,
664                             ValueDecl *D,
665                             const DeclarationNameInfo &NameInfo,
666                             QualType T, ExprValueKind VK,
667                             const TemplateArgumentListInfo *TemplateArgs = 0);
668
669  /// \brief Construct an empty declaration reference expression.
670  static DeclRefExpr *CreateEmpty(ASTContext &Context,
671                                  bool HasQualifier,
672                                  bool HasExplicitTemplateArgs,
673                                  unsigned NumTemplateArgs);
674
675  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
676  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
677  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
678
679  DeclarationNameInfo getNameInfo() const {
680    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
681  }
682
683  SourceLocation getLocation() const { return Loc; }
684  void setLocation(SourceLocation L) { Loc = L; }
685  virtual SourceRange getSourceRange() const;
686
687  /// \brief Determine whether this declaration reference was preceded by a
688  /// C++ nested-name-specifier, e.g., \c N::foo.
689  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
690
691  /// \brief If the name was qualified, retrieves the source range of
692  /// the nested-name-specifier that precedes the name. Otherwise,
693  /// returns an empty source range.
694  SourceRange getQualifierRange() const {
695    if (!hasQualifier())
696      return SourceRange();
697
698    return getNameQualifier()->Range;
699  }
700
701  /// \brief If the name was qualified, retrieves the nested-name-specifier
702  /// that precedes the name. Otherwise, returns NULL.
703  NestedNameSpecifier *getQualifier() const {
704    if (!hasQualifier())
705      return 0;
706
707    return getNameQualifier()->NNS;
708  }
709
710  bool hasExplicitTemplateArgs() const {
711    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
712  }
713
714  /// \brief Retrieve the explicit template argument list that followed the
715  /// member template name.
716  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
717    assert(hasExplicitTemplateArgs());
718
719    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
720      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
721
722    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
723                                                      getNameQualifier() + 1);
724  }
725
726  /// \brief Retrieve the explicit template argument list that followed the
727  /// member template name.
728  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
729    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
730  }
731
732  /// \brief Retrieves the optional explicit template arguments.
733  /// This points to the same data as getExplicitTemplateArgs(), but
734  /// returns null if there are no explicit template arguments.
735  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
736    if (!hasExplicitTemplateArgs()) return 0;
737    return &getExplicitTemplateArgs();
738  }
739
740  /// \brief Copies the template arguments (if present) into the given
741  /// structure.
742  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
743    if (hasExplicitTemplateArgs())
744      getExplicitTemplateArgs().copyInto(List);
745  }
746
747  /// \brief Retrieve the location of the left angle bracket following the
748  /// member name ('<'), if any.
749  SourceLocation getLAngleLoc() const {
750    if (!hasExplicitTemplateArgs())
751      return SourceLocation();
752
753    return getExplicitTemplateArgs().LAngleLoc;
754  }
755
756  /// \brief Retrieve the template arguments provided as part of this
757  /// template-id.
758  const TemplateArgumentLoc *getTemplateArgs() const {
759    if (!hasExplicitTemplateArgs())
760      return 0;
761
762    return getExplicitTemplateArgs().getTemplateArgs();
763  }
764
765  /// \brief Retrieve the number of template arguments provided as part of this
766  /// template-id.
767  unsigned getNumTemplateArgs() const {
768    if (!hasExplicitTemplateArgs())
769      return 0;
770
771    return getExplicitTemplateArgs().NumTemplateArgs;
772  }
773
774  /// \brief Retrieve the location of the right angle bracket following the
775  /// template arguments ('>').
776  SourceLocation getRAngleLoc() const {
777    if (!hasExplicitTemplateArgs())
778      return SourceLocation();
779
780    return getExplicitTemplateArgs().RAngleLoc;
781  }
782
783  static bool classof(const Stmt *T) {
784    return T->getStmtClass() == DeclRefExprClass;
785  }
786  static bool classof(const DeclRefExpr *) { return true; }
787
788  // Iterators
789  virtual child_iterator child_begin();
790  virtual child_iterator child_end();
791
792  friend class ASTStmtReader;
793  friend class ASTStmtWriter;
794};
795
796/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
797class PredefinedExpr : public Expr {
798public:
799  enum IdentType {
800    Func,
801    Function,
802    PrettyFunction,
803    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
804    /// 'virtual' keyword is omitted for virtual member functions.
805    PrettyFunctionNoVirtual
806  };
807
808private:
809  SourceLocation Loc;
810  IdentType Type;
811public:
812  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
813    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
814           type->isDependentType(), type->isDependentType(),
815           /*ContainsUnexpandedParameterPack=*/false),
816      Loc(l), Type(IT) {}
817
818  /// \brief Construct an empty predefined expression.
819  explicit PredefinedExpr(EmptyShell Empty)
820    : Expr(PredefinedExprClass, Empty) { }
821
822  IdentType getIdentType() const { return Type; }
823  void setIdentType(IdentType IT) { Type = IT; }
824
825  SourceLocation getLocation() const { return Loc; }
826  void setLocation(SourceLocation L) { Loc = L; }
827
828  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
829
830  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
831
832  static bool classof(const Stmt *T) {
833    return T->getStmtClass() == PredefinedExprClass;
834  }
835  static bool classof(const PredefinedExpr *) { return true; }
836
837  // Iterators
838  virtual child_iterator child_begin();
839  virtual child_iterator child_end();
840};
841
842/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
843/// leaking memory.
844///
845/// For large floats/integers, APFloat/APInt will allocate memory from the heap
846/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
847/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
848/// the APFloat/APInt values will never get freed. APNumericStorage uses
849/// ASTContext's allocator for memory allocation.
850class APNumericStorage {
851  unsigned BitWidth;
852  union {
853    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
854    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
855  };
856
857  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
858
859  APNumericStorage(const APNumericStorage&); // do not implement
860  APNumericStorage& operator=(const APNumericStorage&); // do not implement
861
862protected:
863  APNumericStorage() : BitWidth(0), VAL(0) { }
864
865  llvm::APInt getIntValue() const {
866    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
867    if (NumWords > 1)
868      return llvm::APInt(BitWidth, NumWords, pVal);
869    else
870      return llvm::APInt(BitWidth, VAL);
871  }
872  void setIntValue(ASTContext &C, const llvm::APInt &Val);
873};
874
875class APIntStorage : public APNumericStorage {
876public:
877  llvm::APInt getValue() const { return getIntValue(); }
878  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
879};
880
881class APFloatStorage : public APNumericStorage {
882public:
883  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
884  void setValue(ASTContext &C, const llvm::APFloat &Val) {
885    setIntValue(C, Val.bitcastToAPInt());
886  }
887};
888
889class IntegerLiteral : public Expr {
890  APIntStorage Num;
891  SourceLocation Loc;
892
893  /// \brief Construct an empty integer literal.
894  explicit IntegerLiteral(EmptyShell Empty)
895    : Expr(IntegerLiteralClass, Empty) { }
896
897public:
898  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
899  // or UnsignedLongLongTy
900  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
901                 QualType type, SourceLocation l)
902    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
903           false),
904      Loc(l) {
905    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
906    setValue(C, V);
907  }
908
909  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
910  // or UnsignedLongLongTy
911  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
912                                QualType type, SourceLocation l);
913  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
914
915  llvm::APInt getValue() const { return Num.getValue(); }
916  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
917
918  /// \brief Retrieve the location of the literal.
919  SourceLocation getLocation() const { return Loc; }
920
921  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
922  void setLocation(SourceLocation Location) { Loc = Location; }
923
924  static bool classof(const Stmt *T) {
925    return T->getStmtClass() == IntegerLiteralClass;
926  }
927  static bool classof(const IntegerLiteral *) { return true; }
928
929  // Iterators
930  virtual child_iterator child_begin();
931  virtual child_iterator child_end();
932};
933
934class CharacterLiteral : public Expr {
935  unsigned Value;
936  SourceLocation Loc;
937  bool IsWide;
938public:
939  // type should be IntTy
940  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
941    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
942           false),
943      Value(value), Loc(l), IsWide(iswide) {
944  }
945
946  /// \brief Construct an empty character literal.
947  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
948
949  SourceLocation getLocation() const { return Loc; }
950  bool isWide() const { return IsWide; }
951
952  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
953
954  unsigned getValue() const { return Value; }
955
956  void setLocation(SourceLocation Location) { Loc = Location; }
957  void setWide(bool W) { IsWide = W; }
958  void setValue(unsigned Val) { Value = Val; }
959
960  static bool classof(const Stmt *T) {
961    return T->getStmtClass() == CharacterLiteralClass;
962  }
963  static bool classof(const CharacterLiteral *) { return true; }
964
965  // Iterators
966  virtual child_iterator child_begin();
967  virtual child_iterator child_end();
968};
969
970class FloatingLiteral : public Expr {
971  APFloatStorage Num;
972  bool IsExact : 1;
973  SourceLocation Loc;
974
975  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
976                  QualType Type, SourceLocation L)
977    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
978           false),
979      IsExact(isexact), Loc(L) {
980    setValue(C, V);
981  }
982
983  /// \brief Construct an empty floating-point literal.
984  explicit FloatingLiteral(EmptyShell Empty)
985    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
986
987public:
988  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
989                                 bool isexact, QualType Type, SourceLocation L);
990  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
991
992  llvm::APFloat getValue() const { return Num.getValue(); }
993  void setValue(ASTContext &C, const llvm::APFloat &Val) {
994    Num.setValue(C, Val);
995  }
996
997  bool isExact() const { return IsExact; }
998  void setExact(bool E) { IsExact = E; }
999
1000  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1001  /// double.  Note that this may cause loss of precision, but is useful for
1002  /// debugging dumps, etc.
1003  double getValueAsApproximateDouble() const;
1004
1005  SourceLocation getLocation() const { return Loc; }
1006  void setLocation(SourceLocation L) { Loc = L; }
1007
1008  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == FloatingLiteralClass;
1012  }
1013  static bool classof(const FloatingLiteral *) { return true; }
1014
1015  // Iterators
1016  virtual child_iterator child_begin();
1017  virtual child_iterator child_end();
1018};
1019
1020/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1021/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1022/// IntegerLiteral classes.  Instances of this class always have a Complex type
1023/// whose element type matches the subexpression.
1024///
1025class ImaginaryLiteral : public Expr {
1026  Stmt *Val;
1027public:
1028  ImaginaryLiteral(Expr *val, QualType Ty)
1029    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1030           false),
1031      Val(val) {}
1032
1033  /// \brief Build an empty imaginary literal.
1034  explicit ImaginaryLiteral(EmptyShell Empty)
1035    : Expr(ImaginaryLiteralClass, Empty) { }
1036
1037  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1038  Expr *getSubExpr() { return cast<Expr>(Val); }
1039  void setSubExpr(Expr *E) { Val = E; }
1040
1041  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
1042  static bool classof(const Stmt *T) {
1043    return T->getStmtClass() == ImaginaryLiteralClass;
1044  }
1045  static bool classof(const ImaginaryLiteral *) { return true; }
1046
1047  // Iterators
1048  virtual child_iterator child_begin();
1049  virtual child_iterator child_end();
1050};
1051
1052/// StringLiteral - This represents a string literal expression, e.g. "foo"
1053/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1054/// is NOT null-terminated, and the length of the string is determined by
1055/// calling getByteLength().  The C type for a string is always a
1056/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1057/// not.
1058///
1059/// Note that strings in C can be formed by concatenation of multiple string
1060/// literal pptokens in translation phase #6.  This keeps track of the locations
1061/// of each of these pieces.
1062///
1063/// Strings in C can also be truncated and extended by assigning into arrays,
1064/// e.g. with constructs like:
1065///   char X[2] = "foobar";
1066/// In this case, getByteLength() will return 6, but the string literal will
1067/// have type "char[2]".
1068class StringLiteral : public Expr {
1069  const char *StrData;
1070  unsigned ByteLength;
1071  bool IsWide;
1072  unsigned NumConcatenated;
1073  SourceLocation TokLocs[1];
1074
1075  StringLiteral(QualType Ty) :
1076    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1077
1078public:
1079  /// This is the "fully general" constructor that allows representation of
1080  /// strings formed from multiple concatenated tokens.
1081  static StringLiteral *Create(ASTContext &C, const char *StrData,
1082                               unsigned ByteLength, bool Wide, QualType Ty,
1083                               const SourceLocation *Loc, unsigned NumStrs);
1084
1085  /// Simple constructor for string literals made from one token.
1086  static StringLiteral *Create(ASTContext &C, const char *StrData,
1087                               unsigned ByteLength,
1088                               bool Wide, QualType Ty, SourceLocation Loc) {
1089    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1090  }
1091
1092  /// \brief Construct an empty string literal.
1093  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1094
1095  llvm::StringRef getString() const {
1096    return llvm::StringRef(StrData, ByteLength);
1097  }
1098
1099  unsigned getByteLength() const { return ByteLength; }
1100
1101  /// \brief Sets the string data to the given string data.
1102  void setString(ASTContext &C, llvm::StringRef Str);
1103
1104  bool isWide() const { return IsWide; }
1105  void setWide(bool W) { IsWide = W; }
1106
1107  bool containsNonAsciiOrNull() const {
1108    llvm::StringRef Str = getString();
1109    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1110      if (!isascii(Str[i]) || !Str[i])
1111        return true;
1112    return false;
1113  }
1114  /// getNumConcatenated - Get the number of string literal tokens that were
1115  /// concatenated in translation phase #6 to form this string literal.
1116  unsigned getNumConcatenated() const { return NumConcatenated; }
1117
1118  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1119    assert(TokNum < NumConcatenated && "Invalid tok number");
1120    return TokLocs[TokNum];
1121  }
1122  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1123    assert(TokNum < NumConcatenated && "Invalid tok number");
1124    TokLocs[TokNum] = L;
1125  }
1126
1127  /// getLocationOfByte - Return a source location that points to the specified
1128  /// byte of this string literal.
1129  ///
1130  /// Strings are amazingly complex.  They can be formed from multiple tokens
1131  /// and can have escape sequences in them in addition to the usual trigraph
1132  /// and escaped newline business.  This routine handles this complexity.
1133  ///
1134  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1135                                   const LangOptions &Features,
1136                                   const TargetInfo &Target) const;
1137
1138  typedef const SourceLocation *tokloc_iterator;
1139  tokloc_iterator tokloc_begin() const { return TokLocs; }
1140  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1141
1142  virtual SourceRange getSourceRange() const {
1143    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1144  }
1145  static bool classof(const Stmt *T) {
1146    return T->getStmtClass() == StringLiteralClass;
1147  }
1148  static bool classof(const StringLiteral *) { return true; }
1149
1150  // Iterators
1151  virtual child_iterator child_begin();
1152  virtual child_iterator child_end();
1153};
1154
1155/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1156/// AST node is only formed if full location information is requested.
1157class ParenExpr : public Expr {
1158  SourceLocation L, R;
1159  Stmt *Val;
1160public:
1161  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1162    : Expr(ParenExprClass, val->getType(),
1163           val->getValueKind(), val->getObjectKind(),
1164           val->isTypeDependent(), val->isValueDependent(),
1165           val->containsUnexpandedParameterPack()),
1166      L(l), R(r), Val(val) {}
1167
1168  /// \brief Construct an empty parenthesized expression.
1169  explicit ParenExpr(EmptyShell Empty)
1170    : Expr(ParenExprClass, Empty) { }
1171
1172  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1173  Expr *getSubExpr() { return cast<Expr>(Val); }
1174  void setSubExpr(Expr *E) { Val = E; }
1175
1176  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1177
1178  /// \brief Get the location of the left parentheses '('.
1179  SourceLocation getLParen() const { return L; }
1180  void setLParen(SourceLocation Loc) { L = Loc; }
1181
1182  /// \brief Get the location of the right parentheses ')'.
1183  SourceLocation getRParen() const { return R; }
1184  void setRParen(SourceLocation Loc) { R = Loc; }
1185
1186  static bool classof(const Stmt *T) {
1187    return T->getStmtClass() == ParenExprClass;
1188  }
1189  static bool classof(const ParenExpr *) { return true; }
1190
1191  // Iterators
1192  virtual child_iterator child_begin();
1193  virtual child_iterator child_end();
1194};
1195
1196
1197/// UnaryOperator - This represents the unary-expression's (except sizeof and
1198/// alignof), the postinc/postdec operators from postfix-expression, and various
1199/// extensions.
1200///
1201/// Notes on various nodes:
1202///
1203/// Real/Imag - These return the real/imag part of a complex operand.  If
1204///   applied to a non-complex value, the former returns its operand and the
1205///   later returns zero in the type of the operand.
1206///
1207class UnaryOperator : public Expr {
1208public:
1209  typedef UnaryOperatorKind Opcode;
1210
1211private:
1212  unsigned Opc : 5;
1213  SourceLocation Loc;
1214  Stmt *Val;
1215public:
1216
1217  UnaryOperator(Expr *input, Opcode opc, QualType type,
1218                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1219    : Expr(UnaryOperatorClass, type, VK, OK,
1220           input->isTypeDependent() || type->isDependentType(),
1221           input->isValueDependent(),
1222           input->containsUnexpandedParameterPack()),
1223      Opc(opc), Loc(l), Val(input) {}
1224
1225  /// \brief Build an empty unary operator.
1226  explicit UnaryOperator(EmptyShell Empty)
1227    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1228
1229  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1230  void setOpcode(Opcode O) { Opc = O; }
1231
1232  Expr *getSubExpr() const { return cast<Expr>(Val); }
1233  void setSubExpr(Expr *E) { Val = E; }
1234
1235  /// getOperatorLoc - Return the location of the operator.
1236  SourceLocation getOperatorLoc() const { return Loc; }
1237  void setOperatorLoc(SourceLocation L) { Loc = L; }
1238
1239  /// isPostfix - Return true if this is a postfix operation, like x++.
1240  static bool isPostfix(Opcode Op) {
1241    return Op == UO_PostInc || Op == UO_PostDec;
1242  }
1243
1244  /// isPrefix - Return true if this is a prefix operation, like --x.
1245  static bool isPrefix(Opcode Op) {
1246    return Op == UO_PreInc || Op == UO_PreDec;
1247  }
1248
1249  bool isPrefix() const { return isPrefix(getOpcode()); }
1250  bool isPostfix() const { return isPostfix(getOpcode()); }
1251  bool isIncrementOp() const {
1252    return Opc == UO_PreInc || Opc == UO_PostInc;
1253  }
1254  bool isIncrementDecrementOp() const {
1255    return Opc <= UO_PreDec;
1256  }
1257  static bool isArithmeticOp(Opcode Op) {
1258    return Op >= UO_Plus && Op <= UO_LNot;
1259  }
1260  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1261
1262  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1263  /// corresponds to, e.g. "sizeof" or "[pre]++"
1264  static const char *getOpcodeStr(Opcode Op);
1265
1266  /// \brief Retrieve the unary opcode that corresponds to the given
1267  /// overloaded operator.
1268  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1269
1270  /// \brief Retrieve the overloaded operator kind that corresponds to
1271  /// the given unary opcode.
1272  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1273
1274  virtual SourceRange getSourceRange() const {
1275    if (isPostfix())
1276      return SourceRange(Val->getLocStart(), Loc);
1277    else
1278      return SourceRange(Loc, Val->getLocEnd());
1279  }
1280  virtual SourceLocation getExprLoc() const { return Loc; }
1281
1282  static bool classof(const Stmt *T) {
1283    return T->getStmtClass() == UnaryOperatorClass;
1284  }
1285  static bool classof(const UnaryOperator *) { return true; }
1286
1287  // Iterators
1288  virtual child_iterator child_begin();
1289  virtual child_iterator child_end();
1290};
1291
1292/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1293/// offsetof(record-type, member-designator). For example, given:
1294/// @code
1295/// struct S {
1296///   float f;
1297///   double d;
1298/// };
1299/// struct T {
1300///   int i;
1301///   struct S s[10];
1302/// };
1303/// @endcode
1304/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1305
1306class OffsetOfExpr : public Expr {
1307public:
1308  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1309  class OffsetOfNode {
1310  public:
1311    /// \brief The kind of offsetof node we have.
1312    enum Kind {
1313      /// \brief An index into an array.
1314      Array = 0x00,
1315      /// \brief A field.
1316      Field = 0x01,
1317      /// \brief A field in a dependent type, known only by its name.
1318      Identifier = 0x02,
1319      /// \brief An implicit indirection through a C++ base class, when the
1320      /// field found is in a base class.
1321      Base = 0x03
1322    };
1323
1324  private:
1325    enum { MaskBits = 2, Mask = 0x03 };
1326
1327    /// \brief The source range that covers this part of the designator.
1328    SourceRange Range;
1329
1330    /// \brief The data describing the designator, which comes in three
1331    /// different forms, depending on the lower two bits.
1332    ///   - An unsigned index into the array of Expr*'s stored after this node
1333    ///     in memory, for [constant-expression] designators.
1334    ///   - A FieldDecl*, for references to a known field.
1335    ///   - An IdentifierInfo*, for references to a field with a given name
1336    ///     when the class type is dependent.
1337    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1338    ///     base class.
1339    uintptr_t Data;
1340
1341  public:
1342    /// \brief Create an offsetof node that refers to an array element.
1343    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1344                 SourceLocation RBracketLoc)
1345      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1346
1347    /// \brief Create an offsetof node that refers to a field.
1348    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1349                 SourceLocation NameLoc)
1350      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1351        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1352
1353    /// \brief Create an offsetof node that refers to an identifier.
1354    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1355                 SourceLocation NameLoc)
1356      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1357        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1358
1359    /// \brief Create an offsetof node that refers into a C++ base class.
1360    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1361      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1362
1363    /// \brief Determine what kind of offsetof node this is.
1364    Kind getKind() const {
1365      return static_cast<Kind>(Data & Mask);
1366    }
1367
1368    /// \brief For an array element node, returns the index into the array
1369    /// of expressions.
1370    unsigned getArrayExprIndex() const {
1371      assert(getKind() == Array);
1372      return Data >> 2;
1373    }
1374
1375    /// \brief For a field offsetof node, returns the field.
1376    FieldDecl *getField() const {
1377      assert(getKind() == Field);
1378      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1379    }
1380
1381    /// \brief For a field or identifier offsetof node, returns the name of
1382    /// the field.
1383    IdentifierInfo *getFieldName() const;
1384
1385    /// \brief For a base class node, returns the base specifier.
1386    CXXBaseSpecifier *getBase() const {
1387      assert(getKind() == Base);
1388      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1389    }
1390
1391    /// \brief Retrieve the source range that covers this offsetof node.
1392    ///
1393    /// For an array element node, the source range contains the locations of
1394    /// the square brackets. For a field or identifier node, the source range
1395    /// contains the location of the period (if there is one) and the
1396    /// identifier.
1397    SourceRange getRange() const { return Range; }
1398  };
1399
1400private:
1401
1402  SourceLocation OperatorLoc, RParenLoc;
1403  // Base type;
1404  TypeSourceInfo *TSInfo;
1405  // Number of sub-components (i.e. instances of OffsetOfNode).
1406  unsigned NumComps;
1407  // Number of sub-expressions (i.e. array subscript expressions).
1408  unsigned NumExprs;
1409
1410  OffsetOfExpr(ASTContext &C, QualType type,
1411               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1412               OffsetOfNode* compsPtr, unsigned numComps,
1413               Expr** exprsPtr, unsigned numExprs,
1414               SourceLocation RParenLoc);
1415
1416  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1417    : Expr(OffsetOfExprClass, EmptyShell()),
1418      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1419
1420public:
1421
1422  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1423                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1424                              OffsetOfNode* compsPtr, unsigned numComps,
1425                              Expr** exprsPtr, unsigned numExprs,
1426                              SourceLocation RParenLoc);
1427
1428  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1429                                   unsigned NumComps, unsigned NumExprs);
1430
1431  /// getOperatorLoc - Return the location of the operator.
1432  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1433  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1434
1435  /// \brief Return the location of the right parentheses.
1436  SourceLocation getRParenLoc() const { return RParenLoc; }
1437  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1438
1439  TypeSourceInfo *getTypeSourceInfo() const {
1440    return TSInfo;
1441  }
1442  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1443    TSInfo = tsi;
1444  }
1445
1446  const OffsetOfNode &getComponent(unsigned Idx) {
1447    assert(Idx < NumComps && "Subscript out of range");
1448    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1449  }
1450
1451  void setComponent(unsigned Idx, OffsetOfNode ON) {
1452    assert(Idx < NumComps && "Subscript out of range");
1453    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1454  }
1455
1456  unsigned getNumComponents() const {
1457    return NumComps;
1458  }
1459
1460  Expr* getIndexExpr(unsigned Idx) {
1461    assert(Idx < NumExprs && "Subscript out of range");
1462    return reinterpret_cast<Expr **>(
1463                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1464  }
1465
1466  void setIndexExpr(unsigned Idx, Expr* E) {
1467    assert(Idx < NumComps && "Subscript out of range");
1468    reinterpret_cast<Expr **>(
1469                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1470  }
1471
1472  unsigned getNumExpressions() const {
1473    return NumExprs;
1474  }
1475
1476  virtual SourceRange getSourceRange() const {
1477    return SourceRange(OperatorLoc, RParenLoc);
1478  }
1479
1480  static bool classof(const Stmt *T) {
1481    return T->getStmtClass() == OffsetOfExprClass;
1482  }
1483
1484  static bool classof(const OffsetOfExpr *) { return true; }
1485
1486  // Iterators
1487  virtual child_iterator child_begin();
1488  virtual child_iterator child_end();
1489};
1490
1491/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1492/// types and expressions.
1493class SizeOfAlignOfExpr : public Expr {
1494  bool isSizeof : 1;  // true if sizeof, false if alignof.
1495  bool isType : 1;    // true if operand is a type, false if an expression
1496  union {
1497    TypeSourceInfo *Ty;
1498    Stmt *Ex;
1499  } Argument;
1500  SourceLocation OpLoc, RParenLoc;
1501
1502public:
1503  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1504                    QualType resultType, SourceLocation op,
1505                    SourceLocation rp) :
1506      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1507           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1508           // Value-dependent if the argument is type-dependent.
1509           TInfo->getType()->isDependentType(),
1510           TInfo->getType()->containsUnexpandedParameterPack()),
1511      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1512    Argument.Ty = TInfo;
1513  }
1514
1515  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1516                    QualType resultType, SourceLocation op,
1517                    SourceLocation rp) :
1518      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1519           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1520           // Value-dependent if the argument is type-dependent.
1521           E->isTypeDependent(),
1522           E->containsUnexpandedParameterPack()),
1523      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1524    Argument.Ex = E;
1525  }
1526
1527  /// \brief Construct an empty sizeof/alignof expression.
1528  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1529    : Expr(SizeOfAlignOfExprClass, Empty) { }
1530
1531  bool isSizeOf() const { return isSizeof; }
1532  void setSizeof(bool S) { isSizeof = S; }
1533
1534  bool isArgumentType() const { return isType; }
1535  QualType getArgumentType() const {
1536    return getArgumentTypeInfo()->getType();
1537  }
1538  TypeSourceInfo *getArgumentTypeInfo() const {
1539    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1540    return Argument.Ty;
1541  }
1542  Expr *getArgumentExpr() {
1543    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1544    return static_cast<Expr*>(Argument.Ex);
1545  }
1546  const Expr *getArgumentExpr() const {
1547    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1548  }
1549
1550  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1551  void setArgument(TypeSourceInfo *TInfo) {
1552    Argument.Ty = TInfo;
1553    isType = true;
1554  }
1555
1556  /// Gets the argument type, or the type of the argument expression, whichever
1557  /// is appropriate.
1558  QualType getTypeOfArgument() const {
1559    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1560  }
1561
1562  SourceLocation getOperatorLoc() const { return OpLoc; }
1563  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1564
1565  SourceLocation getRParenLoc() const { return RParenLoc; }
1566  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1567
1568  virtual SourceRange getSourceRange() const {
1569    return SourceRange(OpLoc, RParenLoc);
1570  }
1571
1572  static bool classof(const Stmt *T) {
1573    return T->getStmtClass() == SizeOfAlignOfExprClass;
1574  }
1575  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1576
1577  // Iterators
1578  virtual child_iterator child_begin();
1579  virtual child_iterator child_end();
1580};
1581
1582//===----------------------------------------------------------------------===//
1583// Postfix Operators.
1584//===----------------------------------------------------------------------===//
1585
1586/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1587class ArraySubscriptExpr : public Expr {
1588  enum { LHS, RHS, END_EXPR=2 };
1589  Stmt* SubExprs[END_EXPR];
1590  SourceLocation RBracketLoc;
1591public:
1592  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1593                     ExprValueKind VK, ExprObjectKind OK,
1594                     SourceLocation rbracketloc)
1595  : Expr(ArraySubscriptExprClass, t, VK, OK,
1596         lhs->isTypeDependent() || rhs->isTypeDependent(),
1597         lhs->isValueDependent() || rhs->isValueDependent(),
1598         (lhs->containsUnexpandedParameterPack() ||
1599          rhs->containsUnexpandedParameterPack())),
1600    RBracketLoc(rbracketloc) {
1601    SubExprs[LHS] = lhs;
1602    SubExprs[RHS] = rhs;
1603  }
1604
1605  /// \brief Create an empty array subscript expression.
1606  explicit ArraySubscriptExpr(EmptyShell Shell)
1607    : Expr(ArraySubscriptExprClass, Shell) { }
1608
1609  /// An array access can be written A[4] or 4[A] (both are equivalent).
1610  /// - getBase() and getIdx() always present the normalized view: A[4].
1611  ///    In this case getBase() returns "A" and getIdx() returns "4".
1612  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1613  ///    4[A] getLHS() returns "4".
1614  /// Note: Because vector element access is also written A[4] we must
1615  /// predicate the format conversion in getBase and getIdx only on the
1616  /// the type of the RHS, as it is possible for the LHS to be a vector of
1617  /// integer type
1618  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1619  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1620  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1621
1622  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1623  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1624  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1625
1626  Expr *getBase() {
1627    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1628  }
1629
1630  const Expr *getBase() const {
1631    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1632  }
1633
1634  Expr *getIdx() {
1635    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1636  }
1637
1638  const Expr *getIdx() const {
1639    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1640  }
1641
1642  virtual SourceRange getSourceRange() const {
1643    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1644  }
1645
1646  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1647  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1648
1649  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1650
1651  static bool classof(const Stmt *T) {
1652    return T->getStmtClass() == ArraySubscriptExprClass;
1653  }
1654  static bool classof(const ArraySubscriptExpr *) { return true; }
1655
1656  // Iterators
1657  virtual child_iterator child_begin();
1658  virtual child_iterator child_end();
1659};
1660
1661
1662/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1663/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1664/// while its subclasses may represent alternative syntax that (semantically)
1665/// results in a function call. For example, CXXOperatorCallExpr is
1666/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1667/// "str1 + str2" to resolve to a function call.
1668class CallExpr : public Expr {
1669  enum { FN=0, PREARGS_START=1 };
1670  Stmt **SubExprs;
1671  unsigned NumArgs;
1672  SourceLocation RParenLoc;
1673
1674protected:
1675  // These versions of the constructor are for derived classes.
1676  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1677           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1678           SourceLocation rparenloc);
1679  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1680
1681  Stmt *getPreArg(unsigned i) {
1682    assert(i < getNumPreArgs() && "Prearg access out of range!");
1683    return SubExprs[PREARGS_START+i];
1684  }
1685  const Stmt *getPreArg(unsigned i) const {
1686    assert(i < getNumPreArgs() && "Prearg access out of range!");
1687    return SubExprs[PREARGS_START+i];
1688  }
1689  void setPreArg(unsigned i, Stmt *PreArg) {
1690    assert(i < getNumPreArgs() && "Prearg access out of range!");
1691    SubExprs[PREARGS_START+i] = PreArg;
1692  }
1693
1694  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1695
1696public:
1697  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1698           ExprValueKind VK, SourceLocation rparenloc);
1699
1700  /// \brief Build an empty call expression.
1701  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1702
1703  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1704  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1705  void setCallee(Expr *F) { SubExprs[FN] = F; }
1706
1707  Decl *getCalleeDecl();
1708  const Decl *getCalleeDecl() const {
1709    return const_cast<CallExpr*>(this)->getCalleeDecl();
1710  }
1711
1712  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1713  FunctionDecl *getDirectCallee();
1714  const FunctionDecl *getDirectCallee() const {
1715    return const_cast<CallExpr*>(this)->getDirectCallee();
1716  }
1717
1718  /// getNumArgs - Return the number of actual arguments to this call.
1719  ///
1720  unsigned getNumArgs() const { return NumArgs; }
1721
1722  /// \brief Retrieve the call arguments.
1723  Expr **getArgs() {
1724    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1725  }
1726
1727  /// getArg - Return the specified argument.
1728  Expr *getArg(unsigned Arg) {
1729    assert(Arg < NumArgs && "Arg access out of range!");
1730    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1731  }
1732  const Expr *getArg(unsigned Arg) const {
1733    assert(Arg < NumArgs && "Arg access out of range!");
1734    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1735  }
1736
1737  /// setArg - Set the specified argument.
1738  void setArg(unsigned Arg, Expr *ArgExpr) {
1739    assert(Arg < NumArgs && "Arg access out of range!");
1740    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1741  }
1742
1743  /// setNumArgs - This changes the number of arguments present in this call.
1744  /// Any orphaned expressions are deleted by this, and any new operands are set
1745  /// to null.
1746  void setNumArgs(ASTContext& C, unsigned NumArgs);
1747
1748  typedef ExprIterator arg_iterator;
1749  typedef ConstExprIterator const_arg_iterator;
1750
1751  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1752  arg_iterator arg_end() {
1753    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1754  }
1755  const_arg_iterator arg_begin() const {
1756    return SubExprs+PREARGS_START+getNumPreArgs();
1757  }
1758  const_arg_iterator arg_end() const {
1759    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1760  }
1761
1762  /// getNumCommas - Return the number of commas that must have been present in
1763  /// this function call.
1764  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1765
1766  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1767  /// not, return 0.
1768  unsigned isBuiltinCall(const ASTContext &Context) const;
1769
1770  /// getCallReturnType - Get the return type of the call expr. This is not
1771  /// always the type of the expr itself, if the return type is a reference
1772  /// type.
1773  QualType getCallReturnType() const;
1774
1775  SourceLocation getRParenLoc() const { return RParenLoc; }
1776  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1777
1778  virtual SourceRange getSourceRange() const {
1779    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1780  }
1781
1782  static bool classof(const Stmt *T) {
1783    return T->getStmtClass() >= firstCallExprConstant &&
1784           T->getStmtClass() <= lastCallExprConstant;
1785  }
1786  static bool classof(const CallExpr *) { return true; }
1787
1788  // Iterators
1789  virtual child_iterator child_begin();
1790  virtual child_iterator child_end();
1791};
1792
1793/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1794///
1795class MemberExpr : public Expr {
1796  /// Extra data stored in some member expressions.
1797  struct MemberNameQualifier : public NameQualifier {
1798    DeclAccessPair FoundDecl;
1799  };
1800
1801  /// Base - the expression for the base pointer or structure references.  In
1802  /// X.F, this is "X".
1803  Stmt *Base;
1804
1805  /// MemberDecl - This is the decl being referenced by the field/member name.
1806  /// In X.F, this is the decl referenced by F.
1807  ValueDecl *MemberDecl;
1808
1809  /// MemberLoc - This is the location of the member name.
1810  SourceLocation MemberLoc;
1811
1812  /// MemberDNLoc - Provides source/type location info for the
1813  /// declaration name embedded in MemberDecl.
1814  DeclarationNameLoc MemberDNLoc;
1815
1816  /// IsArrow - True if this is "X->F", false if this is "X.F".
1817  bool IsArrow : 1;
1818
1819  /// \brief True if this member expression used a nested-name-specifier to
1820  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1821  /// declaration.  When true, a MemberNameQualifier
1822  /// structure is allocated immediately after the MemberExpr.
1823  bool HasQualifierOrFoundDecl : 1;
1824
1825  /// \brief True if this member expression specified a template argument list
1826  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1827  /// structure (and its TemplateArguments) are allocated immediately after
1828  /// the MemberExpr or, if the member expression also has a qualifier, after
1829  /// the MemberNameQualifier structure.
1830  bool HasExplicitTemplateArgumentList : 1;
1831
1832  /// \brief Retrieve the qualifier that preceded the member name, if any.
1833  MemberNameQualifier *getMemberQualifier() {
1834    assert(HasQualifierOrFoundDecl);
1835    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1836  }
1837
1838  /// \brief Retrieve the qualifier that preceded the member name, if any.
1839  const MemberNameQualifier *getMemberQualifier() const {
1840    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1841  }
1842
1843public:
1844  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1845             const DeclarationNameInfo &NameInfo, QualType ty,
1846             ExprValueKind VK, ExprObjectKind OK)
1847    : Expr(MemberExprClass, ty, VK, OK,
1848           base->isTypeDependent(), base->isValueDependent(),
1849           base->containsUnexpandedParameterPack()),
1850      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1851      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1852      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1853    assert(memberdecl->getDeclName() == NameInfo.getName());
1854  }
1855
1856  // NOTE: this constructor should be used only when it is known that
1857  // the member name can not provide additional syntactic info
1858  // (i.e., source locations for C++ operator names or type source info
1859  // for constructors, destructors and conversion oeprators).
1860  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1861             SourceLocation l, QualType ty,
1862             ExprValueKind VK, ExprObjectKind OK)
1863    : Expr(MemberExprClass, ty, VK, OK,
1864           base->isTypeDependent(), base->isValueDependent(),
1865           base->containsUnexpandedParameterPack()),
1866      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1867      IsArrow(isarrow),
1868      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1869
1870  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1871                            NestedNameSpecifier *qual, SourceRange qualrange,
1872                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1873                            DeclarationNameInfo MemberNameInfo,
1874                            const TemplateArgumentListInfo *targs,
1875                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1876
1877  void setBase(Expr *E) { Base = E; }
1878  Expr *getBase() const { return cast<Expr>(Base); }
1879
1880  /// \brief Retrieve the member declaration to which this expression refers.
1881  ///
1882  /// The returned declaration will either be a FieldDecl or (in C++)
1883  /// a CXXMethodDecl.
1884  ValueDecl *getMemberDecl() const { return MemberDecl; }
1885  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1886
1887  /// \brief Retrieves the declaration found by lookup.
1888  DeclAccessPair getFoundDecl() const {
1889    if (!HasQualifierOrFoundDecl)
1890      return DeclAccessPair::make(getMemberDecl(),
1891                                  getMemberDecl()->getAccess());
1892    return getMemberQualifier()->FoundDecl;
1893  }
1894
1895  /// \brief Determines whether this member expression actually had
1896  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1897  /// x->Base::foo.
1898  bool hasQualifier() const { return getQualifier() != 0; }
1899
1900  /// \brief If the member name was qualified, retrieves the source range of
1901  /// the nested-name-specifier that precedes the member name. Otherwise,
1902  /// returns an empty source range.
1903  SourceRange getQualifierRange() const {
1904    if (!HasQualifierOrFoundDecl)
1905      return SourceRange();
1906
1907    return getMemberQualifier()->Range;
1908  }
1909
1910  /// \brief If the member name was qualified, retrieves the
1911  /// nested-name-specifier that precedes the member name. Otherwise, returns
1912  /// NULL.
1913  NestedNameSpecifier *getQualifier() const {
1914    if (!HasQualifierOrFoundDecl)
1915      return 0;
1916
1917    return getMemberQualifier()->NNS;
1918  }
1919
1920  /// \brief Determines whether this member expression actually had a C++
1921  /// template argument list explicitly specified, e.g., x.f<int>.
1922  bool hasExplicitTemplateArgs() const {
1923    return HasExplicitTemplateArgumentList;
1924  }
1925
1926  /// \brief Copies the template arguments (if present) into the given
1927  /// structure.
1928  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1929    if (hasExplicitTemplateArgs())
1930      getExplicitTemplateArgs().copyInto(List);
1931  }
1932
1933  /// \brief Retrieve the explicit template argument list that
1934  /// follow the member template name.  This must only be called on an
1935  /// expression with explicit template arguments.
1936  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1937    assert(HasExplicitTemplateArgumentList);
1938    if (!HasQualifierOrFoundDecl)
1939      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1940
1941    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1942                                                      getMemberQualifier() + 1);
1943  }
1944
1945  /// \brief Retrieve the explicit template argument list that
1946  /// followed the member template name.  This must only be called on
1947  /// an expression with explicit template arguments.
1948  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1949    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1950  }
1951
1952  /// \brief Retrieves the optional explicit template arguments.
1953  /// This points to the same data as getExplicitTemplateArgs(), but
1954  /// returns null if there are no explicit template arguments.
1955  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1956    if (!hasExplicitTemplateArgs()) return 0;
1957    return &getExplicitTemplateArgs();
1958  }
1959
1960  /// \brief Retrieve the location of the left angle bracket following the
1961  /// member name ('<'), if any.
1962  SourceLocation getLAngleLoc() const {
1963    if (!HasExplicitTemplateArgumentList)
1964      return SourceLocation();
1965
1966    return getExplicitTemplateArgs().LAngleLoc;
1967  }
1968
1969  /// \brief Retrieve the template arguments provided as part of this
1970  /// template-id.
1971  const TemplateArgumentLoc *getTemplateArgs() const {
1972    if (!HasExplicitTemplateArgumentList)
1973      return 0;
1974
1975    return getExplicitTemplateArgs().getTemplateArgs();
1976  }
1977
1978  /// \brief Retrieve the number of template arguments provided as part of this
1979  /// template-id.
1980  unsigned getNumTemplateArgs() const {
1981    if (!HasExplicitTemplateArgumentList)
1982      return 0;
1983
1984    return getExplicitTemplateArgs().NumTemplateArgs;
1985  }
1986
1987  /// \brief Retrieve the location of the right angle bracket following the
1988  /// template arguments ('>').
1989  SourceLocation getRAngleLoc() const {
1990    if (!HasExplicitTemplateArgumentList)
1991      return SourceLocation();
1992
1993    return getExplicitTemplateArgs().RAngleLoc;
1994  }
1995
1996  /// \brief Retrieve the member declaration name info.
1997  DeclarationNameInfo getMemberNameInfo() const {
1998    return DeclarationNameInfo(MemberDecl->getDeclName(),
1999                               MemberLoc, MemberDNLoc);
2000  }
2001
2002  bool isArrow() const { return IsArrow; }
2003  void setArrow(bool A) { IsArrow = A; }
2004
2005  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2006  /// location of 'F'.
2007  SourceLocation getMemberLoc() const { return MemberLoc; }
2008  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2009
2010  virtual SourceRange getSourceRange() const {
2011    // If we have an implicit base (like a C++ implicit this),
2012    // make sure not to return its location
2013    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
2014      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
2015
2016    SourceLocation BaseLoc = getBase()->getLocStart();
2017    if (BaseLoc.isInvalid())
2018      return SourceRange(MemberLoc, EndLoc);
2019    return SourceRange(BaseLoc, EndLoc);
2020  }
2021
2022  virtual SourceLocation getExprLoc() const { return MemberLoc; }
2023
2024  static bool classof(const Stmt *T) {
2025    return T->getStmtClass() == MemberExprClass;
2026  }
2027  static bool classof(const MemberExpr *) { return true; }
2028
2029  // Iterators
2030  virtual child_iterator child_begin();
2031  virtual child_iterator child_end();
2032
2033  friend class ASTReader;
2034  friend class ASTStmtWriter;
2035};
2036
2037/// CompoundLiteralExpr - [C99 6.5.2.5]
2038///
2039class CompoundLiteralExpr : public Expr {
2040  /// LParenLoc - If non-null, this is the location of the left paren in a
2041  /// compound literal like "(int){4}".  This can be null if this is a
2042  /// synthesized compound expression.
2043  SourceLocation LParenLoc;
2044
2045  /// The type as written.  This can be an incomplete array type, in
2046  /// which case the actual expression type will be different.
2047  TypeSourceInfo *TInfo;
2048  Stmt *Init;
2049  bool FileScope;
2050public:
2051  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2052                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2053    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2054           tinfo->getType()->isDependentType(),
2055           init->isValueDependent(),
2056           init->containsUnexpandedParameterPack()),
2057      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2058
2059  /// \brief Construct an empty compound literal.
2060  explicit CompoundLiteralExpr(EmptyShell Empty)
2061    : Expr(CompoundLiteralExprClass, Empty) { }
2062
2063  const Expr *getInitializer() const { return cast<Expr>(Init); }
2064  Expr *getInitializer() { return cast<Expr>(Init); }
2065  void setInitializer(Expr *E) { Init = E; }
2066
2067  bool isFileScope() const { return FileScope; }
2068  void setFileScope(bool FS) { FileScope = FS; }
2069
2070  SourceLocation getLParenLoc() const { return LParenLoc; }
2071  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2072
2073  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2074  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2075
2076  virtual SourceRange getSourceRange() const {
2077    // FIXME: Init should never be null.
2078    if (!Init)
2079      return SourceRange();
2080    if (LParenLoc.isInvalid())
2081      return Init->getSourceRange();
2082    return SourceRange(LParenLoc, Init->getLocEnd());
2083  }
2084
2085  static bool classof(const Stmt *T) {
2086    return T->getStmtClass() == CompoundLiteralExprClass;
2087  }
2088  static bool classof(const CompoundLiteralExpr *) { return true; }
2089
2090  // Iterators
2091  virtual child_iterator child_begin();
2092  virtual child_iterator child_end();
2093};
2094
2095/// CastExpr - Base class for type casts, including both implicit
2096/// casts (ImplicitCastExpr) and explicit casts that have some
2097/// representation in the source code (ExplicitCastExpr's derived
2098/// classes).
2099class CastExpr : public Expr {
2100public:
2101  typedef clang::CastKind CastKind;
2102
2103private:
2104  Stmt *Op;
2105
2106  void CheckCastConsistency() const {
2107#ifndef NDEBUG
2108    switch (getCastKind()) {
2109    case CK_DerivedToBase:
2110    case CK_UncheckedDerivedToBase:
2111    case CK_DerivedToBaseMemberPointer:
2112    case CK_BaseToDerived:
2113    case CK_BaseToDerivedMemberPointer:
2114      assert(!path_empty() && "Cast kind should have a base path!");
2115      break;
2116
2117    // These should not have an inheritance path.
2118    case CK_BitCast:
2119    case CK_Dynamic:
2120    case CK_ToUnion:
2121    case CK_ArrayToPointerDecay:
2122    case CK_FunctionToPointerDecay:
2123    case CK_NullToMemberPointer:
2124    case CK_NullToPointer:
2125    case CK_ConstructorConversion:
2126    case CK_IntegralToPointer:
2127    case CK_PointerToIntegral:
2128    case CK_ToVoid:
2129    case CK_VectorSplat:
2130    case CK_IntegralCast:
2131    case CK_IntegralToFloating:
2132    case CK_FloatingToIntegral:
2133    case CK_FloatingCast:
2134    case CK_AnyPointerToObjCPointerCast:
2135    case CK_AnyPointerToBlockPointerCast:
2136    case CK_ObjCObjectLValueCast:
2137    case CK_FloatingRealToComplex:
2138    case CK_FloatingComplexToReal:
2139    case CK_FloatingComplexCast:
2140    case CK_FloatingComplexToIntegralComplex:
2141    case CK_IntegralRealToComplex:
2142    case CK_IntegralComplexToReal:
2143    case CK_IntegralComplexCast:
2144    case CK_IntegralComplexToFloatingComplex:
2145      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2146      // fallthrough to check for null base path
2147
2148    case CK_Dependent:
2149    case CK_LValueToRValue:
2150    case CK_GetObjCProperty:
2151    case CK_NoOp:
2152    case CK_PointerToBoolean:
2153    case CK_IntegralToBoolean:
2154    case CK_FloatingToBoolean:
2155    case CK_MemberPointerToBoolean:
2156    case CK_FloatingComplexToBoolean:
2157    case CK_IntegralComplexToBoolean:
2158    case CK_LValueBitCast:            // -> bool&
2159    case CK_UserDefinedConversion:    // operator bool()
2160      assert(path_empty() && "Cast kind should not have a base path!");
2161      break;
2162    }
2163#endif
2164  }
2165
2166  const CXXBaseSpecifier * const *path_buffer() const {
2167    return const_cast<CastExpr*>(this)->path_buffer();
2168  }
2169  CXXBaseSpecifier **path_buffer();
2170
2171protected:
2172  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2173           const CastKind kind, Expr *op, unsigned BasePathSize) :
2174    Expr(SC, ty, VK, OK_Ordinary,
2175         // Cast expressions are type-dependent if the type is
2176         // dependent (C++ [temp.dep.expr]p3).
2177         ty->isDependentType(),
2178         // Cast expressions are value-dependent if the type is
2179         // dependent or if the subexpression is value-dependent.
2180         ty->isDependentType() || (op && op->isValueDependent()),
2181         (ty->containsUnexpandedParameterPack() ||
2182          op->containsUnexpandedParameterPack())),
2183    Op(op) {
2184    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2185    CastExprBits.Kind = kind;
2186    CastExprBits.BasePathSize = BasePathSize;
2187    CheckCastConsistency();
2188  }
2189
2190  /// \brief Construct an empty cast.
2191  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2192    : Expr(SC, Empty) {
2193    CastExprBits.BasePathSize = BasePathSize;
2194  }
2195
2196public:
2197  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2198  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2199  const char *getCastKindName() const;
2200
2201  Expr *getSubExpr() { return cast<Expr>(Op); }
2202  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2203  void setSubExpr(Expr *E) { Op = E; }
2204
2205  /// \brief Retrieve the cast subexpression as it was written in the source
2206  /// code, looking through any implicit casts or other intermediate nodes
2207  /// introduced by semantic analysis.
2208  Expr *getSubExprAsWritten();
2209  const Expr *getSubExprAsWritten() const {
2210    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2211  }
2212
2213  typedef CXXBaseSpecifier **path_iterator;
2214  typedef const CXXBaseSpecifier * const *path_const_iterator;
2215  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2216  unsigned path_size() const { return CastExprBits.BasePathSize; }
2217  path_iterator path_begin() { return path_buffer(); }
2218  path_iterator path_end() { return path_buffer() + path_size(); }
2219  path_const_iterator path_begin() const { return path_buffer(); }
2220  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2221
2222  void setCastPath(const CXXCastPath &Path);
2223
2224  static bool classof(const Stmt *T) {
2225    return T->getStmtClass() >= firstCastExprConstant &&
2226           T->getStmtClass() <= lastCastExprConstant;
2227  }
2228  static bool classof(const CastExpr *) { return true; }
2229
2230  // Iterators
2231  virtual child_iterator child_begin();
2232  virtual child_iterator child_end();
2233};
2234
2235/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2236/// conversions, which have no direct representation in the original
2237/// source code. For example: converting T[]->T*, void f()->void
2238/// (*f)(), float->double, short->int, etc.
2239///
2240/// In C, implicit casts always produce rvalues. However, in C++, an
2241/// implicit cast whose result is being bound to a reference will be
2242/// an lvalue or xvalue. For example:
2243///
2244/// @code
2245/// class Base { };
2246/// class Derived : public Base { };
2247/// Derived &&ref();
2248/// void f(Derived d) {
2249///   Base& b = d; // initializer is an ImplicitCastExpr
2250///                // to an lvalue of type Base
2251///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2252///                     // to an xvalue of type Base
2253/// }
2254/// @endcode
2255class ImplicitCastExpr : public CastExpr {
2256private:
2257  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2258                   unsigned BasePathLength, ExprValueKind VK)
2259    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2260  }
2261
2262  /// \brief Construct an empty implicit cast.
2263  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2264    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2265
2266public:
2267  enum OnStack_t { OnStack };
2268  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2269                   ExprValueKind VK)
2270    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2271  }
2272
2273  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2274                                  CastKind Kind, Expr *Operand,
2275                                  const CXXCastPath *BasePath,
2276                                  ExprValueKind Cat);
2277
2278  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2279
2280  virtual SourceRange getSourceRange() const {
2281    return getSubExpr()->getSourceRange();
2282  }
2283
2284  static bool classof(const Stmt *T) {
2285    return T->getStmtClass() == ImplicitCastExprClass;
2286  }
2287  static bool classof(const ImplicitCastExpr *) { return true; }
2288};
2289
2290/// ExplicitCastExpr - An explicit cast written in the source
2291/// code.
2292///
2293/// This class is effectively an abstract class, because it provides
2294/// the basic representation of an explicitly-written cast without
2295/// specifying which kind of cast (C cast, functional cast, static
2296/// cast, etc.) was written; specific derived classes represent the
2297/// particular style of cast and its location information.
2298///
2299/// Unlike implicit casts, explicit cast nodes have two different
2300/// types: the type that was written into the source code, and the
2301/// actual type of the expression as determined by semantic
2302/// analysis. These types may differ slightly. For example, in C++ one
2303/// can cast to a reference type, which indicates that the resulting
2304/// expression will be an lvalue or xvalue. The reference type, however,
2305/// will not be used as the type of the expression.
2306class ExplicitCastExpr : public CastExpr {
2307  /// TInfo - Source type info for the (written) type
2308  /// this expression is casting to.
2309  TypeSourceInfo *TInfo;
2310
2311protected:
2312  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2313                   CastKind kind, Expr *op, unsigned PathSize,
2314                   TypeSourceInfo *writtenTy)
2315    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2316
2317  /// \brief Construct an empty explicit cast.
2318  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2319    : CastExpr(SC, Shell, PathSize) { }
2320
2321public:
2322  /// getTypeInfoAsWritten - Returns the type source info for the type
2323  /// that this expression is casting to.
2324  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2325  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2326
2327  /// getTypeAsWritten - Returns the type that this expression is
2328  /// casting to, as written in the source code.
2329  QualType getTypeAsWritten() const { return TInfo->getType(); }
2330
2331  static bool classof(const Stmt *T) {
2332     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2333            T->getStmtClass() <= lastExplicitCastExprConstant;
2334  }
2335  static bool classof(const ExplicitCastExpr *) { return true; }
2336};
2337
2338/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2339/// cast in C++ (C++ [expr.cast]), which uses the syntax
2340/// (Type)expr. For example: @c (int)f.
2341class CStyleCastExpr : public ExplicitCastExpr {
2342  SourceLocation LPLoc; // the location of the left paren
2343  SourceLocation RPLoc; // the location of the right paren
2344
2345  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2346                 unsigned PathSize, TypeSourceInfo *writtenTy,
2347                 SourceLocation l, SourceLocation r)
2348    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2349                       writtenTy), LPLoc(l), RPLoc(r) {}
2350
2351  /// \brief Construct an empty C-style explicit cast.
2352  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2353    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2354
2355public:
2356  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2357                                ExprValueKind VK, CastKind K,
2358                                Expr *Op, const CXXCastPath *BasePath,
2359                                TypeSourceInfo *WrittenTy, SourceLocation L,
2360                                SourceLocation R);
2361
2362  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2363
2364  SourceLocation getLParenLoc() const { return LPLoc; }
2365  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2366
2367  SourceLocation getRParenLoc() const { return RPLoc; }
2368  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2369
2370  virtual SourceRange getSourceRange() const {
2371    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2372  }
2373  static bool classof(const Stmt *T) {
2374    return T->getStmtClass() == CStyleCastExprClass;
2375  }
2376  static bool classof(const CStyleCastExpr *) { return true; }
2377};
2378
2379/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2380///
2381/// This expression node kind describes a builtin binary operation,
2382/// such as "x + y" for integer values "x" and "y". The operands will
2383/// already have been converted to appropriate types (e.g., by
2384/// performing promotions or conversions).
2385///
2386/// In C++, where operators may be overloaded, a different kind of
2387/// expression node (CXXOperatorCallExpr) is used to express the
2388/// invocation of an overloaded operator with operator syntax. Within
2389/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2390/// used to store an expression "x + y" depends on the subexpressions
2391/// for x and y. If neither x or y is type-dependent, and the "+"
2392/// operator resolves to a built-in operation, BinaryOperator will be
2393/// used to express the computation (x and y may still be
2394/// value-dependent). If either x or y is type-dependent, or if the
2395/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2396/// be used to express the computation.
2397class BinaryOperator : public Expr {
2398public:
2399  typedef BinaryOperatorKind Opcode;
2400
2401private:
2402  unsigned Opc : 6;
2403  SourceLocation OpLoc;
2404
2405  enum { LHS, RHS, END_EXPR };
2406  Stmt* SubExprs[END_EXPR];
2407public:
2408
2409  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2410                 ExprValueKind VK, ExprObjectKind OK,
2411                 SourceLocation opLoc)
2412    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2413           lhs->isTypeDependent() || rhs->isTypeDependent(),
2414           lhs->isValueDependent() || rhs->isValueDependent(),
2415           (lhs->containsUnexpandedParameterPack() ||
2416            rhs->containsUnexpandedParameterPack())),
2417      Opc(opc), OpLoc(opLoc) {
2418    SubExprs[LHS] = lhs;
2419    SubExprs[RHS] = rhs;
2420    assert(!isCompoundAssignmentOp() &&
2421           "Use ArithAssignBinaryOperator for compound assignments");
2422  }
2423
2424  /// \brief Construct an empty binary operator.
2425  explicit BinaryOperator(EmptyShell Empty)
2426    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2427
2428  SourceLocation getOperatorLoc() const { return OpLoc; }
2429  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2430
2431  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2432  void setOpcode(Opcode O) { Opc = O; }
2433
2434  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2435  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2436  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2437  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2438
2439  virtual SourceRange getSourceRange() const {
2440    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2441  }
2442
2443  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2444  /// corresponds to, e.g. "<<=".
2445  static const char *getOpcodeStr(Opcode Op);
2446
2447  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2448
2449  /// \brief Retrieve the binary opcode that corresponds to the given
2450  /// overloaded operator.
2451  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2452
2453  /// \brief Retrieve the overloaded operator kind that corresponds to
2454  /// the given binary opcode.
2455  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2456
2457  /// predicates to categorize the respective opcodes.
2458  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2459  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2460  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2461  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2462  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2463  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2464
2465  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2466  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2467
2468  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2469  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2470
2471  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2472  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2473
2474  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2475  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2476
2477  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2478  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2479
2480  static bool isAssignmentOp(Opcode Opc) {
2481    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2482  }
2483  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2484
2485  static bool isCompoundAssignmentOp(Opcode Opc) {
2486    return Opc > BO_Assign && Opc <= BO_OrAssign;
2487  }
2488  bool isCompoundAssignmentOp() const {
2489    return isCompoundAssignmentOp(getOpcode());
2490  }
2491
2492  static bool isShiftAssignOp(Opcode Opc) {
2493    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2494  }
2495  bool isShiftAssignOp() const {
2496    return isShiftAssignOp(getOpcode());
2497  }
2498
2499  static bool classof(const Stmt *S) {
2500    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2501           S->getStmtClass() <= lastBinaryOperatorConstant;
2502  }
2503  static bool classof(const BinaryOperator *) { return true; }
2504
2505  // Iterators
2506  virtual child_iterator child_begin();
2507  virtual child_iterator child_end();
2508
2509protected:
2510  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2511                 ExprValueKind VK, ExprObjectKind OK,
2512                 SourceLocation opLoc, bool dead)
2513    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2514           lhs->isTypeDependent() || rhs->isTypeDependent(),
2515           lhs->isValueDependent() || rhs->isValueDependent(),
2516           (lhs->containsUnexpandedParameterPack() ||
2517            rhs->containsUnexpandedParameterPack())),
2518      Opc(opc), OpLoc(opLoc) {
2519    SubExprs[LHS] = lhs;
2520    SubExprs[RHS] = rhs;
2521  }
2522
2523  BinaryOperator(StmtClass SC, EmptyShell Empty)
2524    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2525};
2526
2527/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2528/// track of the type the operation is performed in.  Due to the semantics of
2529/// these operators, the operands are promoted, the aritmetic performed, an
2530/// implicit conversion back to the result type done, then the assignment takes
2531/// place.  This captures the intermediate type which the computation is done
2532/// in.
2533class CompoundAssignOperator : public BinaryOperator {
2534  QualType ComputationLHSType;
2535  QualType ComputationResultType;
2536public:
2537  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2538                         ExprValueKind VK, ExprObjectKind OK,
2539                         QualType CompLHSType, QualType CompResultType,
2540                         SourceLocation OpLoc)
2541    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2542      ComputationLHSType(CompLHSType),
2543      ComputationResultType(CompResultType) {
2544    assert(isCompoundAssignmentOp() &&
2545           "Only should be used for compound assignments");
2546  }
2547
2548  /// \brief Build an empty compound assignment operator expression.
2549  explicit CompoundAssignOperator(EmptyShell Empty)
2550    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2551
2552  // The two computation types are the type the LHS is converted
2553  // to for the computation and the type of the result; the two are
2554  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2555  QualType getComputationLHSType() const { return ComputationLHSType; }
2556  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2557
2558  QualType getComputationResultType() const { return ComputationResultType; }
2559  void setComputationResultType(QualType T) { ComputationResultType = T; }
2560
2561  static bool classof(const CompoundAssignOperator *) { return true; }
2562  static bool classof(const Stmt *S) {
2563    return S->getStmtClass() == CompoundAssignOperatorClass;
2564  }
2565};
2566
2567/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2568/// GNU "missing LHS" extension is in use.
2569///
2570class ConditionalOperator : public Expr {
2571  enum { COND, LHS, RHS, END_EXPR };
2572  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2573  Stmt* Save;
2574  SourceLocation QuestionLoc, ColonLoc;
2575public:
2576  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2577                      SourceLocation CLoc, Expr *rhs, Expr *save,
2578                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2579    : Expr(ConditionalOperatorClass, t, VK, OK,
2580           // FIXME: the type of the conditional operator doesn't
2581           // depend on the type of the conditional, but the standard
2582           // seems to imply that it could. File a bug!
2583           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2584           (cond->isValueDependent() ||
2585            (lhs && lhs->isValueDependent()) ||
2586            (rhs && rhs->isValueDependent())),
2587           (cond->containsUnexpandedParameterPack() ||
2588            (lhs && lhs->containsUnexpandedParameterPack()) ||
2589            (rhs && rhs->containsUnexpandedParameterPack()))),
2590      QuestionLoc(QLoc),
2591      ColonLoc(CLoc) {
2592    SubExprs[COND] = cond;
2593    SubExprs[LHS] = lhs;
2594    SubExprs[RHS] = rhs;
2595    Save = save;
2596  }
2597
2598  /// \brief Build an empty conditional operator.
2599  explicit ConditionalOperator(EmptyShell Empty)
2600    : Expr(ConditionalOperatorClass, Empty) { }
2601
2602  // getCond - Return the expression representing the condition for
2603  //  the ?: operator.
2604  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2605  void setCond(Expr *E) { SubExprs[COND] = E; }
2606
2607  // getTrueExpr - Return the subexpression representing the value of the ?:
2608  //  expression if the condition evaluates to true.
2609  Expr *getTrueExpr() const {
2610    return cast<Expr>(SubExprs[LHS]);
2611  }
2612
2613  // getFalseExpr - Return the subexpression representing the value of the ?:
2614  // expression if the condition evaluates to false. This is the same as getRHS.
2615  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2616
2617  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2618  // allows the left subexpression to be omitted, and instead of that condition
2619  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2620  // expression "x" is only evaluated once. Under this senario, this function
2621  // returns the original, non-converted condition expression for the ?:operator
2622  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2623
2624  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2625  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2626
2627  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2628  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2629
2630  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2631  void setSAVE(Expr *E) { Save = E; }
2632
2633  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2634  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2635
2636  SourceLocation getColonLoc() const { return ColonLoc; }
2637  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2638
2639  virtual SourceRange getSourceRange() const {
2640    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2641  }
2642  static bool classof(const Stmt *T) {
2643    return T->getStmtClass() == ConditionalOperatorClass;
2644  }
2645  static bool classof(const ConditionalOperator *) { return true; }
2646
2647  // Iterators
2648  virtual child_iterator child_begin();
2649  virtual child_iterator child_end();
2650};
2651
2652/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2653class AddrLabelExpr : public Expr {
2654  SourceLocation AmpAmpLoc, LabelLoc;
2655  LabelStmt *Label;
2656public:
2657  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2658                QualType t)
2659    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2660      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2661
2662  /// \brief Build an empty address of a label expression.
2663  explicit AddrLabelExpr(EmptyShell Empty)
2664    : Expr(AddrLabelExprClass, Empty) { }
2665
2666  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2667  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2668  SourceLocation getLabelLoc() const { return LabelLoc; }
2669  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2670
2671  virtual SourceRange getSourceRange() const {
2672    return SourceRange(AmpAmpLoc, LabelLoc);
2673  }
2674
2675  LabelStmt *getLabel() const { return Label; }
2676  void setLabel(LabelStmt *S) { Label = S; }
2677
2678  static bool classof(const Stmt *T) {
2679    return T->getStmtClass() == AddrLabelExprClass;
2680  }
2681  static bool classof(const AddrLabelExpr *) { return true; }
2682
2683  // Iterators
2684  virtual child_iterator child_begin();
2685  virtual child_iterator child_end();
2686};
2687
2688/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2689/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2690/// takes the value of the last subexpression.
2691///
2692/// A StmtExpr is always an r-value; values "returned" out of a
2693/// StmtExpr will be copied.
2694class StmtExpr : public Expr {
2695  Stmt *SubStmt;
2696  SourceLocation LParenLoc, RParenLoc;
2697public:
2698  // FIXME: Does type-dependence need to be computed differently?
2699  StmtExpr(CompoundStmt *substmt, QualType T,
2700           SourceLocation lp, SourceLocation rp) :
2701    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2702         T->isDependentType(), false, false),
2703    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2704
2705  /// \brief Build an empty statement expression.
2706  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2707
2708  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2709  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2710  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2711
2712  virtual SourceRange getSourceRange() const {
2713    return SourceRange(LParenLoc, RParenLoc);
2714  }
2715
2716  SourceLocation getLParenLoc() const { return LParenLoc; }
2717  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2718  SourceLocation getRParenLoc() const { return RParenLoc; }
2719  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2720
2721  static bool classof(const Stmt *T) {
2722    return T->getStmtClass() == StmtExprClass;
2723  }
2724  static bool classof(const StmtExpr *) { return true; }
2725
2726  // Iterators
2727  virtual child_iterator child_begin();
2728  virtual child_iterator child_end();
2729};
2730
2731
2732/// ShuffleVectorExpr - clang-specific builtin-in function
2733/// __builtin_shufflevector.
2734/// This AST node represents a operator that does a constant
2735/// shuffle, similar to LLVM's shufflevector instruction. It takes
2736/// two vectors and a variable number of constant indices,
2737/// and returns the appropriately shuffled vector.
2738class ShuffleVectorExpr : public Expr {
2739  SourceLocation BuiltinLoc, RParenLoc;
2740
2741  // SubExprs - the list of values passed to the __builtin_shufflevector
2742  // function. The first two are vectors, and the rest are constant
2743  // indices.  The number of values in this list is always
2744  // 2+the number of indices in the vector type.
2745  Stmt **SubExprs;
2746  unsigned NumExprs;
2747
2748public:
2749  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2750                    QualType Type, SourceLocation BLoc,
2751                    SourceLocation RP);
2752
2753  /// \brief Build an empty vector-shuffle expression.
2754  explicit ShuffleVectorExpr(EmptyShell Empty)
2755    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2756
2757  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2758  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2759
2760  SourceLocation getRParenLoc() const { return RParenLoc; }
2761  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2762
2763  virtual SourceRange getSourceRange() const {
2764    return SourceRange(BuiltinLoc, RParenLoc);
2765  }
2766  static bool classof(const Stmt *T) {
2767    return T->getStmtClass() == ShuffleVectorExprClass;
2768  }
2769  static bool classof(const ShuffleVectorExpr *) { return true; }
2770
2771  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2772  /// constant expression, the actual arguments passed in, and the function
2773  /// pointers.
2774  unsigned getNumSubExprs() const { return NumExprs; }
2775
2776  /// \brief Retrieve the array of expressions.
2777  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2778
2779  /// getExpr - Return the Expr at the specified index.
2780  Expr *getExpr(unsigned Index) {
2781    assert((Index < NumExprs) && "Arg access out of range!");
2782    return cast<Expr>(SubExprs[Index]);
2783  }
2784  const Expr *getExpr(unsigned Index) const {
2785    assert((Index < NumExprs) && "Arg access out of range!");
2786    return cast<Expr>(SubExprs[Index]);
2787  }
2788
2789  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2790
2791  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2792    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2793    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2794  }
2795
2796  // Iterators
2797  virtual child_iterator child_begin();
2798  virtual child_iterator child_end();
2799};
2800
2801/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2802/// This AST node is similar to the conditional operator (?:) in C, with
2803/// the following exceptions:
2804/// - the test expression must be a integer constant expression.
2805/// - the expression returned acts like the chosen subexpression in every
2806///   visible way: the type is the same as that of the chosen subexpression,
2807///   and all predicates (whether it's an l-value, whether it's an integer
2808///   constant expression, etc.) return the same result as for the chosen
2809///   sub-expression.
2810class ChooseExpr : public Expr {
2811  enum { COND, LHS, RHS, END_EXPR };
2812  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2813  SourceLocation BuiltinLoc, RParenLoc;
2814public:
2815  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2816             QualType t, ExprValueKind VK, ExprObjectKind OK,
2817             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2818    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
2819           (cond->containsUnexpandedParameterPack() ||
2820            lhs->containsUnexpandedParameterPack() ||
2821            rhs->containsUnexpandedParameterPack())),
2822      BuiltinLoc(BLoc), RParenLoc(RP) {
2823      SubExprs[COND] = cond;
2824      SubExprs[LHS] = lhs;
2825      SubExprs[RHS] = rhs;
2826    }
2827
2828  /// \brief Build an empty __builtin_choose_expr.
2829  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2830
2831  /// isConditionTrue - Return whether the condition is true (i.e. not
2832  /// equal to zero).
2833  bool isConditionTrue(const ASTContext &C) const;
2834
2835  /// getChosenSubExpr - Return the subexpression chosen according to the
2836  /// condition.
2837  Expr *getChosenSubExpr(const ASTContext &C) const {
2838    return isConditionTrue(C) ? getLHS() : getRHS();
2839  }
2840
2841  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2842  void setCond(Expr *E) { SubExprs[COND] = E; }
2843  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2844  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2845  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2846  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2847
2848  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2849  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2850
2851  SourceLocation getRParenLoc() const { return RParenLoc; }
2852  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2853
2854  virtual SourceRange getSourceRange() const {
2855    return SourceRange(BuiltinLoc, RParenLoc);
2856  }
2857  static bool classof(const Stmt *T) {
2858    return T->getStmtClass() == ChooseExprClass;
2859  }
2860  static bool classof(const ChooseExpr *) { return true; }
2861
2862  // Iterators
2863  virtual child_iterator child_begin();
2864  virtual child_iterator child_end();
2865};
2866
2867/// GNUNullExpr - Implements the GNU __null extension, which is a name
2868/// for a null pointer constant that has integral type (e.g., int or
2869/// long) and is the same size and alignment as a pointer. The __null
2870/// extension is typically only used by system headers, which define
2871/// NULL as __null in C++ rather than using 0 (which is an integer
2872/// that may not match the size of a pointer).
2873class GNUNullExpr : public Expr {
2874  /// TokenLoc - The location of the __null keyword.
2875  SourceLocation TokenLoc;
2876
2877public:
2878  GNUNullExpr(QualType Ty, SourceLocation Loc)
2879    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
2880      TokenLoc(Loc) { }
2881
2882  /// \brief Build an empty GNU __null expression.
2883  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2884
2885  /// getTokenLocation - The location of the __null token.
2886  SourceLocation getTokenLocation() const { return TokenLoc; }
2887  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2888
2889  virtual SourceRange getSourceRange() const {
2890    return SourceRange(TokenLoc);
2891  }
2892  static bool classof(const Stmt *T) {
2893    return T->getStmtClass() == GNUNullExprClass;
2894  }
2895  static bool classof(const GNUNullExpr *) { return true; }
2896
2897  // Iterators
2898  virtual child_iterator child_begin();
2899  virtual child_iterator child_end();
2900};
2901
2902/// VAArgExpr, used for the builtin function __builtin_va_arg.
2903class VAArgExpr : public Expr {
2904  Stmt *Val;
2905  TypeSourceInfo *TInfo;
2906  SourceLocation BuiltinLoc, RParenLoc;
2907public:
2908  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2909            SourceLocation RPLoc, QualType t)
2910    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
2911           t->isDependentType(), false,
2912           (TInfo->getType()->containsUnexpandedParameterPack() ||
2913            e->containsUnexpandedParameterPack())),
2914      Val(e), TInfo(TInfo),
2915      BuiltinLoc(BLoc),
2916      RParenLoc(RPLoc) { }
2917
2918  /// \brief Create an empty __builtin_va_arg expression.
2919  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2920
2921  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2922  Expr *getSubExpr() { return cast<Expr>(Val); }
2923  void setSubExpr(Expr *E) { Val = E; }
2924
2925  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2926  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2927
2928  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2929  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2930
2931  SourceLocation getRParenLoc() const { return RParenLoc; }
2932  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2933
2934  virtual SourceRange getSourceRange() const {
2935    return SourceRange(BuiltinLoc, RParenLoc);
2936  }
2937  static bool classof(const Stmt *T) {
2938    return T->getStmtClass() == VAArgExprClass;
2939  }
2940  static bool classof(const VAArgExpr *) { return true; }
2941
2942  // Iterators
2943  virtual child_iterator child_begin();
2944  virtual child_iterator child_end();
2945};
2946
2947/// @brief Describes an C or C++ initializer list.
2948///
2949/// InitListExpr describes an initializer list, which can be used to
2950/// initialize objects of different types, including
2951/// struct/class/union types, arrays, and vectors. For example:
2952///
2953/// @code
2954/// struct foo x = { 1, { 2, 3 } };
2955/// @endcode
2956///
2957/// Prior to semantic analysis, an initializer list will represent the
2958/// initializer list as written by the user, but will have the
2959/// placeholder type "void". This initializer list is called the
2960/// syntactic form of the initializer, and may contain C99 designated
2961/// initializers (represented as DesignatedInitExprs), initializations
2962/// of subobject members without explicit braces, and so on. Clients
2963/// interested in the original syntax of the initializer list should
2964/// use the syntactic form of the initializer list.
2965///
2966/// After semantic analysis, the initializer list will represent the
2967/// semantic form of the initializer, where the initializations of all
2968/// subobjects are made explicit with nested InitListExpr nodes and
2969/// C99 designators have been eliminated by placing the designated
2970/// initializations into the subobject they initialize. Additionally,
2971/// any "holes" in the initialization, where no initializer has been
2972/// specified for a particular subobject, will be replaced with
2973/// implicitly-generated ImplicitValueInitExpr expressions that
2974/// value-initialize the subobjects. Note, however, that the
2975/// initializer lists may still have fewer initializers than there are
2976/// elements to initialize within the object.
2977///
2978/// Given the semantic form of the initializer list, one can retrieve
2979/// the original syntactic form of that initializer list (if it
2980/// exists) using getSyntacticForm(). Since many initializer lists
2981/// have the same syntactic and semantic forms, getSyntacticForm() may
2982/// return NULL, indicating that the current initializer list also
2983/// serves as its syntactic form.
2984class InitListExpr : public Expr {
2985  // FIXME: Eliminate this vector in favor of ASTContext allocation
2986  typedef ASTVector<Stmt *> InitExprsTy;
2987  InitExprsTy InitExprs;
2988  SourceLocation LBraceLoc, RBraceLoc;
2989
2990  /// Contains the initializer list that describes the syntactic form
2991  /// written in the source code.
2992  InitListExpr *SyntacticForm;
2993
2994  /// If this initializer list initializes a union, specifies which
2995  /// field within the union will be initialized.
2996  FieldDecl *UnionFieldInit;
2997
2998  /// Whether this initializer list originally had a GNU array-range
2999  /// designator in it. This is a temporary marker used by CodeGen.
3000  bool HadArrayRangeDesignator;
3001
3002public:
3003  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3004               Expr **initexprs, unsigned numinits,
3005               SourceLocation rbraceloc);
3006
3007  /// \brief Build an empty initializer list.
3008  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3009    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3010
3011  unsigned getNumInits() const { return InitExprs.size(); }
3012
3013  /// \brief Retrieve the set of initializers.
3014  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3015
3016  const Expr *getInit(unsigned Init) const {
3017    assert(Init < getNumInits() && "Initializer access out of range!");
3018    return cast_or_null<Expr>(InitExprs[Init]);
3019  }
3020
3021  Expr *getInit(unsigned Init) {
3022    assert(Init < getNumInits() && "Initializer access out of range!");
3023    return cast_or_null<Expr>(InitExprs[Init]);
3024  }
3025
3026  void setInit(unsigned Init, Expr *expr) {
3027    assert(Init < getNumInits() && "Initializer access out of range!");
3028    InitExprs[Init] = expr;
3029  }
3030
3031  /// \brief Reserve space for some number of initializers.
3032  void reserveInits(ASTContext &C, unsigned NumInits);
3033
3034  /// @brief Specify the number of initializers
3035  ///
3036  /// If there are more than @p NumInits initializers, the remaining
3037  /// initializers will be destroyed. If there are fewer than @p
3038  /// NumInits initializers, NULL expressions will be added for the
3039  /// unknown initializers.
3040  void resizeInits(ASTContext &Context, unsigned NumInits);
3041
3042  /// @brief Updates the initializer at index @p Init with the new
3043  /// expression @p expr, and returns the old expression at that
3044  /// location.
3045  ///
3046  /// When @p Init is out of range for this initializer list, the
3047  /// initializer list will be extended with NULL expressions to
3048  /// accomodate the new entry.
3049  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3050
3051  /// \brief If this initializes a union, specifies which field in the
3052  /// union to initialize.
3053  ///
3054  /// Typically, this field is the first named field within the
3055  /// union. However, a designated initializer can specify the
3056  /// initialization of a different field within the union.
3057  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3058  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3059
3060  // Explicit InitListExpr's originate from source code (and have valid source
3061  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3062  bool isExplicit() {
3063    return LBraceLoc.isValid() && RBraceLoc.isValid();
3064  }
3065
3066  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3067  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3068  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3069  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3070
3071  /// @brief Retrieve the initializer list that describes the
3072  /// syntactic form of the initializer.
3073  ///
3074  ///
3075  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3076  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3077
3078  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3079  void sawArrayRangeDesignator(bool ARD = true) {
3080    HadArrayRangeDesignator = ARD;
3081  }
3082
3083  virtual SourceRange getSourceRange() const;
3084
3085  static bool classof(const Stmt *T) {
3086    return T->getStmtClass() == InitListExprClass;
3087  }
3088  static bool classof(const InitListExpr *) { return true; }
3089
3090  // Iterators
3091  virtual child_iterator child_begin();
3092  virtual child_iterator child_end();
3093
3094  typedef InitExprsTy::iterator iterator;
3095  typedef InitExprsTy::const_iterator const_iterator;
3096  typedef InitExprsTy::reverse_iterator reverse_iterator;
3097  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3098
3099  iterator begin() { return InitExprs.begin(); }
3100  const_iterator begin() const { return InitExprs.begin(); }
3101  iterator end() { return InitExprs.end(); }
3102  const_iterator end() const { return InitExprs.end(); }
3103  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3104  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3105  reverse_iterator rend() { return InitExprs.rend(); }
3106  const_reverse_iterator rend() const { return InitExprs.rend(); }
3107};
3108
3109/// @brief Represents a C99 designated initializer expression.
3110///
3111/// A designated initializer expression (C99 6.7.8) contains one or
3112/// more designators (which can be field designators, array
3113/// designators, or GNU array-range designators) followed by an
3114/// expression that initializes the field or element(s) that the
3115/// designators refer to. For example, given:
3116///
3117/// @code
3118/// struct point {
3119///   double x;
3120///   double y;
3121/// };
3122/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3123/// @endcode
3124///
3125/// The InitListExpr contains three DesignatedInitExprs, the first of
3126/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3127/// designators, one array designator for @c [2] followed by one field
3128/// designator for @c .y. The initalization expression will be 1.0.
3129class DesignatedInitExpr : public Expr {
3130public:
3131  /// \brief Forward declaration of the Designator class.
3132  class Designator;
3133
3134private:
3135  /// The location of the '=' or ':' prior to the actual initializer
3136  /// expression.
3137  SourceLocation EqualOrColonLoc;
3138
3139  /// Whether this designated initializer used the GNU deprecated
3140  /// syntax rather than the C99 '=' syntax.
3141  bool GNUSyntax : 1;
3142
3143  /// The number of designators in this initializer expression.
3144  unsigned NumDesignators : 15;
3145
3146  /// \brief The designators in this designated initialization
3147  /// expression.
3148  Designator *Designators;
3149
3150  /// The number of subexpressions of this initializer expression,
3151  /// which contains both the initializer and any additional
3152  /// expressions used by array and array-range designators.
3153  unsigned NumSubExprs : 16;
3154
3155
3156  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3157                     const Designator *Designators,
3158                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3159                     Expr **IndexExprs, unsigned NumIndexExprs,
3160                     Expr *Init);
3161
3162  explicit DesignatedInitExpr(unsigned NumSubExprs)
3163    : Expr(DesignatedInitExprClass, EmptyShell()),
3164      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3165
3166public:
3167  /// A field designator, e.g., ".x".
3168  struct FieldDesignator {
3169    /// Refers to the field that is being initialized. The low bit
3170    /// of this field determines whether this is actually a pointer
3171    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3172    /// initially constructed, a field designator will store an
3173    /// IdentifierInfo*. After semantic analysis has resolved that
3174    /// name, the field designator will instead store a FieldDecl*.
3175    uintptr_t NameOrField;
3176
3177    /// The location of the '.' in the designated initializer.
3178    unsigned DotLoc;
3179
3180    /// The location of the field name in the designated initializer.
3181    unsigned FieldLoc;
3182  };
3183
3184  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3185  struct ArrayOrRangeDesignator {
3186    /// Location of the first index expression within the designated
3187    /// initializer expression's list of subexpressions.
3188    unsigned Index;
3189    /// The location of the '[' starting the array range designator.
3190    unsigned LBracketLoc;
3191    /// The location of the ellipsis separating the start and end
3192    /// indices. Only valid for GNU array-range designators.
3193    unsigned EllipsisLoc;
3194    /// The location of the ']' terminating the array range designator.
3195    unsigned RBracketLoc;
3196  };
3197
3198  /// @brief Represents a single C99 designator.
3199  ///
3200  /// @todo This class is infuriatingly similar to clang::Designator,
3201  /// but minor differences (storing indices vs. storing pointers)
3202  /// keep us from reusing it. Try harder, later, to rectify these
3203  /// differences.
3204  class Designator {
3205    /// @brief The kind of designator this describes.
3206    enum {
3207      FieldDesignator,
3208      ArrayDesignator,
3209      ArrayRangeDesignator
3210    } Kind;
3211
3212    union {
3213      /// A field designator, e.g., ".x".
3214      struct FieldDesignator Field;
3215      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3216      struct ArrayOrRangeDesignator ArrayOrRange;
3217    };
3218    friend class DesignatedInitExpr;
3219
3220  public:
3221    Designator() {}
3222
3223    /// @brief Initializes a field designator.
3224    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3225               SourceLocation FieldLoc)
3226      : Kind(FieldDesignator) {
3227      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3228      Field.DotLoc = DotLoc.getRawEncoding();
3229      Field.FieldLoc = FieldLoc.getRawEncoding();
3230    }
3231
3232    /// @brief Initializes an array designator.
3233    Designator(unsigned Index, SourceLocation LBracketLoc,
3234               SourceLocation RBracketLoc)
3235      : Kind(ArrayDesignator) {
3236      ArrayOrRange.Index = Index;
3237      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3238      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3239      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3240    }
3241
3242    /// @brief Initializes a GNU array-range designator.
3243    Designator(unsigned Index, SourceLocation LBracketLoc,
3244               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3245      : Kind(ArrayRangeDesignator) {
3246      ArrayOrRange.Index = Index;
3247      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3248      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3249      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3250    }
3251
3252    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3253    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3254    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3255
3256    IdentifierInfo * getFieldName();
3257
3258    FieldDecl *getField() {
3259      assert(Kind == FieldDesignator && "Only valid on a field designator");
3260      if (Field.NameOrField & 0x01)
3261        return 0;
3262      else
3263        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3264    }
3265
3266    void setField(FieldDecl *FD) {
3267      assert(Kind == FieldDesignator && "Only valid on a field designator");
3268      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3269    }
3270
3271    SourceLocation getDotLoc() const {
3272      assert(Kind == FieldDesignator && "Only valid on a field designator");
3273      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3274    }
3275
3276    SourceLocation getFieldLoc() const {
3277      assert(Kind == FieldDesignator && "Only valid on a field designator");
3278      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3279    }
3280
3281    SourceLocation getLBracketLoc() const {
3282      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3283             "Only valid on an array or array-range designator");
3284      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3285    }
3286
3287    SourceLocation getRBracketLoc() const {
3288      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3289             "Only valid on an array or array-range designator");
3290      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3291    }
3292
3293    SourceLocation getEllipsisLoc() const {
3294      assert(Kind == ArrayRangeDesignator &&
3295             "Only valid on an array-range designator");
3296      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3297    }
3298
3299    unsigned getFirstExprIndex() const {
3300      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3301             "Only valid on an array or array-range designator");
3302      return ArrayOrRange.Index;
3303    }
3304
3305    SourceLocation getStartLocation() const {
3306      if (Kind == FieldDesignator)
3307        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3308      else
3309        return getLBracketLoc();
3310    }
3311  };
3312
3313  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3314                                    unsigned NumDesignators,
3315                                    Expr **IndexExprs, unsigned NumIndexExprs,
3316                                    SourceLocation EqualOrColonLoc,
3317                                    bool GNUSyntax, Expr *Init);
3318
3319  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3320
3321  /// @brief Returns the number of designators in this initializer.
3322  unsigned size() const { return NumDesignators; }
3323
3324  // Iterator access to the designators.
3325  typedef Designator* designators_iterator;
3326  designators_iterator designators_begin() { return Designators; }
3327  designators_iterator designators_end() {
3328    return Designators + NumDesignators;
3329  }
3330
3331  typedef std::reverse_iterator<designators_iterator>
3332          reverse_designators_iterator;
3333  reverse_designators_iterator designators_rbegin() {
3334    return reverse_designators_iterator(designators_end());
3335  }
3336  reverse_designators_iterator designators_rend() {
3337    return reverse_designators_iterator(designators_begin());
3338  }
3339
3340  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3341
3342  void setDesignators(ASTContext &C, const Designator *Desigs,
3343                      unsigned NumDesigs);
3344
3345  Expr *getArrayIndex(const Designator& D);
3346  Expr *getArrayRangeStart(const Designator& D);
3347  Expr *getArrayRangeEnd(const Designator& D);
3348
3349  /// @brief Retrieve the location of the '=' that precedes the
3350  /// initializer value itself, if present.
3351  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3352  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3353
3354  /// @brief Determines whether this designated initializer used the
3355  /// deprecated GNU syntax for designated initializers.
3356  bool usesGNUSyntax() const { return GNUSyntax; }
3357  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3358
3359  /// @brief Retrieve the initializer value.
3360  Expr *getInit() const {
3361    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3362  }
3363
3364  void setInit(Expr *init) {
3365    *child_begin() = init;
3366  }
3367
3368  /// \brief Retrieve the total number of subexpressions in this
3369  /// designated initializer expression, including the actual
3370  /// initialized value and any expressions that occur within array
3371  /// and array-range designators.
3372  unsigned getNumSubExprs() const { return NumSubExprs; }
3373
3374  Expr *getSubExpr(unsigned Idx) {
3375    assert(Idx < NumSubExprs && "Subscript out of range");
3376    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3377    Ptr += sizeof(DesignatedInitExpr);
3378    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3379  }
3380
3381  void setSubExpr(unsigned Idx, Expr *E) {
3382    assert(Idx < NumSubExprs && "Subscript out of range");
3383    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3384    Ptr += sizeof(DesignatedInitExpr);
3385    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3386  }
3387
3388  /// \brief Replaces the designator at index @p Idx with the series
3389  /// of designators in [First, Last).
3390  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3391                        const Designator *Last);
3392
3393  virtual SourceRange getSourceRange() const;
3394
3395  static bool classof(const Stmt *T) {
3396    return T->getStmtClass() == DesignatedInitExprClass;
3397  }
3398  static bool classof(const DesignatedInitExpr *) { return true; }
3399
3400  // Iterators
3401  virtual child_iterator child_begin();
3402  virtual child_iterator child_end();
3403};
3404
3405/// \brief Represents an implicitly-generated value initialization of
3406/// an object of a given type.
3407///
3408/// Implicit value initializations occur within semantic initializer
3409/// list expressions (InitListExpr) as placeholders for subobject
3410/// initializations not explicitly specified by the user.
3411///
3412/// \see InitListExpr
3413class ImplicitValueInitExpr : public Expr {
3414public:
3415  explicit ImplicitValueInitExpr(QualType ty)
3416    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3417           false, false, false) { }
3418
3419  /// \brief Construct an empty implicit value initialization.
3420  explicit ImplicitValueInitExpr(EmptyShell Empty)
3421    : Expr(ImplicitValueInitExprClass, Empty) { }
3422
3423  static bool classof(const Stmt *T) {
3424    return T->getStmtClass() == ImplicitValueInitExprClass;
3425  }
3426  static bool classof(const ImplicitValueInitExpr *) { return true; }
3427
3428  virtual SourceRange getSourceRange() const {
3429    return SourceRange();
3430  }
3431
3432  // Iterators
3433  virtual child_iterator child_begin();
3434  virtual child_iterator child_end();
3435};
3436
3437
3438class ParenListExpr : public Expr {
3439  Stmt **Exprs;
3440  unsigned NumExprs;
3441  SourceLocation LParenLoc, RParenLoc;
3442
3443public:
3444  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3445                unsigned numexprs, SourceLocation rparenloc);
3446
3447  /// \brief Build an empty paren list.
3448  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3449
3450  unsigned getNumExprs() const { return NumExprs; }
3451
3452  const Expr* getExpr(unsigned Init) const {
3453    assert(Init < getNumExprs() && "Initializer access out of range!");
3454    return cast_or_null<Expr>(Exprs[Init]);
3455  }
3456
3457  Expr* getExpr(unsigned Init) {
3458    assert(Init < getNumExprs() && "Initializer access out of range!");
3459    return cast_or_null<Expr>(Exprs[Init]);
3460  }
3461
3462  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3463
3464  SourceLocation getLParenLoc() const { return LParenLoc; }
3465  SourceLocation getRParenLoc() const { return RParenLoc; }
3466
3467  virtual SourceRange getSourceRange() const {
3468    return SourceRange(LParenLoc, RParenLoc);
3469  }
3470  static bool classof(const Stmt *T) {
3471    return T->getStmtClass() == ParenListExprClass;
3472  }
3473  static bool classof(const ParenListExpr *) { return true; }
3474
3475  // Iterators
3476  virtual child_iterator child_begin();
3477  virtual child_iterator child_end();
3478
3479  friend class ASTStmtReader;
3480  friend class ASTStmtWriter;
3481};
3482
3483
3484//===----------------------------------------------------------------------===//
3485// Clang Extensions
3486//===----------------------------------------------------------------------===//
3487
3488
3489/// ExtVectorElementExpr - This represents access to specific elements of a
3490/// vector, and may occur on the left hand side or right hand side.  For example
3491/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3492///
3493/// Note that the base may have either vector or pointer to vector type, just
3494/// like a struct field reference.
3495///
3496class ExtVectorElementExpr : public Expr {
3497  Stmt *Base;
3498  IdentifierInfo *Accessor;
3499  SourceLocation AccessorLoc;
3500public:
3501  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3502                       IdentifierInfo &accessor, SourceLocation loc)
3503    : Expr(ExtVectorElementExprClass, ty, VK,
3504           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3505           base->isTypeDependent(), base->isValueDependent(),
3506           base->containsUnexpandedParameterPack()),
3507      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3508
3509  /// \brief Build an empty vector element expression.
3510  explicit ExtVectorElementExpr(EmptyShell Empty)
3511    : Expr(ExtVectorElementExprClass, Empty) { }
3512
3513  const Expr *getBase() const { return cast<Expr>(Base); }
3514  Expr *getBase() { return cast<Expr>(Base); }
3515  void setBase(Expr *E) { Base = E; }
3516
3517  IdentifierInfo &getAccessor() const { return *Accessor; }
3518  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3519
3520  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3521  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3522
3523  /// getNumElements - Get the number of components being selected.
3524  unsigned getNumElements() const;
3525
3526  /// containsDuplicateElements - Return true if any element access is
3527  /// repeated.
3528  bool containsDuplicateElements() const;
3529
3530  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3531  /// aggregate Constant of ConstantInt(s).
3532  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3533
3534  virtual SourceRange getSourceRange() const {
3535    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3536  }
3537
3538  /// isArrow - Return true if the base expression is a pointer to vector,
3539  /// return false if the base expression is a vector.
3540  bool isArrow() const;
3541
3542  static bool classof(const Stmt *T) {
3543    return T->getStmtClass() == ExtVectorElementExprClass;
3544  }
3545  static bool classof(const ExtVectorElementExpr *) { return true; }
3546
3547  // Iterators
3548  virtual child_iterator child_begin();
3549  virtual child_iterator child_end();
3550};
3551
3552
3553/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3554/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3555class BlockExpr : public Expr {
3556protected:
3557  BlockDecl *TheBlock;
3558public:
3559  BlockExpr(BlockDecl *BD, QualType ty)
3560    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3561           ty->isDependentType(), false, false),
3562      TheBlock(BD) {}
3563
3564  /// \brief Build an empty block expression.
3565  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3566
3567  const BlockDecl *getBlockDecl() const { return TheBlock; }
3568  BlockDecl *getBlockDecl() { return TheBlock; }
3569  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3570
3571  // Convenience functions for probing the underlying BlockDecl.
3572  SourceLocation getCaretLocation() const;
3573  const Stmt *getBody() const;
3574  Stmt *getBody();
3575
3576  virtual SourceRange getSourceRange() const {
3577    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3578  }
3579
3580  /// getFunctionType - Return the underlying function type for this block.
3581  const FunctionType *getFunctionType() const;
3582
3583  static bool classof(const Stmt *T) {
3584    return T->getStmtClass() == BlockExprClass;
3585  }
3586  static bool classof(const BlockExpr *) { return true; }
3587
3588  // Iterators
3589  virtual child_iterator child_begin();
3590  virtual child_iterator child_end();
3591};
3592
3593/// BlockDeclRefExpr - A reference to a local variable declared in an
3594/// enclosing scope.
3595class BlockDeclRefExpr : public Expr {
3596  VarDecl *D;
3597  SourceLocation Loc;
3598  bool IsByRef : 1;
3599  bool ConstQualAdded : 1;
3600public:
3601  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3602                   SourceLocation l, bool ByRef, bool constAdded = false);
3603
3604  // \brief Build an empty reference to a declared variable in a
3605  // block.
3606  explicit BlockDeclRefExpr(EmptyShell Empty)
3607    : Expr(BlockDeclRefExprClass, Empty) { }
3608
3609  VarDecl *getDecl() { return D; }
3610  const VarDecl *getDecl() const { return D; }
3611  void setDecl(VarDecl *VD) { D = VD; }
3612
3613  SourceLocation getLocation() const { return Loc; }
3614  void setLocation(SourceLocation L) { Loc = L; }
3615
3616  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3617
3618  bool isByRef() const { return IsByRef; }
3619  void setByRef(bool BR) { IsByRef = BR; }
3620
3621  bool isConstQualAdded() const { return ConstQualAdded; }
3622  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3623
3624  static bool classof(const Stmt *T) {
3625    return T->getStmtClass() == BlockDeclRefExprClass;
3626  }
3627  static bool classof(const BlockDeclRefExpr *) { return true; }
3628
3629  // Iterators
3630  virtual child_iterator child_begin();
3631  virtual child_iterator child_end();
3632};
3633
3634/// OpaqueValueExpr - An expression referring to an opaque object of a
3635/// fixed type and value class.  These don't correspond to concrete
3636/// syntax; instead they're used to express operations (usually copy
3637/// operations) on values whose source is generally obvious from
3638/// context.
3639class OpaqueValueExpr : public Expr {
3640  friend class ASTStmtReader;
3641  SourceLocation Loc;
3642
3643public:
3644  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
3645                  ExprObjectKind OK = OK_Ordinary)
3646    : Expr(OpaqueValueExprClass, T, VK, OK,
3647           T->isDependentType(), T->isDependentType(), false),
3648      Loc(Loc) {
3649  }
3650
3651  explicit OpaqueValueExpr(EmptyShell Empty)
3652    : Expr(OpaqueValueExprClass, Empty) { }
3653
3654  /// \brief Retrieve the location of this expression.
3655  SourceLocation getLocation() const { return Loc; }
3656
3657  virtual SourceRange getSourceRange() const;
3658  virtual child_iterator child_begin();
3659  virtual child_iterator child_end();
3660
3661  static bool classof(const Stmt *T) {
3662    return T->getStmtClass() == OpaqueValueExprClass;
3663  }
3664  static bool classof(const OpaqueValueExpr *) { return true; }
3665};
3666
3667}  // end namespace clang
3668
3669#endif
3670