Expr.h revision dfa64ba45922e1c28e36341bdf34785fea74659b
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include <cctype>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class OpaqueValueExpr;
46
47/// \brief A simple array of base specifiers.
48typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
60    : Stmt(SC)
61  {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.InstantiationDependent = ID;
65    ExprBits.ValueKind = VK;
66    ExprBits.ObjectKind = OK;
67    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ExprBits.ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) {
101    ExprBits.ValueDependent = VD;
102    if (VD)
103      ExprBits.InstantiationDependent = true;
104  }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return ExprBits.TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) {
121    ExprBits.TypeDependent = TD;
122    if (TD)
123      ExprBits.InstantiationDependent = true;
124  }
125
126  /// \brief Whether this expression is instantiation-dependent, meaning that
127  /// it depends in some way on a template parameter, even if neither its type
128  /// nor (constant) value can change due to the template instantiation.
129  ///
130  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
131  /// instantiation-dependent (since it involves a template parameter \c T), but
132  /// is neither type- nor value-dependent, since the type of the inner
133  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
134  /// \c sizeof is known.
135  ///
136  /// \code
137  /// template<typename T>
138  /// void f(T x, T y) {
139  ///   sizeof(sizeof(T() + T());
140  /// }
141  /// \endcode
142  ///
143  bool isInstantiationDependent() const {
144    return ExprBits.InstantiationDependent;
145  }
146
147  /// \brief Set whether this expression is instantiation-dependent or not.
148  void setInstantiationDependent(bool ID) {
149    ExprBits.InstantiationDependent = ID;
150  }
151
152  /// \brief Whether this expression contains an unexpanded parameter
153  /// pack (for C++0x variadic templates).
154  ///
155  /// Given the following function template:
156  ///
157  /// \code
158  /// template<typename F, typename ...Types>
159  /// void forward(const F &f, Types &&...args) {
160  ///   f(static_cast<Types&&>(args)...);
161  /// }
162  /// \endcode
163  ///
164  /// The expressions \c args and \c static_cast<Types&&>(args) both
165  /// contain parameter packs.
166  bool containsUnexpandedParameterPack() const {
167    return ExprBits.ContainsUnexpandedParameterPack;
168  }
169
170  /// \brief Set the bit that describes whether this expression
171  /// contains an unexpanded parameter pack.
172  void setContainsUnexpandedParameterPack(bool PP = true) {
173    ExprBits.ContainsUnexpandedParameterPack = PP;
174  }
175
176  /// getExprLoc - Return the preferred location for the arrow when diagnosing
177  /// a problem with a generic expression.
178  SourceLocation getExprLoc() const;
179
180  /// isUnusedResultAWarning - Return true if this immediate expression should
181  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
182  /// with location to warn on and the source range[s] to report with the
183  /// warning.
184  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
185                              SourceRange &R2, ASTContext &Ctx) const;
186
187  /// isLValue - True if this expression is an "l-value" according to
188  /// the rules of the current language.  C and C++ give somewhat
189  /// different rules for this concept, but in general, the result of
190  /// an l-value expression identifies a specific object whereas the
191  /// result of an r-value expression is a value detached from any
192  /// specific storage.
193  ///
194  /// C++0x divides the concept of "r-value" into pure r-values
195  /// ("pr-values") and so-called expiring values ("x-values"), which
196  /// identify specific objects that can be safely cannibalized for
197  /// their resources.  This is an unfortunate abuse of terminology on
198  /// the part of the C++ committee.  In Clang, when we say "r-value",
199  /// we generally mean a pr-value.
200  bool isLValue() const { return getValueKind() == VK_LValue; }
201  bool isRValue() const { return getValueKind() == VK_RValue; }
202  bool isXValue() const { return getValueKind() == VK_XValue; }
203  bool isGLValue() const { return getValueKind() != VK_RValue; }
204
205  enum LValueClassification {
206    LV_Valid,
207    LV_NotObjectType,
208    LV_IncompleteVoidType,
209    LV_DuplicateVectorComponents,
210    LV_InvalidExpression,
211    LV_InvalidMessageExpression,
212    LV_MemberFunction,
213    LV_SubObjCPropertySetting,
214    LV_ClassTemporary
215  };
216  /// Reasons why an expression might not be an l-value.
217  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
218
219  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
220  /// does not have an incomplete type, does not have a const-qualified type,
221  /// and if it is a structure or union, does not have any member (including,
222  /// recursively, any member or element of all contained aggregates or unions)
223  /// with a const-qualified type.
224  ///
225  /// \param Loc [in] [out] - A source location which *may* be filled
226  /// in with the location of the expression making this a
227  /// non-modifiable lvalue, if specified.
228  enum isModifiableLvalueResult {
229    MLV_Valid,
230    MLV_NotObjectType,
231    MLV_IncompleteVoidType,
232    MLV_DuplicateVectorComponents,
233    MLV_InvalidExpression,
234    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
235    MLV_IncompleteType,
236    MLV_ConstQualified,
237    MLV_ArrayType,
238    MLV_NotBlockQualified,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NotBlockQualified, // Not captured in the closure
275      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
276      CM_ConstQualified,
277      CM_ArrayType,
278      CM_IncompleteType
279    };
280
281  private:
282    friend class Expr;
283
284    unsigned short Kind;
285    unsigned short Modifiable;
286
287    explicit Classification(Kinds k, ModifiableType m)
288      : Kind(k), Modifiable(m)
289    {}
290
291  public:
292    Classification() {}
293
294    Kinds getKind() const { return static_cast<Kinds>(Kind); }
295    ModifiableType getModifiable() const {
296      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
297      return static_cast<ModifiableType>(Modifiable);
298    }
299    bool isLValue() const { return Kind == CL_LValue; }
300    bool isXValue() const { return Kind == CL_XValue; }
301    bool isGLValue() const { return Kind <= CL_XValue; }
302    bool isPRValue() const { return Kind >= CL_Function; }
303    bool isRValue() const { return Kind >= CL_XValue; }
304    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
305
306    /// \brief Create a simple, modifiably lvalue
307    static Classification makeSimpleLValue() {
308      return Classification(CL_LValue, CM_Modifiable);
309    }
310
311  };
312  /// \brief Classify - Classify this expression according to the C++0x
313  ///        expression taxonomy.
314  ///
315  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
316  /// old lvalue vs rvalue. This function determines the type of expression this
317  /// is. There are three expression types:
318  /// - lvalues are classical lvalues as in C++03.
319  /// - prvalues are equivalent to rvalues in C++03.
320  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
321  ///   function returning an rvalue reference.
322  /// lvalues and xvalues are collectively referred to as glvalues, while
323  /// prvalues and xvalues together form rvalues.
324  Classification Classify(ASTContext &Ctx) const {
325    return ClassifyImpl(Ctx, 0);
326  }
327
328  /// \brief ClassifyModifiable - Classify this expression according to the
329  ///        C++0x expression taxonomy, and see if it is valid on the left side
330  ///        of an assignment.
331  ///
332  /// This function extends classify in that it also tests whether the
333  /// expression is modifiable (C99 6.3.2.1p1).
334  /// \param Loc A source location that might be filled with a relevant location
335  ///            if the expression is not modifiable.
336  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
337    return ClassifyImpl(Ctx, &Loc);
338  }
339
340  /// getValueKindForType - Given a formal return or parameter type,
341  /// give its value kind.
342  static ExprValueKind getValueKindForType(QualType T) {
343    if (const ReferenceType *RT = T->getAs<ReferenceType>())
344      return (isa<LValueReferenceType>(RT)
345                ? VK_LValue
346                : (RT->getPointeeType()->isFunctionType()
347                     ? VK_LValue : VK_XValue));
348    return VK_RValue;
349  }
350
351  /// getValueKind - The value kind that this expression produces.
352  ExprValueKind getValueKind() const {
353    return static_cast<ExprValueKind>(ExprBits.ValueKind);
354  }
355
356  /// getObjectKind - The object kind that this expression produces.
357  /// Object kinds are meaningful only for expressions that yield an
358  /// l-value or x-value.
359  ExprObjectKind getObjectKind() const {
360    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
361  }
362
363  bool isOrdinaryOrBitFieldObject() const {
364    ExprObjectKind OK = getObjectKind();
365    return (OK == OK_Ordinary || OK == OK_BitField);
366  }
367
368  /// setValueKind - Set the value kind produced by this expression.
369  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
370
371  /// setObjectKind - Set the object kind produced by this expression.
372  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
373
374private:
375  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
376
377public:
378
379  /// \brief If this expression refers to a bit-field, retrieve the
380  /// declaration of that bit-field.
381  FieldDecl *getBitField();
382
383  const FieldDecl *getBitField() const {
384    return const_cast<Expr*>(this)->getBitField();
385  }
386
387  /// \brief If this expression is an l-value for an Objective C
388  /// property, find the underlying property reference expression.
389  const ObjCPropertyRefExpr *getObjCProperty() const;
390
391  /// \brief Returns whether this expression refers to a vector element.
392  bool refersToVectorElement() const;
393
394  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
395  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
396  /// but also int expressions which are produced by things like comparisons in
397  /// C.
398  bool isKnownToHaveBooleanValue() const;
399
400  /// isIntegerConstantExpr - Return true if this expression is a valid integer
401  /// constant expression, and, if so, return its value in Result.  If not a
402  /// valid i-c-e, return false and fill in Loc (if specified) with the location
403  /// of the invalid expression.
404  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
405                             SourceLocation *Loc = 0,
406                             bool isEvaluated = true) const;
407  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
408    llvm::APSInt X;
409    return isIntegerConstantExpr(X, Ctx, Loc);
410  }
411  /// isConstantInitializer - Returns true if this expression is a constant
412  /// initializer, which can be emitted at compile-time.
413  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
414
415  /// EvalResult is a struct with detailed info about an evaluated expression.
416  struct EvalResult {
417    /// Val - This is the value the expression can be folded to.
418    APValue Val;
419
420    /// HasSideEffects - Whether the evaluated expression has side effects.
421    /// For example, (f() && 0) can be folded, but it still has side effects.
422    bool HasSideEffects;
423
424    /// Diag - If the expression is unfoldable, then Diag contains a note
425    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
426    /// position for the error, and DiagExpr is the expression that caused
427    /// the error.
428    /// If the expression is foldable, but not an integer constant expression,
429    /// Diag contains a note diagnostic that describes why it isn't an integer
430    /// constant expression. If the expression *is* an integer constant
431    /// expression, then Diag will be zero.
432    unsigned Diag;
433    const Expr *DiagExpr;
434    SourceLocation DiagLoc;
435
436    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
437
438    // isGlobalLValue - Return true if the evaluated lvalue expression
439    // is global.
440    bool isGlobalLValue() const;
441    // hasSideEffects - Return true if the evaluated expression has
442    // side effects.
443    bool hasSideEffects() const {
444      return HasSideEffects;
445    }
446  };
447
448  /// Evaluate - Return true if this is a constant which we can fold using
449  /// any crazy technique (that has nothing to do with language standards) that
450  /// we want to.  If this function returns true, it returns the folded constant
451  /// in Result.
452  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
453
454  /// EvaluateAsBooleanCondition - Return true if this is a constant
455  /// which we we can fold and convert to a boolean condition using
456  /// any crazy technique that we want to, even if the expression has
457  /// side-effects.
458  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
459
460  /// EvaluateAsInt - Return true if this is a constant which we can fold and
461  /// convert to an integer using any crazy technique that we want to.
462  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx) const;
463
464  /// isEvaluatable - Call Evaluate to see if this expression can be constant
465  /// folded, but discard the result.
466  bool isEvaluatable(const ASTContext &Ctx) const;
467
468  /// HasSideEffects - This routine returns true for all those expressions
469  /// which must be evaluated each time and must not be optimized away
470  /// or evaluated at compile time. Example is a function call, volatile
471  /// variable read.
472  bool HasSideEffects(const ASTContext &Ctx) const;
473
474  /// EvaluateKnownConstInt - Call Evaluate and return the folded integer. This
475  /// must be called on an expression that constant folds to an integer.
476  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
477
478  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
479  /// with link time known address.
480  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
481
482  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
483  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
484
485  /// \brief Enumeration used to describe the kind of Null pointer constant
486  /// returned from \c isNullPointerConstant().
487  enum NullPointerConstantKind {
488    /// \brief Expression is not a Null pointer constant.
489    NPCK_NotNull = 0,
490
491    /// \brief Expression is a Null pointer constant built from a zero integer.
492    NPCK_ZeroInteger,
493
494    /// \brief Expression is a C++0X nullptr.
495    NPCK_CXX0X_nullptr,
496
497    /// \brief Expression is a GNU-style __null constant.
498    NPCK_GNUNull
499  };
500
501  /// \brief Enumeration used to describe how \c isNullPointerConstant()
502  /// should cope with value-dependent expressions.
503  enum NullPointerConstantValueDependence {
504    /// \brief Specifies that the expression should never be value-dependent.
505    NPC_NeverValueDependent = 0,
506
507    /// \brief Specifies that a value-dependent expression of integral or
508    /// dependent type should be considered a null pointer constant.
509    NPC_ValueDependentIsNull,
510
511    /// \brief Specifies that a value-dependent expression should be considered
512    /// to never be a null pointer constant.
513    NPC_ValueDependentIsNotNull
514  };
515
516  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
517  /// a Null pointer constant. The return value can further distinguish the
518  /// kind of NULL pointer constant that was detected.
519  NullPointerConstantKind isNullPointerConstant(
520      ASTContext &Ctx,
521      NullPointerConstantValueDependence NPC) const;
522
523  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
524  /// write barrier.
525  bool isOBJCGCCandidate(ASTContext &Ctx) const;
526
527  /// \brief Returns true if this expression is a bound member function.
528  bool isBoundMemberFunction(ASTContext &Ctx) const;
529
530  /// \brief Given an expression of bound-member type, find the type
531  /// of the member.  Returns null if this is an *overloaded* bound
532  /// member expression.
533  static QualType findBoundMemberType(const Expr *expr);
534
535  /// \brief Result type of CanThrow().
536  enum CanThrowResult {
537    CT_Cannot,
538    CT_Dependent,
539    CT_Can
540  };
541  /// \brief Test if this expression, if evaluated, might throw, according to
542  ///        the rules of C++ [expr.unary.noexcept].
543  CanThrowResult CanThrow(ASTContext &C) const;
544
545  /// IgnoreImpCasts - Skip past any implicit casts which might
546  /// surround this expression.  Only skips ImplicitCastExprs.
547  Expr *IgnoreImpCasts();
548
549  /// IgnoreImplicit - Skip past any implicit AST nodes which might
550  /// surround this expression.
551  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
552
553  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
554  ///  its subexpression.  If that subexpression is also a ParenExpr,
555  ///  then this method recursively returns its subexpression, and so forth.
556  ///  Otherwise, the method returns the current Expr.
557  Expr *IgnoreParens();
558
559  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
560  /// or CastExprs, returning their operand.
561  Expr *IgnoreParenCasts();
562
563  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
564  /// ParenExpr or ImplicitCastExprs, returning their operand.
565  Expr *IgnoreParenImpCasts();
566
567  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
568  /// call to a conversion operator, return the argument.
569  Expr *IgnoreConversionOperator();
570
571  const Expr *IgnoreConversionOperator() const {
572    return const_cast<Expr*>(this)->IgnoreConversionOperator();
573  }
574
575  const Expr *IgnoreParenImpCasts() const {
576    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
577  }
578
579  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
580  /// CastExprs that represent lvalue casts, returning their operand.
581  Expr *IgnoreParenLValueCasts();
582
583  const Expr *IgnoreParenLValueCasts() const {
584    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
585  }
586
587  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
588  /// value (including ptr->int casts of the same size).  Strip off any
589  /// ParenExpr or CastExprs, returning their operand.
590  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
591
592  /// \brief Determine whether this expression is a default function argument.
593  ///
594  /// Default arguments are implicitly generated in the abstract syntax tree
595  /// by semantic analysis for function calls, object constructions, etc. in
596  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
597  /// this routine also looks through any implicit casts to determine whether
598  /// the expression is a default argument.
599  bool isDefaultArgument() const;
600
601  /// \brief Determine whether the result of this expression is a
602  /// temporary object of the given class type.
603  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
604
605  /// \brief Whether this expression is an implicit reference to 'this' in C++.
606  bool isImplicitCXXThis() const;
607
608  const Expr *IgnoreImpCasts() const {
609    return const_cast<Expr*>(this)->IgnoreImpCasts();
610  }
611  const Expr *IgnoreParens() const {
612    return const_cast<Expr*>(this)->IgnoreParens();
613  }
614  const Expr *IgnoreParenCasts() const {
615    return const_cast<Expr*>(this)->IgnoreParenCasts();
616  }
617  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
618    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
619  }
620
621  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
622  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
623
624  static bool classof(const Stmt *T) {
625    return T->getStmtClass() >= firstExprConstant &&
626           T->getStmtClass() <= lastExprConstant;
627  }
628  static bool classof(const Expr *) { return true; }
629};
630
631
632//===----------------------------------------------------------------------===//
633// Primary Expressions.
634//===----------------------------------------------------------------------===//
635
636/// OpaqueValueExpr - An expression referring to an opaque object of a
637/// fixed type and value class.  These don't correspond to concrete
638/// syntax; instead they're used to express operations (usually copy
639/// operations) on values whose source is generally obvious from
640/// context.
641class OpaqueValueExpr : public Expr {
642  friend class ASTStmtReader;
643  Expr *SourceExpr;
644  SourceLocation Loc;
645
646public:
647  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
648                  ExprObjectKind OK = OK_Ordinary)
649    : Expr(OpaqueValueExprClass, T, VK, OK,
650           T->isDependentType(), T->isDependentType(),
651           T->isInstantiationDependentType(),
652           false),
653      SourceExpr(0), Loc(Loc) {
654  }
655
656  /// Given an expression which invokes a copy constructor --- i.e.  a
657  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
658  /// find the OpaqueValueExpr that's the source of the construction.
659  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
660
661  explicit OpaqueValueExpr(EmptyShell Empty)
662    : Expr(OpaqueValueExprClass, Empty) { }
663
664  /// \brief Retrieve the location of this expression.
665  SourceLocation getLocation() const { return Loc; }
666
667  SourceRange getSourceRange() const {
668    if (SourceExpr) return SourceExpr->getSourceRange();
669    return Loc;
670  }
671  SourceLocation getExprLoc() const {
672    if (SourceExpr) return SourceExpr->getExprLoc();
673    return Loc;
674  }
675
676  child_range children() { return child_range(); }
677
678  /// The source expression of an opaque value expression is the
679  /// expression which originally generated the value.  This is
680  /// provided as a convenience for analyses that don't wish to
681  /// precisely model the execution behavior of the program.
682  ///
683  /// The source expression is typically set when building the
684  /// expression which binds the opaque value expression in the first
685  /// place.
686  Expr *getSourceExpr() const { return SourceExpr; }
687  void setSourceExpr(Expr *e) { SourceExpr = e; }
688
689  static bool classof(const Stmt *T) {
690    return T->getStmtClass() == OpaqueValueExprClass;
691  }
692  static bool classof(const OpaqueValueExpr *) { return true; }
693};
694
695/// \brief A reference to a declared variable, function, enum, etc.
696/// [C99 6.5.1p2]
697///
698/// This encodes all the information about how a declaration is referenced
699/// within an expression.
700///
701/// There are several optional constructs attached to DeclRefExprs only when
702/// they apply in order to conserve memory. These are laid out past the end of
703/// the object, and flags in the DeclRefExprBitfield track whether they exist:
704///
705///   DeclRefExprBits.HasQualifier:
706///       Specifies when this declaration reference expression has a C++
707///       nested-name-specifier.
708///   DeclRefExprBits.HasFoundDecl:
709///       Specifies when this declaration reference expression has a record of
710///       a NamedDecl (different from the referenced ValueDecl) which was found
711///       during name lookup and/or overload resolution.
712///   DeclRefExprBits.HasExplicitTemplateArgs:
713///       Specifies when this declaration reference expression has an explicit
714///       C++ template argument list.
715class DeclRefExpr : public Expr {
716  /// \brief The declaration that we are referencing.
717  ValueDecl *D;
718
719  /// \brief The location of the declaration name itself.
720  SourceLocation Loc;
721
722  /// \brief Provides source/type location info for the declaration name
723  /// embedded in D.
724  DeclarationNameLoc DNLoc;
725
726  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
727  NestedNameSpecifierLoc &getInternalQualifierLoc() {
728    assert(hasQualifier());
729    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
730  }
731
732  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
733  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
734    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
735  }
736
737  /// \brief Test whether there is a distinct FoundDecl attached to the end of
738  /// this DRE.
739  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
740
741  /// \brief Helper to retrieve the optional NamedDecl through which this
742  /// reference occured.
743  NamedDecl *&getInternalFoundDecl() {
744    assert(hasFoundDecl());
745    if (hasQualifier())
746      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
747    return *reinterpret_cast<NamedDecl **>(this + 1);
748  }
749
750  /// \brief Helper to retrieve the optional NamedDecl through which this
751  /// reference occured.
752  NamedDecl *getInternalFoundDecl() const {
753    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
754  }
755
756  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
757              ValueDecl *D, const DeclarationNameInfo &NameInfo,
758              NamedDecl *FoundD,
759              const TemplateArgumentListInfo *TemplateArgs,
760              QualType T, ExprValueKind VK);
761
762  /// \brief Construct an empty declaration reference expression.
763  explicit DeclRefExpr(EmptyShell Empty)
764    : Expr(DeclRefExprClass, Empty) { }
765
766  /// \brief Computes the type- and value-dependence flags for this
767  /// declaration reference expression.
768  void computeDependence();
769
770public:
771  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
772              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
773    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
774      D(D), Loc(L), DNLoc(LocInfo) {
775    DeclRefExprBits.HasQualifier = 0;
776    DeclRefExprBits.HasExplicitTemplateArgs = 0;
777    DeclRefExprBits.HasFoundDecl = 0;
778    DeclRefExprBits.HadMultipleCandidates = 0;
779    computeDependence();
780  }
781
782  static DeclRefExpr *Create(ASTContext &Context,
783                             NestedNameSpecifierLoc QualifierLoc,
784                             ValueDecl *D,
785                             SourceLocation NameLoc,
786                             QualType T, ExprValueKind VK,
787                             NamedDecl *FoundD = 0,
788                             const TemplateArgumentListInfo *TemplateArgs = 0);
789
790  static DeclRefExpr *Create(ASTContext &Context,
791                             NestedNameSpecifierLoc QualifierLoc,
792                             ValueDecl *D,
793                             const DeclarationNameInfo &NameInfo,
794                             QualType T, ExprValueKind VK,
795                             NamedDecl *FoundD = 0,
796                             const TemplateArgumentListInfo *TemplateArgs = 0);
797
798  /// \brief Construct an empty declaration reference expression.
799  static DeclRefExpr *CreateEmpty(ASTContext &Context,
800                                  bool HasQualifier,
801                                  bool HasFoundDecl,
802                                  bool HasExplicitTemplateArgs,
803                                  unsigned NumTemplateArgs);
804
805  ValueDecl *getDecl() { return D; }
806  const ValueDecl *getDecl() const { return D; }
807  void setDecl(ValueDecl *NewD) { D = NewD; }
808
809  DeclarationNameInfo getNameInfo() const {
810    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
811  }
812
813  SourceLocation getLocation() const { return Loc; }
814  void setLocation(SourceLocation L) { Loc = L; }
815  SourceRange getSourceRange() const;
816
817  /// \brief Determine whether this declaration reference was preceded by a
818  /// C++ nested-name-specifier, e.g., \c N::foo.
819  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
820
821  /// \brief If the name was qualified, retrieves the nested-name-specifier
822  /// that precedes the name. Otherwise, returns NULL.
823  NestedNameSpecifier *getQualifier() const {
824    if (!hasQualifier())
825      return 0;
826
827    return getInternalQualifierLoc().getNestedNameSpecifier();
828  }
829
830  /// \brief If the name was qualified, retrieves the nested-name-specifier
831  /// that precedes the name, with source-location information.
832  NestedNameSpecifierLoc getQualifierLoc() const {
833    if (!hasQualifier())
834      return NestedNameSpecifierLoc();
835
836    return getInternalQualifierLoc();
837  }
838
839  /// \brief Get the NamedDecl through which this reference occured.
840  ///
841  /// This Decl may be different from the ValueDecl actually referred to in the
842  /// presence of using declarations, etc. It always returns non-NULL, and may
843  /// simple return the ValueDecl when appropriate.
844  NamedDecl *getFoundDecl() {
845    return hasFoundDecl() ? getInternalFoundDecl() : D;
846  }
847
848  /// \brief Get the NamedDecl through which this reference occurred.
849  /// See non-const variant.
850  const NamedDecl *getFoundDecl() const {
851    return hasFoundDecl() ? getInternalFoundDecl() : D;
852  }
853
854  /// \brief Determines whether this declaration reference was followed by an
855  /// explict template argument list.
856  bool hasExplicitTemplateArgs() const {
857    return DeclRefExprBits.HasExplicitTemplateArgs;
858  }
859
860  /// \brief Retrieve the explicit template argument list that followed the
861  /// member template name.
862  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
863    assert(hasExplicitTemplateArgs());
864    if (hasFoundDecl())
865      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
866        &getInternalFoundDecl() + 1);
867
868    if (hasQualifier())
869      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
870        &getInternalQualifierLoc() + 1);
871
872    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
873  }
874
875  /// \brief Retrieve the explicit template argument list that followed the
876  /// member template name.
877  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
878    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
879  }
880
881  /// \brief Retrieves the optional explicit template arguments.
882  /// This points to the same data as getExplicitTemplateArgs(), but
883  /// returns null if there are no explicit template arguments.
884  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
885    if (!hasExplicitTemplateArgs()) return 0;
886    return &getExplicitTemplateArgs();
887  }
888
889  /// \brief Copies the template arguments (if present) into the given
890  /// structure.
891  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
892    if (hasExplicitTemplateArgs())
893      getExplicitTemplateArgs().copyInto(List);
894  }
895
896  /// \brief Retrieve the location of the left angle bracket following the
897  /// member name ('<'), if any.
898  SourceLocation getLAngleLoc() const {
899    if (!hasExplicitTemplateArgs())
900      return SourceLocation();
901
902    return getExplicitTemplateArgs().LAngleLoc;
903  }
904
905  /// \brief Retrieve the template arguments provided as part of this
906  /// template-id.
907  const TemplateArgumentLoc *getTemplateArgs() const {
908    if (!hasExplicitTemplateArgs())
909      return 0;
910
911    return getExplicitTemplateArgs().getTemplateArgs();
912  }
913
914  /// \brief Retrieve the number of template arguments provided as part of this
915  /// template-id.
916  unsigned getNumTemplateArgs() const {
917    if (!hasExplicitTemplateArgs())
918      return 0;
919
920    return getExplicitTemplateArgs().NumTemplateArgs;
921  }
922
923  /// \brief Retrieve the location of the right angle bracket following the
924  /// template arguments ('>').
925  SourceLocation getRAngleLoc() const {
926    if (!hasExplicitTemplateArgs())
927      return SourceLocation();
928
929    return getExplicitTemplateArgs().RAngleLoc;
930  }
931
932  /// \brief Returns true if this expression refers to a function that
933  /// was resolved from an overloaded set having size greater than 1.
934  bool hadMultipleCandidates() const {
935    return DeclRefExprBits.HadMultipleCandidates;
936  }
937  /// \brief Sets the flag telling whether this expression refers to
938  /// a function that was resolved from an overloaded set having size
939  /// greater than 1.
940  void setHadMultipleCandidates(bool V = true) {
941    DeclRefExprBits.HadMultipleCandidates = V;
942  }
943
944  static bool classof(const Stmt *T) {
945    return T->getStmtClass() == DeclRefExprClass;
946  }
947  static bool classof(const DeclRefExpr *) { return true; }
948
949  // Iterators
950  child_range children() { return child_range(); }
951
952  friend class ASTStmtReader;
953  friend class ASTStmtWriter;
954};
955
956/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
957class PredefinedExpr : public Expr {
958public:
959  enum IdentType {
960    Func,
961    Function,
962    PrettyFunction,
963    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
964    /// 'virtual' keyword is omitted for virtual member functions.
965    PrettyFunctionNoVirtual
966  };
967
968private:
969  SourceLocation Loc;
970  IdentType Type;
971public:
972  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
973    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
974           type->isDependentType(), type->isDependentType(),
975           type->isInstantiationDependentType(),
976           /*ContainsUnexpandedParameterPack=*/false),
977      Loc(l), Type(IT) {}
978
979  /// \brief Construct an empty predefined expression.
980  explicit PredefinedExpr(EmptyShell Empty)
981    : Expr(PredefinedExprClass, Empty) { }
982
983  IdentType getIdentType() const { return Type; }
984  void setIdentType(IdentType IT) { Type = IT; }
985
986  SourceLocation getLocation() const { return Loc; }
987  void setLocation(SourceLocation L) { Loc = L; }
988
989  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
990
991  SourceRange getSourceRange() const { return SourceRange(Loc); }
992
993  static bool classof(const Stmt *T) {
994    return T->getStmtClass() == PredefinedExprClass;
995  }
996  static bool classof(const PredefinedExpr *) { return true; }
997
998  // Iterators
999  child_range children() { return child_range(); }
1000};
1001
1002/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1003/// leaking memory.
1004///
1005/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1006/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1007/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1008/// the APFloat/APInt values will never get freed. APNumericStorage uses
1009/// ASTContext's allocator for memory allocation.
1010class APNumericStorage {
1011  unsigned BitWidth;
1012  union {
1013    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1014    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1015  };
1016
1017  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1018
1019  APNumericStorage(const APNumericStorage&); // do not implement
1020  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1021
1022protected:
1023  APNumericStorage() : BitWidth(0), VAL(0) { }
1024
1025  llvm::APInt getIntValue() const {
1026    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1027    if (NumWords > 1)
1028      return llvm::APInt(BitWidth, NumWords, pVal);
1029    else
1030      return llvm::APInt(BitWidth, VAL);
1031  }
1032  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1033};
1034
1035class APIntStorage : public APNumericStorage {
1036public:
1037  llvm::APInt getValue() const { return getIntValue(); }
1038  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1039};
1040
1041class APFloatStorage : public APNumericStorage {
1042public:
1043  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1044  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1045    setIntValue(C, Val.bitcastToAPInt());
1046  }
1047};
1048
1049class IntegerLiteral : public Expr {
1050  APIntStorage Num;
1051  SourceLocation Loc;
1052
1053  /// \brief Construct an empty integer literal.
1054  explicit IntegerLiteral(EmptyShell Empty)
1055    : Expr(IntegerLiteralClass, Empty) { }
1056
1057public:
1058  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1059  // or UnsignedLongLongTy
1060  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1061                 QualType type, SourceLocation l)
1062    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1063           false, false),
1064      Loc(l) {
1065    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1066    assert(V.getBitWidth() == C.getIntWidth(type) &&
1067           "Integer type is not the correct size for constant.");
1068    setValue(C, V);
1069  }
1070
1071  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1072  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1073  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1074  /// \param V - the value that the returned integer literal contains.
1075  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1076                                QualType type, SourceLocation l);
1077  /// \brief Returns a new empty integer literal.
1078  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1079
1080  llvm::APInt getValue() const { return Num.getValue(); }
1081  SourceRange getSourceRange() const { return SourceRange(Loc); }
1082
1083  /// \brief Retrieve the location of the literal.
1084  SourceLocation getLocation() const { return Loc; }
1085
1086  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1087  void setLocation(SourceLocation Location) { Loc = Location; }
1088
1089  static bool classof(const Stmt *T) {
1090    return T->getStmtClass() == IntegerLiteralClass;
1091  }
1092  static bool classof(const IntegerLiteral *) { return true; }
1093
1094  // Iterators
1095  child_range children() { return child_range(); }
1096};
1097
1098class CharacterLiteral : public Expr {
1099public:
1100  enum CharacterKind {
1101    Ascii,
1102    Wide,
1103    UTF16,
1104    UTF32
1105  };
1106
1107private:
1108  unsigned Value;
1109  SourceLocation Loc;
1110  unsigned Kind : 2;
1111public:
1112  // type should be IntTy
1113  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1114                   SourceLocation l)
1115    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1116           false, false),
1117      Value(value), Loc(l), Kind(kind) {
1118  }
1119
1120  /// \brief Construct an empty character literal.
1121  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1122
1123  SourceLocation getLocation() const { return Loc; }
1124  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1125
1126  SourceRange getSourceRange() const { return SourceRange(Loc); }
1127
1128  unsigned getValue() const { return Value; }
1129
1130  void setLocation(SourceLocation Location) { Loc = Location; }
1131  void setKind(CharacterKind kind) { Kind = kind; }
1132  void setValue(unsigned Val) { Value = Val; }
1133
1134  static bool classof(const Stmt *T) {
1135    return T->getStmtClass() == CharacterLiteralClass;
1136  }
1137  static bool classof(const CharacterLiteral *) { return true; }
1138
1139  // Iterators
1140  child_range children() { return child_range(); }
1141};
1142
1143class FloatingLiteral : public Expr {
1144  APFloatStorage Num;
1145  bool IsExact : 1;
1146  SourceLocation Loc;
1147
1148  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1149                  QualType Type, SourceLocation L)
1150    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1151           false, false),
1152      IsExact(isexact), Loc(L) {
1153    setValue(C, V);
1154  }
1155
1156  /// \brief Construct an empty floating-point literal.
1157  explicit FloatingLiteral(EmptyShell Empty)
1158    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1159
1160public:
1161  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1162                                 bool isexact, QualType Type, SourceLocation L);
1163  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1164
1165  llvm::APFloat getValue() const { return Num.getValue(); }
1166  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1167    Num.setValue(C, Val);
1168  }
1169
1170  bool isExact() const { return IsExact; }
1171  void setExact(bool E) { IsExact = E; }
1172
1173  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1174  /// double.  Note that this may cause loss of precision, but is useful for
1175  /// debugging dumps, etc.
1176  double getValueAsApproximateDouble() const;
1177
1178  SourceLocation getLocation() const { return Loc; }
1179  void setLocation(SourceLocation L) { Loc = L; }
1180
1181  SourceRange getSourceRange() const { return SourceRange(Loc); }
1182
1183  static bool classof(const Stmt *T) {
1184    return T->getStmtClass() == FloatingLiteralClass;
1185  }
1186  static bool classof(const FloatingLiteral *) { return true; }
1187
1188  // Iterators
1189  child_range children() { return child_range(); }
1190};
1191
1192/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1193/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1194/// IntegerLiteral classes.  Instances of this class always have a Complex type
1195/// whose element type matches the subexpression.
1196///
1197class ImaginaryLiteral : public Expr {
1198  Stmt *Val;
1199public:
1200  ImaginaryLiteral(Expr *val, QualType Ty)
1201    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1202           false, false),
1203      Val(val) {}
1204
1205  /// \brief Build an empty imaginary literal.
1206  explicit ImaginaryLiteral(EmptyShell Empty)
1207    : Expr(ImaginaryLiteralClass, Empty) { }
1208
1209  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1210  Expr *getSubExpr() { return cast<Expr>(Val); }
1211  void setSubExpr(Expr *E) { Val = E; }
1212
1213  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1214  static bool classof(const Stmt *T) {
1215    return T->getStmtClass() == ImaginaryLiteralClass;
1216  }
1217  static bool classof(const ImaginaryLiteral *) { return true; }
1218
1219  // Iterators
1220  child_range children() { return child_range(&Val, &Val+1); }
1221};
1222
1223/// StringLiteral - This represents a string literal expression, e.g. "foo"
1224/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1225/// is NOT null-terminated, and the length of the string is determined by
1226/// calling getByteLength().  The C type for a string is always a
1227/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1228/// not.
1229///
1230/// Note that strings in C can be formed by concatenation of multiple string
1231/// literal pptokens in translation phase #6.  This keeps track of the locations
1232/// of each of these pieces.
1233///
1234/// Strings in C can also be truncated and extended by assigning into arrays,
1235/// e.g. with constructs like:
1236///   char X[2] = "foobar";
1237/// In this case, getByteLength() will return 6, but the string literal will
1238/// have type "char[2]".
1239class StringLiteral : public Expr {
1240public:
1241  enum StringKind {
1242    Ascii,
1243    Wide,
1244    UTF8,
1245    UTF16,
1246    UTF32
1247  };
1248
1249private:
1250  friend class ASTStmtReader;
1251
1252  const char *StrData;
1253  unsigned ByteLength;
1254  unsigned NumConcatenated;
1255  unsigned Kind : 3;
1256  bool IsPascal : 1;
1257  SourceLocation TokLocs[1];
1258
1259  StringLiteral(QualType Ty) :
1260    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1261         false) {}
1262
1263public:
1264  /// This is the "fully general" constructor that allows representation of
1265  /// strings formed from multiple concatenated tokens.
1266  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1267                               bool Pascal, QualType Ty,
1268                               const SourceLocation *Loc, unsigned NumStrs);
1269
1270  /// Simple constructor for string literals made from one token.
1271  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1272                               bool Pascal, QualType Ty,
1273                               SourceLocation Loc) {
1274    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1275  }
1276
1277  /// \brief Construct an empty string literal.
1278  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1279
1280  StringRef getString() const {
1281    return StringRef(StrData, ByteLength);
1282  }
1283
1284  unsigned getByteLength() const { return ByteLength; }
1285
1286  /// \brief Sets the string data to the given string data.
1287  void setString(ASTContext &C, StringRef Str);
1288
1289  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1290  bool isAscii() const { return Kind == Ascii; }
1291  bool isWide() const { return Kind == Wide; }
1292  bool isUTF8() const { return Kind == UTF8; }
1293  bool isUTF16() const { return Kind == UTF16; }
1294  bool isUTF32() const { return Kind == UTF32; }
1295  bool isPascal() const { return IsPascal; }
1296
1297  bool containsNonAsciiOrNull() const {
1298    StringRef Str = getString();
1299    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1300      if (!isascii(Str[i]) || !Str[i])
1301        return true;
1302    return false;
1303  }
1304  /// getNumConcatenated - Get the number of string literal tokens that were
1305  /// concatenated in translation phase #6 to form this string literal.
1306  unsigned getNumConcatenated() const { return NumConcatenated; }
1307
1308  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1309    assert(TokNum < NumConcatenated && "Invalid tok number");
1310    return TokLocs[TokNum];
1311  }
1312  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1313    assert(TokNum < NumConcatenated && "Invalid tok number");
1314    TokLocs[TokNum] = L;
1315  }
1316
1317  /// getLocationOfByte - Return a source location that points to the specified
1318  /// byte of this string literal.
1319  ///
1320  /// Strings are amazingly complex.  They can be formed from multiple tokens
1321  /// and can have escape sequences in them in addition to the usual trigraph
1322  /// and escaped newline business.  This routine handles this complexity.
1323  ///
1324  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1325                                   const LangOptions &Features,
1326                                   const TargetInfo &Target) const;
1327
1328  typedef const SourceLocation *tokloc_iterator;
1329  tokloc_iterator tokloc_begin() const { return TokLocs; }
1330  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1331
1332  SourceRange getSourceRange() const {
1333    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1334  }
1335  static bool classof(const Stmt *T) {
1336    return T->getStmtClass() == StringLiteralClass;
1337  }
1338  static bool classof(const StringLiteral *) { return true; }
1339
1340  // Iterators
1341  child_range children() { return child_range(); }
1342};
1343
1344/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1345/// AST node is only formed if full location information is requested.
1346class ParenExpr : public Expr {
1347  SourceLocation L, R;
1348  Stmt *Val;
1349public:
1350  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1351    : Expr(ParenExprClass, val->getType(),
1352           val->getValueKind(), val->getObjectKind(),
1353           val->isTypeDependent(), val->isValueDependent(),
1354           val->isInstantiationDependent(),
1355           val->containsUnexpandedParameterPack()),
1356      L(l), R(r), Val(val) {}
1357
1358  /// \brief Construct an empty parenthesized expression.
1359  explicit ParenExpr(EmptyShell Empty)
1360    : Expr(ParenExprClass, Empty) { }
1361
1362  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1363  Expr *getSubExpr() { return cast<Expr>(Val); }
1364  void setSubExpr(Expr *E) { Val = E; }
1365
1366  SourceRange getSourceRange() const { return SourceRange(L, R); }
1367
1368  /// \brief Get the location of the left parentheses '('.
1369  SourceLocation getLParen() const { return L; }
1370  void setLParen(SourceLocation Loc) { L = Loc; }
1371
1372  /// \brief Get the location of the right parentheses ')'.
1373  SourceLocation getRParen() const { return R; }
1374  void setRParen(SourceLocation Loc) { R = Loc; }
1375
1376  static bool classof(const Stmt *T) {
1377    return T->getStmtClass() == ParenExprClass;
1378  }
1379  static bool classof(const ParenExpr *) { return true; }
1380
1381  // Iterators
1382  child_range children() { return child_range(&Val, &Val+1); }
1383};
1384
1385
1386/// UnaryOperator - This represents the unary-expression's (except sizeof and
1387/// alignof), the postinc/postdec operators from postfix-expression, and various
1388/// extensions.
1389///
1390/// Notes on various nodes:
1391///
1392/// Real/Imag - These return the real/imag part of a complex operand.  If
1393///   applied to a non-complex value, the former returns its operand and the
1394///   later returns zero in the type of the operand.
1395///
1396class UnaryOperator : public Expr {
1397public:
1398  typedef UnaryOperatorKind Opcode;
1399
1400private:
1401  unsigned Opc : 5;
1402  SourceLocation Loc;
1403  Stmt *Val;
1404public:
1405
1406  UnaryOperator(Expr *input, Opcode opc, QualType type,
1407                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1408    : Expr(UnaryOperatorClass, type, VK, OK,
1409           input->isTypeDependent() || type->isDependentType(),
1410           input->isValueDependent(),
1411           (input->isInstantiationDependent() ||
1412            type->isInstantiationDependentType()),
1413           input->containsUnexpandedParameterPack()),
1414      Opc(opc), Loc(l), Val(input) {}
1415
1416  /// \brief Build an empty unary operator.
1417  explicit UnaryOperator(EmptyShell Empty)
1418    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1419
1420  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1421  void setOpcode(Opcode O) { Opc = O; }
1422
1423  Expr *getSubExpr() const { return cast<Expr>(Val); }
1424  void setSubExpr(Expr *E) { Val = E; }
1425
1426  /// getOperatorLoc - Return the location of the operator.
1427  SourceLocation getOperatorLoc() const { return Loc; }
1428  void setOperatorLoc(SourceLocation L) { Loc = L; }
1429
1430  /// isPostfix - Return true if this is a postfix operation, like x++.
1431  static bool isPostfix(Opcode Op) {
1432    return Op == UO_PostInc || Op == UO_PostDec;
1433  }
1434
1435  /// isPrefix - Return true if this is a prefix operation, like --x.
1436  static bool isPrefix(Opcode Op) {
1437    return Op == UO_PreInc || Op == UO_PreDec;
1438  }
1439
1440  bool isPrefix() const { return isPrefix(getOpcode()); }
1441  bool isPostfix() const { return isPostfix(getOpcode()); }
1442  bool isIncrementOp() const {
1443    return Opc == UO_PreInc || Opc == UO_PostInc;
1444  }
1445  bool isIncrementDecrementOp() const {
1446    return Opc <= UO_PreDec;
1447  }
1448  static bool isArithmeticOp(Opcode Op) {
1449    return Op >= UO_Plus && Op <= UO_LNot;
1450  }
1451  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1452
1453  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1454  /// corresponds to, e.g. "sizeof" or "[pre]++"
1455  static const char *getOpcodeStr(Opcode Op);
1456
1457  /// \brief Retrieve the unary opcode that corresponds to the given
1458  /// overloaded operator.
1459  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1460
1461  /// \brief Retrieve the overloaded operator kind that corresponds to
1462  /// the given unary opcode.
1463  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1464
1465  SourceRange getSourceRange() const {
1466    if (isPostfix())
1467      return SourceRange(Val->getLocStart(), Loc);
1468    else
1469      return SourceRange(Loc, Val->getLocEnd());
1470  }
1471  SourceLocation getExprLoc() const { return Loc; }
1472
1473  static bool classof(const Stmt *T) {
1474    return T->getStmtClass() == UnaryOperatorClass;
1475  }
1476  static bool classof(const UnaryOperator *) { return true; }
1477
1478  // Iterators
1479  child_range children() { return child_range(&Val, &Val+1); }
1480};
1481
1482/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1483/// offsetof(record-type, member-designator). For example, given:
1484/// @code
1485/// struct S {
1486///   float f;
1487///   double d;
1488/// };
1489/// struct T {
1490///   int i;
1491///   struct S s[10];
1492/// };
1493/// @endcode
1494/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1495
1496class OffsetOfExpr : public Expr {
1497public:
1498  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1499  class OffsetOfNode {
1500  public:
1501    /// \brief The kind of offsetof node we have.
1502    enum Kind {
1503      /// \brief An index into an array.
1504      Array = 0x00,
1505      /// \brief A field.
1506      Field = 0x01,
1507      /// \brief A field in a dependent type, known only by its name.
1508      Identifier = 0x02,
1509      /// \brief An implicit indirection through a C++ base class, when the
1510      /// field found is in a base class.
1511      Base = 0x03
1512    };
1513
1514  private:
1515    enum { MaskBits = 2, Mask = 0x03 };
1516
1517    /// \brief The source range that covers this part of the designator.
1518    SourceRange Range;
1519
1520    /// \brief The data describing the designator, which comes in three
1521    /// different forms, depending on the lower two bits.
1522    ///   - An unsigned index into the array of Expr*'s stored after this node
1523    ///     in memory, for [constant-expression] designators.
1524    ///   - A FieldDecl*, for references to a known field.
1525    ///   - An IdentifierInfo*, for references to a field with a given name
1526    ///     when the class type is dependent.
1527    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1528    ///     base class.
1529    uintptr_t Data;
1530
1531  public:
1532    /// \brief Create an offsetof node that refers to an array element.
1533    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1534                 SourceLocation RBracketLoc)
1535      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1536
1537    /// \brief Create an offsetof node that refers to a field.
1538    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1539                 SourceLocation NameLoc)
1540      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1541        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1542
1543    /// \brief Create an offsetof node that refers to an identifier.
1544    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1545                 SourceLocation NameLoc)
1546      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1547        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1548
1549    /// \brief Create an offsetof node that refers into a C++ base class.
1550    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1551      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1552
1553    /// \brief Determine what kind of offsetof node this is.
1554    Kind getKind() const {
1555      return static_cast<Kind>(Data & Mask);
1556    }
1557
1558    /// \brief For an array element node, returns the index into the array
1559    /// of expressions.
1560    unsigned getArrayExprIndex() const {
1561      assert(getKind() == Array);
1562      return Data >> 2;
1563    }
1564
1565    /// \brief For a field offsetof node, returns the field.
1566    FieldDecl *getField() const {
1567      assert(getKind() == Field);
1568      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1569    }
1570
1571    /// \brief For a field or identifier offsetof node, returns the name of
1572    /// the field.
1573    IdentifierInfo *getFieldName() const;
1574
1575    /// \brief For a base class node, returns the base specifier.
1576    CXXBaseSpecifier *getBase() const {
1577      assert(getKind() == Base);
1578      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1579    }
1580
1581    /// \brief Retrieve the source range that covers this offsetof node.
1582    ///
1583    /// For an array element node, the source range contains the locations of
1584    /// the square brackets. For a field or identifier node, the source range
1585    /// contains the location of the period (if there is one) and the
1586    /// identifier.
1587    SourceRange getSourceRange() const { return Range; }
1588  };
1589
1590private:
1591
1592  SourceLocation OperatorLoc, RParenLoc;
1593  // Base type;
1594  TypeSourceInfo *TSInfo;
1595  // Number of sub-components (i.e. instances of OffsetOfNode).
1596  unsigned NumComps;
1597  // Number of sub-expressions (i.e. array subscript expressions).
1598  unsigned NumExprs;
1599
1600  OffsetOfExpr(ASTContext &C, QualType type,
1601               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1602               OffsetOfNode* compsPtr, unsigned numComps,
1603               Expr** exprsPtr, unsigned numExprs,
1604               SourceLocation RParenLoc);
1605
1606  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1607    : Expr(OffsetOfExprClass, EmptyShell()),
1608      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1609
1610public:
1611
1612  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1613                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1614                              OffsetOfNode* compsPtr, unsigned numComps,
1615                              Expr** exprsPtr, unsigned numExprs,
1616                              SourceLocation RParenLoc);
1617
1618  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1619                                   unsigned NumComps, unsigned NumExprs);
1620
1621  /// getOperatorLoc - Return the location of the operator.
1622  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1623  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1624
1625  /// \brief Return the location of the right parentheses.
1626  SourceLocation getRParenLoc() const { return RParenLoc; }
1627  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1628
1629  TypeSourceInfo *getTypeSourceInfo() const {
1630    return TSInfo;
1631  }
1632  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1633    TSInfo = tsi;
1634  }
1635
1636  const OffsetOfNode &getComponent(unsigned Idx) const {
1637    assert(Idx < NumComps && "Subscript out of range");
1638    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1639  }
1640
1641  void setComponent(unsigned Idx, OffsetOfNode ON) {
1642    assert(Idx < NumComps && "Subscript out of range");
1643    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1644  }
1645
1646  unsigned getNumComponents() const {
1647    return NumComps;
1648  }
1649
1650  Expr* getIndexExpr(unsigned Idx) {
1651    assert(Idx < NumExprs && "Subscript out of range");
1652    return reinterpret_cast<Expr **>(
1653                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1654  }
1655  const Expr *getIndexExpr(unsigned Idx) const {
1656    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1657  }
1658
1659  void setIndexExpr(unsigned Idx, Expr* E) {
1660    assert(Idx < NumComps && "Subscript out of range");
1661    reinterpret_cast<Expr **>(
1662                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1663  }
1664
1665  unsigned getNumExpressions() const {
1666    return NumExprs;
1667  }
1668
1669  SourceRange getSourceRange() const {
1670    return SourceRange(OperatorLoc, RParenLoc);
1671  }
1672
1673  static bool classof(const Stmt *T) {
1674    return T->getStmtClass() == OffsetOfExprClass;
1675  }
1676
1677  static bool classof(const OffsetOfExpr *) { return true; }
1678
1679  // Iterators
1680  child_range children() {
1681    Stmt **begin =
1682      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1683                               + NumComps);
1684    return child_range(begin, begin + NumExprs);
1685  }
1686};
1687
1688/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1689/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1690/// vec_step (OpenCL 1.1 6.11.12).
1691class UnaryExprOrTypeTraitExpr : public Expr {
1692  unsigned Kind : 2;
1693  bool isType : 1;    // true if operand is a type, false if an expression
1694  union {
1695    TypeSourceInfo *Ty;
1696    Stmt *Ex;
1697  } Argument;
1698  SourceLocation OpLoc, RParenLoc;
1699
1700public:
1701  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1702                           QualType resultType, SourceLocation op,
1703                           SourceLocation rp) :
1704      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1705           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1706           // Value-dependent if the argument is type-dependent.
1707           TInfo->getType()->isDependentType(),
1708           TInfo->getType()->isInstantiationDependentType(),
1709           TInfo->getType()->containsUnexpandedParameterPack()),
1710      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1711    Argument.Ty = TInfo;
1712  }
1713
1714  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1715                           QualType resultType, SourceLocation op,
1716                           SourceLocation rp) :
1717      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1718           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1719           // Value-dependent if the argument is type-dependent.
1720           E->isTypeDependent(),
1721           E->isInstantiationDependent(),
1722           E->containsUnexpandedParameterPack()),
1723      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1724    Argument.Ex = E;
1725  }
1726
1727  /// \brief Construct an empty sizeof/alignof expression.
1728  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1729    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1730
1731  UnaryExprOrTypeTrait getKind() const {
1732    return static_cast<UnaryExprOrTypeTrait>(Kind);
1733  }
1734  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1735
1736  bool isArgumentType() const { return isType; }
1737  QualType getArgumentType() const {
1738    return getArgumentTypeInfo()->getType();
1739  }
1740  TypeSourceInfo *getArgumentTypeInfo() const {
1741    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1742    return Argument.Ty;
1743  }
1744  Expr *getArgumentExpr() {
1745    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1746    return static_cast<Expr*>(Argument.Ex);
1747  }
1748  const Expr *getArgumentExpr() const {
1749    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1750  }
1751
1752  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1753  void setArgument(TypeSourceInfo *TInfo) {
1754    Argument.Ty = TInfo;
1755    isType = true;
1756  }
1757
1758  /// Gets the argument type, or the type of the argument expression, whichever
1759  /// is appropriate.
1760  QualType getTypeOfArgument() const {
1761    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1762  }
1763
1764  SourceLocation getOperatorLoc() const { return OpLoc; }
1765  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1766
1767  SourceLocation getRParenLoc() const { return RParenLoc; }
1768  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1769
1770  SourceRange getSourceRange() const {
1771    return SourceRange(OpLoc, RParenLoc);
1772  }
1773
1774  static bool classof(const Stmt *T) {
1775    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1776  }
1777  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1778
1779  // Iterators
1780  child_range children();
1781};
1782
1783//===----------------------------------------------------------------------===//
1784// Postfix Operators.
1785//===----------------------------------------------------------------------===//
1786
1787/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1788class ArraySubscriptExpr : public Expr {
1789  enum { LHS, RHS, END_EXPR=2 };
1790  Stmt* SubExprs[END_EXPR];
1791  SourceLocation RBracketLoc;
1792public:
1793  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1794                     ExprValueKind VK, ExprObjectKind OK,
1795                     SourceLocation rbracketloc)
1796  : Expr(ArraySubscriptExprClass, t, VK, OK,
1797         lhs->isTypeDependent() || rhs->isTypeDependent(),
1798         lhs->isValueDependent() || rhs->isValueDependent(),
1799         (lhs->isInstantiationDependent() ||
1800          rhs->isInstantiationDependent()),
1801         (lhs->containsUnexpandedParameterPack() ||
1802          rhs->containsUnexpandedParameterPack())),
1803    RBracketLoc(rbracketloc) {
1804    SubExprs[LHS] = lhs;
1805    SubExprs[RHS] = rhs;
1806  }
1807
1808  /// \brief Create an empty array subscript expression.
1809  explicit ArraySubscriptExpr(EmptyShell Shell)
1810    : Expr(ArraySubscriptExprClass, Shell) { }
1811
1812  /// An array access can be written A[4] or 4[A] (both are equivalent).
1813  /// - getBase() and getIdx() always present the normalized view: A[4].
1814  ///    In this case getBase() returns "A" and getIdx() returns "4".
1815  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1816  ///    4[A] getLHS() returns "4".
1817  /// Note: Because vector element access is also written A[4] we must
1818  /// predicate the format conversion in getBase and getIdx only on the
1819  /// the type of the RHS, as it is possible for the LHS to be a vector of
1820  /// integer type
1821  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1822  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1823  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1824
1825  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1826  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1827  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1828
1829  Expr *getBase() {
1830    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1831  }
1832
1833  const Expr *getBase() const {
1834    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1835  }
1836
1837  Expr *getIdx() {
1838    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1839  }
1840
1841  const Expr *getIdx() const {
1842    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1843  }
1844
1845  SourceRange getSourceRange() const {
1846    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1847  }
1848
1849  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1850  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1851
1852  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1853
1854  static bool classof(const Stmt *T) {
1855    return T->getStmtClass() == ArraySubscriptExprClass;
1856  }
1857  static bool classof(const ArraySubscriptExpr *) { return true; }
1858
1859  // Iterators
1860  child_range children() {
1861    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1862  }
1863};
1864
1865
1866/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1867/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1868/// while its subclasses may represent alternative syntax that (semantically)
1869/// results in a function call. For example, CXXOperatorCallExpr is
1870/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1871/// "str1 + str2" to resolve to a function call.
1872class CallExpr : public Expr {
1873  enum { FN=0, PREARGS_START=1 };
1874  Stmt **SubExprs;
1875  unsigned NumArgs;
1876  SourceLocation RParenLoc;
1877
1878protected:
1879  // These versions of the constructor are for derived classes.
1880  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1881           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1882           SourceLocation rparenloc);
1883  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1884
1885  Stmt *getPreArg(unsigned i) {
1886    assert(i < getNumPreArgs() && "Prearg access out of range!");
1887    return SubExprs[PREARGS_START+i];
1888  }
1889  const Stmt *getPreArg(unsigned i) const {
1890    assert(i < getNumPreArgs() && "Prearg access out of range!");
1891    return SubExprs[PREARGS_START+i];
1892  }
1893  void setPreArg(unsigned i, Stmt *PreArg) {
1894    assert(i < getNumPreArgs() && "Prearg access out of range!");
1895    SubExprs[PREARGS_START+i] = PreArg;
1896  }
1897
1898  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1899
1900public:
1901  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1902           ExprValueKind VK, SourceLocation rparenloc);
1903
1904  /// \brief Build an empty call expression.
1905  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1906
1907  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1908  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1909  void setCallee(Expr *F) { SubExprs[FN] = F; }
1910
1911  Decl *getCalleeDecl();
1912  const Decl *getCalleeDecl() const {
1913    return const_cast<CallExpr*>(this)->getCalleeDecl();
1914  }
1915
1916  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1917  FunctionDecl *getDirectCallee();
1918  const FunctionDecl *getDirectCallee() const {
1919    return const_cast<CallExpr*>(this)->getDirectCallee();
1920  }
1921
1922  /// getNumArgs - Return the number of actual arguments to this call.
1923  ///
1924  unsigned getNumArgs() const { return NumArgs; }
1925
1926  /// \brief Retrieve the call arguments.
1927  Expr **getArgs() {
1928    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1929  }
1930
1931  /// getArg - Return the specified argument.
1932  Expr *getArg(unsigned Arg) {
1933    assert(Arg < NumArgs && "Arg access out of range!");
1934    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1935  }
1936  const Expr *getArg(unsigned Arg) const {
1937    assert(Arg < NumArgs && "Arg access out of range!");
1938    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1939  }
1940
1941  /// setArg - Set the specified argument.
1942  void setArg(unsigned Arg, Expr *ArgExpr) {
1943    assert(Arg < NumArgs && "Arg access out of range!");
1944    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1945  }
1946
1947  /// setNumArgs - This changes the number of arguments present in this call.
1948  /// Any orphaned expressions are deleted by this, and any new operands are set
1949  /// to null.
1950  void setNumArgs(ASTContext& C, unsigned NumArgs);
1951
1952  typedef ExprIterator arg_iterator;
1953  typedef ConstExprIterator const_arg_iterator;
1954
1955  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1956  arg_iterator arg_end() {
1957    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1958  }
1959  const_arg_iterator arg_begin() const {
1960    return SubExprs+PREARGS_START+getNumPreArgs();
1961  }
1962  const_arg_iterator arg_end() const {
1963    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1964  }
1965
1966  /// getNumCommas - Return the number of commas that must have been present in
1967  /// this function call.
1968  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1969
1970  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1971  /// not, return 0.
1972  unsigned isBuiltinCall(const ASTContext &Context) const;
1973
1974  /// getCallReturnType - Get the return type of the call expr. This is not
1975  /// always the type of the expr itself, if the return type is a reference
1976  /// type.
1977  QualType getCallReturnType() const;
1978
1979  SourceLocation getRParenLoc() const { return RParenLoc; }
1980  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1981
1982  SourceRange getSourceRange() const;
1983
1984  static bool classof(const Stmt *T) {
1985    return T->getStmtClass() >= firstCallExprConstant &&
1986           T->getStmtClass() <= lastCallExprConstant;
1987  }
1988  static bool classof(const CallExpr *) { return true; }
1989
1990  // Iterators
1991  child_range children() {
1992    return child_range(&SubExprs[0],
1993                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1994  }
1995};
1996
1997/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1998///
1999class MemberExpr : public Expr {
2000  /// Extra data stored in some member expressions.
2001  struct MemberNameQualifier {
2002    /// \brief The nested-name-specifier that qualifies the name, including
2003    /// source-location information.
2004    NestedNameSpecifierLoc QualifierLoc;
2005
2006    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2007    /// name qualifiers.
2008    DeclAccessPair FoundDecl;
2009  };
2010
2011  /// Base - the expression for the base pointer or structure references.  In
2012  /// X.F, this is "X".
2013  Stmt *Base;
2014
2015  /// MemberDecl - This is the decl being referenced by the field/member name.
2016  /// In X.F, this is the decl referenced by F.
2017  ValueDecl *MemberDecl;
2018
2019  /// MemberLoc - This is the location of the member name.
2020  SourceLocation MemberLoc;
2021
2022  /// MemberDNLoc - Provides source/type location info for the
2023  /// declaration name embedded in MemberDecl.
2024  DeclarationNameLoc MemberDNLoc;
2025
2026  /// IsArrow - True if this is "X->F", false if this is "X.F".
2027  bool IsArrow : 1;
2028
2029  /// \brief True if this member expression used a nested-name-specifier to
2030  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2031  /// declaration.  When true, a MemberNameQualifier
2032  /// structure is allocated immediately after the MemberExpr.
2033  bool HasQualifierOrFoundDecl : 1;
2034
2035  /// \brief True if this member expression specified a template argument list
2036  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2037  /// structure (and its TemplateArguments) are allocated immediately after
2038  /// the MemberExpr or, if the member expression also has a qualifier, after
2039  /// the MemberNameQualifier structure.
2040  bool HasExplicitTemplateArgumentList : 1;
2041
2042  /// \brief True if this member expression refers to a method that
2043  /// was resolved from an overloaded set having size greater than 1.
2044  bool HadMultipleCandidates : 1;
2045
2046  /// \brief Retrieve the qualifier that preceded the member name, if any.
2047  MemberNameQualifier *getMemberQualifier() {
2048    assert(HasQualifierOrFoundDecl);
2049    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2050  }
2051
2052  /// \brief Retrieve the qualifier that preceded the member name, if any.
2053  const MemberNameQualifier *getMemberQualifier() const {
2054    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2055  }
2056
2057public:
2058  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2059             const DeclarationNameInfo &NameInfo, QualType ty,
2060             ExprValueKind VK, ExprObjectKind OK)
2061    : Expr(MemberExprClass, ty, VK, OK,
2062           base->isTypeDependent(),
2063           base->isValueDependent(),
2064           base->isInstantiationDependent(),
2065           base->containsUnexpandedParameterPack()),
2066      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2067      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2068      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2069      HadMultipleCandidates(false) {
2070    assert(memberdecl->getDeclName() == NameInfo.getName());
2071  }
2072
2073  // NOTE: this constructor should be used only when it is known that
2074  // the member name can not provide additional syntactic info
2075  // (i.e., source locations for C++ operator names or type source info
2076  // for constructors, destructors and conversion oeprators).
2077  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2078             SourceLocation l, QualType ty,
2079             ExprValueKind VK, ExprObjectKind OK)
2080    : Expr(MemberExprClass, ty, VK, OK,
2081           base->isTypeDependent(), base->isValueDependent(),
2082           base->isInstantiationDependent(),
2083           base->containsUnexpandedParameterPack()),
2084      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2085      IsArrow(isarrow),
2086      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2087      HadMultipleCandidates(false) {}
2088
2089  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2090                            NestedNameSpecifierLoc QualifierLoc,
2091                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2092                            DeclarationNameInfo MemberNameInfo,
2093                            const TemplateArgumentListInfo *targs,
2094                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2095
2096  void setBase(Expr *E) { Base = E; }
2097  Expr *getBase() const { return cast<Expr>(Base); }
2098
2099  /// \brief Retrieve the member declaration to which this expression refers.
2100  ///
2101  /// The returned declaration will either be a FieldDecl or (in C++)
2102  /// a CXXMethodDecl.
2103  ValueDecl *getMemberDecl() const { return MemberDecl; }
2104  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2105
2106  /// \brief Retrieves the declaration found by lookup.
2107  DeclAccessPair getFoundDecl() const {
2108    if (!HasQualifierOrFoundDecl)
2109      return DeclAccessPair::make(getMemberDecl(),
2110                                  getMemberDecl()->getAccess());
2111    return getMemberQualifier()->FoundDecl;
2112  }
2113
2114  /// \brief Determines whether this member expression actually had
2115  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2116  /// x->Base::foo.
2117  bool hasQualifier() const { return getQualifier() != 0; }
2118
2119  /// \brief If the member name was qualified, retrieves the
2120  /// nested-name-specifier that precedes the member name. Otherwise, returns
2121  /// NULL.
2122  NestedNameSpecifier *getQualifier() const {
2123    if (!HasQualifierOrFoundDecl)
2124      return 0;
2125
2126    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2127  }
2128
2129  /// \brief If the member name was qualified, retrieves the
2130  /// nested-name-specifier that precedes the member name, with source-location
2131  /// information.
2132  NestedNameSpecifierLoc getQualifierLoc() const {
2133    if (!hasQualifier())
2134      return NestedNameSpecifierLoc();
2135
2136    return getMemberQualifier()->QualifierLoc;
2137  }
2138
2139  /// \brief Determines whether this member expression actually had a C++
2140  /// template argument list explicitly specified, e.g., x.f<int>.
2141  bool hasExplicitTemplateArgs() const {
2142    return HasExplicitTemplateArgumentList;
2143  }
2144
2145  /// \brief Copies the template arguments (if present) into the given
2146  /// structure.
2147  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2148    if (hasExplicitTemplateArgs())
2149      getExplicitTemplateArgs().copyInto(List);
2150  }
2151
2152  /// \brief Retrieve the explicit template argument list that
2153  /// follow the member template name.  This must only be called on an
2154  /// expression with explicit template arguments.
2155  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2156    assert(HasExplicitTemplateArgumentList);
2157    if (!HasQualifierOrFoundDecl)
2158      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2159
2160    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2161                                                      getMemberQualifier() + 1);
2162  }
2163
2164  /// \brief Retrieve the explicit template argument list that
2165  /// followed the member template name.  This must only be called on
2166  /// an expression with explicit template arguments.
2167  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2168    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2169  }
2170
2171  /// \brief Retrieves the optional explicit template arguments.
2172  /// This points to the same data as getExplicitTemplateArgs(), but
2173  /// returns null if there are no explicit template arguments.
2174  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2175    if (!hasExplicitTemplateArgs()) return 0;
2176    return &getExplicitTemplateArgs();
2177  }
2178
2179  /// \brief Retrieve the location of the left angle bracket following the
2180  /// member name ('<'), if any.
2181  SourceLocation getLAngleLoc() const {
2182    if (!HasExplicitTemplateArgumentList)
2183      return SourceLocation();
2184
2185    return getExplicitTemplateArgs().LAngleLoc;
2186  }
2187
2188  /// \brief Retrieve the template arguments provided as part of this
2189  /// template-id.
2190  const TemplateArgumentLoc *getTemplateArgs() const {
2191    if (!HasExplicitTemplateArgumentList)
2192      return 0;
2193
2194    return getExplicitTemplateArgs().getTemplateArgs();
2195  }
2196
2197  /// \brief Retrieve the number of template arguments provided as part of this
2198  /// template-id.
2199  unsigned getNumTemplateArgs() const {
2200    if (!HasExplicitTemplateArgumentList)
2201      return 0;
2202
2203    return getExplicitTemplateArgs().NumTemplateArgs;
2204  }
2205
2206  /// \brief Retrieve the location of the right angle bracket following the
2207  /// template arguments ('>').
2208  SourceLocation getRAngleLoc() const {
2209    if (!HasExplicitTemplateArgumentList)
2210      return SourceLocation();
2211
2212    return getExplicitTemplateArgs().RAngleLoc;
2213  }
2214
2215  /// \brief Retrieve the member declaration name info.
2216  DeclarationNameInfo getMemberNameInfo() const {
2217    return DeclarationNameInfo(MemberDecl->getDeclName(),
2218                               MemberLoc, MemberDNLoc);
2219  }
2220
2221  bool isArrow() const { return IsArrow; }
2222  void setArrow(bool A) { IsArrow = A; }
2223
2224  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2225  /// location of 'F'.
2226  SourceLocation getMemberLoc() const { return MemberLoc; }
2227  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2228
2229  SourceRange getSourceRange() const;
2230
2231  SourceLocation getExprLoc() const { return MemberLoc; }
2232
2233  /// \brief Determine whether the base of this explicit is implicit.
2234  bool isImplicitAccess() const {
2235    return getBase() && getBase()->isImplicitCXXThis();
2236  }
2237
2238  /// \brief Returns true if this member expression refers to a method that
2239  /// was resolved from an overloaded set having size greater than 1.
2240  bool hadMultipleCandidates() const {
2241    return HadMultipleCandidates;
2242  }
2243  /// \brief Sets the flag telling whether this expression refers to
2244  /// a method that was resolved from an overloaded set having size
2245  /// greater than 1.
2246  void setHadMultipleCandidates(bool V = true) {
2247    HadMultipleCandidates = V;
2248  }
2249
2250  static bool classof(const Stmt *T) {
2251    return T->getStmtClass() == MemberExprClass;
2252  }
2253  static bool classof(const MemberExpr *) { return true; }
2254
2255  // Iterators
2256  child_range children() { return child_range(&Base, &Base+1); }
2257
2258  friend class ASTReader;
2259  friend class ASTStmtWriter;
2260};
2261
2262/// CompoundLiteralExpr - [C99 6.5.2.5]
2263///
2264class CompoundLiteralExpr : public Expr {
2265  /// LParenLoc - If non-null, this is the location of the left paren in a
2266  /// compound literal like "(int){4}".  This can be null if this is a
2267  /// synthesized compound expression.
2268  SourceLocation LParenLoc;
2269
2270  /// The type as written.  This can be an incomplete array type, in
2271  /// which case the actual expression type will be different.
2272  TypeSourceInfo *TInfo;
2273  Stmt *Init;
2274  bool FileScope;
2275public:
2276  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2277                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2278    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2279           tinfo->getType()->isDependentType(),
2280           init->isValueDependent(),
2281           (init->isInstantiationDependent() ||
2282            tinfo->getType()->isInstantiationDependentType()),
2283           init->containsUnexpandedParameterPack()),
2284      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2285
2286  /// \brief Construct an empty compound literal.
2287  explicit CompoundLiteralExpr(EmptyShell Empty)
2288    : Expr(CompoundLiteralExprClass, Empty) { }
2289
2290  const Expr *getInitializer() const { return cast<Expr>(Init); }
2291  Expr *getInitializer() { return cast<Expr>(Init); }
2292  void setInitializer(Expr *E) { Init = E; }
2293
2294  bool isFileScope() const { return FileScope; }
2295  void setFileScope(bool FS) { FileScope = FS; }
2296
2297  SourceLocation getLParenLoc() const { return LParenLoc; }
2298  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2299
2300  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2301  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2302
2303  SourceRange getSourceRange() const {
2304    // FIXME: Init should never be null.
2305    if (!Init)
2306      return SourceRange();
2307    if (LParenLoc.isInvalid())
2308      return Init->getSourceRange();
2309    return SourceRange(LParenLoc, Init->getLocEnd());
2310  }
2311
2312  static bool classof(const Stmt *T) {
2313    return T->getStmtClass() == CompoundLiteralExprClass;
2314  }
2315  static bool classof(const CompoundLiteralExpr *) { return true; }
2316
2317  // Iterators
2318  child_range children() { return child_range(&Init, &Init+1); }
2319};
2320
2321/// CastExpr - Base class for type casts, including both implicit
2322/// casts (ImplicitCastExpr) and explicit casts that have some
2323/// representation in the source code (ExplicitCastExpr's derived
2324/// classes).
2325class CastExpr : public Expr {
2326public:
2327  typedef clang::CastKind CastKind;
2328
2329private:
2330  Stmt *Op;
2331
2332  void CheckCastConsistency() const;
2333
2334  const CXXBaseSpecifier * const *path_buffer() const {
2335    return const_cast<CastExpr*>(this)->path_buffer();
2336  }
2337  CXXBaseSpecifier **path_buffer();
2338
2339  void setBasePathSize(unsigned basePathSize) {
2340    CastExprBits.BasePathSize = basePathSize;
2341    assert(CastExprBits.BasePathSize == basePathSize &&
2342           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2343  }
2344
2345protected:
2346  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2347           const CastKind kind, Expr *op, unsigned BasePathSize) :
2348    Expr(SC, ty, VK, OK_Ordinary,
2349         // Cast expressions are type-dependent if the type is
2350         // dependent (C++ [temp.dep.expr]p3).
2351         ty->isDependentType(),
2352         // Cast expressions are value-dependent if the type is
2353         // dependent or if the subexpression is value-dependent.
2354         ty->isDependentType() || (op && op->isValueDependent()),
2355         (ty->isInstantiationDependentType() ||
2356          (op && op->isInstantiationDependent())),
2357         (ty->containsUnexpandedParameterPack() ||
2358          op->containsUnexpandedParameterPack())),
2359    Op(op) {
2360    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2361    CastExprBits.Kind = kind;
2362    setBasePathSize(BasePathSize);
2363#ifndef NDEBUG
2364    CheckCastConsistency();
2365#endif
2366  }
2367
2368  /// \brief Construct an empty cast.
2369  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2370    : Expr(SC, Empty) {
2371    setBasePathSize(BasePathSize);
2372  }
2373
2374public:
2375  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2376  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2377  const char *getCastKindName() const;
2378
2379  Expr *getSubExpr() { return cast<Expr>(Op); }
2380  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2381  void setSubExpr(Expr *E) { Op = E; }
2382
2383  /// \brief Retrieve the cast subexpression as it was written in the source
2384  /// code, looking through any implicit casts or other intermediate nodes
2385  /// introduced by semantic analysis.
2386  Expr *getSubExprAsWritten();
2387  const Expr *getSubExprAsWritten() const {
2388    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2389  }
2390
2391  typedef CXXBaseSpecifier **path_iterator;
2392  typedef const CXXBaseSpecifier * const *path_const_iterator;
2393  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2394  unsigned path_size() const { return CastExprBits.BasePathSize; }
2395  path_iterator path_begin() { return path_buffer(); }
2396  path_iterator path_end() { return path_buffer() + path_size(); }
2397  path_const_iterator path_begin() const { return path_buffer(); }
2398  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2399
2400  void setCastPath(const CXXCastPath &Path);
2401
2402  static bool classof(const Stmt *T) {
2403    return T->getStmtClass() >= firstCastExprConstant &&
2404           T->getStmtClass() <= lastCastExprConstant;
2405  }
2406  static bool classof(const CastExpr *) { return true; }
2407
2408  // Iterators
2409  child_range children() { return child_range(&Op, &Op+1); }
2410};
2411
2412/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2413/// conversions, which have no direct representation in the original
2414/// source code. For example: converting T[]->T*, void f()->void
2415/// (*f)(), float->double, short->int, etc.
2416///
2417/// In C, implicit casts always produce rvalues. However, in C++, an
2418/// implicit cast whose result is being bound to a reference will be
2419/// an lvalue or xvalue. For example:
2420///
2421/// @code
2422/// class Base { };
2423/// class Derived : public Base { };
2424/// Derived &&ref();
2425/// void f(Derived d) {
2426///   Base& b = d; // initializer is an ImplicitCastExpr
2427///                // to an lvalue of type Base
2428///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2429///                     // to an xvalue of type Base
2430/// }
2431/// @endcode
2432class ImplicitCastExpr : public CastExpr {
2433private:
2434  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2435                   unsigned BasePathLength, ExprValueKind VK)
2436    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2437  }
2438
2439  /// \brief Construct an empty implicit cast.
2440  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2441    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2442
2443public:
2444  enum OnStack_t { OnStack };
2445  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2446                   ExprValueKind VK)
2447    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2448  }
2449
2450  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2451                                  CastKind Kind, Expr *Operand,
2452                                  const CXXCastPath *BasePath,
2453                                  ExprValueKind Cat);
2454
2455  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2456
2457  SourceRange getSourceRange() const {
2458    return getSubExpr()->getSourceRange();
2459  }
2460
2461  static bool classof(const Stmt *T) {
2462    return T->getStmtClass() == ImplicitCastExprClass;
2463  }
2464  static bool classof(const ImplicitCastExpr *) { return true; }
2465};
2466
2467inline Expr *Expr::IgnoreImpCasts() {
2468  Expr *e = this;
2469  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2470    e = ice->getSubExpr();
2471  return e;
2472}
2473
2474/// ExplicitCastExpr - An explicit cast written in the source
2475/// code.
2476///
2477/// This class is effectively an abstract class, because it provides
2478/// the basic representation of an explicitly-written cast without
2479/// specifying which kind of cast (C cast, functional cast, static
2480/// cast, etc.) was written; specific derived classes represent the
2481/// particular style of cast and its location information.
2482///
2483/// Unlike implicit casts, explicit cast nodes have two different
2484/// types: the type that was written into the source code, and the
2485/// actual type of the expression as determined by semantic
2486/// analysis. These types may differ slightly. For example, in C++ one
2487/// can cast to a reference type, which indicates that the resulting
2488/// expression will be an lvalue or xvalue. The reference type, however,
2489/// will not be used as the type of the expression.
2490class ExplicitCastExpr : public CastExpr {
2491  /// TInfo - Source type info for the (written) type
2492  /// this expression is casting to.
2493  TypeSourceInfo *TInfo;
2494
2495protected:
2496  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2497                   CastKind kind, Expr *op, unsigned PathSize,
2498                   TypeSourceInfo *writtenTy)
2499    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2500
2501  /// \brief Construct an empty explicit cast.
2502  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2503    : CastExpr(SC, Shell, PathSize) { }
2504
2505public:
2506  /// getTypeInfoAsWritten - Returns the type source info for the type
2507  /// that this expression is casting to.
2508  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2509  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2510
2511  /// getTypeAsWritten - Returns the type that this expression is
2512  /// casting to, as written in the source code.
2513  QualType getTypeAsWritten() const { return TInfo->getType(); }
2514
2515  static bool classof(const Stmt *T) {
2516     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2517            T->getStmtClass() <= lastExplicitCastExprConstant;
2518  }
2519  static bool classof(const ExplicitCastExpr *) { return true; }
2520};
2521
2522/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2523/// cast in C++ (C++ [expr.cast]), which uses the syntax
2524/// (Type)expr. For example: @c (int)f.
2525class CStyleCastExpr : public ExplicitCastExpr {
2526  SourceLocation LPLoc; // the location of the left paren
2527  SourceLocation RPLoc; // the location of the right paren
2528
2529  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2530                 unsigned PathSize, TypeSourceInfo *writtenTy,
2531                 SourceLocation l, SourceLocation r)
2532    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2533                       writtenTy), LPLoc(l), RPLoc(r) {}
2534
2535  /// \brief Construct an empty C-style explicit cast.
2536  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2537    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2538
2539public:
2540  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2541                                ExprValueKind VK, CastKind K,
2542                                Expr *Op, const CXXCastPath *BasePath,
2543                                TypeSourceInfo *WrittenTy, SourceLocation L,
2544                                SourceLocation R);
2545
2546  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2547
2548  SourceLocation getLParenLoc() const { return LPLoc; }
2549  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2550
2551  SourceLocation getRParenLoc() const { return RPLoc; }
2552  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2553
2554  SourceRange getSourceRange() const {
2555    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2556  }
2557  static bool classof(const Stmt *T) {
2558    return T->getStmtClass() == CStyleCastExprClass;
2559  }
2560  static bool classof(const CStyleCastExpr *) { return true; }
2561};
2562
2563/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2564///
2565/// This expression node kind describes a builtin binary operation,
2566/// such as "x + y" for integer values "x" and "y". The operands will
2567/// already have been converted to appropriate types (e.g., by
2568/// performing promotions or conversions).
2569///
2570/// In C++, where operators may be overloaded, a different kind of
2571/// expression node (CXXOperatorCallExpr) is used to express the
2572/// invocation of an overloaded operator with operator syntax. Within
2573/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2574/// used to store an expression "x + y" depends on the subexpressions
2575/// for x and y. If neither x or y is type-dependent, and the "+"
2576/// operator resolves to a built-in operation, BinaryOperator will be
2577/// used to express the computation (x and y may still be
2578/// value-dependent). If either x or y is type-dependent, or if the
2579/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2580/// be used to express the computation.
2581class BinaryOperator : public Expr {
2582public:
2583  typedef BinaryOperatorKind Opcode;
2584
2585private:
2586  unsigned Opc : 6;
2587  SourceLocation OpLoc;
2588
2589  enum { LHS, RHS, END_EXPR };
2590  Stmt* SubExprs[END_EXPR];
2591public:
2592
2593  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2594                 ExprValueKind VK, ExprObjectKind OK,
2595                 SourceLocation opLoc)
2596    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2597           lhs->isTypeDependent() || rhs->isTypeDependent(),
2598           lhs->isValueDependent() || rhs->isValueDependent(),
2599           (lhs->isInstantiationDependent() ||
2600            rhs->isInstantiationDependent()),
2601           (lhs->containsUnexpandedParameterPack() ||
2602            rhs->containsUnexpandedParameterPack())),
2603      Opc(opc), OpLoc(opLoc) {
2604    SubExprs[LHS] = lhs;
2605    SubExprs[RHS] = rhs;
2606    assert(!isCompoundAssignmentOp() &&
2607           "Use ArithAssignBinaryOperator for compound assignments");
2608  }
2609
2610  /// \brief Construct an empty binary operator.
2611  explicit BinaryOperator(EmptyShell Empty)
2612    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2613
2614  SourceLocation getOperatorLoc() const { return OpLoc; }
2615  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2616
2617  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2618  void setOpcode(Opcode O) { Opc = O; }
2619
2620  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2621  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2622  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2623  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2624
2625  SourceRange getSourceRange() const {
2626    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2627  }
2628
2629  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2630  /// corresponds to, e.g. "<<=".
2631  static const char *getOpcodeStr(Opcode Op);
2632
2633  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2634
2635  /// \brief Retrieve the binary opcode that corresponds to the given
2636  /// overloaded operator.
2637  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2638
2639  /// \brief Retrieve the overloaded operator kind that corresponds to
2640  /// the given binary opcode.
2641  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2642
2643  /// predicates to categorize the respective opcodes.
2644  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2645  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2646  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2647  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2648  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2649  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2650
2651  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2652  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2653
2654  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2655  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2656
2657  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2658  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2659
2660  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2661  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2662
2663  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2664  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2665
2666  static bool isAssignmentOp(Opcode Opc) {
2667    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2668  }
2669  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2670
2671  static bool isCompoundAssignmentOp(Opcode Opc) {
2672    return Opc > BO_Assign && Opc <= BO_OrAssign;
2673  }
2674  bool isCompoundAssignmentOp() const {
2675    return isCompoundAssignmentOp(getOpcode());
2676  }
2677
2678  static bool isShiftAssignOp(Opcode Opc) {
2679    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2680  }
2681  bool isShiftAssignOp() const {
2682    return isShiftAssignOp(getOpcode());
2683  }
2684
2685  static bool classof(const Stmt *S) {
2686    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2687           S->getStmtClass() <= lastBinaryOperatorConstant;
2688  }
2689  static bool classof(const BinaryOperator *) { return true; }
2690
2691  // Iterators
2692  child_range children() {
2693    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2694  }
2695
2696protected:
2697  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2698                 ExprValueKind VK, ExprObjectKind OK,
2699                 SourceLocation opLoc, bool dead)
2700    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2701           lhs->isTypeDependent() || rhs->isTypeDependent(),
2702           lhs->isValueDependent() || rhs->isValueDependent(),
2703           (lhs->isInstantiationDependent() ||
2704            rhs->isInstantiationDependent()),
2705           (lhs->containsUnexpandedParameterPack() ||
2706            rhs->containsUnexpandedParameterPack())),
2707      Opc(opc), OpLoc(opLoc) {
2708    SubExprs[LHS] = lhs;
2709    SubExprs[RHS] = rhs;
2710  }
2711
2712  BinaryOperator(StmtClass SC, EmptyShell Empty)
2713    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2714};
2715
2716/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2717/// track of the type the operation is performed in.  Due to the semantics of
2718/// these operators, the operands are promoted, the arithmetic performed, an
2719/// implicit conversion back to the result type done, then the assignment takes
2720/// place.  This captures the intermediate type which the computation is done
2721/// in.
2722class CompoundAssignOperator : public BinaryOperator {
2723  QualType ComputationLHSType;
2724  QualType ComputationResultType;
2725public:
2726  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2727                         ExprValueKind VK, ExprObjectKind OK,
2728                         QualType CompLHSType, QualType CompResultType,
2729                         SourceLocation OpLoc)
2730    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2731      ComputationLHSType(CompLHSType),
2732      ComputationResultType(CompResultType) {
2733    assert(isCompoundAssignmentOp() &&
2734           "Only should be used for compound assignments");
2735  }
2736
2737  /// \brief Build an empty compound assignment operator expression.
2738  explicit CompoundAssignOperator(EmptyShell Empty)
2739    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2740
2741  // The two computation types are the type the LHS is converted
2742  // to for the computation and the type of the result; the two are
2743  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2744  QualType getComputationLHSType() const { return ComputationLHSType; }
2745  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2746
2747  QualType getComputationResultType() const { return ComputationResultType; }
2748  void setComputationResultType(QualType T) { ComputationResultType = T; }
2749
2750  static bool classof(const CompoundAssignOperator *) { return true; }
2751  static bool classof(const Stmt *S) {
2752    return S->getStmtClass() == CompoundAssignOperatorClass;
2753  }
2754};
2755
2756/// AbstractConditionalOperator - An abstract base class for
2757/// ConditionalOperator and BinaryConditionalOperator.
2758class AbstractConditionalOperator : public Expr {
2759  SourceLocation QuestionLoc, ColonLoc;
2760  friend class ASTStmtReader;
2761
2762protected:
2763  AbstractConditionalOperator(StmtClass SC, QualType T,
2764                              ExprValueKind VK, ExprObjectKind OK,
2765                              bool TD, bool VD, bool ID,
2766                              bool ContainsUnexpandedParameterPack,
2767                              SourceLocation qloc,
2768                              SourceLocation cloc)
2769    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2770      QuestionLoc(qloc), ColonLoc(cloc) {}
2771
2772  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2773    : Expr(SC, Empty) { }
2774
2775public:
2776  // getCond - Return the expression representing the condition for
2777  //   the ?: operator.
2778  Expr *getCond() const;
2779
2780  // getTrueExpr - Return the subexpression representing the value of
2781  //   the expression if the condition evaluates to true.
2782  Expr *getTrueExpr() const;
2783
2784  // getFalseExpr - Return the subexpression representing the value of
2785  //   the expression if the condition evaluates to false.  This is
2786  //   the same as getRHS.
2787  Expr *getFalseExpr() const;
2788
2789  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2790  SourceLocation getColonLoc() const { return ColonLoc; }
2791
2792  static bool classof(const Stmt *T) {
2793    return T->getStmtClass() == ConditionalOperatorClass ||
2794           T->getStmtClass() == BinaryConditionalOperatorClass;
2795  }
2796  static bool classof(const AbstractConditionalOperator *) { return true; }
2797};
2798
2799/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2800/// middle" extension is a BinaryConditionalOperator.
2801class ConditionalOperator : public AbstractConditionalOperator {
2802  enum { COND, LHS, RHS, END_EXPR };
2803  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2804
2805  friend class ASTStmtReader;
2806public:
2807  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2808                      SourceLocation CLoc, Expr *rhs,
2809                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2810    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2811           // FIXME: the type of the conditional operator doesn't
2812           // depend on the type of the conditional, but the standard
2813           // seems to imply that it could. File a bug!
2814           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2815           (cond->isValueDependent() || lhs->isValueDependent() ||
2816            rhs->isValueDependent()),
2817           (cond->isInstantiationDependent() ||
2818            lhs->isInstantiationDependent() ||
2819            rhs->isInstantiationDependent()),
2820           (cond->containsUnexpandedParameterPack() ||
2821            lhs->containsUnexpandedParameterPack() ||
2822            rhs->containsUnexpandedParameterPack()),
2823                                  QLoc, CLoc) {
2824    SubExprs[COND] = cond;
2825    SubExprs[LHS] = lhs;
2826    SubExprs[RHS] = rhs;
2827  }
2828
2829  /// \brief Build an empty conditional operator.
2830  explicit ConditionalOperator(EmptyShell Empty)
2831    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2832
2833  // getCond - Return the expression representing the condition for
2834  //   the ?: operator.
2835  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2836
2837  // getTrueExpr - Return the subexpression representing the value of
2838  //   the expression if the condition evaluates to true.
2839  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2840
2841  // getFalseExpr - Return the subexpression representing the value of
2842  //   the expression if the condition evaluates to false.  This is
2843  //   the same as getRHS.
2844  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2845
2846  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2847  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2848
2849  SourceRange getSourceRange() const {
2850    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2851  }
2852  static bool classof(const Stmt *T) {
2853    return T->getStmtClass() == ConditionalOperatorClass;
2854  }
2855  static bool classof(const ConditionalOperator *) { return true; }
2856
2857  // Iterators
2858  child_range children() {
2859    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2860  }
2861};
2862
2863/// BinaryConditionalOperator - The GNU extension to the conditional
2864/// operator which allows the middle operand to be omitted.
2865///
2866/// This is a different expression kind on the assumption that almost
2867/// every client ends up needing to know that these are different.
2868class BinaryConditionalOperator : public AbstractConditionalOperator {
2869  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2870
2871  /// - the common condition/left-hand-side expression, which will be
2872  ///   evaluated as the opaque value
2873  /// - the condition, expressed in terms of the opaque value
2874  /// - the left-hand-side, expressed in terms of the opaque value
2875  /// - the right-hand-side
2876  Stmt *SubExprs[NUM_SUBEXPRS];
2877  OpaqueValueExpr *OpaqueValue;
2878
2879  friend class ASTStmtReader;
2880public:
2881  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2882                            Expr *cond, Expr *lhs, Expr *rhs,
2883                            SourceLocation qloc, SourceLocation cloc,
2884                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2885    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2886           (common->isTypeDependent() || rhs->isTypeDependent()),
2887           (common->isValueDependent() || rhs->isValueDependent()),
2888           (common->isInstantiationDependent() ||
2889            rhs->isInstantiationDependent()),
2890           (common->containsUnexpandedParameterPack() ||
2891            rhs->containsUnexpandedParameterPack()),
2892                                  qloc, cloc),
2893      OpaqueValue(opaqueValue) {
2894    SubExprs[COMMON] = common;
2895    SubExprs[COND] = cond;
2896    SubExprs[LHS] = lhs;
2897    SubExprs[RHS] = rhs;
2898
2899    OpaqueValue->setSourceExpr(common);
2900  }
2901
2902  /// \brief Build an empty conditional operator.
2903  explicit BinaryConditionalOperator(EmptyShell Empty)
2904    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2905
2906  /// \brief getCommon - Return the common expression, written to the
2907  ///   left of the condition.  The opaque value will be bound to the
2908  ///   result of this expression.
2909  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2910
2911  /// \brief getOpaqueValue - Return the opaque value placeholder.
2912  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2913
2914  /// \brief getCond - Return the condition expression; this is defined
2915  ///   in terms of the opaque value.
2916  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2917
2918  /// \brief getTrueExpr - Return the subexpression which will be
2919  ///   evaluated if the condition evaluates to true;  this is defined
2920  ///   in terms of the opaque value.
2921  Expr *getTrueExpr() const {
2922    return cast<Expr>(SubExprs[LHS]);
2923  }
2924
2925  /// \brief getFalseExpr - Return the subexpression which will be
2926  ///   evaluated if the condnition evaluates to false; this is
2927  ///   defined in terms of the opaque value.
2928  Expr *getFalseExpr() const {
2929    return cast<Expr>(SubExprs[RHS]);
2930  }
2931
2932  SourceRange getSourceRange() const {
2933    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2934  }
2935  static bool classof(const Stmt *T) {
2936    return T->getStmtClass() == BinaryConditionalOperatorClass;
2937  }
2938  static bool classof(const BinaryConditionalOperator *) { return true; }
2939
2940  // Iterators
2941  child_range children() {
2942    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2943  }
2944};
2945
2946inline Expr *AbstractConditionalOperator::getCond() const {
2947  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2948    return co->getCond();
2949  return cast<BinaryConditionalOperator>(this)->getCond();
2950}
2951
2952inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2953  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2954    return co->getTrueExpr();
2955  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2956}
2957
2958inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2959  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2960    return co->getFalseExpr();
2961  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2962}
2963
2964/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2965class AddrLabelExpr : public Expr {
2966  SourceLocation AmpAmpLoc, LabelLoc;
2967  LabelDecl *Label;
2968public:
2969  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2970                QualType t)
2971    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
2972           false),
2973      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2974
2975  /// \brief Build an empty address of a label expression.
2976  explicit AddrLabelExpr(EmptyShell Empty)
2977    : Expr(AddrLabelExprClass, Empty) { }
2978
2979  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2980  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2981  SourceLocation getLabelLoc() const { return LabelLoc; }
2982  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2983
2984  SourceRange getSourceRange() const {
2985    return SourceRange(AmpAmpLoc, LabelLoc);
2986  }
2987
2988  LabelDecl *getLabel() const { return Label; }
2989  void setLabel(LabelDecl *L) { Label = L; }
2990
2991  static bool classof(const Stmt *T) {
2992    return T->getStmtClass() == AddrLabelExprClass;
2993  }
2994  static bool classof(const AddrLabelExpr *) { return true; }
2995
2996  // Iterators
2997  child_range children() { return child_range(); }
2998};
2999
3000/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3001/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3002/// takes the value of the last subexpression.
3003///
3004/// A StmtExpr is always an r-value; values "returned" out of a
3005/// StmtExpr will be copied.
3006class StmtExpr : public Expr {
3007  Stmt *SubStmt;
3008  SourceLocation LParenLoc, RParenLoc;
3009public:
3010  // FIXME: Does type-dependence need to be computed differently?
3011  // FIXME: Do we need to compute instantiation instantiation-dependence for
3012  // statements? (ugh!)
3013  StmtExpr(CompoundStmt *substmt, QualType T,
3014           SourceLocation lp, SourceLocation rp) :
3015    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3016         T->isDependentType(), false, false, false),
3017    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3018
3019  /// \brief Build an empty statement expression.
3020  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3021
3022  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3023  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3024  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3025
3026  SourceRange getSourceRange() const {
3027    return SourceRange(LParenLoc, RParenLoc);
3028  }
3029
3030  SourceLocation getLParenLoc() const { return LParenLoc; }
3031  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3032  SourceLocation getRParenLoc() const { return RParenLoc; }
3033  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3034
3035  static bool classof(const Stmt *T) {
3036    return T->getStmtClass() == StmtExprClass;
3037  }
3038  static bool classof(const StmtExpr *) { return true; }
3039
3040  // Iterators
3041  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3042};
3043
3044
3045/// ShuffleVectorExpr - clang-specific builtin-in function
3046/// __builtin_shufflevector.
3047/// This AST node represents a operator that does a constant
3048/// shuffle, similar to LLVM's shufflevector instruction. It takes
3049/// two vectors and a variable number of constant indices,
3050/// and returns the appropriately shuffled vector.
3051class ShuffleVectorExpr : public Expr {
3052  SourceLocation BuiltinLoc, RParenLoc;
3053
3054  // SubExprs - the list of values passed to the __builtin_shufflevector
3055  // function. The first two are vectors, and the rest are constant
3056  // indices.  The number of values in this list is always
3057  // 2+the number of indices in the vector type.
3058  Stmt **SubExprs;
3059  unsigned NumExprs;
3060
3061public:
3062  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3063                    QualType Type, SourceLocation BLoc,
3064                    SourceLocation RP);
3065
3066  /// \brief Build an empty vector-shuffle expression.
3067  explicit ShuffleVectorExpr(EmptyShell Empty)
3068    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3069
3070  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3071  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3072
3073  SourceLocation getRParenLoc() const { return RParenLoc; }
3074  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3075
3076  SourceRange getSourceRange() const {
3077    return SourceRange(BuiltinLoc, RParenLoc);
3078  }
3079  static bool classof(const Stmt *T) {
3080    return T->getStmtClass() == ShuffleVectorExprClass;
3081  }
3082  static bool classof(const ShuffleVectorExpr *) { return true; }
3083
3084  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3085  /// constant expression, the actual arguments passed in, and the function
3086  /// pointers.
3087  unsigned getNumSubExprs() const { return NumExprs; }
3088
3089  /// \brief Retrieve the array of expressions.
3090  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3091
3092  /// getExpr - Return the Expr at the specified index.
3093  Expr *getExpr(unsigned Index) {
3094    assert((Index < NumExprs) && "Arg access out of range!");
3095    return cast<Expr>(SubExprs[Index]);
3096  }
3097  const Expr *getExpr(unsigned Index) const {
3098    assert((Index < NumExprs) && "Arg access out of range!");
3099    return cast<Expr>(SubExprs[Index]);
3100  }
3101
3102  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3103
3104  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3105    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3106    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3107  }
3108
3109  // Iterators
3110  child_range children() {
3111    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3112  }
3113};
3114
3115/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3116/// This AST node is similar to the conditional operator (?:) in C, with
3117/// the following exceptions:
3118/// - the test expression must be a integer constant expression.
3119/// - the expression returned acts like the chosen subexpression in every
3120///   visible way: the type is the same as that of the chosen subexpression,
3121///   and all predicates (whether it's an l-value, whether it's an integer
3122///   constant expression, etc.) return the same result as for the chosen
3123///   sub-expression.
3124class ChooseExpr : public Expr {
3125  enum { COND, LHS, RHS, END_EXPR };
3126  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3127  SourceLocation BuiltinLoc, RParenLoc;
3128public:
3129  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3130             QualType t, ExprValueKind VK, ExprObjectKind OK,
3131             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3132    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3133           (cond->isInstantiationDependent() ||
3134            lhs->isInstantiationDependent() ||
3135            rhs->isInstantiationDependent()),
3136           (cond->containsUnexpandedParameterPack() ||
3137            lhs->containsUnexpandedParameterPack() ||
3138            rhs->containsUnexpandedParameterPack())),
3139      BuiltinLoc(BLoc), RParenLoc(RP) {
3140      SubExprs[COND] = cond;
3141      SubExprs[LHS] = lhs;
3142      SubExprs[RHS] = rhs;
3143    }
3144
3145  /// \brief Build an empty __builtin_choose_expr.
3146  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3147
3148  /// isConditionTrue - Return whether the condition is true (i.e. not
3149  /// equal to zero).
3150  bool isConditionTrue(const ASTContext &C) const;
3151
3152  /// getChosenSubExpr - Return the subexpression chosen according to the
3153  /// condition.
3154  Expr *getChosenSubExpr(const ASTContext &C) const {
3155    return isConditionTrue(C) ? getLHS() : getRHS();
3156  }
3157
3158  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3159  void setCond(Expr *E) { SubExprs[COND] = E; }
3160  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3161  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3162  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3163  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3164
3165  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3166  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3167
3168  SourceLocation getRParenLoc() const { return RParenLoc; }
3169  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3170
3171  SourceRange getSourceRange() const {
3172    return SourceRange(BuiltinLoc, RParenLoc);
3173  }
3174  static bool classof(const Stmt *T) {
3175    return T->getStmtClass() == ChooseExprClass;
3176  }
3177  static bool classof(const ChooseExpr *) { return true; }
3178
3179  // Iterators
3180  child_range children() {
3181    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3182  }
3183};
3184
3185/// GNUNullExpr - Implements the GNU __null extension, which is a name
3186/// for a null pointer constant that has integral type (e.g., int or
3187/// long) and is the same size and alignment as a pointer. The __null
3188/// extension is typically only used by system headers, which define
3189/// NULL as __null in C++ rather than using 0 (which is an integer
3190/// that may not match the size of a pointer).
3191class GNUNullExpr : public Expr {
3192  /// TokenLoc - The location of the __null keyword.
3193  SourceLocation TokenLoc;
3194
3195public:
3196  GNUNullExpr(QualType Ty, SourceLocation Loc)
3197    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3198           false),
3199      TokenLoc(Loc) { }
3200
3201  /// \brief Build an empty GNU __null expression.
3202  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3203
3204  /// getTokenLocation - The location of the __null token.
3205  SourceLocation getTokenLocation() const { return TokenLoc; }
3206  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3207
3208  SourceRange getSourceRange() const {
3209    return SourceRange(TokenLoc);
3210  }
3211  static bool classof(const Stmt *T) {
3212    return T->getStmtClass() == GNUNullExprClass;
3213  }
3214  static bool classof(const GNUNullExpr *) { return true; }
3215
3216  // Iterators
3217  child_range children() { return child_range(); }
3218};
3219
3220/// VAArgExpr, used for the builtin function __builtin_va_arg.
3221class VAArgExpr : public Expr {
3222  Stmt *Val;
3223  TypeSourceInfo *TInfo;
3224  SourceLocation BuiltinLoc, RParenLoc;
3225public:
3226  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3227            SourceLocation RPLoc, QualType t)
3228    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3229           t->isDependentType(), false,
3230           (TInfo->getType()->isInstantiationDependentType() ||
3231            e->isInstantiationDependent()),
3232           (TInfo->getType()->containsUnexpandedParameterPack() ||
3233            e->containsUnexpandedParameterPack())),
3234      Val(e), TInfo(TInfo),
3235      BuiltinLoc(BLoc),
3236      RParenLoc(RPLoc) { }
3237
3238  /// \brief Create an empty __builtin_va_arg expression.
3239  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3240
3241  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3242  Expr *getSubExpr() { return cast<Expr>(Val); }
3243  void setSubExpr(Expr *E) { Val = E; }
3244
3245  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3246  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3247
3248  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3249  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3250
3251  SourceLocation getRParenLoc() const { return RParenLoc; }
3252  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3253
3254  SourceRange getSourceRange() const {
3255    return SourceRange(BuiltinLoc, RParenLoc);
3256  }
3257  static bool classof(const Stmt *T) {
3258    return T->getStmtClass() == VAArgExprClass;
3259  }
3260  static bool classof(const VAArgExpr *) { return true; }
3261
3262  // Iterators
3263  child_range children() { return child_range(&Val, &Val+1); }
3264};
3265
3266/// @brief Describes an C or C++ initializer list.
3267///
3268/// InitListExpr describes an initializer list, which can be used to
3269/// initialize objects of different types, including
3270/// struct/class/union types, arrays, and vectors. For example:
3271///
3272/// @code
3273/// struct foo x = { 1, { 2, 3 } };
3274/// @endcode
3275///
3276/// Prior to semantic analysis, an initializer list will represent the
3277/// initializer list as written by the user, but will have the
3278/// placeholder type "void". This initializer list is called the
3279/// syntactic form of the initializer, and may contain C99 designated
3280/// initializers (represented as DesignatedInitExprs), initializations
3281/// of subobject members without explicit braces, and so on. Clients
3282/// interested in the original syntax of the initializer list should
3283/// use the syntactic form of the initializer list.
3284///
3285/// After semantic analysis, the initializer list will represent the
3286/// semantic form of the initializer, where the initializations of all
3287/// subobjects are made explicit with nested InitListExpr nodes and
3288/// C99 designators have been eliminated by placing the designated
3289/// initializations into the subobject they initialize. Additionally,
3290/// any "holes" in the initialization, where no initializer has been
3291/// specified for a particular subobject, will be replaced with
3292/// implicitly-generated ImplicitValueInitExpr expressions that
3293/// value-initialize the subobjects. Note, however, that the
3294/// initializer lists may still have fewer initializers than there are
3295/// elements to initialize within the object.
3296///
3297/// Given the semantic form of the initializer list, one can retrieve
3298/// the original syntactic form of that initializer list (if it
3299/// exists) using getSyntacticForm(). Since many initializer lists
3300/// have the same syntactic and semantic forms, getSyntacticForm() may
3301/// return NULL, indicating that the current initializer list also
3302/// serves as its syntactic form.
3303class InitListExpr : public Expr {
3304  // FIXME: Eliminate this vector in favor of ASTContext allocation
3305  typedef ASTVector<Stmt *> InitExprsTy;
3306  InitExprsTy InitExprs;
3307  SourceLocation LBraceLoc, RBraceLoc;
3308
3309  /// Contains the initializer list that describes the syntactic form
3310  /// written in the source code.
3311  InitListExpr *SyntacticForm;
3312
3313  /// \brief Either:
3314  ///  If this initializer list initializes an array with more elements than
3315  ///  there are initializers in the list, specifies an expression to be used
3316  ///  for value initialization of the rest of the elements.
3317  /// Or
3318  ///  If this initializer list initializes a union, specifies which
3319  ///  field within the union will be initialized.
3320  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3321
3322  /// Whether this initializer list originally had a GNU array-range
3323  /// designator in it. This is a temporary marker used by CodeGen.
3324  bool HadArrayRangeDesignator;
3325
3326public:
3327  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3328               Expr **initexprs, unsigned numinits,
3329               SourceLocation rbraceloc);
3330
3331  /// \brief Build an empty initializer list.
3332  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3333    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3334
3335  unsigned getNumInits() const { return InitExprs.size(); }
3336
3337  /// \brief Retrieve the set of initializers.
3338  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3339
3340  const Expr *getInit(unsigned Init) const {
3341    assert(Init < getNumInits() && "Initializer access out of range!");
3342    return cast_or_null<Expr>(InitExprs[Init]);
3343  }
3344
3345  Expr *getInit(unsigned Init) {
3346    assert(Init < getNumInits() && "Initializer access out of range!");
3347    return cast_or_null<Expr>(InitExprs[Init]);
3348  }
3349
3350  void setInit(unsigned Init, Expr *expr) {
3351    assert(Init < getNumInits() && "Initializer access out of range!");
3352    InitExprs[Init] = expr;
3353  }
3354
3355  /// \brief Reserve space for some number of initializers.
3356  void reserveInits(ASTContext &C, unsigned NumInits);
3357
3358  /// @brief Specify the number of initializers
3359  ///
3360  /// If there are more than @p NumInits initializers, the remaining
3361  /// initializers will be destroyed. If there are fewer than @p
3362  /// NumInits initializers, NULL expressions will be added for the
3363  /// unknown initializers.
3364  void resizeInits(ASTContext &Context, unsigned NumInits);
3365
3366  /// @brief Updates the initializer at index @p Init with the new
3367  /// expression @p expr, and returns the old expression at that
3368  /// location.
3369  ///
3370  /// When @p Init is out of range for this initializer list, the
3371  /// initializer list will be extended with NULL expressions to
3372  /// accommodate the new entry.
3373  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3374
3375  /// \brief If this initializer list initializes an array with more elements
3376  /// than there are initializers in the list, specifies an expression to be
3377  /// used for value initialization of the rest of the elements.
3378  Expr *getArrayFiller() {
3379    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3380  }
3381  const Expr *getArrayFiller() const {
3382    return const_cast<InitListExpr *>(this)->getArrayFiller();
3383  }
3384  void setArrayFiller(Expr *filler);
3385
3386  /// \brief If this initializes a union, specifies which field in the
3387  /// union to initialize.
3388  ///
3389  /// Typically, this field is the first named field within the
3390  /// union. However, a designated initializer can specify the
3391  /// initialization of a different field within the union.
3392  FieldDecl *getInitializedFieldInUnion() {
3393    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3394  }
3395  const FieldDecl *getInitializedFieldInUnion() const {
3396    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3397  }
3398  void setInitializedFieldInUnion(FieldDecl *FD) {
3399    ArrayFillerOrUnionFieldInit = FD;
3400  }
3401
3402  // Explicit InitListExpr's originate from source code (and have valid source
3403  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3404  bool isExplicit() {
3405    return LBraceLoc.isValid() && RBraceLoc.isValid();
3406  }
3407
3408  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3409  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3410  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3411  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3412
3413  /// @brief Retrieve the initializer list that describes the
3414  /// syntactic form of the initializer.
3415  ///
3416  ///
3417  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3418  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3419
3420  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3421  void sawArrayRangeDesignator(bool ARD = true) {
3422    HadArrayRangeDesignator = ARD;
3423  }
3424
3425  SourceRange getSourceRange() const;
3426
3427  static bool classof(const Stmt *T) {
3428    return T->getStmtClass() == InitListExprClass;
3429  }
3430  static bool classof(const InitListExpr *) { return true; }
3431
3432  // Iterators
3433  child_range children() {
3434    if (InitExprs.empty()) return child_range();
3435    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3436  }
3437
3438  typedef InitExprsTy::iterator iterator;
3439  typedef InitExprsTy::const_iterator const_iterator;
3440  typedef InitExprsTy::reverse_iterator reverse_iterator;
3441  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3442
3443  iterator begin() { return InitExprs.begin(); }
3444  const_iterator begin() const { return InitExprs.begin(); }
3445  iterator end() { return InitExprs.end(); }
3446  const_iterator end() const { return InitExprs.end(); }
3447  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3448  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3449  reverse_iterator rend() { return InitExprs.rend(); }
3450  const_reverse_iterator rend() const { return InitExprs.rend(); }
3451
3452  friend class ASTStmtReader;
3453  friend class ASTStmtWriter;
3454};
3455
3456/// @brief Represents a C99 designated initializer expression.
3457///
3458/// A designated initializer expression (C99 6.7.8) contains one or
3459/// more designators (which can be field designators, array
3460/// designators, or GNU array-range designators) followed by an
3461/// expression that initializes the field or element(s) that the
3462/// designators refer to. For example, given:
3463///
3464/// @code
3465/// struct point {
3466///   double x;
3467///   double y;
3468/// };
3469/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3470/// @endcode
3471///
3472/// The InitListExpr contains three DesignatedInitExprs, the first of
3473/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3474/// designators, one array designator for @c [2] followed by one field
3475/// designator for @c .y. The initalization expression will be 1.0.
3476class DesignatedInitExpr : public Expr {
3477public:
3478  /// \brief Forward declaration of the Designator class.
3479  class Designator;
3480
3481private:
3482  /// The location of the '=' or ':' prior to the actual initializer
3483  /// expression.
3484  SourceLocation EqualOrColonLoc;
3485
3486  /// Whether this designated initializer used the GNU deprecated
3487  /// syntax rather than the C99 '=' syntax.
3488  bool GNUSyntax : 1;
3489
3490  /// The number of designators in this initializer expression.
3491  unsigned NumDesignators : 15;
3492
3493  /// \brief The designators in this designated initialization
3494  /// expression.
3495  Designator *Designators;
3496
3497  /// The number of subexpressions of this initializer expression,
3498  /// which contains both the initializer and any additional
3499  /// expressions used by array and array-range designators.
3500  unsigned NumSubExprs : 16;
3501
3502
3503  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3504                     const Designator *Designators,
3505                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3506                     Expr **IndexExprs, unsigned NumIndexExprs,
3507                     Expr *Init);
3508
3509  explicit DesignatedInitExpr(unsigned NumSubExprs)
3510    : Expr(DesignatedInitExprClass, EmptyShell()),
3511      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3512
3513public:
3514  /// A field designator, e.g., ".x".
3515  struct FieldDesignator {
3516    /// Refers to the field that is being initialized. The low bit
3517    /// of this field determines whether this is actually a pointer
3518    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3519    /// initially constructed, a field designator will store an
3520    /// IdentifierInfo*. After semantic analysis has resolved that
3521    /// name, the field designator will instead store a FieldDecl*.
3522    uintptr_t NameOrField;
3523
3524    /// The location of the '.' in the designated initializer.
3525    unsigned DotLoc;
3526
3527    /// The location of the field name in the designated initializer.
3528    unsigned FieldLoc;
3529  };
3530
3531  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3532  struct ArrayOrRangeDesignator {
3533    /// Location of the first index expression within the designated
3534    /// initializer expression's list of subexpressions.
3535    unsigned Index;
3536    /// The location of the '[' starting the array range designator.
3537    unsigned LBracketLoc;
3538    /// The location of the ellipsis separating the start and end
3539    /// indices. Only valid for GNU array-range designators.
3540    unsigned EllipsisLoc;
3541    /// The location of the ']' terminating the array range designator.
3542    unsigned RBracketLoc;
3543  };
3544
3545  /// @brief Represents a single C99 designator.
3546  ///
3547  /// @todo This class is infuriatingly similar to clang::Designator,
3548  /// but minor differences (storing indices vs. storing pointers)
3549  /// keep us from reusing it. Try harder, later, to rectify these
3550  /// differences.
3551  class Designator {
3552    /// @brief The kind of designator this describes.
3553    enum {
3554      FieldDesignator,
3555      ArrayDesignator,
3556      ArrayRangeDesignator
3557    } Kind;
3558
3559    union {
3560      /// A field designator, e.g., ".x".
3561      struct FieldDesignator Field;
3562      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3563      struct ArrayOrRangeDesignator ArrayOrRange;
3564    };
3565    friend class DesignatedInitExpr;
3566
3567  public:
3568    Designator() {}
3569
3570    /// @brief Initializes a field designator.
3571    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3572               SourceLocation FieldLoc)
3573      : Kind(FieldDesignator) {
3574      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3575      Field.DotLoc = DotLoc.getRawEncoding();
3576      Field.FieldLoc = FieldLoc.getRawEncoding();
3577    }
3578
3579    /// @brief Initializes an array designator.
3580    Designator(unsigned Index, SourceLocation LBracketLoc,
3581               SourceLocation RBracketLoc)
3582      : Kind(ArrayDesignator) {
3583      ArrayOrRange.Index = Index;
3584      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3585      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3586      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3587    }
3588
3589    /// @brief Initializes a GNU array-range designator.
3590    Designator(unsigned Index, SourceLocation LBracketLoc,
3591               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3592      : Kind(ArrayRangeDesignator) {
3593      ArrayOrRange.Index = Index;
3594      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3595      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3596      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3597    }
3598
3599    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3600    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3601    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3602
3603    IdentifierInfo *getFieldName() const;
3604
3605    FieldDecl *getField() const {
3606      assert(Kind == FieldDesignator && "Only valid on a field designator");
3607      if (Field.NameOrField & 0x01)
3608        return 0;
3609      else
3610        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3611    }
3612
3613    void setField(FieldDecl *FD) {
3614      assert(Kind == FieldDesignator && "Only valid on a field designator");
3615      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3616    }
3617
3618    SourceLocation getDotLoc() const {
3619      assert(Kind == FieldDesignator && "Only valid on a field designator");
3620      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3621    }
3622
3623    SourceLocation getFieldLoc() const {
3624      assert(Kind == FieldDesignator && "Only valid on a field designator");
3625      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3626    }
3627
3628    SourceLocation getLBracketLoc() const {
3629      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3630             "Only valid on an array or array-range designator");
3631      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3632    }
3633
3634    SourceLocation getRBracketLoc() const {
3635      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3636             "Only valid on an array or array-range designator");
3637      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3638    }
3639
3640    SourceLocation getEllipsisLoc() const {
3641      assert(Kind == ArrayRangeDesignator &&
3642             "Only valid on an array-range designator");
3643      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3644    }
3645
3646    unsigned getFirstExprIndex() const {
3647      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3648             "Only valid on an array or array-range designator");
3649      return ArrayOrRange.Index;
3650    }
3651
3652    SourceLocation getStartLocation() const {
3653      if (Kind == FieldDesignator)
3654        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3655      else
3656        return getLBracketLoc();
3657    }
3658    SourceLocation getEndLocation() const {
3659      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3660    }
3661    SourceRange getSourceRange() const {
3662      return SourceRange(getStartLocation(), getEndLocation());
3663    }
3664  };
3665
3666  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3667                                    unsigned NumDesignators,
3668                                    Expr **IndexExprs, unsigned NumIndexExprs,
3669                                    SourceLocation EqualOrColonLoc,
3670                                    bool GNUSyntax, Expr *Init);
3671
3672  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3673
3674  /// @brief Returns the number of designators in this initializer.
3675  unsigned size() const { return NumDesignators; }
3676
3677  // Iterator access to the designators.
3678  typedef Designator *designators_iterator;
3679  designators_iterator designators_begin() { return Designators; }
3680  designators_iterator designators_end() {
3681    return Designators + NumDesignators;
3682  }
3683
3684  typedef const Designator *const_designators_iterator;
3685  const_designators_iterator designators_begin() const { return Designators; }
3686  const_designators_iterator designators_end() const {
3687    return Designators + NumDesignators;
3688  }
3689
3690  typedef std::reverse_iterator<designators_iterator>
3691          reverse_designators_iterator;
3692  reverse_designators_iterator designators_rbegin() {
3693    return reverse_designators_iterator(designators_end());
3694  }
3695  reverse_designators_iterator designators_rend() {
3696    return reverse_designators_iterator(designators_begin());
3697  }
3698
3699  typedef std::reverse_iterator<const_designators_iterator>
3700          const_reverse_designators_iterator;
3701  const_reverse_designators_iterator designators_rbegin() const {
3702    return const_reverse_designators_iterator(designators_end());
3703  }
3704  const_reverse_designators_iterator designators_rend() const {
3705    return const_reverse_designators_iterator(designators_begin());
3706  }
3707
3708  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3709
3710  void setDesignators(ASTContext &C, const Designator *Desigs,
3711                      unsigned NumDesigs);
3712
3713  Expr *getArrayIndex(const Designator& D);
3714  Expr *getArrayRangeStart(const Designator& D);
3715  Expr *getArrayRangeEnd(const Designator& D);
3716
3717  /// @brief Retrieve the location of the '=' that precedes the
3718  /// initializer value itself, if present.
3719  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3720  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3721
3722  /// @brief Determines whether this designated initializer used the
3723  /// deprecated GNU syntax for designated initializers.
3724  bool usesGNUSyntax() const { return GNUSyntax; }
3725  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3726
3727  /// @brief Retrieve the initializer value.
3728  Expr *getInit() const {
3729    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3730  }
3731
3732  void setInit(Expr *init) {
3733    *child_begin() = init;
3734  }
3735
3736  /// \brief Retrieve the total number of subexpressions in this
3737  /// designated initializer expression, including the actual
3738  /// initialized value and any expressions that occur within array
3739  /// and array-range designators.
3740  unsigned getNumSubExprs() const { return NumSubExprs; }
3741
3742  Expr *getSubExpr(unsigned Idx) {
3743    assert(Idx < NumSubExprs && "Subscript out of range");
3744    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3745    Ptr += sizeof(DesignatedInitExpr);
3746    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3747  }
3748
3749  void setSubExpr(unsigned Idx, Expr *E) {
3750    assert(Idx < NumSubExprs && "Subscript out of range");
3751    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3752    Ptr += sizeof(DesignatedInitExpr);
3753    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3754  }
3755
3756  /// \brief Replaces the designator at index @p Idx with the series
3757  /// of designators in [First, Last).
3758  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3759                        const Designator *Last);
3760
3761  SourceRange getDesignatorsSourceRange() const;
3762
3763  SourceRange getSourceRange() const;
3764
3765  static bool classof(const Stmt *T) {
3766    return T->getStmtClass() == DesignatedInitExprClass;
3767  }
3768  static bool classof(const DesignatedInitExpr *) { return true; }
3769
3770  // Iterators
3771  child_range children() {
3772    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3773    return child_range(begin, begin + NumSubExprs);
3774  }
3775};
3776
3777/// \brief Represents an implicitly-generated value initialization of
3778/// an object of a given type.
3779///
3780/// Implicit value initializations occur within semantic initializer
3781/// list expressions (InitListExpr) as placeholders for subobject
3782/// initializations not explicitly specified by the user.
3783///
3784/// \see InitListExpr
3785class ImplicitValueInitExpr : public Expr {
3786public:
3787  explicit ImplicitValueInitExpr(QualType ty)
3788    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3789           false, false, ty->isInstantiationDependentType(), false) { }
3790
3791  /// \brief Construct an empty implicit value initialization.
3792  explicit ImplicitValueInitExpr(EmptyShell Empty)
3793    : Expr(ImplicitValueInitExprClass, Empty) { }
3794
3795  static bool classof(const Stmt *T) {
3796    return T->getStmtClass() == ImplicitValueInitExprClass;
3797  }
3798  static bool classof(const ImplicitValueInitExpr *) { return true; }
3799
3800  SourceRange getSourceRange() const {
3801    return SourceRange();
3802  }
3803
3804  // Iterators
3805  child_range children() { return child_range(); }
3806};
3807
3808
3809class ParenListExpr : public Expr {
3810  Stmt **Exprs;
3811  unsigned NumExprs;
3812  SourceLocation LParenLoc, RParenLoc;
3813
3814public:
3815  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3816                unsigned numexprs, SourceLocation rparenloc, QualType T);
3817
3818  /// \brief Build an empty paren list.
3819  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3820
3821  unsigned getNumExprs() const { return NumExprs; }
3822
3823  const Expr* getExpr(unsigned Init) const {
3824    assert(Init < getNumExprs() && "Initializer access out of range!");
3825    return cast_or_null<Expr>(Exprs[Init]);
3826  }
3827
3828  Expr* getExpr(unsigned Init) {
3829    assert(Init < getNumExprs() && "Initializer access out of range!");
3830    return cast_or_null<Expr>(Exprs[Init]);
3831  }
3832
3833  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3834
3835  SourceLocation getLParenLoc() const { return LParenLoc; }
3836  SourceLocation getRParenLoc() const { return RParenLoc; }
3837
3838  SourceRange getSourceRange() const {
3839    return SourceRange(LParenLoc, RParenLoc);
3840  }
3841  static bool classof(const Stmt *T) {
3842    return T->getStmtClass() == ParenListExprClass;
3843  }
3844  static bool classof(const ParenListExpr *) { return true; }
3845
3846  // Iterators
3847  child_range children() {
3848    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3849  }
3850
3851  friend class ASTStmtReader;
3852  friend class ASTStmtWriter;
3853};
3854
3855
3856/// \brief Represents a C1X generic selection.
3857///
3858/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3859/// expression, followed by one or more generic associations.  Each generic
3860/// association specifies a type name and an expression, or "default" and an
3861/// expression (in which case it is known as a default generic association).
3862/// The type and value of the generic selection are identical to those of its
3863/// result expression, which is defined as the expression in the generic
3864/// association with a type name that is compatible with the type of the
3865/// controlling expression, or the expression in the default generic association
3866/// if no types are compatible.  For example:
3867///
3868/// @code
3869/// _Generic(X, double: 1, float: 2, default: 3)
3870/// @endcode
3871///
3872/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3873/// or 3 if "hello".
3874///
3875/// As an extension, generic selections are allowed in C++, where the following
3876/// additional semantics apply:
3877///
3878/// Any generic selection whose controlling expression is type-dependent or
3879/// which names a dependent type in its association list is result-dependent,
3880/// which means that the choice of result expression is dependent.
3881/// Result-dependent generic associations are both type- and value-dependent.
3882class GenericSelectionExpr : public Expr {
3883  enum { CONTROLLING, END_EXPR };
3884  TypeSourceInfo **AssocTypes;
3885  Stmt **SubExprs;
3886  unsigned NumAssocs, ResultIndex;
3887  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3888
3889public:
3890  GenericSelectionExpr(ASTContext &Context,
3891                       SourceLocation GenericLoc, Expr *ControllingExpr,
3892                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3893                       unsigned NumAssocs, SourceLocation DefaultLoc,
3894                       SourceLocation RParenLoc,
3895                       bool ContainsUnexpandedParameterPack,
3896                       unsigned ResultIndex);
3897
3898  /// This constructor is used in the result-dependent case.
3899  GenericSelectionExpr(ASTContext &Context,
3900                       SourceLocation GenericLoc, Expr *ControllingExpr,
3901                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3902                       unsigned NumAssocs, SourceLocation DefaultLoc,
3903                       SourceLocation RParenLoc,
3904                       bool ContainsUnexpandedParameterPack);
3905
3906  explicit GenericSelectionExpr(EmptyShell Empty)
3907    : Expr(GenericSelectionExprClass, Empty) { }
3908
3909  unsigned getNumAssocs() const { return NumAssocs; }
3910
3911  SourceLocation getGenericLoc() const { return GenericLoc; }
3912  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3913  SourceLocation getRParenLoc() const { return RParenLoc; }
3914
3915  const Expr *getAssocExpr(unsigned i) const {
3916    return cast<Expr>(SubExprs[END_EXPR+i]);
3917  }
3918  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3919
3920  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3921    return AssocTypes[i];
3922  }
3923  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3924
3925  QualType getAssocType(unsigned i) const {
3926    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3927      return TS->getType();
3928    else
3929      return QualType();
3930  }
3931
3932  const Expr *getControllingExpr() const {
3933    return cast<Expr>(SubExprs[CONTROLLING]);
3934  }
3935  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3936
3937  /// Whether this generic selection is result-dependent.
3938  bool isResultDependent() const { return ResultIndex == -1U; }
3939
3940  /// The zero-based index of the result expression's generic association in
3941  /// the generic selection's association list.  Defined only if the
3942  /// generic selection is not result-dependent.
3943  unsigned getResultIndex() const {
3944    assert(!isResultDependent() && "Generic selection is result-dependent");
3945    return ResultIndex;
3946  }
3947
3948  /// The generic selection's result expression.  Defined only if the
3949  /// generic selection is not result-dependent.
3950  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3951  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3952
3953  SourceRange getSourceRange() const {
3954    return SourceRange(GenericLoc, RParenLoc);
3955  }
3956  static bool classof(const Stmt *T) {
3957    return T->getStmtClass() == GenericSelectionExprClass;
3958  }
3959  static bool classof(const GenericSelectionExpr *) { return true; }
3960
3961  child_range children() {
3962    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3963  }
3964
3965  friend class ASTStmtReader;
3966};
3967
3968//===----------------------------------------------------------------------===//
3969// Clang Extensions
3970//===----------------------------------------------------------------------===//
3971
3972
3973/// ExtVectorElementExpr - This represents access to specific elements of a
3974/// vector, and may occur on the left hand side or right hand side.  For example
3975/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3976///
3977/// Note that the base may have either vector or pointer to vector type, just
3978/// like a struct field reference.
3979///
3980class ExtVectorElementExpr : public Expr {
3981  Stmt *Base;
3982  IdentifierInfo *Accessor;
3983  SourceLocation AccessorLoc;
3984public:
3985  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3986                       IdentifierInfo &accessor, SourceLocation loc)
3987    : Expr(ExtVectorElementExprClass, ty, VK,
3988           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3989           base->isTypeDependent(), base->isValueDependent(),
3990           base->isInstantiationDependent(),
3991           base->containsUnexpandedParameterPack()),
3992      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3993
3994  /// \brief Build an empty vector element expression.
3995  explicit ExtVectorElementExpr(EmptyShell Empty)
3996    : Expr(ExtVectorElementExprClass, Empty) { }
3997
3998  const Expr *getBase() const { return cast<Expr>(Base); }
3999  Expr *getBase() { return cast<Expr>(Base); }
4000  void setBase(Expr *E) { Base = E; }
4001
4002  IdentifierInfo &getAccessor() const { return *Accessor; }
4003  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4004
4005  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4006  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4007
4008  /// getNumElements - Get the number of components being selected.
4009  unsigned getNumElements() const;
4010
4011  /// containsDuplicateElements - Return true if any element access is
4012  /// repeated.
4013  bool containsDuplicateElements() const;
4014
4015  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4016  /// aggregate Constant of ConstantInt(s).
4017  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4018
4019  SourceRange getSourceRange() const {
4020    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4021  }
4022
4023  /// isArrow - Return true if the base expression is a pointer to vector,
4024  /// return false if the base expression is a vector.
4025  bool isArrow() const;
4026
4027  static bool classof(const Stmt *T) {
4028    return T->getStmtClass() == ExtVectorElementExprClass;
4029  }
4030  static bool classof(const ExtVectorElementExpr *) { return true; }
4031
4032  // Iterators
4033  child_range children() { return child_range(&Base, &Base+1); }
4034};
4035
4036
4037/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4038/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4039class BlockExpr : public Expr {
4040protected:
4041  BlockDecl *TheBlock;
4042public:
4043  BlockExpr(BlockDecl *BD, QualType ty)
4044    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4045           ty->isDependentType(), false,
4046           // FIXME: Check for instantiate-dependence in the statement?
4047           ty->isInstantiationDependentType(),
4048           false),
4049      TheBlock(BD) {}
4050
4051  /// \brief Build an empty block expression.
4052  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4053
4054  const BlockDecl *getBlockDecl() const { return TheBlock; }
4055  BlockDecl *getBlockDecl() { return TheBlock; }
4056  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4057
4058  // Convenience functions for probing the underlying BlockDecl.
4059  SourceLocation getCaretLocation() const;
4060  const Stmt *getBody() const;
4061  Stmt *getBody();
4062
4063  SourceRange getSourceRange() const {
4064    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4065  }
4066
4067  /// getFunctionType - Return the underlying function type for this block.
4068  const FunctionType *getFunctionType() const;
4069
4070  static bool classof(const Stmt *T) {
4071    return T->getStmtClass() == BlockExprClass;
4072  }
4073  static bool classof(const BlockExpr *) { return true; }
4074
4075  // Iterators
4076  child_range children() { return child_range(); }
4077};
4078
4079/// BlockDeclRefExpr - A reference to a local variable declared in an
4080/// enclosing scope.
4081class BlockDeclRefExpr : public Expr {
4082  VarDecl *D;
4083  SourceLocation Loc;
4084  bool IsByRef : 1;
4085  bool ConstQualAdded : 1;
4086public:
4087  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4088                   SourceLocation l, bool ByRef, bool constAdded = false);
4089
4090  // \brief Build an empty reference to a declared variable in a
4091  // block.
4092  explicit BlockDeclRefExpr(EmptyShell Empty)
4093    : Expr(BlockDeclRefExprClass, Empty) { }
4094
4095  VarDecl *getDecl() { return D; }
4096  const VarDecl *getDecl() const { return D; }
4097  void setDecl(VarDecl *VD) { D = VD; }
4098
4099  SourceLocation getLocation() const { return Loc; }
4100  void setLocation(SourceLocation L) { Loc = L; }
4101
4102  SourceRange getSourceRange() const { return SourceRange(Loc); }
4103
4104  bool isByRef() const { return IsByRef; }
4105  void setByRef(bool BR) { IsByRef = BR; }
4106
4107  bool isConstQualAdded() const { return ConstQualAdded; }
4108  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4109
4110  static bool classof(const Stmt *T) {
4111    return T->getStmtClass() == BlockDeclRefExprClass;
4112  }
4113  static bool classof(const BlockDeclRefExpr *) { return true; }
4114
4115  // Iterators
4116  child_range children() { return child_range(); }
4117};
4118
4119/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4120/// This AST node provides support for reinterpreting a type to another
4121/// type of the same size.
4122class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4123private:
4124  Stmt *SrcExpr;
4125  SourceLocation BuiltinLoc, RParenLoc;
4126
4127  friend class ASTReader;
4128  friend class ASTStmtReader;
4129  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4130
4131public:
4132  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4133             ExprValueKind VK, ExprObjectKind OK,
4134             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4135    : Expr(AsTypeExprClass, DstType, VK, OK,
4136           DstType->isDependentType(),
4137           DstType->isDependentType() || SrcExpr->isValueDependent(),
4138           (DstType->isInstantiationDependentType() ||
4139            SrcExpr->isInstantiationDependent()),
4140           (DstType->containsUnexpandedParameterPack() ||
4141            SrcExpr->containsUnexpandedParameterPack())),
4142  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4143
4144  /// getSrcExpr - Return the Expr to be converted.
4145  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4146
4147  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4148  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4149
4150  /// getRParenLoc - Return the location of final right parenthesis.
4151  SourceLocation getRParenLoc() const { return RParenLoc; }
4152
4153  SourceRange getSourceRange() const {
4154    return SourceRange(BuiltinLoc, RParenLoc);
4155  }
4156
4157  static bool classof(const Stmt *T) {
4158    return T->getStmtClass() == AsTypeExprClass;
4159  }
4160  static bool classof(const AsTypeExpr *) { return true; }
4161
4162  // Iterators
4163  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4164};
4165
4166/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4167/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4168/// similarly-named C++0x instructions.  All of these instructions take one
4169/// primary pointer and at least one memory order.
4170class AtomicExpr : public Expr {
4171public:
4172  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4173                  Add, Sub, And, Or, Xor };
4174private:
4175  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4176  Stmt* SubExprs[END_EXPR];
4177  unsigned NumSubExprs;
4178  SourceLocation BuiltinLoc, RParenLoc;
4179  AtomicOp Op;
4180
4181public:
4182  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4183             AtomicOp op, SourceLocation RP);
4184
4185  /// \brief Build an empty AtomicExpr.
4186  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4187
4188  Expr *getPtr() const {
4189    return cast<Expr>(SubExprs[PTR]);
4190  }
4191  void setPtr(Expr *E) {
4192    SubExprs[PTR] = E;
4193  }
4194  Expr *getOrder() const {
4195    return cast<Expr>(SubExprs[ORDER]);
4196  }
4197  void setOrder(Expr *E) {
4198    SubExprs[ORDER] = E;
4199  }
4200  Expr *getVal1() const {
4201    assert(NumSubExprs >= 3);
4202    return cast<Expr>(SubExprs[VAL1]);
4203  }
4204  void setVal1(Expr *E) {
4205    assert(NumSubExprs >= 3);
4206    SubExprs[VAL1] = E;
4207  }
4208  Expr *getOrderFail() const {
4209    assert(NumSubExprs == 5);
4210    return cast<Expr>(SubExprs[ORDER_FAIL]);
4211  }
4212  void setOrderFail(Expr *E) {
4213    assert(NumSubExprs == 5);
4214    SubExprs[ORDER_FAIL] = E;
4215  }
4216  Expr *getVal2() const {
4217    assert(NumSubExprs == 5);
4218    return cast<Expr>(SubExprs[VAL2]);
4219  }
4220  void setVal2(Expr *E) {
4221    assert(NumSubExprs == 5);
4222    SubExprs[VAL2] = E;
4223  }
4224
4225  AtomicOp getOp() const { return Op; }
4226  void setOp(AtomicOp op) { Op = op; }
4227  unsigned getNumSubExprs() { return NumSubExprs; }
4228  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4229
4230  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4231
4232  bool isVolatile() const {
4233    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4234  }
4235
4236  bool isCmpXChg() const {
4237    return getOp() == AtomicExpr::CmpXchgStrong ||
4238           getOp() == AtomicExpr::CmpXchgWeak;
4239  }
4240
4241  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4242  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4243
4244  SourceLocation getRParenLoc() const { return RParenLoc; }
4245  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4246
4247  SourceRange getSourceRange() const {
4248    return SourceRange(BuiltinLoc, RParenLoc);
4249  }
4250  static bool classof(const Stmt *T) {
4251    return T->getStmtClass() == AtomicExprClass;
4252  }
4253  static bool classof(const AtomicExpr *) { return true; }
4254
4255  // Iterators
4256  child_range children() {
4257    return child_range(SubExprs, SubExprs+NumSubExprs);
4258  }
4259};
4260}  // end namespace clang
4261
4262#endif
4263