SemaChecking.cpp revision b61c294a24324ca0a403df770c01e0ba0b88770b
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101  if (checkArgCount(S, TheCall, 1))
102    return true;
103
104  ExprResult Arg(S.Owned(TheCall->getArg(0)));
105  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106  if (ResultType.isNull())
107    return true;
108
109  TheCall->setArg(0, Arg.take());
110  TheCall->setType(ResultType);
111  return false;
112}
113
114ExprResult
115Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116  ExprResult TheCallResult(Owned(TheCall));
117
118  // Find out if any arguments are required to be integer constant expressions.
119  unsigned ICEArguments = 0;
120  ASTContext::GetBuiltinTypeError Error;
121  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122  if (Error != ASTContext::GE_None)
123    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124
125  // If any arguments are required to be ICE's, check and diagnose.
126  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127    // Skip arguments not required to be ICE's.
128    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130    llvm::APSInt Result;
131    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132      return true;
133    ICEArguments &= ~(1 << ArgNo);
134  }
135
136  switch (BuiltinID) {
137  case Builtin::BI__builtin___CFStringMakeConstantString:
138    assert(TheCall->getNumArgs() == 1 &&
139           "Wrong # arguments to builtin CFStringMakeConstantString");
140    if (CheckObjCString(TheCall->getArg(0)))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_stdarg_start:
144  case Builtin::BI__builtin_va_start:
145    if (SemaBuiltinVAStart(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_isgreater:
149  case Builtin::BI__builtin_isgreaterequal:
150  case Builtin::BI__builtin_isless:
151  case Builtin::BI__builtin_islessequal:
152  case Builtin::BI__builtin_islessgreater:
153  case Builtin::BI__builtin_isunordered:
154    if (SemaBuiltinUnorderedCompare(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_fpclassify:
158    if (SemaBuiltinFPClassification(TheCall, 6))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_isfinite:
162  case Builtin::BI__builtin_isinf:
163  case Builtin::BI__builtin_isinf_sign:
164  case Builtin::BI__builtin_isnan:
165  case Builtin::BI__builtin_isnormal:
166    if (SemaBuiltinFPClassification(TheCall, 1))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_shufflevector:
170    return SemaBuiltinShuffleVector(TheCall);
171    // TheCall will be freed by the smart pointer here, but that's fine, since
172    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173  case Builtin::BI__builtin_prefetch:
174    if (SemaBuiltinPrefetch(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_object_size:
178    if (SemaBuiltinObjectSize(TheCall))
179      return ExprError();
180    break;
181  case Builtin::BI__builtin_longjmp:
182    if (SemaBuiltinLongjmp(TheCall))
183      return ExprError();
184    break;
185
186  case Builtin::BI__builtin_classify_type:
187    if (checkArgCount(*this, TheCall, 1)) return true;
188    TheCall->setType(Context.IntTy);
189    break;
190  case Builtin::BI__builtin_constant_p:
191    if (checkArgCount(*this, TheCall, 1)) return true;
192    TheCall->setType(Context.IntTy);
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_add_1:
196  case Builtin::BI__sync_fetch_and_add_2:
197  case Builtin::BI__sync_fetch_and_add_4:
198  case Builtin::BI__sync_fetch_and_add_8:
199  case Builtin::BI__sync_fetch_and_add_16:
200  case Builtin::BI__sync_fetch_and_sub:
201  case Builtin::BI__sync_fetch_and_sub_1:
202  case Builtin::BI__sync_fetch_and_sub_2:
203  case Builtin::BI__sync_fetch_and_sub_4:
204  case Builtin::BI__sync_fetch_and_sub_8:
205  case Builtin::BI__sync_fetch_and_sub_16:
206  case Builtin::BI__sync_fetch_and_or:
207  case Builtin::BI__sync_fetch_and_or_1:
208  case Builtin::BI__sync_fetch_and_or_2:
209  case Builtin::BI__sync_fetch_and_or_4:
210  case Builtin::BI__sync_fetch_and_or_8:
211  case Builtin::BI__sync_fetch_and_or_16:
212  case Builtin::BI__sync_fetch_and_and:
213  case Builtin::BI__sync_fetch_and_and_1:
214  case Builtin::BI__sync_fetch_and_and_2:
215  case Builtin::BI__sync_fetch_and_and_4:
216  case Builtin::BI__sync_fetch_and_and_8:
217  case Builtin::BI__sync_fetch_and_and_16:
218  case Builtin::BI__sync_fetch_and_xor:
219  case Builtin::BI__sync_fetch_and_xor_1:
220  case Builtin::BI__sync_fetch_and_xor_2:
221  case Builtin::BI__sync_fetch_and_xor_4:
222  case Builtin::BI__sync_fetch_and_xor_8:
223  case Builtin::BI__sync_fetch_and_xor_16:
224  case Builtin::BI__sync_add_and_fetch:
225  case Builtin::BI__sync_add_and_fetch_1:
226  case Builtin::BI__sync_add_and_fetch_2:
227  case Builtin::BI__sync_add_and_fetch_4:
228  case Builtin::BI__sync_add_and_fetch_8:
229  case Builtin::BI__sync_add_and_fetch_16:
230  case Builtin::BI__sync_sub_and_fetch:
231  case Builtin::BI__sync_sub_and_fetch_1:
232  case Builtin::BI__sync_sub_and_fetch_2:
233  case Builtin::BI__sync_sub_and_fetch_4:
234  case Builtin::BI__sync_sub_and_fetch_8:
235  case Builtin::BI__sync_sub_and_fetch_16:
236  case Builtin::BI__sync_and_and_fetch:
237  case Builtin::BI__sync_and_and_fetch_1:
238  case Builtin::BI__sync_and_and_fetch_2:
239  case Builtin::BI__sync_and_and_fetch_4:
240  case Builtin::BI__sync_and_and_fetch_8:
241  case Builtin::BI__sync_and_and_fetch_16:
242  case Builtin::BI__sync_or_and_fetch:
243  case Builtin::BI__sync_or_and_fetch_1:
244  case Builtin::BI__sync_or_and_fetch_2:
245  case Builtin::BI__sync_or_and_fetch_4:
246  case Builtin::BI__sync_or_and_fetch_8:
247  case Builtin::BI__sync_or_and_fetch_16:
248  case Builtin::BI__sync_xor_and_fetch:
249  case Builtin::BI__sync_xor_and_fetch_1:
250  case Builtin::BI__sync_xor_and_fetch_2:
251  case Builtin::BI__sync_xor_and_fetch_4:
252  case Builtin::BI__sync_xor_and_fetch_8:
253  case Builtin::BI__sync_xor_and_fetch_16:
254  case Builtin::BI__sync_val_compare_and_swap:
255  case Builtin::BI__sync_val_compare_and_swap_1:
256  case Builtin::BI__sync_val_compare_and_swap_2:
257  case Builtin::BI__sync_val_compare_and_swap_4:
258  case Builtin::BI__sync_val_compare_and_swap_8:
259  case Builtin::BI__sync_val_compare_and_swap_16:
260  case Builtin::BI__sync_bool_compare_and_swap:
261  case Builtin::BI__sync_bool_compare_and_swap_1:
262  case Builtin::BI__sync_bool_compare_and_swap_2:
263  case Builtin::BI__sync_bool_compare_and_swap_4:
264  case Builtin::BI__sync_bool_compare_and_swap_8:
265  case Builtin::BI__sync_bool_compare_and_swap_16:
266  case Builtin::BI__sync_lock_test_and_set:
267  case Builtin::BI__sync_lock_test_and_set_1:
268  case Builtin::BI__sync_lock_test_and_set_2:
269  case Builtin::BI__sync_lock_test_and_set_4:
270  case Builtin::BI__sync_lock_test_and_set_8:
271  case Builtin::BI__sync_lock_test_and_set_16:
272  case Builtin::BI__sync_lock_release:
273  case Builtin::BI__sync_lock_release_1:
274  case Builtin::BI__sync_lock_release_2:
275  case Builtin::BI__sync_lock_release_4:
276  case Builtin::BI__sync_lock_release_8:
277  case Builtin::BI__sync_lock_release_16:
278  case Builtin::BI__sync_swap:
279  case Builtin::BI__sync_swap_1:
280  case Builtin::BI__sync_swap_2:
281  case Builtin::BI__sync_swap_4:
282  case Builtin::BI__sync_swap_8:
283  case Builtin::BI__sync_swap_16:
284    return SemaBuiltinAtomicOverloaded(TheCallResult);
285#define BUILTIN(ID, TYPE, ATTRS)
286#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287  case Builtin::BI##ID: \
288    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289#include "clang/Basic/Builtins.def"
290  case Builtin::BI__builtin_annotation:
291    if (SemaBuiltinAnnotation(*this, TheCall))
292      return ExprError();
293    break;
294  case Builtin::BI__builtin_addressof:
295    if (SemaBuiltinAddressof(*this, TheCall))
296      return ExprError();
297    break;
298  }
299
300  // Since the target specific builtins for each arch overlap, only check those
301  // of the arch we are compiling for.
302  if (BuiltinID >= Builtin::FirstTSBuiltin) {
303    switch (Context.getTargetInfo().getTriple().getArch()) {
304      case llvm::Triple::arm:
305      case llvm::Triple::thumb:
306        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307          return ExprError();
308        break;
309      case llvm::Triple::aarch64:
310        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311          return ExprError();
312        break;
313      case llvm::Triple::mips:
314      case llvm::Triple::mipsel:
315      case llvm::Triple::mips64:
316      case llvm::Triple::mips64el:
317        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318          return ExprError();
319        break;
320      default:
321        break;
322    }
323  }
324
325  return TheCallResult;
326}
327
328// Get the valid immediate range for the specified NEON type code.
329static unsigned RFT(unsigned t, bool shift = false) {
330  NeonTypeFlags Type(t);
331  int IsQuad = Type.isQuad();
332  switch (Type.getEltType()) {
333  case NeonTypeFlags::Int8:
334  case NeonTypeFlags::Poly8:
335    return shift ? 7 : (8 << IsQuad) - 1;
336  case NeonTypeFlags::Int16:
337  case NeonTypeFlags::Poly16:
338    return shift ? 15 : (4 << IsQuad) - 1;
339  case NeonTypeFlags::Int32:
340    return shift ? 31 : (2 << IsQuad) - 1;
341  case NeonTypeFlags::Int64:
342    return shift ? 63 : (1 << IsQuad) - 1;
343  case NeonTypeFlags::Float16:
344    assert(!shift && "cannot shift float types!");
345    return (4 << IsQuad) - 1;
346  case NeonTypeFlags::Float32:
347    assert(!shift && "cannot shift float types!");
348    return (2 << IsQuad) - 1;
349  case NeonTypeFlags::Float64:
350    assert(!shift && "cannot shift float types!");
351    return (1 << IsQuad) - 1;
352  }
353  llvm_unreachable("Invalid NeonTypeFlag!");
354}
355
356/// getNeonEltType - Return the QualType corresponding to the elements of
357/// the vector type specified by the NeonTypeFlags.  This is used to check
358/// the pointer arguments for Neon load/store intrinsics.
359static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360  switch (Flags.getEltType()) {
361  case NeonTypeFlags::Int8:
362    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363  case NeonTypeFlags::Int16:
364    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365  case NeonTypeFlags::Int32:
366    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367  case NeonTypeFlags::Int64:
368    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369  case NeonTypeFlags::Poly8:
370    return Context.SignedCharTy;
371  case NeonTypeFlags::Poly16:
372    return Context.ShortTy;
373  case NeonTypeFlags::Float16:
374    return Context.UnsignedShortTy;
375  case NeonTypeFlags::Float32:
376    return Context.FloatTy;
377  case NeonTypeFlags::Float64:
378    return Context.DoubleTy;
379  }
380  llvm_unreachable("Invalid NeonTypeFlag!");
381}
382
383bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                           CallExpr *TheCall) {
385
386  llvm::APSInt Result;
387
388  uint64_t mask = 0;
389  unsigned TV = 0;
390  int PtrArgNum = -1;
391  bool HasConstPtr = false;
392  switch (BuiltinID) {
393#define GET_NEON_AARCH64_OVERLOAD_CHECK
394#include "clang/Basic/arm_neon.inc"
395#undef GET_NEON_AARCH64_OVERLOAD_CHECK
396  }
397
398  // For NEON intrinsics which are overloaded on vector element type, validate
399  // the immediate which specifies which variant to emit.
400  unsigned ImmArg = TheCall->getNumArgs() - 1;
401  if (mask) {
402    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403      return true;
404
405    TV = Result.getLimitedValue(64);
406    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408             << TheCall->getArg(ImmArg)->getSourceRange();
409  }
410
411  if (PtrArgNum >= 0) {
412    // Check that pointer arguments have the specified type.
413    Expr *Arg = TheCall->getArg(PtrArgNum);
414    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415      Arg = ICE->getSubExpr();
416    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417    QualType RHSTy = RHS.get()->getType();
418    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419    if (HasConstPtr)
420      EltTy = EltTy.withConst();
421    QualType LHSTy = Context.getPointerType(EltTy);
422    AssignConvertType ConvTy;
423    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424    if (RHS.isInvalid())
425      return true;
426    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                 RHS.get(), AA_Assigning))
428      return true;
429  }
430
431  // For NEON intrinsics which take an immediate value as part of the
432  // instruction, range check them here.
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default:
436    return false;
437#define GET_NEON_AARCH64_IMMEDIATE_CHECK
438#include "clang/Basic/arm_neon.inc"
439#undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440  }
441  ;
442
443  // We can't check the value of a dependent argument.
444  if (TheCall->getArg(i)->isTypeDependent() ||
445      TheCall->getArg(i)->isValueDependent())
446    return false;
447
448  // Check that the immediate argument is actually a constant.
449  if (SemaBuiltinConstantArg(TheCall, i, Result))
450    return true;
451
452  // Range check against the upper/lower values for this isntruction.
453  unsigned Val = Result.getZExtValue();
454  if (Val < l || Val > (u + l))
455    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456           << l << u + l << TheCall->getArg(i)->getSourceRange();
457
458  return false;
459}
460
461bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463          BuiltinID == ARM::BI__builtin_arm_strex) &&
464         "unexpected ARM builtin");
465  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466
467  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468
469  // Ensure that we have the proper number of arguments.
470  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471    return true;
472
473  // Inspect the pointer argument of the atomic builtin.  This should always be
474  // a pointer type, whose element is an integral scalar or pointer type.
475  // Because it is a pointer type, we don't have to worry about any implicit
476  // casts here.
477  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479  if (PointerArgRes.isInvalid())
480    return true;
481  PointerArg = PointerArgRes.take();
482
483  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484  if (!pointerType) {
485    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486      << PointerArg->getType() << PointerArg->getSourceRange();
487    return true;
488  }
489
490  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491  // task is to insert the appropriate casts into the AST. First work out just
492  // what the appropriate type is.
493  QualType ValType = pointerType->getPointeeType();
494  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495  if (IsLdrex)
496    AddrType.addConst();
497
498  // Issue a warning if the cast is dodgy.
499  CastKind CastNeeded = CK_NoOp;
500  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501    CastNeeded = CK_BitCast;
502    Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503      << PointerArg->getType()
504      << Context.getPointerType(AddrType)
505      << AA_Passing << PointerArg->getSourceRange();
506  }
507
508  // Finally, do the cast and replace the argument with the corrected version.
509  AddrType = Context.getPointerType(AddrType);
510  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511  if (PointerArgRes.isInvalid())
512    return true;
513  PointerArg = PointerArgRes.take();
514
515  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516
517  // In general, we allow ints, floats and pointers to be loaded and stored.
518  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521      << PointerArg->getType() << PointerArg->getSourceRange();
522    return true;
523  }
524
525  // But ARM doesn't have instructions to deal with 128-bit versions.
526  if (Context.getTypeSize(ValType) > 64) {
527    Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528      << PointerArg->getType() << PointerArg->getSourceRange();
529    return true;
530  }
531
532  switch (ValType.getObjCLifetime()) {
533  case Qualifiers::OCL_None:
534  case Qualifiers::OCL_ExplicitNone:
535    // okay
536    break;
537
538  case Qualifiers::OCL_Weak:
539  case Qualifiers::OCL_Strong:
540  case Qualifiers::OCL_Autoreleasing:
541    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542      << ValType << PointerArg->getSourceRange();
543    return true;
544  }
545
546
547  if (IsLdrex) {
548    TheCall->setType(ValType);
549    return false;
550  }
551
552  // Initialize the argument to be stored.
553  ExprResult ValArg = TheCall->getArg(0);
554  InitializedEntity Entity = InitializedEntity::InitializeParameter(
555      Context, ValType, /*consume*/ false);
556  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557  if (ValArg.isInvalid())
558    return true;
559
560  TheCall->setArg(0, ValArg.get());
561  return false;
562}
563
564bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565  llvm::APSInt Result;
566
567  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568      BuiltinID == ARM::BI__builtin_arm_strex) {
569    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570  }
571
572  uint64_t mask = 0;
573  unsigned TV = 0;
574  int PtrArgNum = -1;
575  bool HasConstPtr = false;
576  switch (BuiltinID) {
577#define GET_NEON_OVERLOAD_CHECK
578#include "clang/Basic/arm_neon.inc"
579#undef GET_NEON_OVERLOAD_CHECK
580  }
581
582  // For NEON intrinsics which are overloaded on vector element type, validate
583  // the immediate which specifies which variant to emit.
584  unsigned ImmArg = TheCall->getNumArgs()-1;
585  if (mask) {
586    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587      return true;
588
589    TV = Result.getLimitedValue(64);
590    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592        << TheCall->getArg(ImmArg)->getSourceRange();
593  }
594
595  if (PtrArgNum >= 0) {
596    // Check that pointer arguments have the specified type.
597    Expr *Arg = TheCall->getArg(PtrArgNum);
598    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599      Arg = ICE->getSubExpr();
600    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601    QualType RHSTy = RHS.get()->getType();
602    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603    if (HasConstPtr)
604      EltTy = EltTy.withConst();
605    QualType LHSTy = Context.getPointerType(EltTy);
606    AssignConvertType ConvTy;
607    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608    if (RHS.isInvalid())
609      return true;
610    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                 RHS.get(), AA_Assigning))
612      return true;
613  }
614
615  // For NEON intrinsics which take an immediate value as part of the
616  // instruction, range check them here.
617  unsigned i = 0, l = 0, u = 0;
618  switch (BuiltinID) {
619  default: return false;
620  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622  case ARM::BI__builtin_arm_vcvtr_f:
623  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624#define GET_NEON_IMMEDIATE_CHECK
625#include "clang/Basic/arm_neon.inc"
626#undef GET_NEON_IMMEDIATE_CHECK
627  };
628
629  // We can't check the value of a dependent argument.
630  if (TheCall->getArg(i)->isTypeDependent() ||
631      TheCall->getArg(i)->isValueDependent())
632    return false;
633
634  // Check that the immediate argument is actually a constant.
635  if (SemaBuiltinConstantArg(TheCall, i, Result))
636    return true;
637
638  // Range check against the upper/lower values for this isntruction.
639  unsigned Val = Result.getZExtValue();
640  if (Val < l || Val > (u + l))
641    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642      << l << u+l << TheCall->getArg(i)->getSourceRange();
643
644  // FIXME: VFP Intrinsics should error if VFP not present.
645  return false;
646}
647
648bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649  unsigned i = 0, l = 0, u = 0;
650  switch (BuiltinID) {
651  default: return false;
652  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659  };
660
661  // We can't check the value of a dependent argument.
662  if (TheCall->getArg(i)->isTypeDependent() ||
663      TheCall->getArg(i)->isValueDependent())
664    return false;
665
666  // Check that the immediate argument is actually a constant.
667  llvm::APSInt Result;
668  if (SemaBuiltinConstantArg(TheCall, i, Result))
669    return true;
670
671  // Range check against the upper/lower values for this instruction.
672  unsigned Val = Result.getZExtValue();
673  if (Val < l || Val > u)
674    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675      << l << u << TheCall->getArg(i)->getSourceRange();
676
677  return false;
678}
679
680/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681/// parameter with the FormatAttr's correct format_idx and firstDataArg.
682/// Returns true when the format fits the function and the FormatStringInfo has
683/// been populated.
684bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                               FormatStringInfo *FSI) {
686  FSI->HasVAListArg = Format->getFirstArg() == 0;
687  FSI->FormatIdx = Format->getFormatIdx() - 1;
688  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689
690  // The way the format attribute works in GCC, the implicit this argument
691  // of member functions is counted. However, it doesn't appear in our own
692  // lists, so decrement format_idx in that case.
693  if (IsCXXMember) {
694    if(FSI->FormatIdx == 0)
695      return false;
696    --FSI->FormatIdx;
697    if (FSI->FirstDataArg != 0)
698      --FSI->FirstDataArg;
699  }
700  return true;
701}
702
703/// Handles the checks for format strings, non-POD arguments to vararg
704/// functions, and NULL arguments passed to non-NULL parameters.
705void Sema::checkCall(NamedDecl *FDecl,
706                     ArrayRef<const Expr *> Args,
707                     unsigned NumProtoArgs,
708                     bool IsMemberFunction,
709                     SourceLocation Loc,
710                     SourceRange Range,
711                     VariadicCallType CallType) {
712  if (CurContext->isDependentContext())
713    return;
714
715  // Printf and scanf checking.
716  bool HandledFormatString = false;
717  if (FDecl)
718    for (specific_attr_iterator<FormatAttr>
719           I = FDecl->specific_attr_begin<FormatAttr>(),
720           E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
721      if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc,
722                               Range))
723          HandledFormatString = true;
724
725  // Refuse POD arguments that weren't caught by the format string
726  // checks above.
727  if (!HandledFormatString && CallType != VariadicDoesNotApply)
728    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
729      // Args[ArgIdx] can be null in malformed code.
730      if (const Expr *Arg = Args[ArgIdx])
731        variadicArgumentPODCheck(Arg, CallType);
732    }
733
734  if (FDecl) {
735    for (specific_attr_iterator<NonNullAttr>
736           I = FDecl->specific_attr_begin<NonNullAttr>(),
737           E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
738      CheckNonNullArguments(*I, Args.data(), Loc);
739
740    // Type safety checking.
741    for (specific_attr_iterator<ArgumentWithTypeTagAttr>
742           i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
743           e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
744         i != e; ++i) {
745      CheckArgumentWithTypeTag(*i, Args.data());
746    }
747  }
748}
749
750/// CheckConstructorCall - Check a constructor call for correctness and safety
751/// properties not enforced by the C type system.
752void Sema::CheckConstructorCall(FunctionDecl *FDecl,
753                                ArrayRef<const Expr *> Args,
754                                const FunctionProtoType *Proto,
755                                SourceLocation Loc) {
756  VariadicCallType CallType =
757    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
758  checkCall(FDecl, Args, Proto->getNumArgs(),
759            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
760}
761
762/// CheckFunctionCall - Check a direct function call for various correctness
763/// and safety properties not strictly enforced by the C type system.
764bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
765                             const FunctionProtoType *Proto) {
766  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
767                              isa<CXXMethodDecl>(FDecl);
768  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
769                          IsMemberOperatorCall;
770  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
771                                                  TheCall->getCallee());
772  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
773  Expr** Args = TheCall->getArgs();
774  unsigned NumArgs = TheCall->getNumArgs();
775  if (IsMemberOperatorCall) {
776    // If this is a call to a member operator, hide the first argument
777    // from checkCall.
778    // FIXME: Our choice of AST representation here is less than ideal.
779    ++Args;
780    --NumArgs;
781  }
782  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
783            NumProtoArgs,
784            IsMemberFunction, TheCall->getRParenLoc(),
785            TheCall->getCallee()->getSourceRange(), CallType);
786
787  IdentifierInfo *FnInfo = FDecl->getIdentifier();
788  // None of the checks below are needed for functions that don't have
789  // simple names (e.g., C++ conversion functions).
790  if (!FnInfo)
791    return false;
792
793  unsigned CMId = FDecl->getMemoryFunctionKind();
794  if (CMId == 0)
795    return false;
796
797  // Handle memory setting and copying functions.
798  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
799    CheckStrlcpycatArguments(TheCall, FnInfo);
800  else if (CMId == Builtin::BIstrncat)
801    CheckStrncatArguments(TheCall, FnInfo);
802  else
803    CheckMemaccessArguments(TheCall, CMId, FnInfo);
804
805  return false;
806}
807
808bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
809                               ArrayRef<const Expr *> Args) {
810  VariadicCallType CallType =
811      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
812
813  checkCall(Method, Args, Method->param_size(),
814            /*IsMemberFunction=*/false,
815            lbrac, Method->getSourceRange(), CallType);
816
817  return false;
818}
819
820bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
821                            const FunctionProtoType *Proto) {
822  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
823  if (!V)
824    return false;
825
826  QualType Ty = V->getType();
827  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
828    return false;
829
830  VariadicCallType CallType;
831  if (!Proto || !Proto->isVariadic()) {
832    CallType = VariadicDoesNotApply;
833  } else if (Ty->isBlockPointerType()) {
834    CallType = VariadicBlock;
835  } else { // Ty->isFunctionPointerType()
836    CallType = VariadicFunction;
837  }
838  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
839
840  checkCall(NDecl,
841            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
842                                             TheCall->getNumArgs()),
843            NumProtoArgs, /*IsMemberFunction=*/false,
844            TheCall->getRParenLoc(),
845            TheCall->getCallee()->getSourceRange(), CallType);
846
847  return false;
848}
849
850/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
851/// such as function pointers returned from functions.
852bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
853  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
854                                                  TheCall->getCallee());
855  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
856
857  checkCall(/*FDecl=*/0,
858            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
859                                             TheCall->getNumArgs()),
860            NumProtoArgs, /*IsMemberFunction=*/false,
861            TheCall->getRParenLoc(),
862            TheCall->getCallee()->getSourceRange(), CallType);
863
864  return false;
865}
866
867ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
868                                         AtomicExpr::AtomicOp Op) {
869  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
870  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
871
872  // All these operations take one of the following forms:
873  enum {
874    // C    __c11_atomic_init(A *, C)
875    Init,
876    // C    __c11_atomic_load(A *, int)
877    Load,
878    // void __atomic_load(A *, CP, int)
879    Copy,
880    // C    __c11_atomic_add(A *, M, int)
881    Arithmetic,
882    // C    __atomic_exchange_n(A *, CP, int)
883    Xchg,
884    // void __atomic_exchange(A *, C *, CP, int)
885    GNUXchg,
886    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
887    C11CmpXchg,
888    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
889    GNUCmpXchg
890  } Form = Init;
891  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
892  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
893  // where:
894  //   C is an appropriate type,
895  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
896  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
897  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
898  //   the int parameters are for orderings.
899
900  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
901         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
902         && "need to update code for modified C11 atomics");
903  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
904               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
905  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
906             Op == AtomicExpr::AO__atomic_store_n ||
907             Op == AtomicExpr::AO__atomic_exchange_n ||
908             Op == AtomicExpr::AO__atomic_compare_exchange_n;
909  bool IsAddSub = false;
910
911  switch (Op) {
912  case AtomicExpr::AO__c11_atomic_init:
913    Form = Init;
914    break;
915
916  case AtomicExpr::AO__c11_atomic_load:
917  case AtomicExpr::AO__atomic_load_n:
918    Form = Load;
919    break;
920
921  case AtomicExpr::AO__c11_atomic_store:
922  case AtomicExpr::AO__atomic_load:
923  case AtomicExpr::AO__atomic_store:
924  case AtomicExpr::AO__atomic_store_n:
925    Form = Copy;
926    break;
927
928  case AtomicExpr::AO__c11_atomic_fetch_add:
929  case AtomicExpr::AO__c11_atomic_fetch_sub:
930  case AtomicExpr::AO__atomic_fetch_add:
931  case AtomicExpr::AO__atomic_fetch_sub:
932  case AtomicExpr::AO__atomic_add_fetch:
933  case AtomicExpr::AO__atomic_sub_fetch:
934    IsAddSub = true;
935    // Fall through.
936  case AtomicExpr::AO__c11_atomic_fetch_and:
937  case AtomicExpr::AO__c11_atomic_fetch_or:
938  case AtomicExpr::AO__c11_atomic_fetch_xor:
939  case AtomicExpr::AO__atomic_fetch_and:
940  case AtomicExpr::AO__atomic_fetch_or:
941  case AtomicExpr::AO__atomic_fetch_xor:
942  case AtomicExpr::AO__atomic_fetch_nand:
943  case AtomicExpr::AO__atomic_and_fetch:
944  case AtomicExpr::AO__atomic_or_fetch:
945  case AtomicExpr::AO__atomic_xor_fetch:
946  case AtomicExpr::AO__atomic_nand_fetch:
947    Form = Arithmetic;
948    break;
949
950  case AtomicExpr::AO__c11_atomic_exchange:
951  case AtomicExpr::AO__atomic_exchange_n:
952    Form = Xchg;
953    break;
954
955  case AtomicExpr::AO__atomic_exchange:
956    Form = GNUXchg;
957    break;
958
959  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
960  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
961    Form = C11CmpXchg;
962    break;
963
964  case AtomicExpr::AO__atomic_compare_exchange:
965  case AtomicExpr::AO__atomic_compare_exchange_n:
966    Form = GNUCmpXchg;
967    break;
968  }
969
970  // Check we have the right number of arguments.
971  if (TheCall->getNumArgs() < NumArgs[Form]) {
972    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
973      << 0 << NumArgs[Form] << TheCall->getNumArgs()
974      << TheCall->getCallee()->getSourceRange();
975    return ExprError();
976  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
977    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
978         diag::err_typecheck_call_too_many_args)
979      << 0 << NumArgs[Form] << TheCall->getNumArgs()
980      << TheCall->getCallee()->getSourceRange();
981    return ExprError();
982  }
983
984  // Inspect the first argument of the atomic operation.
985  Expr *Ptr = TheCall->getArg(0);
986  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
987  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
988  if (!pointerType) {
989    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
990      << Ptr->getType() << Ptr->getSourceRange();
991    return ExprError();
992  }
993
994  // For a __c11 builtin, this should be a pointer to an _Atomic type.
995  QualType AtomTy = pointerType->getPointeeType(); // 'A'
996  QualType ValType = AtomTy; // 'C'
997  if (IsC11) {
998    if (!AtomTy->isAtomicType()) {
999      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1000        << Ptr->getType() << Ptr->getSourceRange();
1001      return ExprError();
1002    }
1003    if (AtomTy.isConstQualified()) {
1004      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1005        << Ptr->getType() << Ptr->getSourceRange();
1006      return ExprError();
1007    }
1008    ValType = AtomTy->getAs<AtomicType>()->getValueType();
1009  }
1010
1011  // For an arithmetic operation, the implied arithmetic must be well-formed.
1012  if (Form == Arithmetic) {
1013    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1014    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1015      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1016        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1017      return ExprError();
1018    }
1019    if (!IsAddSub && !ValType->isIntegerType()) {
1020      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1021        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1022      return ExprError();
1023    }
1024  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1025    // For __atomic_*_n operations, the value type must be a scalar integral or
1026    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1027    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1028      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1029    return ExprError();
1030  }
1031
1032  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
1033    // For GNU atomics, require a trivially-copyable type. This is not part of
1034    // the GNU atomics specification, but we enforce it for sanity.
1035    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1036      << Ptr->getType() << Ptr->getSourceRange();
1037    return ExprError();
1038  }
1039
1040  // FIXME: For any builtin other than a load, the ValType must not be
1041  // const-qualified.
1042
1043  switch (ValType.getObjCLifetime()) {
1044  case Qualifiers::OCL_None:
1045  case Qualifiers::OCL_ExplicitNone:
1046    // okay
1047    break;
1048
1049  case Qualifiers::OCL_Weak:
1050  case Qualifiers::OCL_Strong:
1051  case Qualifiers::OCL_Autoreleasing:
1052    // FIXME: Can this happen? By this point, ValType should be known
1053    // to be trivially copyable.
1054    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1055      << ValType << Ptr->getSourceRange();
1056    return ExprError();
1057  }
1058
1059  QualType ResultType = ValType;
1060  if (Form == Copy || Form == GNUXchg || Form == Init)
1061    ResultType = Context.VoidTy;
1062  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1063    ResultType = Context.BoolTy;
1064
1065  // The type of a parameter passed 'by value'. In the GNU atomics, such
1066  // arguments are actually passed as pointers.
1067  QualType ByValType = ValType; // 'CP'
1068  if (!IsC11 && !IsN)
1069    ByValType = Ptr->getType();
1070
1071  // The first argument --- the pointer --- has a fixed type; we
1072  // deduce the types of the rest of the arguments accordingly.  Walk
1073  // the remaining arguments, converting them to the deduced value type.
1074  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1075    QualType Ty;
1076    if (i < NumVals[Form] + 1) {
1077      switch (i) {
1078      case 1:
1079        // The second argument is the non-atomic operand. For arithmetic, this
1080        // is always passed by value, and for a compare_exchange it is always
1081        // passed by address. For the rest, GNU uses by-address and C11 uses
1082        // by-value.
1083        assert(Form != Load);
1084        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1085          Ty = ValType;
1086        else if (Form == Copy || Form == Xchg)
1087          Ty = ByValType;
1088        else if (Form == Arithmetic)
1089          Ty = Context.getPointerDiffType();
1090        else
1091          Ty = Context.getPointerType(ValType.getUnqualifiedType());
1092        break;
1093      case 2:
1094        // The third argument to compare_exchange / GNU exchange is a
1095        // (pointer to a) desired value.
1096        Ty = ByValType;
1097        break;
1098      case 3:
1099        // The fourth argument to GNU compare_exchange is a 'weak' flag.
1100        Ty = Context.BoolTy;
1101        break;
1102      }
1103    } else {
1104      // The order(s) are always converted to int.
1105      Ty = Context.IntTy;
1106    }
1107
1108    InitializedEntity Entity =
1109        InitializedEntity::InitializeParameter(Context, Ty, false);
1110    ExprResult Arg = TheCall->getArg(i);
1111    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1112    if (Arg.isInvalid())
1113      return true;
1114    TheCall->setArg(i, Arg.get());
1115  }
1116
1117  // Permute the arguments into a 'consistent' order.
1118  SmallVector<Expr*, 5> SubExprs;
1119  SubExprs.push_back(Ptr);
1120  switch (Form) {
1121  case Init:
1122    // Note, AtomicExpr::getVal1() has a special case for this atomic.
1123    SubExprs.push_back(TheCall->getArg(1)); // Val1
1124    break;
1125  case Load:
1126    SubExprs.push_back(TheCall->getArg(1)); // Order
1127    break;
1128  case Copy:
1129  case Arithmetic:
1130  case Xchg:
1131    SubExprs.push_back(TheCall->getArg(2)); // Order
1132    SubExprs.push_back(TheCall->getArg(1)); // Val1
1133    break;
1134  case GNUXchg:
1135    // Note, AtomicExpr::getVal2() has a special case for this atomic.
1136    SubExprs.push_back(TheCall->getArg(3)); // Order
1137    SubExprs.push_back(TheCall->getArg(1)); // Val1
1138    SubExprs.push_back(TheCall->getArg(2)); // Val2
1139    break;
1140  case C11CmpXchg:
1141    SubExprs.push_back(TheCall->getArg(3)); // Order
1142    SubExprs.push_back(TheCall->getArg(1)); // Val1
1143    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1144    SubExprs.push_back(TheCall->getArg(2)); // Val2
1145    break;
1146  case GNUCmpXchg:
1147    SubExprs.push_back(TheCall->getArg(4)); // Order
1148    SubExprs.push_back(TheCall->getArg(1)); // Val1
1149    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1150    SubExprs.push_back(TheCall->getArg(2)); // Val2
1151    SubExprs.push_back(TheCall->getArg(3)); // Weak
1152    break;
1153  }
1154
1155  AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1156                                            SubExprs, ResultType, Op,
1157                                            TheCall->getRParenLoc());
1158
1159  if ((Op == AtomicExpr::AO__c11_atomic_load ||
1160       (Op == AtomicExpr::AO__c11_atomic_store)) &&
1161      Context.AtomicUsesUnsupportedLibcall(AE))
1162    Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1163    ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1164
1165  return Owned(AE);
1166}
1167
1168
1169/// checkBuiltinArgument - Given a call to a builtin function, perform
1170/// normal type-checking on the given argument, updating the call in
1171/// place.  This is useful when a builtin function requires custom
1172/// type-checking for some of its arguments but not necessarily all of
1173/// them.
1174///
1175/// Returns true on error.
1176static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1177  FunctionDecl *Fn = E->getDirectCallee();
1178  assert(Fn && "builtin call without direct callee!");
1179
1180  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1181  InitializedEntity Entity =
1182    InitializedEntity::InitializeParameter(S.Context, Param);
1183
1184  ExprResult Arg = E->getArg(0);
1185  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1186  if (Arg.isInvalid())
1187    return true;
1188
1189  E->setArg(ArgIndex, Arg.take());
1190  return false;
1191}
1192
1193/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1194/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1195/// type of its first argument.  The main ActOnCallExpr routines have already
1196/// promoted the types of arguments because all of these calls are prototyped as
1197/// void(...).
1198///
1199/// This function goes through and does final semantic checking for these
1200/// builtins,
1201ExprResult
1202Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1203  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1204  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1205  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1206
1207  // Ensure that we have at least one argument to do type inference from.
1208  if (TheCall->getNumArgs() < 1) {
1209    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1210      << 0 << 1 << TheCall->getNumArgs()
1211      << TheCall->getCallee()->getSourceRange();
1212    return ExprError();
1213  }
1214
1215  // Inspect the first argument of the atomic builtin.  This should always be
1216  // a pointer type, whose element is an integral scalar or pointer type.
1217  // Because it is a pointer type, we don't have to worry about any implicit
1218  // casts here.
1219  // FIXME: We don't allow floating point scalars as input.
1220  Expr *FirstArg = TheCall->getArg(0);
1221  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1222  if (FirstArgResult.isInvalid())
1223    return ExprError();
1224  FirstArg = FirstArgResult.take();
1225  TheCall->setArg(0, FirstArg);
1226
1227  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1228  if (!pointerType) {
1229    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1230      << FirstArg->getType() << FirstArg->getSourceRange();
1231    return ExprError();
1232  }
1233
1234  QualType ValType = pointerType->getPointeeType();
1235  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1236      !ValType->isBlockPointerType()) {
1237    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1238      << FirstArg->getType() << FirstArg->getSourceRange();
1239    return ExprError();
1240  }
1241
1242  switch (ValType.getObjCLifetime()) {
1243  case Qualifiers::OCL_None:
1244  case Qualifiers::OCL_ExplicitNone:
1245    // okay
1246    break;
1247
1248  case Qualifiers::OCL_Weak:
1249  case Qualifiers::OCL_Strong:
1250  case Qualifiers::OCL_Autoreleasing:
1251    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1252      << ValType << FirstArg->getSourceRange();
1253    return ExprError();
1254  }
1255
1256  // Strip any qualifiers off ValType.
1257  ValType = ValType.getUnqualifiedType();
1258
1259  // The majority of builtins return a value, but a few have special return
1260  // types, so allow them to override appropriately below.
1261  QualType ResultType = ValType;
1262
1263  // We need to figure out which concrete builtin this maps onto.  For example,
1264  // __sync_fetch_and_add with a 2 byte object turns into
1265  // __sync_fetch_and_add_2.
1266#define BUILTIN_ROW(x) \
1267  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1268    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1269
1270  static const unsigned BuiltinIndices[][5] = {
1271    BUILTIN_ROW(__sync_fetch_and_add),
1272    BUILTIN_ROW(__sync_fetch_and_sub),
1273    BUILTIN_ROW(__sync_fetch_and_or),
1274    BUILTIN_ROW(__sync_fetch_and_and),
1275    BUILTIN_ROW(__sync_fetch_and_xor),
1276
1277    BUILTIN_ROW(__sync_add_and_fetch),
1278    BUILTIN_ROW(__sync_sub_and_fetch),
1279    BUILTIN_ROW(__sync_and_and_fetch),
1280    BUILTIN_ROW(__sync_or_and_fetch),
1281    BUILTIN_ROW(__sync_xor_and_fetch),
1282
1283    BUILTIN_ROW(__sync_val_compare_and_swap),
1284    BUILTIN_ROW(__sync_bool_compare_and_swap),
1285    BUILTIN_ROW(__sync_lock_test_and_set),
1286    BUILTIN_ROW(__sync_lock_release),
1287    BUILTIN_ROW(__sync_swap)
1288  };
1289#undef BUILTIN_ROW
1290
1291  // Determine the index of the size.
1292  unsigned SizeIndex;
1293  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1294  case 1: SizeIndex = 0; break;
1295  case 2: SizeIndex = 1; break;
1296  case 4: SizeIndex = 2; break;
1297  case 8: SizeIndex = 3; break;
1298  case 16: SizeIndex = 4; break;
1299  default:
1300    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1301      << FirstArg->getType() << FirstArg->getSourceRange();
1302    return ExprError();
1303  }
1304
1305  // Each of these builtins has one pointer argument, followed by some number of
1306  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1307  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1308  // as the number of fixed args.
1309  unsigned BuiltinID = FDecl->getBuiltinID();
1310  unsigned BuiltinIndex, NumFixed = 1;
1311  switch (BuiltinID) {
1312  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1313  case Builtin::BI__sync_fetch_and_add:
1314  case Builtin::BI__sync_fetch_and_add_1:
1315  case Builtin::BI__sync_fetch_and_add_2:
1316  case Builtin::BI__sync_fetch_and_add_4:
1317  case Builtin::BI__sync_fetch_and_add_8:
1318  case Builtin::BI__sync_fetch_and_add_16:
1319    BuiltinIndex = 0;
1320    break;
1321
1322  case Builtin::BI__sync_fetch_and_sub:
1323  case Builtin::BI__sync_fetch_and_sub_1:
1324  case Builtin::BI__sync_fetch_and_sub_2:
1325  case Builtin::BI__sync_fetch_and_sub_4:
1326  case Builtin::BI__sync_fetch_and_sub_8:
1327  case Builtin::BI__sync_fetch_and_sub_16:
1328    BuiltinIndex = 1;
1329    break;
1330
1331  case Builtin::BI__sync_fetch_and_or:
1332  case Builtin::BI__sync_fetch_and_or_1:
1333  case Builtin::BI__sync_fetch_and_or_2:
1334  case Builtin::BI__sync_fetch_and_or_4:
1335  case Builtin::BI__sync_fetch_and_or_8:
1336  case Builtin::BI__sync_fetch_and_or_16:
1337    BuiltinIndex = 2;
1338    break;
1339
1340  case Builtin::BI__sync_fetch_and_and:
1341  case Builtin::BI__sync_fetch_and_and_1:
1342  case Builtin::BI__sync_fetch_and_and_2:
1343  case Builtin::BI__sync_fetch_and_and_4:
1344  case Builtin::BI__sync_fetch_and_and_8:
1345  case Builtin::BI__sync_fetch_and_and_16:
1346    BuiltinIndex = 3;
1347    break;
1348
1349  case Builtin::BI__sync_fetch_and_xor:
1350  case Builtin::BI__sync_fetch_and_xor_1:
1351  case Builtin::BI__sync_fetch_and_xor_2:
1352  case Builtin::BI__sync_fetch_and_xor_4:
1353  case Builtin::BI__sync_fetch_and_xor_8:
1354  case Builtin::BI__sync_fetch_and_xor_16:
1355    BuiltinIndex = 4;
1356    break;
1357
1358  case Builtin::BI__sync_add_and_fetch:
1359  case Builtin::BI__sync_add_and_fetch_1:
1360  case Builtin::BI__sync_add_and_fetch_2:
1361  case Builtin::BI__sync_add_and_fetch_4:
1362  case Builtin::BI__sync_add_and_fetch_8:
1363  case Builtin::BI__sync_add_and_fetch_16:
1364    BuiltinIndex = 5;
1365    break;
1366
1367  case Builtin::BI__sync_sub_and_fetch:
1368  case Builtin::BI__sync_sub_and_fetch_1:
1369  case Builtin::BI__sync_sub_and_fetch_2:
1370  case Builtin::BI__sync_sub_and_fetch_4:
1371  case Builtin::BI__sync_sub_and_fetch_8:
1372  case Builtin::BI__sync_sub_and_fetch_16:
1373    BuiltinIndex = 6;
1374    break;
1375
1376  case Builtin::BI__sync_and_and_fetch:
1377  case Builtin::BI__sync_and_and_fetch_1:
1378  case Builtin::BI__sync_and_and_fetch_2:
1379  case Builtin::BI__sync_and_and_fetch_4:
1380  case Builtin::BI__sync_and_and_fetch_8:
1381  case Builtin::BI__sync_and_and_fetch_16:
1382    BuiltinIndex = 7;
1383    break;
1384
1385  case Builtin::BI__sync_or_and_fetch:
1386  case Builtin::BI__sync_or_and_fetch_1:
1387  case Builtin::BI__sync_or_and_fetch_2:
1388  case Builtin::BI__sync_or_and_fetch_4:
1389  case Builtin::BI__sync_or_and_fetch_8:
1390  case Builtin::BI__sync_or_and_fetch_16:
1391    BuiltinIndex = 8;
1392    break;
1393
1394  case Builtin::BI__sync_xor_and_fetch:
1395  case Builtin::BI__sync_xor_and_fetch_1:
1396  case Builtin::BI__sync_xor_and_fetch_2:
1397  case Builtin::BI__sync_xor_and_fetch_4:
1398  case Builtin::BI__sync_xor_and_fetch_8:
1399  case Builtin::BI__sync_xor_and_fetch_16:
1400    BuiltinIndex = 9;
1401    break;
1402
1403  case Builtin::BI__sync_val_compare_and_swap:
1404  case Builtin::BI__sync_val_compare_and_swap_1:
1405  case Builtin::BI__sync_val_compare_and_swap_2:
1406  case Builtin::BI__sync_val_compare_and_swap_4:
1407  case Builtin::BI__sync_val_compare_and_swap_8:
1408  case Builtin::BI__sync_val_compare_and_swap_16:
1409    BuiltinIndex = 10;
1410    NumFixed = 2;
1411    break;
1412
1413  case Builtin::BI__sync_bool_compare_and_swap:
1414  case Builtin::BI__sync_bool_compare_and_swap_1:
1415  case Builtin::BI__sync_bool_compare_and_swap_2:
1416  case Builtin::BI__sync_bool_compare_and_swap_4:
1417  case Builtin::BI__sync_bool_compare_and_swap_8:
1418  case Builtin::BI__sync_bool_compare_and_swap_16:
1419    BuiltinIndex = 11;
1420    NumFixed = 2;
1421    ResultType = Context.BoolTy;
1422    break;
1423
1424  case Builtin::BI__sync_lock_test_and_set:
1425  case Builtin::BI__sync_lock_test_and_set_1:
1426  case Builtin::BI__sync_lock_test_and_set_2:
1427  case Builtin::BI__sync_lock_test_and_set_4:
1428  case Builtin::BI__sync_lock_test_and_set_8:
1429  case Builtin::BI__sync_lock_test_and_set_16:
1430    BuiltinIndex = 12;
1431    break;
1432
1433  case Builtin::BI__sync_lock_release:
1434  case Builtin::BI__sync_lock_release_1:
1435  case Builtin::BI__sync_lock_release_2:
1436  case Builtin::BI__sync_lock_release_4:
1437  case Builtin::BI__sync_lock_release_8:
1438  case Builtin::BI__sync_lock_release_16:
1439    BuiltinIndex = 13;
1440    NumFixed = 0;
1441    ResultType = Context.VoidTy;
1442    break;
1443
1444  case Builtin::BI__sync_swap:
1445  case Builtin::BI__sync_swap_1:
1446  case Builtin::BI__sync_swap_2:
1447  case Builtin::BI__sync_swap_4:
1448  case Builtin::BI__sync_swap_8:
1449  case Builtin::BI__sync_swap_16:
1450    BuiltinIndex = 14;
1451    break;
1452  }
1453
1454  // Now that we know how many fixed arguments we expect, first check that we
1455  // have at least that many.
1456  if (TheCall->getNumArgs() < 1+NumFixed) {
1457    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1458      << 0 << 1+NumFixed << TheCall->getNumArgs()
1459      << TheCall->getCallee()->getSourceRange();
1460    return ExprError();
1461  }
1462
1463  // Get the decl for the concrete builtin from this, we can tell what the
1464  // concrete integer type we should convert to is.
1465  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1466  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1467  FunctionDecl *NewBuiltinDecl;
1468  if (NewBuiltinID == BuiltinID)
1469    NewBuiltinDecl = FDecl;
1470  else {
1471    // Perform builtin lookup to avoid redeclaring it.
1472    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1473    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1474    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1475    assert(Res.getFoundDecl());
1476    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1477    if (NewBuiltinDecl == 0)
1478      return ExprError();
1479  }
1480
1481  // The first argument --- the pointer --- has a fixed type; we
1482  // deduce the types of the rest of the arguments accordingly.  Walk
1483  // the remaining arguments, converting them to the deduced value type.
1484  for (unsigned i = 0; i != NumFixed; ++i) {
1485    ExprResult Arg = TheCall->getArg(i+1);
1486
1487    // GCC does an implicit conversion to the pointer or integer ValType.  This
1488    // can fail in some cases (1i -> int**), check for this error case now.
1489    // Initialize the argument.
1490    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1491                                                   ValType, /*consume*/ false);
1492    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1493    if (Arg.isInvalid())
1494      return ExprError();
1495
1496    // Okay, we have something that *can* be converted to the right type.  Check
1497    // to see if there is a potentially weird extension going on here.  This can
1498    // happen when you do an atomic operation on something like an char* and
1499    // pass in 42.  The 42 gets converted to char.  This is even more strange
1500    // for things like 45.123 -> char, etc.
1501    // FIXME: Do this check.
1502    TheCall->setArg(i+1, Arg.take());
1503  }
1504
1505  ASTContext& Context = this->getASTContext();
1506
1507  // Create a new DeclRefExpr to refer to the new decl.
1508  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1509      Context,
1510      DRE->getQualifierLoc(),
1511      SourceLocation(),
1512      NewBuiltinDecl,
1513      /*enclosing*/ false,
1514      DRE->getLocation(),
1515      Context.BuiltinFnTy,
1516      DRE->getValueKind());
1517
1518  // Set the callee in the CallExpr.
1519  // FIXME: This loses syntactic information.
1520  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1521  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1522                                              CK_BuiltinFnToFnPtr);
1523  TheCall->setCallee(PromotedCall.take());
1524
1525  // Change the result type of the call to match the original value type. This
1526  // is arbitrary, but the codegen for these builtins ins design to handle it
1527  // gracefully.
1528  TheCall->setType(ResultType);
1529
1530  return TheCallResult;
1531}
1532
1533/// CheckObjCString - Checks that the argument to the builtin
1534/// CFString constructor is correct
1535/// Note: It might also make sense to do the UTF-16 conversion here (would
1536/// simplify the backend).
1537bool Sema::CheckObjCString(Expr *Arg) {
1538  Arg = Arg->IgnoreParenCasts();
1539  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1540
1541  if (!Literal || !Literal->isAscii()) {
1542    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1543      << Arg->getSourceRange();
1544    return true;
1545  }
1546
1547  if (Literal->containsNonAsciiOrNull()) {
1548    StringRef String = Literal->getString();
1549    unsigned NumBytes = String.size();
1550    SmallVector<UTF16, 128> ToBuf(NumBytes);
1551    const UTF8 *FromPtr = (const UTF8 *)String.data();
1552    UTF16 *ToPtr = &ToBuf[0];
1553
1554    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1555                                                 &ToPtr, ToPtr + NumBytes,
1556                                                 strictConversion);
1557    // Check for conversion failure.
1558    if (Result != conversionOK)
1559      Diag(Arg->getLocStart(),
1560           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1561  }
1562  return false;
1563}
1564
1565/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1566/// Emit an error and return true on failure, return false on success.
1567bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1568  Expr *Fn = TheCall->getCallee();
1569  if (TheCall->getNumArgs() > 2) {
1570    Diag(TheCall->getArg(2)->getLocStart(),
1571         diag::err_typecheck_call_too_many_args)
1572      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1573      << Fn->getSourceRange()
1574      << SourceRange(TheCall->getArg(2)->getLocStart(),
1575                     (*(TheCall->arg_end()-1))->getLocEnd());
1576    return true;
1577  }
1578
1579  if (TheCall->getNumArgs() < 2) {
1580    return Diag(TheCall->getLocEnd(),
1581      diag::err_typecheck_call_too_few_args_at_least)
1582      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1583  }
1584
1585  // Type-check the first argument normally.
1586  if (checkBuiltinArgument(*this, TheCall, 0))
1587    return true;
1588
1589  // Determine whether the current function is variadic or not.
1590  BlockScopeInfo *CurBlock = getCurBlock();
1591  bool isVariadic;
1592  if (CurBlock)
1593    isVariadic = CurBlock->TheDecl->isVariadic();
1594  else if (FunctionDecl *FD = getCurFunctionDecl())
1595    isVariadic = FD->isVariadic();
1596  else
1597    isVariadic = getCurMethodDecl()->isVariadic();
1598
1599  if (!isVariadic) {
1600    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1601    return true;
1602  }
1603
1604  // Verify that the second argument to the builtin is the last argument of the
1605  // current function or method.
1606  bool SecondArgIsLastNamedArgument = false;
1607  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1608
1609  // These are valid if SecondArgIsLastNamedArgument is false after the next
1610  // block.
1611  QualType Type;
1612  SourceLocation ParamLoc;
1613
1614  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1615    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1616      // FIXME: This isn't correct for methods (results in bogus warning).
1617      // Get the last formal in the current function.
1618      const ParmVarDecl *LastArg;
1619      if (CurBlock)
1620        LastArg = *(CurBlock->TheDecl->param_end()-1);
1621      else if (FunctionDecl *FD = getCurFunctionDecl())
1622        LastArg = *(FD->param_end()-1);
1623      else
1624        LastArg = *(getCurMethodDecl()->param_end()-1);
1625      SecondArgIsLastNamedArgument = PV == LastArg;
1626
1627      Type = PV->getType();
1628      ParamLoc = PV->getLocation();
1629    }
1630  }
1631
1632  if (!SecondArgIsLastNamedArgument)
1633    Diag(TheCall->getArg(1)->getLocStart(),
1634         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1635  else if (Type->isReferenceType()) {
1636    Diag(Arg->getLocStart(),
1637         diag::warn_va_start_of_reference_type_is_undefined);
1638    Diag(ParamLoc, diag::note_parameter_type) << Type;
1639  }
1640
1641  return false;
1642}
1643
1644/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1645/// friends.  This is declared to take (...), so we have to check everything.
1646bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1647  if (TheCall->getNumArgs() < 2)
1648    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1649      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1650  if (TheCall->getNumArgs() > 2)
1651    return Diag(TheCall->getArg(2)->getLocStart(),
1652                diag::err_typecheck_call_too_many_args)
1653      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1654      << SourceRange(TheCall->getArg(2)->getLocStart(),
1655                     (*(TheCall->arg_end()-1))->getLocEnd());
1656
1657  ExprResult OrigArg0 = TheCall->getArg(0);
1658  ExprResult OrigArg1 = TheCall->getArg(1);
1659
1660  // Do standard promotions between the two arguments, returning their common
1661  // type.
1662  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1663  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1664    return true;
1665
1666  // Make sure any conversions are pushed back into the call; this is
1667  // type safe since unordered compare builtins are declared as "_Bool
1668  // foo(...)".
1669  TheCall->setArg(0, OrigArg0.get());
1670  TheCall->setArg(1, OrigArg1.get());
1671
1672  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1673    return false;
1674
1675  // If the common type isn't a real floating type, then the arguments were
1676  // invalid for this operation.
1677  if (Res.isNull() || !Res->isRealFloatingType())
1678    return Diag(OrigArg0.get()->getLocStart(),
1679                diag::err_typecheck_call_invalid_ordered_compare)
1680      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1681      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1682
1683  return false;
1684}
1685
1686/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1687/// __builtin_isnan and friends.  This is declared to take (...), so we have
1688/// to check everything. We expect the last argument to be a floating point
1689/// value.
1690bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1691  if (TheCall->getNumArgs() < NumArgs)
1692    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1693      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1694  if (TheCall->getNumArgs() > NumArgs)
1695    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1696                diag::err_typecheck_call_too_many_args)
1697      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1698      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1699                     (*(TheCall->arg_end()-1))->getLocEnd());
1700
1701  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1702
1703  if (OrigArg->isTypeDependent())
1704    return false;
1705
1706  // This operation requires a non-_Complex floating-point number.
1707  if (!OrigArg->getType()->isRealFloatingType())
1708    return Diag(OrigArg->getLocStart(),
1709                diag::err_typecheck_call_invalid_unary_fp)
1710      << OrigArg->getType() << OrigArg->getSourceRange();
1711
1712  // If this is an implicit conversion from float -> double, remove it.
1713  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1714    Expr *CastArg = Cast->getSubExpr();
1715    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1716      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1717             "promotion from float to double is the only expected cast here");
1718      Cast->setSubExpr(0);
1719      TheCall->setArg(NumArgs-1, CastArg);
1720    }
1721  }
1722
1723  return false;
1724}
1725
1726/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1727// This is declared to take (...), so we have to check everything.
1728ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1729  if (TheCall->getNumArgs() < 2)
1730    return ExprError(Diag(TheCall->getLocEnd(),
1731                          diag::err_typecheck_call_too_few_args_at_least)
1732                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1733                     << TheCall->getSourceRange());
1734
1735  // Determine which of the following types of shufflevector we're checking:
1736  // 1) unary, vector mask: (lhs, mask)
1737  // 2) binary, vector mask: (lhs, rhs, mask)
1738  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1739  QualType resType = TheCall->getArg(0)->getType();
1740  unsigned numElements = 0;
1741
1742  if (!TheCall->getArg(0)->isTypeDependent() &&
1743      !TheCall->getArg(1)->isTypeDependent()) {
1744    QualType LHSType = TheCall->getArg(0)->getType();
1745    QualType RHSType = TheCall->getArg(1)->getType();
1746
1747    if (!LHSType->isVectorType() || !RHSType->isVectorType())
1748      return ExprError(Diag(TheCall->getLocStart(),
1749                            diag::err_shufflevector_non_vector)
1750                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1751                                      TheCall->getArg(1)->getLocEnd()));
1752
1753    numElements = LHSType->getAs<VectorType>()->getNumElements();
1754    unsigned numResElements = TheCall->getNumArgs() - 2;
1755
1756    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1757    // with mask.  If so, verify that RHS is an integer vector type with the
1758    // same number of elts as lhs.
1759    if (TheCall->getNumArgs() == 2) {
1760      if (!RHSType->hasIntegerRepresentation() ||
1761          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1762        return ExprError(Diag(TheCall->getLocStart(),
1763                              diag::err_shufflevector_incompatible_vector)
1764                         << SourceRange(TheCall->getArg(1)->getLocStart(),
1765                                        TheCall->getArg(1)->getLocEnd()));
1766    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1767      return ExprError(Diag(TheCall->getLocStart(),
1768                            diag::err_shufflevector_incompatible_vector)
1769                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1770                                      TheCall->getArg(1)->getLocEnd()));
1771    } else if (numElements != numResElements) {
1772      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1773      resType = Context.getVectorType(eltType, numResElements,
1774                                      VectorType::GenericVector);
1775    }
1776  }
1777
1778  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1779    if (TheCall->getArg(i)->isTypeDependent() ||
1780        TheCall->getArg(i)->isValueDependent())
1781      continue;
1782
1783    llvm::APSInt Result(32);
1784    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1785      return ExprError(Diag(TheCall->getLocStart(),
1786                            diag::err_shufflevector_nonconstant_argument)
1787                       << TheCall->getArg(i)->getSourceRange());
1788
1789    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1790      return ExprError(Diag(TheCall->getLocStart(),
1791                            diag::err_shufflevector_argument_too_large)
1792                       << TheCall->getArg(i)->getSourceRange());
1793  }
1794
1795  SmallVector<Expr*, 32> exprs;
1796
1797  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1798    exprs.push_back(TheCall->getArg(i));
1799    TheCall->setArg(i, 0);
1800  }
1801
1802  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1803                                            TheCall->getCallee()->getLocStart(),
1804                                            TheCall->getRParenLoc()));
1805}
1806
1807/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1808// This is declared to take (const void*, ...) and can take two
1809// optional constant int args.
1810bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1811  unsigned NumArgs = TheCall->getNumArgs();
1812
1813  if (NumArgs > 3)
1814    return Diag(TheCall->getLocEnd(),
1815             diag::err_typecheck_call_too_many_args_at_most)
1816             << 0 /*function call*/ << 3 << NumArgs
1817             << TheCall->getSourceRange();
1818
1819  // Argument 0 is checked for us and the remaining arguments must be
1820  // constant integers.
1821  for (unsigned i = 1; i != NumArgs; ++i) {
1822    Expr *Arg = TheCall->getArg(i);
1823
1824    // We can't check the value of a dependent argument.
1825    if (Arg->isTypeDependent() || Arg->isValueDependent())
1826      continue;
1827
1828    llvm::APSInt Result;
1829    if (SemaBuiltinConstantArg(TheCall, i, Result))
1830      return true;
1831
1832    // FIXME: gcc issues a warning and rewrites these to 0. These
1833    // seems especially odd for the third argument since the default
1834    // is 3.
1835    if (i == 1) {
1836      if (Result.getLimitedValue() > 1)
1837        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1838             << "0" << "1" << Arg->getSourceRange();
1839    } else {
1840      if (Result.getLimitedValue() > 3)
1841        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1842            << "0" << "3" << Arg->getSourceRange();
1843    }
1844  }
1845
1846  return false;
1847}
1848
1849/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1850/// TheCall is a constant expression.
1851bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1852                                  llvm::APSInt &Result) {
1853  Expr *Arg = TheCall->getArg(ArgNum);
1854  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1855  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1856
1857  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1858
1859  if (!Arg->isIntegerConstantExpr(Result, Context))
1860    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1861                << FDecl->getDeclName() <<  Arg->getSourceRange();
1862
1863  return false;
1864}
1865
1866/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1867/// int type). This simply type checks that type is one of the defined
1868/// constants (0-3).
1869// For compatibility check 0-3, llvm only handles 0 and 2.
1870bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1871  llvm::APSInt Result;
1872
1873  // We can't check the value of a dependent argument.
1874  if (TheCall->getArg(1)->isTypeDependent() ||
1875      TheCall->getArg(1)->isValueDependent())
1876    return false;
1877
1878  // Check constant-ness first.
1879  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1880    return true;
1881
1882  Expr *Arg = TheCall->getArg(1);
1883  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1884    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1885             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1886  }
1887
1888  return false;
1889}
1890
1891/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1892/// This checks that val is a constant 1.
1893bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1894  Expr *Arg = TheCall->getArg(1);
1895  llvm::APSInt Result;
1896
1897  // TODO: This is less than ideal. Overload this to take a value.
1898  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1899    return true;
1900
1901  if (Result != 1)
1902    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1903             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1904
1905  return false;
1906}
1907
1908// Determine if an expression is a string literal or constant string.
1909// If this function returns false on the arguments to a function expecting a
1910// format string, we will usually need to emit a warning.
1911// True string literals are then checked by CheckFormatString.
1912Sema::StringLiteralCheckType
1913Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1914                            bool HasVAListArg,
1915                            unsigned format_idx, unsigned firstDataArg,
1916                            FormatStringType Type, VariadicCallType CallType,
1917                            bool inFunctionCall) {
1918 tryAgain:
1919  if (E->isTypeDependent() || E->isValueDependent())
1920    return SLCT_NotALiteral;
1921
1922  E = E->IgnoreParenCasts();
1923
1924  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1925    // Technically -Wformat-nonliteral does not warn about this case.
1926    // The behavior of printf and friends in this case is implementation
1927    // dependent.  Ideally if the format string cannot be null then
1928    // it should have a 'nonnull' attribute in the function prototype.
1929    return SLCT_CheckedLiteral;
1930
1931  switch (E->getStmtClass()) {
1932  case Stmt::BinaryConditionalOperatorClass:
1933  case Stmt::ConditionalOperatorClass: {
1934    // The expression is a literal if both sub-expressions were, and it was
1935    // completely checked only if both sub-expressions were checked.
1936    const AbstractConditionalOperator *C =
1937        cast<AbstractConditionalOperator>(E);
1938    StringLiteralCheckType Left =
1939        checkFormatStringExpr(C->getTrueExpr(), Args,
1940                              HasVAListArg, format_idx, firstDataArg,
1941                              Type, CallType, inFunctionCall);
1942    if (Left == SLCT_NotALiteral)
1943      return SLCT_NotALiteral;
1944    StringLiteralCheckType Right =
1945        checkFormatStringExpr(C->getFalseExpr(), Args,
1946                              HasVAListArg, format_idx, firstDataArg,
1947                              Type, CallType, inFunctionCall);
1948    return Left < Right ? Left : Right;
1949  }
1950
1951  case Stmt::ImplicitCastExprClass: {
1952    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1953    goto tryAgain;
1954  }
1955
1956  case Stmt::OpaqueValueExprClass:
1957    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1958      E = src;
1959      goto tryAgain;
1960    }
1961    return SLCT_NotALiteral;
1962
1963  case Stmt::PredefinedExprClass:
1964    // While __func__, etc., are technically not string literals, they
1965    // cannot contain format specifiers and thus are not a security
1966    // liability.
1967    return SLCT_UncheckedLiteral;
1968
1969  case Stmt::DeclRefExprClass: {
1970    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1971
1972    // As an exception, do not flag errors for variables binding to
1973    // const string literals.
1974    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1975      bool isConstant = false;
1976      QualType T = DR->getType();
1977
1978      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1979        isConstant = AT->getElementType().isConstant(Context);
1980      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1981        isConstant = T.isConstant(Context) &&
1982                     PT->getPointeeType().isConstant(Context);
1983      } else if (T->isObjCObjectPointerType()) {
1984        // In ObjC, there is usually no "const ObjectPointer" type,
1985        // so don't check if the pointee type is constant.
1986        isConstant = T.isConstant(Context);
1987      }
1988
1989      if (isConstant) {
1990        if (const Expr *Init = VD->getAnyInitializer()) {
1991          // Look through initializers like const char c[] = { "foo" }
1992          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1993            if (InitList->isStringLiteralInit())
1994              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1995          }
1996          return checkFormatStringExpr(Init, Args,
1997                                       HasVAListArg, format_idx,
1998                                       firstDataArg, Type, CallType,
1999                                       /*inFunctionCall*/false);
2000        }
2001      }
2002
2003      // For vprintf* functions (i.e., HasVAListArg==true), we add a
2004      // special check to see if the format string is a function parameter
2005      // of the function calling the printf function.  If the function
2006      // has an attribute indicating it is a printf-like function, then we
2007      // should suppress warnings concerning non-literals being used in a call
2008      // to a vprintf function.  For example:
2009      //
2010      // void
2011      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2012      //      va_list ap;
2013      //      va_start(ap, fmt);
2014      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2015      //      ...
2016      //
2017      if (HasVAListArg) {
2018        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2019          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2020            int PVIndex = PV->getFunctionScopeIndex() + 1;
2021            for (specific_attr_iterator<FormatAttr>
2022                 i = ND->specific_attr_begin<FormatAttr>(),
2023                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2024              FormatAttr *PVFormat = *i;
2025              // adjust for implicit parameter
2026              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2027                if (MD->isInstance())
2028                  ++PVIndex;
2029              // We also check if the formats are compatible.
2030              // We can't pass a 'scanf' string to a 'printf' function.
2031              if (PVIndex == PVFormat->getFormatIdx() &&
2032                  Type == GetFormatStringType(PVFormat))
2033                return SLCT_UncheckedLiteral;
2034            }
2035          }
2036        }
2037      }
2038    }
2039
2040    return SLCT_NotALiteral;
2041  }
2042
2043  case Stmt::CallExprClass:
2044  case Stmt::CXXMemberCallExprClass: {
2045    const CallExpr *CE = cast<CallExpr>(E);
2046    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2047      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2048        unsigned ArgIndex = FA->getFormatIdx();
2049        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2050          if (MD->isInstance())
2051            --ArgIndex;
2052        const Expr *Arg = CE->getArg(ArgIndex - 1);
2053
2054        return checkFormatStringExpr(Arg, Args,
2055                                     HasVAListArg, format_idx, firstDataArg,
2056                                     Type, CallType, inFunctionCall);
2057      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2058        unsigned BuiltinID = FD->getBuiltinID();
2059        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2060            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2061          const Expr *Arg = CE->getArg(0);
2062          return checkFormatStringExpr(Arg, Args,
2063                                       HasVAListArg, format_idx,
2064                                       firstDataArg, Type, CallType,
2065                                       inFunctionCall);
2066        }
2067      }
2068    }
2069
2070    return SLCT_NotALiteral;
2071  }
2072  case Stmt::ObjCStringLiteralClass:
2073  case Stmt::StringLiteralClass: {
2074    const StringLiteral *StrE = NULL;
2075
2076    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2077      StrE = ObjCFExpr->getString();
2078    else
2079      StrE = cast<StringLiteral>(E);
2080
2081    if (StrE) {
2082      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
2083                        firstDataArg, Type, inFunctionCall, CallType);
2084      return SLCT_CheckedLiteral;
2085    }
2086
2087    return SLCT_NotALiteral;
2088  }
2089
2090  default:
2091    return SLCT_NotALiteral;
2092  }
2093}
2094
2095void
2096Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2097                            const Expr * const *ExprArgs,
2098                            SourceLocation CallSiteLoc) {
2099  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2100                                  e = NonNull->args_end();
2101       i != e; ++i) {
2102    const Expr *ArgExpr = ExprArgs[*i];
2103
2104    // As a special case, transparent unions initialized with zero are
2105    // considered null for the purposes of the nonnull attribute.
2106    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2107      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2108        if (const CompoundLiteralExpr *CLE =
2109            dyn_cast<CompoundLiteralExpr>(ArgExpr))
2110          if (const InitListExpr *ILE =
2111              dyn_cast<InitListExpr>(CLE->getInitializer()))
2112            ArgExpr = ILE->getInit(0);
2113    }
2114
2115    bool Result;
2116    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2117      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2118  }
2119}
2120
2121Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2122  return llvm::StringSwitch<FormatStringType>(Format->getType())
2123  .Case("scanf", FST_Scanf)
2124  .Cases("printf", "printf0", FST_Printf)
2125  .Cases("NSString", "CFString", FST_NSString)
2126  .Case("strftime", FST_Strftime)
2127  .Case("strfmon", FST_Strfmon)
2128  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2129  .Default(FST_Unknown);
2130}
2131
2132/// CheckFormatArguments - Check calls to printf and scanf (and similar
2133/// functions) for correct use of format strings.
2134/// Returns true if a format string has been fully checked.
2135bool Sema::CheckFormatArguments(const FormatAttr *Format,
2136                                ArrayRef<const Expr *> Args,
2137                                bool IsCXXMember,
2138                                VariadicCallType CallType,
2139                                SourceLocation Loc, SourceRange Range) {
2140  FormatStringInfo FSI;
2141  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2142    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2143                                FSI.FirstDataArg, GetFormatStringType(Format),
2144                                CallType, Loc, Range);
2145  return false;
2146}
2147
2148bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2149                                bool HasVAListArg, unsigned format_idx,
2150                                unsigned firstDataArg, FormatStringType Type,
2151                                VariadicCallType CallType,
2152                                SourceLocation Loc, SourceRange Range) {
2153  // CHECK: printf/scanf-like function is called with no format string.
2154  if (format_idx >= Args.size()) {
2155    Diag(Loc, diag::warn_missing_format_string) << Range;
2156    return false;
2157  }
2158
2159  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2160
2161  // CHECK: format string is not a string literal.
2162  //
2163  // Dynamically generated format strings are difficult to
2164  // automatically vet at compile time.  Requiring that format strings
2165  // are string literals: (1) permits the checking of format strings by
2166  // the compiler and thereby (2) can practically remove the source of
2167  // many format string exploits.
2168
2169  // Format string can be either ObjC string (e.g. @"%d") or
2170  // C string (e.g. "%d")
2171  // ObjC string uses the same format specifiers as C string, so we can use
2172  // the same format string checking logic for both ObjC and C strings.
2173  StringLiteralCheckType CT =
2174      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
2175                            format_idx, firstDataArg, Type, CallType);
2176  if (CT != SLCT_NotALiteral)
2177    // Literal format string found, check done!
2178    return CT == SLCT_CheckedLiteral;
2179
2180  // Strftime is particular as it always uses a single 'time' argument,
2181  // so it is safe to pass a non-literal string.
2182  if (Type == FST_Strftime)
2183    return false;
2184
2185  // Do not emit diag when the string param is a macro expansion and the
2186  // format is either NSString or CFString. This is a hack to prevent
2187  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2188  // which are usually used in place of NS and CF string literals.
2189  if (Type == FST_NSString &&
2190      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2191    return false;
2192
2193  // If there are no arguments specified, warn with -Wformat-security, otherwise
2194  // warn only with -Wformat-nonliteral.
2195  if (Args.size() == firstDataArg)
2196    Diag(Args[format_idx]->getLocStart(),
2197         diag::warn_format_nonliteral_noargs)
2198      << OrigFormatExpr->getSourceRange();
2199  else
2200    Diag(Args[format_idx]->getLocStart(),
2201         diag::warn_format_nonliteral)
2202           << OrigFormatExpr->getSourceRange();
2203  return false;
2204}
2205
2206namespace {
2207class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2208protected:
2209  Sema &S;
2210  const StringLiteral *FExpr;
2211  const Expr *OrigFormatExpr;
2212  const unsigned FirstDataArg;
2213  const unsigned NumDataArgs;
2214  const char *Beg; // Start of format string.
2215  const bool HasVAListArg;
2216  ArrayRef<const Expr *> Args;
2217  unsigned FormatIdx;
2218  llvm::BitVector CoveredArgs;
2219  bool usesPositionalArgs;
2220  bool atFirstArg;
2221  bool inFunctionCall;
2222  Sema::VariadicCallType CallType;
2223public:
2224  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2225                     const Expr *origFormatExpr, unsigned firstDataArg,
2226                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
2227                     ArrayRef<const Expr *> Args,
2228                     unsigned formatIdx, bool inFunctionCall,
2229                     Sema::VariadicCallType callType)
2230    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2231      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2232      Beg(beg), HasVAListArg(hasVAListArg),
2233      Args(Args), FormatIdx(formatIdx),
2234      usesPositionalArgs(false), atFirstArg(true),
2235      inFunctionCall(inFunctionCall), CallType(callType) {
2236        CoveredArgs.resize(numDataArgs);
2237        CoveredArgs.reset();
2238      }
2239
2240  void DoneProcessing();
2241
2242  void HandleIncompleteSpecifier(const char *startSpecifier,
2243                                 unsigned specifierLen);
2244
2245  void HandleInvalidLengthModifier(
2246      const analyze_format_string::FormatSpecifier &FS,
2247      const analyze_format_string::ConversionSpecifier &CS,
2248      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2249
2250  void HandleNonStandardLengthModifier(
2251      const analyze_format_string::FormatSpecifier &FS,
2252      const char *startSpecifier, unsigned specifierLen);
2253
2254  void HandleNonStandardConversionSpecifier(
2255      const analyze_format_string::ConversionSpecifier &CS,
2256      const char *startSpecifier, unsigned specifierLen);
2257
2258  virtual void HandlePosition(const char *startPos, unsigned posLen);
2259
2260  virtual void HandleInvalidPosition(const char *startSpecifier,
2261                                     unsigned specifierLen,
2262                                     analyze_format_string::PositionContext p);
2263
2264  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2265
2266  void HandleNullChar(const char *nullCharacter);
2267
2268  template <typename Range>
2269  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2270                                   const Expr *ArgumentExpr,
2271                                   PartialDiagnostic PDiag,
2272                                   SourceLocation StringLoc,
2273                                   bool IsStringLocation, Range StringRange,
2274                                   ArrayRef<FixItHint> Fixit = None);
2275
2276protected:
2277  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2278                                        const char *startSpec,
2279                                        unsigned specifierLen,
2280                                        const char *csStart, unsigned csLen);
2281
2282  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2283                                         const char *startSpec,
2284                                         unsigned specifierLen);
2285
2286  SourceRange getFormatStringRange();
2287  CharSourceRange getSpecifierRange(const char *startSpecifier,
2288                                    unsigned specifierLen);
2289  SourceLocation getLocationOfByte(const char *x);
2290
2291  const Expr *getDataArg(unsigned i) const;
2292
2293  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2294                    const analyze_format_string::ConversionSpecifier &CS,
2295                    const char *startSpecifier, unsigned specifierLen,
2296                    unsigned argIndex);
2297
2298  template <typename Range>
2299  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2300                            bool IsStringLocation, Range StringRange,
2301                            ArrayRef<FixItHint> Fixit = None);
2302
2303  void CheckPositionalAndNonpositionalArgs(
2304      const analyze_format_string::FormatSpecifier *FS);
2305};
2306}
2307
2308SourceRange CheckFormatHandler::getFormatStringRange() {
2309  return OrigFormatExpr->getSourceRange();
2310}
2311
2312CharSourceRange CheckFormatHandler::
2313getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2314  SourceLocation Start = getLocationOfByte(startSpecifier);
2315  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2316
2317  // Advance the end SourceLocation by one due to half-open ranges.
2318  End = End.getLocWithOffset(1);
2319
2320  return CharSourceRange::getCharRange(Start, End);
2321}
2322
2323SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2324  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2325}
2326
2327void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2328                                                   unsigned specifierLen){
2329  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2330                       getLocationOfByte(startSpecifier),
2331                       /*IsStringLocation*/true,
2332                       getSpecifierRange(startSpecifier, specifierLen));
2333}
2334
2335void CheckFormatHandler::HandleInvalidLengthModifier(
2336    const analyze_format_string::FormatSpecifier &FS,
2337    const analyze_format_string::ConversionSpecifier &CS,
2338    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2339  using namespace analyze_format_string;
2340
2341  const LengthModifier &LM = FS.getLengthModifier();
2342  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2343
2344  // See if we know how to fix this length modifier.
2345  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2346  if (FixedLM) {
2347    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2348                         getLocationOfByte(LM.getStart()),
2349                         /*IsStringLocation*/true,
2350                         getSpecifierRange(startSpecifier, specifierLen));
2351
2352    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2353      << FixedLM->toString()
2354      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2355
2356  } else {
2357    FixItHint Hint;
2358    if (DiagID == diag::warn_format_nonsensical_length)
2359      Hint = FixItHint::CreateRemoval(LMRange);
2360
2361    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2362                         getLocationOfByte(LM.getStart()),
2363                         /*IsStringLocation*/true,
2364                         getSpecifierRange(startSpecifier, specifierLen),
2365                         Hint);
2366  }
2367}
2368
2369void CheckFormatHandler::HandleNonStandardLengthModifier(
2370    const analyze_format_string::FormatSpecifier &FS,
2371    const char *startSpecifier, unsigned specifierLen) {
2372  using namespace analyze_format_string;
2373
2374  const LengthModifier &LM = FS.getLengthModifier();
2375  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2376
2377  // See if we know how to fix this length modifier.
2378  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2379  if (FixedLM) {
2380    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2381                           << LM.toString() << 0,
2382                         getLocationOfByte(LM.getStart()),
2383                         /*IsStringLocation*/true,
2384                         getSpecifierRange(startSpecifier, specifierLen));
2385
2386    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2387      << FixedLM->toString()
2388      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2389
2390  } else {
2391    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2392                           << LM.toString() << 0,
2393                         getLocationOfByte(LM.getStart()),
2394                         /*IsStringLocation*/true,
2395                         getSpecifierRange(startSpecifier, specifierLen));
2396  }
2397}
2398
2399void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2400    const analyze_format_string::ConversionSpecifier &CS,
2401    const char *startSpecifier, unsigned specifierLen) {
2402  using namespace analyze_format_string;
2403
2404  // See if we know how to fix this conversion specifier.
2405  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2406  if (FixedCS) {
2407    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2408                          << CS.toString() << /*conversion specifier*/1,
2409                         getLocationOfByte(CS.getStart()),
2410                         /*IsStringLocation*/true,
2411                         getSpecifierRange(startSpecifier, specifierLen));
2412
2413    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2414    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2415      << FixedCS->toString()
2416      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2417  } else {
2418    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2419                          << CS.toString() << /*conversion specifier*/1,
2420                         getLocationOfByte(CS.getStart()),
2421                         /*IsStringLocation*/true,
2422                         getSpecifierRange(startSpecifier, specifierLen));
2423  }
2424}
2425
2426void CheckFormatHandler::HandlePosition(const char *startPos,
2427                                        unsigned posLen) {
2428  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2429                               getLocationOfByte(startPos),
2430                               /*IsStringLocation*/true,
2431                               getSpecifierRange(startPos, posLen));
2432}
2433
2434void
2435CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2436                                     analyze_format_string::PositionContext p) {
2437  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2438                         << (unsigned) p,
2439                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2440                       getSpecifierRange(startPos, posLen));
2441}
2442
2443void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2444                                            unsigned posLen) {
2445  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2446                               getLocationOfByte(startPos),
2447                               /*IsStringLocation*/true,
2448                               getSpecifierRange(startPos, posLen));
2449}
2450
2451void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2452  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2453    // The presence of a null character is likely an error.
2454    EmitFormatDiagnostic(
2455      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2456      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2457      getFormatStringRange());
2458  }
2459}
2460
2461// Note that this may return NULL if there was an error parsing or building
2462// one of the argument expressions.
2463const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2464  return Args[FirstDataArg + i];
2465}
2466
2467void CheckFormatHandler::DoneProcessing() {
2468    // Does the number of data arguments exceed the number of
2469    // format conversions in the format string?
2470  if (!HasVAListArg) {
2471      // Find any arguments that weren't covered.
2472    CoveredArgs.flip();
2473    signed notCoveredArg = CoveredArgs.find_first();
2474    if (notCoveredArg >= 0) {
2475      assert((unsigned)notCoveredArg < NumDataArgs);
2476      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2477        SourceLocation Loc = E->getLocStart();
2478        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2479          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2480                               Loc, /*IsStringLocation*/false,
2481                               getFormatStringRange());
2482        }
2483      }
2484    }
2485  }
2486}
2487
2488bool
2489CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2490                                                     SourceLocation Loc,
2491                                                     const char *startSpec,
2492                                                     unsigned specifierLen,
2493                                                     const char *csStart,
2494                                                     unsigned csLen) {
2495
2496  bool keepGoing = true;
2497  if (argIndex < NumDataArgs) {
2498    // Consider the argument coverered, even though the specifier doesn't
2499    // make sense.
2500    CoveredArgs.set(argIndex);
2501  }
2502  else {
2503    // If argIndex exceeds the number of data arguments we
2504    // don't issue a warning because that is just a cascade of warnings (and
2505    // they may have intended '%%' anyway). We don't want to continue processing
2506    // the format string after this point, however, as we will like just get
2507    // gibberish when trying to match arguments.
2508    keepGoing = false;
2509  }
2510
2511  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2512                         << StringRef(csStart, csLen),
2513                       Loc, /*IsStringLocation*/true,
2514                       getSpecifierRange(startSpec, specifierLen));
2515
2516  return keepGoing;
2517}
2518
2519void
2520CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2521                                                      const char *startSpec,
2522                                                      unsigned specifierLen) {
2523  EmitFormatDiagnostic(
2524    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2525    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2526}
2527
2528bool
2529CheckFormatHandler::CheckNumArgs(
2530  const analyze_format_string::FormatSpecifier &FS,
2531  const analyze_format_string::ConversionSpecifier &CS,
2532  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2533
2534  if (argIndex >= NumDataArgs) {
2535    PartialDiagnostic PDiag = FS.usesPositionalArg()
2536      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2537           << (argIndex+1) << NumDataArgs)
2538      : S.PDiag(diag::warn_printf_insufficient_data_args);
2539    EmitFormatDiagnostic(
2540      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2541      getSpecifierRange(startSpecifier, specifierLen));
2542    return false;
2543  }
2544  return true;
2545}
2546
2547template<typename Range>
2548void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2549                                              SourceLocation Loc,
2550                                              bool IsStringLocation,
2551                                              Range StringRange,
2552                                              ArrayRef<FixItHint> FixIt) {
2553  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2554                       Loc, IsStringLocation, StringRange, FixIt);
2555}
2556
2557/// \brief If the format string is not within the funcion call, emit a note
2558/// so that the function call and string are in diagnostic messages.
2559///
2560/// \param InFunctionCall if true, the format string is within the function
2561/// call and only one diagnostic message will be produced.  Otherwise, an
2562/// extra note will be emitted pointing to location of the format string.
2563///
2564/// \param ArgumentExpr the expression that is passed as the format string
2565/// argument in the function call.  Used for getting locations when two
2566/// diagnostics are emitted.
2567///
2568/// \param PDiag the callee should already have provided any strings for the
2569/// diagnostic message.  This function only adds locations and fixits
2570/// to diagnostics.
2571///
2572/// \param Loc primary location for diagnostic.  If two diagnostics are
2573/// required, one will be at Loc and a new SourceLocation will be created for
2574/// the other one.
2575///
2576/// \param IsStringLocation if true, Loc points to the format string should be
2577/// used for the note.  Otherwise, Loc points to the argument list and will
2578/// be used with PDiag.
2579///
2580/// \param StringRange some or all of the string to highlight.  This is
2581/// templated so it can accept either a CharSourceRange or a SourceRange.
2582///
2583/// \param FixIt optional fix it hint for the format string.
2584template<typename Range>
2585void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2586                                              const Expr *ArgumentExpr,
2587                                              PartialDiagnostic PDiag,
2588                                              SourceLocation Loc,
2589                                              bool IsStringLocation,
2590                                              Range StringRange,
2591                                              ArrayRef<FixItHint> FixIt) {
2592  if (InFunctionCall) {
2593    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2594    D << StringRange;
2595    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2596         I != E; ++I) {
2597      D << *I;
2598    }
2599  } else {
2600    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2601      << ArgumentExpr->getSourceRange();
2602
2603    const Sema::SemaDiagnosticBuilder &Note =
2604      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2605             diag::note_format_string_defined);
2606
2607    Note << StringRange;
2608    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2609         I != E; ++I) {
2610      Note << *I;
2611    }
2612  }
2613}
2614
2615//===--- CHECK: Printf format string checking ------------------------------===//
2616
2617namespace {
2618class CheckPrintfHandler : public CheckFormatHandler {
2619  bool ObjCContext;
2620public:
2621  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2622                     const Expr *origFormatExpr, unsigned firstDataArg,
2623                     unsigned numDataArgs, bool isObjC,
2624                     const char *beg, bool hasVAListArg,
2625                     ArrayRef<const Expr *> Args,
2626                     unsigned formatIdx, bool inFunctionCall,
2627                     Sema::VariadicCallType CallType)
2628  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2629                       numDataArgs, beg, hasVAListArg, Args,
2630                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2631  {}
2632
2633
2634  bool HandleInvalidPrintfConversionSpecifier(
2635                                      const analyze_printf::PrintfSpecifier &FS,
2636                                      const char *startSpecifier,
2637                                      unsigned specifierLen);
2638
2639  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2640                             const char *startSpecifier,
2641                             unsigned specifierLen);
2642  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2643                       const char *StartSpecifier,
2644                       unsigned SpecifierLen,
2645                       const Expr *E);
2646
2647  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2648                    const char *startSpecifier, unsigned specifierLen);
2649  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2650                           const analyze_printf::OptionalAmount &Amt,
2651                           unsigned type,
2652                           const char *startSpecifier, unsigned specifierLen);
2653  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2654                  const analyze_printf::OptionalFlag &flag,
2655                  const char *startSpecifier, unsigned specifierLen);
2656  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2657                         const analyze_printf::OptionalFlag &ignoredFlag,
2658                         const analyze_printf::OptionalFlag &flag,
2659                         const char *startSpecifier, unsigned specifierLen);
2660  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2661                           const Expr *E, const CharSourceRange &CSR);
2662
2663};
2664}
2665
2666bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2667                                      const analyze_printf::PrintfSpecifier &FS,
2668                                      const char *startSpecifier,
2669                                      unsigned specifierLen) {
2670  const analyze_printf::PrintfConversionSpecifier &CS =
2671    FS.getConversionSpecifier();
2672
2673  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2674                                          getLocationOfByte(CS.getStart()),
2675                                          startSpecifier, specifierLen,
2676                                          CS.getStart(), CS.getLength());
2677}
2678
2679bool CheckPrintfHandler::HandleAmount(
2680                               const analyze_format_string::OptionalAmount &Amt,
2681                               unsigned k, const char *startSpecifier,
2682                               unsigned specifierLen) {
2683
2684  if (Amt.hasDataArgument()) {
2685    if (!HasVAListArg) {
2686      unsigned argIndex = Amt.getArgIndex();
2687      if (argIndex >= NumDataArgs) {
2688        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2689                               << k,
2690                             getLocationOfByte(Amt.getStart()),
2691                             /*IsStringLocation*/true,
2692                             getSpecifierRange(startSpecifier, specifierLen));
2693        // Don't do any more checking.  We will just emit
2694        // spurious errors.
2695        return false;
2696      }
2697
2698      // Type check the data argument.  It should be an 'int'.
2699      // Although not in conformance with C99, we also allow the argument to be
2700      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2701      // doesn't emit a warning for that case.
2702      CoveredArgs.set(argIndex);
2703      const Expr *Arg = getDataArg(argIndex);
2704      if (!Arg)
2705        return false;
2706
2707      QualType T = Arg->getType();
2708
2709      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2710      assert(AT.isValid());
2711
2712      if (!AT.matchesType(S.Context, T)) {
2713        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2714                               << k << AT.getRepresentativeTypeName(S.Context)
2715                               << T << Arg->getSourceRange(),
2716                             getLocationOfByte(Amt.getStart()),
2717                             /*IsStringLocation*/true,
2718                             getSpecifierRange(startSpecifier, specifierLen));
2719        // Don't do any more checking.  We will just emit
2720        // spurious errors.
2721        return false;
2722      }
2723    }
2724  }
2725  return true;
2726}
2727
2728void CheckPrintfHandler::HandleInvalidAmount(
2729                                      const analyze_printf::PrintfSpecifier &FS,
2730                                      const analyze_printf::OptionalAmount &Amt,
2731                                      unsigned type,
2732                                      const char *startSpecifier,
2733                                      unsigned specifierLen) {
2734  const analyze_printf::PrintfConversionSpecifier &CS =
2735    FS.getConversionSpecifier();
2736
2737  FixItHint fixit =
2738    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2739      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2740                                 Amt.getConstantLength()))
2741      : FixItHint();
2742
2743  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2744                         << type << CS.toString(),
2745                       getLocationOfByte(Amt.getStart()),
2746                       /*IsStringLocation*/true,
2747                       getSpecifierRange(startSpecifier, specifierLen),
2748                       fixit);
2749}
2750
2751void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2752                                    const analyze_printf::OptionalFlag &flag,
2753                                    const char *startSpecifier,
2754                                    unsigned specifierLen) {
2755  // Warn about pointless flag with a fixit removal.
2756  const analyze_printf::PrintfConversionSpecifier &CS =
2757    FS.getConversionSpecifier();
2758  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2759                         << flag.toString() << CS.toString(),
2760                       getLocationOfByte(flag.getPosition()),
2761                       /*IsStringLocation*/true,
2762                       getSpecifierRange(startSpecifier, specifierLen),
2763                       FixItHint::CreateRemoval(
2764                         getSpecifierRange(flag.getPosition(), 1)));
2765}
2766
2767void CheckPrintfHandler::HandleIgnoredFlag(
2768                                const analyze_printf::PrintfSpecifier &FS,
2769                                const analyze_printf::OptionalFlag &ignoredFlag,
2770                                const analyze_printf::OptionalFlag &flag,
2771                                const char *startSpecifier,
2772                                unsigned specifierLen) {
2773  // Warn about ignored flag with a fixit removal.
2774  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2775                         << ignoredFlag.toString() << flag.toString(),
2776                       getLocationOfByte(ignoredFlag.getPosition()),
2777                       /*IsStringLocation*/true,
2778                       getSpecifierRange(startSpecifier, specifierLen),
2779                       FixItHint::CreateRemoval(
2780                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2781}
2782
2783// Determines if the specified is a C++ class or struct containing
2784// a member with the specified name and kind (e.g. a CXXMethodDecl named
2785// "c_str()").
2786template<typename MemberKind>
2787static llvm::SmallPtrSet<MemberKind*, 1>
2788CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2789  const RecordType *RT = Ty->getAs<RecordType>();
2790  llvm::SmallPtrSet<MemberKind*, 1> Results;
2791
2792  if (!RT)
2793    return Results;
2794  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2795  if (!RD)
2796    return Results;
2797
2798  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2799                 Sema::LookupMemberName);
2800
2801  // We just need to include all members of the right kind turned up by the
2802  // filter, at this point.
2803  if (S.LookupQualifiedName(R, RT->getDecl()))
2804    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2805      NamedDecl *decl = (*I)->getUnderlyingDecl();
2806      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2807        Results.insert(FK);
2808    }
2809  return Results;
2810}
2811
2812// Check if a (w)string was passed when a (w)char* was needed, and offer a
2813// better diagnostic if so. AT is assumed to be valid.
2814// Returns true when a c_str() conversion method is found.
2815bool CheckPrintfHandler::checkForCStrMembers(
2816    const analyze_printf::ArgType &AT, const Expr *E,
2817    const CharSourceRange &CSR) {
2818  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2819
2820  MethodSet Results =
2821      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2822
2823  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2824       MI != ME; ++MI) {
2825    const CXXMethodDecl *Method = *MI;
2826    if (Method->getNumParams() == 0 &&
2827          AT.matchesType(S.Context, Method->getResultType())) {
2828      // FIXME: Suggest parens if the expression needs them.
2829      SourceLocation EndLoc =
2830          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2831      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2832          << "c_str()"
2833          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2834      return true;
2835    }
2836  }
2837
2838  return false;
2839}
2840
2841bool
2842CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2843                                            &FS,
2844                                          const char *startSpecifier,
2845                                          unsigned specifierLen) {
2846
2847  using namespace analyze_format_string;
2848  using namespace analyze_printf;
2849  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2850
2851  if (FS.consumesDataArgument()) {
2852    if (atFirstArg) {
2853        atFirstArg = false;
2854        usesPositionalArgs = FS.usesPositionalArg();
2855    }
2856    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2857      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2858                                        startSpecifier, specifierLen);
2859      return false;
2860    }
2861  }
2862
2863  // First check if the field width, precision, and conversion specifier
2864  // have matching data arguments.
2865  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2866                    startSpecifier, specifierLen)) {
2867    return false;
2868  }
2869
2870  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2871                    startSpecifier, specifierLen)) {
2872    return false;
2873  }
2874
2875  if (!CS.consumesDataArgument()) {
2876    // FIXME: Technically specifying a precision or field width here
2877    // makes no sense.  Worth issuing a warning at some point.
2878    return true;
2879  }
2880
2881  // Consume the argument.
2882  unsigned argIndex = FS.getArgIndex();
2883  if (argIndex < NumDataArgs) {
2884    // The check to see if the argIndex is valid will come later.
2885    // We set the bit here because we may exit early from this
2886    // function if we encounter some other error.
2887    CoveredArgs.set(argIndex);
2888  }
2889
2890  // Check for using an Objective-C specific conversion specifier
2891  // in a non-ObjC literal.
2892  if (!ObjCContext && CS.isObjCArg()) {
2893    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2894                                                  specifierLen);
2895  }
2896
2897  // Check for invalid use of field width
2898  if (!FS.hasValidFieldWidth()) {
2899    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2900        startSpecifier, specifierLen);
2901  }
2902
2903  // Check for invalid use of precision
2904  if (!FS.hasValidPrecision()) {
2905    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2906        startSpecifier, specifierLen);
2907  }
2908
2909  // Check each flag does not conflict with any other component.
2910  if (!FS.hasValidThousandsGroupingPrefix())
2911    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2912  if (!FS.hasValidLeadingZeros())
2913    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2914  if (!FS.hasValidPlusPrefix())
2915    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2916  if (!FS.hasValidSpacePrefix())
2917    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2918  if (!FS.hasValidAlternativeForm())
2919    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2920  if (!FS.hasValidLeftJustified())
2921    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2922
2923  // Check that flags are not ignored by another flag
2924  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2925    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2926        startSpecifier, specifierLen);
2927  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2928    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2929            startSpecifier, specifierLen);
2930
2931  // Check the length modifier is valid with the given conversion specifier.
2932  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2933    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2934                                diag::warn_format_nonsensical_length);
2935  else if (!FS.hasStandardLengthModifier())
2936    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2937  else if (!FS.hasStandardLengthConversionCombination())
2938    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2939                                diag::warn_format_non_standard_conversion_spec);
2940
2941  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2942    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2943
2944  // The remaining checks depend on the data arguments.
2945  if (HasVAListArg)
2946    return true;
2947
2948  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2949    return false;
2950
2951  const Expr *Arg = getDataArg(argIndex);
2952  if (!Arg)
2953    return true;
2954
2955  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2956}
2957
2958static bool requiresParensToAddCast(const Expr *E) {
2959  // FIXME: We should have a general way to reason about operator
2960  // precedence and whether parens are actually needed here.
2961  // Take care of a few common cases where they aren't.
2962  const Expr *Inside = E->IgnoreImpCasts();
2963  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2964    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2965
2966  switch (Inside->getStmtClass()) {
2967  case Stmt::ArraySubscriptExprClass:
2968  case Stmt::CallExprClass:
2969  case Stmt::CharacterLiteralClass:
2970  case Stmt::CXXBoolLiteralExprClass:
2971  case Stmt::DeclRefExprClass:
2972  case Stmt::FloatingLiteralClass:
2973  case Stmt::IntegerLiteralClass:
2974  case Stmt::MemberExprClass:
2975  case Stmt::ObjCArrayLiteralClass:
2976  case Stmt::ObjCBoolLiteralExprClass:
2977  case Stmt::ObjCBoxedExprClass:
2978  case Stmt::ObjCDictionaryLiteralClass:
2979  case Stmt::ObjCEncodeExprClass:
2980  case Stmt::ObjCIvarRefExprClass:
2981  case Stmt::ObjCMessageExprClass:
2982  case Stmt::ObjCPropertyRefExprClass:
2983  case Stmt::ObjCStringLiteralClass:
2984  case Stmt::ObjCSubscriptRefExprClass:
2985  case Stmt::ParenExprClass:
2986  case Stmt::StringLiteralClass:
2987  case Stmt::UnaryOperatorClass:
2988    return false;
2989  default:
2990    return true;
2991  }
2992}
2993
2994bool
2995CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2996                                    const char *StartSpecifier,
2997                                    unsigned SpecifierLen,
2998                                    const Expr *E) {
2999  using namespace analyze_format_string;
3000  using namespace analyze_printf;
3001  // Now type check the data expression that matches the
3002  // format specifier.
3003  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3004                                                    ObjCContext);
3005  if (!AT.isValid())
3006    return true;
3007
3008  QualType ExprTy = E->getType();
3009  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3010    ExprTy = TET->getUnderlyingExpr()->getType();
3011  }
3012
3013  if (AT.matchesType(S.Context, ExprTy))
3014    return true;
3015
3016  // Look through argument promotions for our error message's reported type.
3017  // This includes the integral and floating promotions, but excludes array
3018  // and function pointer decay; seeing that an argument intended to be a
3019  // string has type 'char [6]' is probably more confusing than 'char *'.
3020  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3021    if (ICE->getCastKind() == CK_IntegralCast ||
3022        ICE->getCastKind() == CK_FloatingCast) {
3023      E = ICE->getSubExpr();
3024      ExprTy = E->getType();
3025
3026      // Check if we didn't match because of an implicit cast from a 'char'
3027      // or 'short' to an 'int'.  This is done because printf is a varargs
3028      // function.
3029      if (ICE->getType() == S.Context.IntTy ||
3030          ICE->getType() == S.Context.UnsignedIntTy) {
3031        // All further checking is done on the subexpression.
3032        if (AT.matchesType(S.Context, ExprTy))
3033          return true;
3034      }
3035    }
3036  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3037    // Special case for 'a', which has type 'int' in C.
3038    // Note, however, that we do /not/ want to treat multibyte constants like
3039    // 'MooV' as characters! This form is deprecated but still exists.
3040    if (ExprTy == S.Context.IntTy)
3041      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3042        ExprTy = S.Context.CharTy;
3043  }
3044
3045  // %C in an Objective-C context prints a unichar, not a wchar_t.
3046  // If the argument is an integer of some kind, believe the %C and suggest
3047  // a cast instead of changing the conversion specifier.
3048  QualType IntendedTy = ExprTy;
3049  if (ObjCContext &&
3050      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3051    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3052        !ExprTy->isCharType()) {
3053      // 'unichar' is defined as a typedef of unsigned short, but we should
3054      // prefer using the typedef if it is visible.
3055      IntendedTy = S.Context.UnsignedShortTy;
3056
3057      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3058                          Sema::LookupOrdinaryName);
3059      if (S.LookupName(Result, S.getCurScope())) {
3060        NamedDecl *ND = Result.getFoundDecl();
3061        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3062          if (TD->getUnderlyingType() == IntendedTy)
3063            IntendedTy = S.Context.getTypedefType(TD);
3064      }
3065    }
3066  }
3067
3068  // Special-case some of Darwin's platform-independence types by suggesting
3069  // casts to primitive types that are known to be large enough.
3070  bool ShouldNotPrintDirectly = false;
3071  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3072    // Use a 'while' to peel off layers of typedefs.
3073    QualType TyTy = IntendedTy;
3074    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3075      StringRef Name = UserTy->getDecl()->getName();
3076      QualType CastTy = llvm::StringSwitch<QualType>(Name)
3077        .Case("NSInteger", S.Context.LongTy)
3078        .Case("NSUInteger", S.Context.UnsignedLongTy)
3079        .Case("SInt32", S.Context.IntTy)
3080        .Case("UInt32", S.Context.UnsignedIntTy)
3081        .Default(QualType());
3082
3083      if (!CastTy.isNull()) {
3084        ShouldNotPrintDirectly = true;
3085        IntendedTy = CastTy;
3086        break;
3087      }
3088      TyTy = UserTy->desugar();
3089    }
3090  }
3091
3092  // We may be able to offer a FixItHint if it is a supported type.
3093  PrintfSpecifier fixedFS = FS;
3094  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3095                                 S.Context, ObjCContext);
3096
3097  if (success) {
3098    // Get the fix string from the fixed format specifier
3099    SmallString<16> buf;
3100    llvm::raw_svector_ostream os(buf);
3101    fixedFS.toString(os);
3102
3103    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3104
3105    if (IntendedTy == ExprTy) {
3106      // In this case, the specifier is wrong and should be changed to match
3107      // the argument.
3108      EmitFormatDiagnostic(
3109        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3110          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3111          << E->getSourceRange(),
3112        E->getLocStart(),
3113        /*IsStringLocation*/false,
3114        SpecRange,
3115        FixItHint::CreateReplacement(SpecRange, os.str()));
3116
3117    } else {
3118      // The canonical type for formatting this value is different from the
3119      // actual type of the expression. (This occurs, for example, with Darwin's
3120      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3121      // should be printed as 'long' for 64-bit compatibility.)
3122      // Rather than emitting a normal format/argument mismatch, we want to
3123      // add a cast to the recommended type (and correct the format string
3124      // if necessary).
3125      SmallString<16> CastBuf;
3126      llvm::raw_svector_ostream CastFix(CastBuf);
3127      CastFix << "(";
3128      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3129      CastFix << ")";
3130
3131      SmallVector<FixItHint,4> Hints;
3132      if (!AT.matchesType(S.Context, IntendedTy))
3133        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3134
3135      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3136        // If there's already a cast present, just replace it.
3137        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3138        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3139
3140      } else if (!requiresParensToAddCast(E)) {
3141        // If the expression has high enough precedence,
3142        // just write the C-style cast.
3143        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3144                                                   CastFix.str()));
3145      } else {
3146        // Otherwise, add parens around the expression as well as the cast.
3147        CastFix << "(";
3148        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3149                                                   CastFix.str()));
3150
3151        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3152        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3153      }
3154
3155      if (ShouldNotPrintDirectly) {
3156        // The expression has a type that should not be printed directly.
3157        // We extract the name from the typedef because we don't want to show
3158        // the underlying type in the diagnostic.
3159        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3160
3161        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3162                               << Name << IntendedTy
3163                               << E->getSourceRange(),
3164                             E->getLocStart(), /*IsStringLocation=*/false,
3165                             SpecRange, Hints);
3166      } else {
3167        // In this case, the expression could be printed using a different
3168        // specifier, but we've decided that the specifier is probably correct
3169        // and we should cast instead. Just use the normal warning message.
3170        EmitFormatDiagnostic(
3171          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3172            << AT.getRepresentativeTypeName(S.Context) << ExprTy
3173            << E->getSourceRange(),
3174          E->getLocStart(), /*IsStringLocation*/false,
3175          SpecRange, Hints);
3176      }
3177    }
3178  } else {
3179    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3180                                                   SpecifierLen);
3181    // Since the warning for passing non-POD types to variadic functions
3182    // was deferred until now, we emit a warning for non-POD
3183    // arguments here.
3184    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
3185      unsigned DiagKind;
3186      if (ExprTy->isObjCObjectType())
3187        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
3188      else
3189        DiagKind = diag::warn_non_pod_vararg_with_format_string;
3190
3191      EmitFormatDiagnostic(
3192        S.PDiag(DiagKind)
3193          << S.getLangOpts().CPlusPlus11
3194          << ExprTy
3195          << CallType
3196          << AT.getRepresentativeTypeName(S.Context)
3197          << CSR
3198          << E->getSourceRange(),
3199        E->getLocStart(), /*IsStringLocation*/false, CSR);
3200
3201      checkForCStrMembers(AT, E, CSR);
3202    } else
3203      EmitFormatDiagnostic(
3204        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3205          << AT.getRepresentativeTypeName(S.Context) << ExprTy
3206          << CSR
3207          << E->getSourceRange(),
3208        E->getLocStart(), /*IsStringLocation*/false, CSR);
3209  }
3210
3211  return true;
3212}
3213
3214//===--- CHECK: Scanf format string checking ------------------------------===//
3215
3216namespace {
3217class CheckScanfHandler : public CheckFormatHandler {
3218public:
3219  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3220                    const Expr *origFormatExpr, unsigned firstDataArg,
3221                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
3222                    ArrayRef<const Expr *> Args,
3223                    unsigned formatIdx, bool inFunctionCall,
3224                    Sema::VariadicCallType CallType)
3225  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3226                       numDataArgs, beg, hasVAListArg,
3227                       Args, formatIdx, inFunctionCall, CallType)
3228  {}
3229
3230  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3231                            const char *startSpecifier,
3232                            unsigned specifierLen);
3233
3234  bool HandleInvalidScanfConversionSpecifier(
3235          const analyze_scanf::ScanfSpecifier &FS,
3236          const char *startSpecifier,
3237          unsigned specifierLen);
3238
3239  void HandleIncompleteScanList(const char *start, const char *end);
3240};
3241}
3242
3243void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3244                                                 const char *end) {
3245  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3246                       getLocationOfByte(end), /*IsStringLocation*/true,
3247                       getSpecifierRange(start, end - start));
3248}
3249
3250bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3251                                        const analyze_scanf::ScanfSpecifier &FS,
3252                                        const char *startSpecifier,
3253                                        unsigned specifierLen) {
3254
3255  const analyze_scanf::ScanfConversionSpecifier &CS =
3256    FS.getConversionSpecifier();
3257
3258  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3259                                          getLocationOfByte(CS.getStart()),
3260                                          startSpecifier, specifierLen,
3261                                          CS.getStart(), CS.getLength());
3262}
3263
3264bool CheckScanfHandler::HandleScanfSpecifier(
3265                                       const analyze_scanf::ScanfSpecifier &FS,
3266                                       const char *startSpecifier,
3267                                       unsigned specifierLen) {
3268
3269  using namespace analyze_scanf;
3270  using namespace analyze_format_string;
3271
3272  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3273
3274  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3275  // be used to decide if we are using positional arguments consistently.
3276  if (FS.consumesDataArgument()) {
3277    if (atFirstArg) {
3278      atFirstArg = false;
3279      usesPositionalArgs = FS.usesPositionalArg();
3280    }
3281    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3282      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3283                                        startSpecifier, specifierLen);
3284      return false;
3285    }
3286  }
3287
3288  // Check if the field with is non-zero.
3289  const OptionalAmount &Amt = FS.getFieldWidth();
3290  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3291    if (Amt.getConstantAmount() == 0) {
3292      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3293                                                   Amt.getConstantLength());
3294      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3295                           getLocationOfByte(Amt.getStart()),
3296                           /*IsStringLocation*/true, R,
3297                           FixItHint::CreateRemoval(R));
3298    }
3299  }
3300
3301  if (!FS.consumesDataArgument()) {
3302    // FIXME: Technically specifying a precision or field width here
3303    // makes no sense.  Worth issuing a warning at some point.
3304    return true;
3305  }
3306
3307  // Consume the argument.
3308  unsigned argIndex = FS.getArgIndex();
3309  if (argIndex < NumDataArgs) {
3310      // The check to see if the argIndex is valid will come later.
3311      // We set the bit here because we may exit early from this
3312      // function if we encounter some other error.
3313    CoveredArgs.set(argIndex);
3314  }
3315
3316  // Check the length modifier is valid with the given conversion specifier.
3317  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3318    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3319                                diag::warn_format_nonsensical_length);
3320  else if (!FS.hasStandardLengthModifier())
3321    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3322  else if (!FS.hasStandardLengthConversionCombination())
3323    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3324                                diag::warn_format_non_standard_conversion_spec);
3325
3326  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3327    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3328
3329  // The remaining checks depend on the data arguments.
3330  if (HasVAListArg)
3331    return true;
3332
3333  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3334    return false;
3335
3336  // Check that the argument type matches the format specifier.
3337  const Expr *Ex = getDataArg(argIndex);
3338  if (!Ex)
3339    return true;
3340
3341  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3342  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3343    ScanfSpecifier fixedFS = FS;
3344    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3345                                   S.Context);
3346
3347    if (success) {
3348      // Get the fix string from the fixed format specifier.
3349      SmallString<128> buf;
3350      llvm::raw_svector_ostream os(buf);
3351      fixedFS.toString(os);
3352
3353      EmitFormatDiagnostic(
3354        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3355          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3356          << Ex->getSourceRange(),
3357        Ex->getLocStart(),
3358        /*IsStringLocation*/false,
3359        getSpecifierRange(startSpecifier, specifierLen),
3360        FixItHint::CreateReplacement(
3361          getSpecifierRange(startSpecifier, specifierLen),
3362          os.str()));
3363    } else {
3364      EmitFormatDiagnostic(
3365        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3366          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3367          << Ex->getSourceRange(),
3368        Ex->getLocStart(),
3369        /*IsStringLocation*/false,
3370        getSpecifierRange(startSpecifier, specifierLen));
3371    }
3372  }
3373
3374  return true;
3375}
3376
3377void Sema::CheckFormatString(const StringLiteral *FExpr,
3378                             const Expr *OrigFormatExpr,
3379                             ArrayRef<const Expr *> Args,
3380                             bool HasVAListArg, unsigned format_idx,
3381                             unsigned firstDataArg, FormatStringType Type,
3382                             bool inFunctionCall, VariadicCallType CallType) {
3383
3384  // CHECK: is the format string a wide literal?
3385  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3386    CheckFormatHandler::EmitFormatDiagnostic(
3387      *this, inFunctionCall, Args[format_idx],
3388      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3389      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3390    return;
3391  }
3392
3393  // Str - The format string.  NOTE: this is NOT null-terminated!
3394  StringRef StrRef = FExpr->getString();
3395  const char *Str = StrRef.data();
3396  unsigned StrLen = StrRef.size();
3397  const unsigned numDataArgs = Args.size() - firstDataArg;
3398
3399  // CHECK: empty format string?
3400  if (StrLen == 0 && numDataArgs > 0) {
3401    CheckFormatHandler::EmitFormatDiagnostic(
3402      *this, inFunctionCall, Args[format_idx],
3403      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3404      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3405    return;
3406  }
3407
3408  if (Type == FST_Printf || Type == FST_NSString) {
3409    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3410                         numDataArgs, (Type == FST_NSString),
3411                         Str, HasVAListArg, Args, format_idx,
3412                         inFunctionCall, CallType);
3413
3414    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3415                                                  getLangOpts(),
3416                                                  Context.getTargetInfo()))
3417      H.DoneProcessing();
3418  } else if (Type == FST_Scanf) {
3419    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3420                        Str, HasVAListArg, Args, format_idx,
3421                        inFunctionCall, CallType);
3422
3423    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3424                                                 getLangOpts(),
3425                                                 Context.getTargetInfo()))
3426      H.DoneProcessing();
3427  } // TODO: handle other formats
3428}
3429
3430//===--- CHECK: Standard memory functions ---------------------------------===//
3431
3432/// \brief Determine whether the given type is a dynamic class type (e.g.,
3433/// whether it has a vtable).
3434static bool isDynamicClassType(QualType T) {
3435  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3436    if (CXXRecordDecl *Definition = Record->getDefinition())
3437      if (Definition->isDynamicClass())
3438        return true;
3439
3440  return false;
3441}
3442
3443/// \brief If E is a sizeof expression, returns its argument expression,
3444/// otherwise returns NULL.
3445static const Expr *getSizeOfExprArg(const Expr* E) {
3446  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3447      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3448    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3449      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3450
3451  return 0;
3452}
3453
3454/// \brief If E is a sizeof expression, returns its argument type.
3455static QualType getSizeOfArgType(const Expr* E) {
3456  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3457      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3458    if (SizeOf->getKind() == clang::UETT_SizeOf)
3459      return SizeOf->getTypeOfArgument();
3460
3461  return QualType();
3462}
3463
3464/// \brief Check for dangerous or invalid arguments to memset().
3465///
3466/// This issues warnings on known problematic, dangerous or unspecified
3467/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3468/// function calls.
3469///
3470/// \param Call The call expression to diagnose.
3471void Sema::CheckMemaccessArguments(const CallExpr *Call,
3472                                   unsigned BId,
3473                                   IdentifierInfo *FnName) {
3474  assert(BId != 0);
3475
3476  // It is possible to have a non-standard definition of memset.  Validate
3477  // we have enough arguments, and if not, abort further checking.
3478  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3479  if (Call->getNumArgs() < ExpectedNumArgs)
3480    return;
3481
3482  unsigned LastArg = (BId == Builtin::BImemset ||
3483                      BId == Builtin::BIstrndup ? 1 : 2);
3484  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3485  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3486
3487  // We have special checking when the length is a sizeof expression.
3488  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3489  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3490  llvm::FoldingSetNodeID SizeOfArgID;
3491
3492  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3493    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3494    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3495
3496    QualType DestTy = Dest->getType();
3497    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3498      QualType PointeeTy = DestPtrTy->getPointeeType();
3499
3500      // Never warn about void type pointers. This can be used to suppress
3501      // false positives.
3502      if (PointeeTy->isVoidType())
3503        continue;
3504
3505      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3506      // actually comparing the expressions for equality. Because computing the
3507      // expression IDs can be expensive, we only do this if the diagnostic is
3508      // enabled.
3509      if (SizeOfArg &&
3510          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3511                                   SizeOfArg->getExprLoc())) {
3512        // We only compute IDs for expressions if the warning is enabled, and
3513        // cache the sizeof arg's ID.
3514        if (SizeOfArgID == llvm::FoldingSetNodeID())
3515          SizeOfArg->Profile(SizeOfArgID, Context, true);
3516        llvm::FoldingSetNodeID DestID;
3517        Dest->Profile(DestID, Context, true);
3518        if (DestID == SizeOfArgID) {
3519          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3520          //       over sizeof(src) as well.
3521          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3522          StringRef ReadableName = FnName->getName();
3523
3524          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3525            if (UnaryOp->getOpcode() == UO_AddrOf)
3526              ActionIdx = 1; // If its an address-of operator, just remove it.
3527          if (!PointeeTy->isIncompleteType() &&
3528              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3529            ActionIdx = 2; // If the pointee's size is sizeof(char),
3530                           // suggest an explicit length.
3531
3532          // If the function is defined as a builtin macro, do not show macro
3533          // expansion.
3534          SourceLocation SL = SizeOfArg->getExprLoc();
3535          SourceRange DSR = Dest->getSourceRange();
3536          SourceRange SSR = SizeOfArg->getSourceRange();
3537          SourceManager &SM  = PP.getSourceManager();
3538
3539          if (SM.isMacroArgExpansion(SL)) {
3540            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3541            SL = SM.getSpellingLoc(SL);
3542            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3543                             SM.getSpellingLoc(DSR.getEnd()));
3544            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3545                             SM.getSpellingLoc(SSR.getEnd()));
3546          }
3547
3548          DiagRuntimeBehavior(SL, SizeOfArg,
3549                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3550                                << ReadableName
3551                                << PointeeTy
3552                                << DestTy
3553                                << DSR
3554                                << SSR);
3555          DiagRuntimeBehavior(SL, SizeOfArg,
3556                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3557                                << ActionIdx
3558                                << SSR);
3559
3560          break;
3561        }
3562      }
3563
3564      // Also check for cases where the sizeof argument is the exact same
3565      // type as the memory argument, and where it points to a user-defined
3566      // record type.
3567      if (SizeOfArgTy != QualType()) {
3568        if (PointeeTy->isRecordType() &&
3569            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3570          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3571                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3572                                << FnName << SizeOfArgTy << ArgIdx
3573                                << PointeeTy << Dest->getSourceRange()
3574                                << LenExpr->getSourceRange());
3575          break;
3576        }
3577      }
3578
3579      // Always complain about dynamic classes.
3580      if (isDynamicClassType(PointeeTy)) {
3581
3582        unsigned OperationType = 0;
3583        // "overwritten" if we're warning about the destination for any call
3584        // but memcmp; otherwise a verb appropriate to the call.
3585        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3586          if (BId == Builtin::BImemcpy)
3587            OperationType = 1;
3588          else if(BId == Builtin::BImemmove)
3589            OperationType = 2;
3590          else if (BId == Builtin::BImemcmp)
3591            OperationType = 3;
3592        }
3593
3594        DiagRuntimeBehavior(
3595          Dest->getExprLoc(), Dest,
3596          PDiag(diag::warn_dyn_class_memaccess)
3597            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3598            << FnName << PointeeTy
3599            << OperationType
3600            << Call->getCallee()->getSourceRange());
3601      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3602               BId != Builtin::BImemset)
3603        DiagRuntimeBehavior(
3604          Dest->getExprLoc(), Dest,
3605          PDiag(diag::warn_arc_object_memaccess)
3606            << ArgIdx << FnName << PointeeTy
3607            << Call->getCallee()->getSourceRange());
3608      else
3609        continue;
3610
3611      DiagRuntimeBehavior(
3612        Dest->getExprLoc(), Dest,
3613        PDiag(diag::note_bad_memaccess_silence)
3614          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3615      break;
3616    }
3617  }
3618}
3619
3620// A little helper routine: ignore addition and subtraction of integer literals.
3621// This intentionally does not ignore all integer constant expressions because
3622// we don't want to remove sizeof().
3623static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3624  Ex = Ex->IgnoreParenCasts();
3625
3626  for (;;) {
3627    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3628    if (!BO || !BO->isAdditiveOp())
3629      break;
3630
3631    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3632    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3633
3634    if (isa<IntegerLiteral>(RHS))
3635      Ex = LHS;
3636    else if (isa<IntegerLiteral>(LHS))
3637      Ex = RHS;
3638    else
3639      break;
3640  }
3641
3642  return Ex;
3643}
3644
3645static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3646                                                      ASTContext &Context) {
3647  // Only handle constant-sized or VLAs, but not flexible members.
3648  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3649    // Only issue the FIXIT for arrays of size > 1.
3650    if (CAT->getSize().getSExtValue() <= 1)
3651      return false;
3652  } else if (!Ty->isVariableArrayType()) {
3653    return false;
3654  }
3655  return true;
3656}
3657
3658// Warn if the user has made the 'size' argument to strlcpy or strlcat
3659// be the size of the source, instead of the destination.
3660void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3661                                    IdentifierInfo *FnName) {
3662
3663  // Don't crash if the user has the wrong number of arguments
3664  if (Call->getNumArgs() != 3)
3665    return;
3666
3667  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3668  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3669  const Expr *CompareWithSrc = NULL;
3670
3671  // Look for 'strlcpy(dst, x, sizeof(x))'
3672  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3673    CompareWithSrc = Ex;
3674  else {
3675    // Look for 'strlcpy(dst, x, strlen(x))'
3676    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3677      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3678          && SizeCall->getNumArgs() == 1)
3679        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3680    }
3681  }
3682
3683  if (!CompareWithSrc)
3684    return;
3685
3686  // Determine if the argument to sizeof/strlen is equal to the source
3687  // argument.  In principle there's all kinds of things you could do
3688  // here, for instance creating an == expression and evaluating it with
3689  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3690  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3691  if (!SrcArgDRE)
3692    return;
3693
3694  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3695  if (!CompareWithSrcDRE ||
3696      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3697    return;
3698
3699  const Expr *OriginalSizeArg = Call->getArg(2);
3700  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3701    << OriginalSizeArg->getSourceRange() << FnName;
3702
3703  // Output a FIXIT hint if the destination is an array (rather than a
3704  // pointer to an array).  This could be enhanced to handle some
3705  // pointers if we know the actual size, like if DstArg is 'array+2'
3706  // we could say 'sizeof(array)-2'.
3707  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3708  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3709    return;
3710
3711  SmallString<128> sizeString;
3712  llvm::raw_svector_ostream OS(sizeString);
3713  OS << "sizeof(";
3714  DstArg->printPretty(OS, 0, getPrintingPolicy());
3715  OS << ")";
3716
3717  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3718    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3719                                    OS.str());
3720}
3721
3722/// Check if two expressions refer to the same declaration.
3723static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3724  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3725    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3726      return D1->getDecl() == D2->getDecl();
3727  return false;
3728}
3729
3730static const Expr *getStrlenExprArg(const Expr *E) {
3731  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3732    const FunctionDecl *FD = CE->getDirectCallee();
3733    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3734      return 0;
3735    return CE->getArg(0)->IgnoreParenCasts();
3736  }
3737  return 0;
3738}
3739
3740// Warn on anti-patterns as the 'size' argument to strncat.
3741// The correct size argument should look like following:
3742//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3743void Sema::CheckStrncatArguments(const CallExpr *CE,
3744                                 IdentifierInfo *FnName) {
3745  // Don't crash if the user has the wrong number of arguments.
3746  if (CE->getNumArgs() < 3)
3747    return;
3748  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3749  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3750  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3751
3752  // Identify common expressions, which are wrongly used as the size argument
3753  // to strncat and may lead to buffer overflows.
3754  unsigned PatternType = 0;
3755  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3756    // - sizeof(dst)
3757    if (referToTheSameDecl(SizeOfArg, DstArg))
3758      PatternType = 1;
3759    // - sizeof(src)
3760    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3761      PatternType = 2;
3762  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3763    if (BE->getOpcode() == BO_Sub) {
3764      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3765      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3766      // - sizeof(dst) - strlen(dst)
3767      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3768          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3769        PatternType = 1;
3770      // - sizeof(src) - (anything)
3771      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3772        PatternType = 2;
3773    }
3774  }
3775
3776  if (PatternType == 0)
3777    return;
3778
3779  // Generate the diagnostic.
3780  SourceLocation SL = LenArg->getLocStart();
3781  SourceRange SR = LenArg->getSourceRange();
3782  SourceManager &SM  = PP.getSourceManager();
3783
3784  // If the function is defined as a builtin macro, do not show macro expansion.
3785  if (SM.isMacroArgExpansion(SL)) {
3786    SL = SM.getSpellingLoc(SL);
3787    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3788                     SM.getSpellingLoc(SR.getEnd()));
3789  }
3790
3791  // Check if the destination is an array (rather than a pointer to an array).
3792  QualType DstTy = DstArg->getType();
3793  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3794                                                                    Context);
3795  if (!isKnownSizeArray) {
3796    if (PatternType == 1)
3797      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3798    else
3799      Diag(SL, diag::warn_strncat_src_size) << SR;
3800    return;
3801  }
3802
3803  if (PatternType == 1)
3804    Diag(SL, diag::warn_strncat_large_size) << SR;
3805  else
3806    Diag(SL, diag::warn_strncat_src_size) << SR;
3807
3808  SmallString<128> sizeString;
3809  llvm::raw_svector_ostream OS(sizeString);
3810  OS << "sizeof(";
3811  DstArg->printPretty(OS, 0, getPrintingPolicy());
3812  OS << ") - ";
3813  OS << "strlen(";
3814  DstArg->printPretty(OS, 0, getPrintingPolicy());
3815  OS << ") - 1";
3816
3817  Diag(SL, diag::note_strncat_wrong_size)
3818    << FixItHint::CreateReplacement(SR, OS.str());
3819}
3820
3821//===--- CHECK: Return Address of Stack Variable --------------------------===//
3822
3823static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3824                     Decl *ParentDecl);
3825static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3826                      Decl *ParentDecl);
3827
3828/// CheckReturnStackAddr - Check if a return statement returns the address
3829///   of a stack variable.
3830void
3831Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3832                           SourceLocation ReturnLoc) {
3833
3834  Expr *stackE = 0;
3835  SmallVector<DeclRefExpr *, 8> refVars;
3836
3837  // Perform checking for returned stack addresses, local blocks,
3838  // label addresses or references to temporaries.
3839  if (lhsType->isPointerType() ||
3840      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3841    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3842  } else if (lhsType->isReferenceType()) {
3843    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3844  }
3845
3846  if (stackE == 0)
3847    return; // Nothing suspicious was found.
3848
3849  SourceLocation diagLoc;
3850  SourceRange diagRange;
3851  if (refVars.empty()) {
3852    diagLoc = stackE->getLocStart();
3853    diagRange = stackE->getSourceRange();
3854  } else {
3855    // We followed through a reference variable. 'stackE' contains the
3856    // problematic expression but we will warn at the return statement pointing
3857    // at the reference variable. We will later display the "trail" of
3858    // reference variables using notes.
3859    diagLoc = refVars[0]->getLocStart();
3860    diagRange = refVars[0]->getSourceRange();
3861  }
3862
3863  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3864    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3865                                             : diag::warn_ret_stack_addr)
3866     << DR->getDecl()->getDeclName() << diagRange;
3867  } else if (isa<BlockExpr>(stackE)) { // local block.
3868    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3869  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3870    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3871  } else { // local temporary.
3872    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3873                                             : diag::warn_ret_local_temp_addr)
3874     << diagRange;
3875  }
3876
3877  // Display the "trail" of reference variables that we followed until we
3878  // found the problematic expression using notes.
3879  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3880    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3881    // If this var binds to another reference var, show the range of the next
3882    // var, otherwise the var binds to the problematic expression, in which case
3883    // show the range of the expression.
3884    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3885                                  : stackE->getSourceRange();
3886    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3887      << VD->getDeclName() << range;
3888  }
3889}
3890
3891/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3892///  check if the expression in a return statement evaluates to an address
3893///  to a location on the stack, a local block, an address of a label, or a
3894///  reference to local temporary. The recursion is used to traverse the
3895///  AST of the return expression, with recursion backtracking when we
3896///  encounter a subexpression that (1) clearly does not lead to one of the
3897///  above problematic expressions (2) is something we cannot determine leads to
3898///  a problematic expression based on such local checking.
3899///
3900///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3901///  the expression that they point to. Such variables are added to the
3902///  'refVars' vector so that we know what the reference variable "trail" was.
3903///
3904///  EvalAddr processes expressions that are pointers that are used as
3905///  references (and not L-values).  EvalVal handles all other values.
3906///  At the base case of the recursion is a check for the above problematic
3907///  expressions.
3908///
3909///  This implementation handles:
3910///
3911///   * pointer-to-pointer casts
3912///   * implicit conversions from array references to pointers
3913///   * taking the address of fields
3914///   * arbitrary interplay between "&" and "*" operators
3915///   * pointer arithmetic from an address of a stack variable
3916///   * taking the address of an array element where the array is on the stack
3917static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3918                      Decl *ParentDecl) {
3919  if (E->isTypeDependent())
3920    return NULL;
3921
3922  // We should only be called for evaluating pointer expressions.
3923  assert((E->getType()->isAnyPointerType() ||
3924          E->getType()->isBlockPointerType() ||
3925          E->getType()->isObjCQualifiedIdType()) &&
3926         "EvalAddr only works on pointers");
3927
3928  E = E->IgnoreParens();
3929
3930  // Our "symbolic interpreter" is just a dispatch off the currently
3931  // viewed AST node.  We then recursively traverse the AST by calling
3932  // EvalAddr and EvalVal appropriately.
3933  switch (E->getStmtClass()) {
3934  case Stmt::DeclRefExprClass: {
3935    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3936
3937    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3938      // If this is a reference variable, follow through to the expression that
3939      // it points to.
3940      if (V->hasLocalStorage() &&
3941          V->getType()->isReferenceType() && V->hasInit()) {
3942        // Add the reference variable to the "trail".
3943        refVars.push_back(DR);
3944        return EvalAddr(V->getInit(), refVars, ParentDecl);
3945      }
3946
3947    return NULL;
3948  }
3949
3950  case Stmt::UnaryOperatorClass: {
3951    // The only unary operator that make sense to handle here
3952    // is AddrOf.  All others don't make sense as pointers.
3953    UnaryOperator *U = cast<UnaryOperator>(E);
3954
3955    if (U->getOpcode() == UO_AddrOf)
3956      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3957    else
3958      return NULL;
3959  }
3960
3961  case Stmt::BinaryOperatorClass: {
3962    // Handle pointer arithmetic.  All other binary operators are not valid
3963    // in this context.
3964    BinaryOperator *B = cast<BinaryOperator>(E);
3965    BinaryOperatorKind op = B->getOpcode();
3966
3967    if (op != BO_Add && op != BO_Sub)
3968      return NULL;
3969
3970    Expr *Base = B->getLHS();
3971
3972    // Determine which argument is the real pointer base.  It could be
3973    // the RHS argument instead of the LHS.
3974    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3975
3976    assert (Base->getType()->isPointerType());
3977    return EvalAddr(Base, refVars, ParentDecl);
3978  }
3979
3980  // For conditional operators we need to see if either the LHS or RHS are
3981  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3982  case Stmt::ConditionalOperatorClass: {
3983    ConditionalOperator *C = cast<ConditionalOperator>(E);
3984
3985    // Handle the GNU extension for missing LHS.
3986    if (Expr *lhsExpr = C->getLHS()) {
3987    // In C++, we can have a throw-expression, which has 'void' type.
3988      if (!lhsExpr->getType()->isVoidType())
3989        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3990          return LHS;
3991    }
3992
3993    // In C++, we can have a throw-expression, which has 'void' type.
3994    if (C->getRHS()->getType()->isVoidType())
3995      return NULL;
3996
3997    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3998  }
3999
4000  case Stmt::BlockExprClass:
4001    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4002      return E; // local block.
4003    return NULL;
4004
4005  case Stmt::AddrLabelExprClass:
4006    return E; // address of label.
4007
4008  case Stmt::ExprWithCleanupsClass:
4009    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4010                    ParentDecl);
4011
4012  // For casts, we need to handle conversions from arrays to
4013  // pointer values, and pointer-to-pointer conversions.
4014  case Stmt::ImplicitCastExprClass:
4015  case Stmt::CStyleCastExprClass:
4016  case Stmt::CXXFunctionalCastExprClass:
4017  case Stmt::ObjCBridgedCastExprClass:
4018  case Stmt::CXXStaticCastExprClass:
4019  case Stmt::CXXDynamicCastExprClass:
4020  case Stmt::CXXConstCastExprClass:
4021  case Stmt::CXXReinterpretCastExprClass: {
4022    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4023    switch (cast<CastExpr>(E)->getCastKind()) {
4024    case CK_BitCast:
4025    case CK_LValueToRValue:
4026    case CK_NoOp:
4027    case CK_BaseToDerived:
4028    case CK_DerivedToBase:
4029    case CK_UncheckedDerivedToBase:
4030    case CK_Dynamic:
4031    case CK_CPointerToObjCPointerCast:
4032    case CK_BlockPointerToObjCPointerCast:
4033    case CK_AnyPointerToBlockPointerCast:
4034      return EvalAddr(SubExpr, refVars, ParentDecl);
4035
4036    case CK_ArrayToPointerDecay:
4037      return EvalVal(SubExpr, refVars, ParentDecl);
4038
4039    default:
4040      return 0;
4041    }
4042  }
4043
4044  case Stmt::MaterializeTemporaryExprClass:
4045    if (Expr *Result = EvalAddr(
4046                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4047                                refVars, ParentDecl))
4048      return Result;
4049
4050    return E;
4051
4052  // Everything else: we simply don't reason about them.
4053  default:
4054    return NULL;
4055  }
4056}
4057
4058
4059///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4060///   See the comments for EvalAddr for more details.
4061static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4062                     Decl *ParentDecl) {
4063do {
4064  // We should only be called for evaluating non-pointer expressions, or
4065  // expressions with a pointer type that are not used as references but instead
4066  // are l-values (e.g., DeclRefExpr with a pointer type).
4067
4068  // Our "symbolic interpreter" is just a dispatch off the currently
4069  // viewed AST node.  We then recursively traverse the AST by calling
4070  // EvalAddr and EvalVal appropriately.
4071
4072  E = E->IgnoreParens();
4073  switch (E->getStmtClass()) {
4074  case Stmt::ImplicitCastExprClass: {
4075    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4076    if (IE->getValueKind() == VK_LValue) {
4077      E = IE->getSubExpr();
4078      continue;
4079    }
4080    return NULL;
4081  }
4082
4083  case Stmt::ExprWithCleanupsClass:
4084    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4085
4086  case Stmt::DeclRefExprClass: {
4087    // When we hit a DeclRefExpr we are looking at code that refers to a
4088    // variable's name. If it's not a reference variable we check if it has
4089    // local storage within the function, and if so, return the expression.
4090    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4091
4092    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4093      // Check if it refers to itself, e.g. "int& i = i;".
4094      if (V == ParentDecl)
4095        return DR;
4096
4097      if (V->hasLocalStorage()) {
4098        if (!V->getType()->isReferenceType())
4099          return DR;
4100
4101        // Reference variable, follow through to the expression that
4102        // it points to.
4103        if (V->hasInit()) {
4104          // Add the reference variable to the "trail".
4105          refVars.push_back(DR);
4106          return EvalVal(V->getInit(), refVars, V);
4107        }
4108      }
4109    }
4110
4111    return NULL;
4112  }
4113
4114  case Stmt::UnaryOperatorClass: {
4115    // The only unary operator that make sense to handle here
4116    // is Deref.  All others don't resolve to a "name."  This includes
4117    // handling all sorts of rvalues passed to a unary operator.
4118    UnaryOperator *U = cast<UnaryOperator>(E);
4119
4120    if (U->getOpcode() == UO_Deref)
4121      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4122
4123    return NULL;
4124  }
4125
4126  case Stmt::ArraySubscriptExprClass: {
4127    // Array subscripts are potential references to data on the stack.  We
4128    // retrieve the DeclRefExpr* for the array variable if it indeed
4129    // has local storage.
4130    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4131  }
4132
4133  case Stmt::ConditionalOperatorClass: {
4134    // For conditional operators we need to see if either the LHS or RHS are
4135    // non-NULL Expr's.  If one is non-NULL, we return it.
4136    ConditionalOperator *C = cast<ConditionalOperator>(E);
4137
4138    // Handle the GNU extension for missing LHS.
4139    if (Expr *lhsExpr = C->getLHS())
4140      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4141        return LHS;
4142
4143    return EvalVal(C->getRHS(), refVars, ParentDecl);
4144  }
4145
4146  // Accesses to members are potential references to data on the stack.
4147  case Stmt::MemberExprClass: {
4148    MemberExpr *M = cast<MemberExpr>(E);
4149
4150    // Check for indirect access.  We only want direct field accesses.
4151    if (M->isArrow())
4152      return NULL;
4153
4154    // Check whether the member type is itself a reference, in which case
4155    // we're not going to refer to the member, but to what the member refers to.
4156    if (M->getMemberDecl()->getType()->isReferenceType())
4157      return NULL;
4158
4159    return EvalVal(M->getBase(), refVars, ParentDecl);
4160  }
4161
4162  case Stmt::MaterializeTemporaryExprClass:
4163    if (Expr *Result = EvalVal(
4164                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4165                               refVars, ParentDecl))
4166      return Result;
4167
4168    return E;
4169
4170  default:
4171    // Check that we don't return or take the address of a reference to a
4172    // temporary. This is only useful in C++.
4173    if (!E->isTypeDependent() && E->isRValue())
4174      return E;
4175
4176    // Everything else: we simply don't reason about them.
4177    return NULL;
4178  }
4179} while (true);
4180}
4181
4182//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4183
4184/// Check for comparisons of floating point operands using != and ==.
4185/// Issue a warning if these are no self-comparisons, as they are not likely
4186/// to do what the programmer intended.
4187void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4188  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4189  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4190
4191  // Special case: check for x == x (which is OK).
4192  // Do not emit warnings for such cases.
4193  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4194    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4195      if (DRL->getDecl() == DRR->getDecl())
4196        return;
4197
4198
4199  // Special case: check for comparisons against literals that can be exactly
4200  //  represented by APFloat.  In such cases, do not emit a warning.  This
4201  //  is a heuristic: often comparison against such literals are used to
4202  //  detect if a value in a variable has not changed.  This clearly can
4203  //  lead to false negatives.
4204  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4205    if (FLL->isExact())
4206      return;
4207  } else
4208    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4209      if (FLR->isExact())
4210        return;
4211
4212  // Check for comparisons with builtin types.
4213  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4214    if (CL->isBuiltinCall())
4215      return;
4216
4217  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4218    if (CR->isBuiltinCall())
4219      return;
4220
4221  // Emit the diagnostic.
4222  Diag(Loc, diag::warn_floatingpoint_eq)
4223    << LHS->getSourceRange() << RHS->getSourceRange();
4224}
4225
4226//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4227//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4228
4229namespace {
4230
4231/// Structure recording the 'active' range of an integer-valued
4232/// expression.
4233struct IntRange {
4234  /// The number of bits active in the int.
4235  unsigned Width;
4236
4237  /// True if the int is known not to have negative values.
4238  bool NonNegative;
4239
4240  IntRange(unsigned Width, bool NonNegative)
4241    : Width(Width), NonNegative(NonNegative)
4242  {}
4243
4244  /// Returns the range of the bool type.
4245  static IntRange forBoolType() {
4246    return IntRange(1, true);
4247  }
4248
4249  /// Returns the range of an opaque value of the given integral type.
4250  static IntRange forValueOfType(ASTContext &C, QualType T) {
4251    return forValueOfCanonicalType(C,
4252                          T->getCanonicalTypeInternal().getTypePtr());
4253  }
4254
4255  /// Returns the range of an opaque value of a canonical integral type.
4256  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4257    assert(T->isCanonicalUnqualified());
4258
4259    if (const VectorType *VT = dyn_cast<VectorType>(T))
4260      T = VT->getElementType().getTypePtr();
4261    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4262      T = CT->getElementType().getTypePtr();
4263
4264    // For enum types, use the known bit width of the enumerators.
4265    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4266      EnumDecl *Enum = ET->getDecl();
4267      if (!Enum->isCompleteDefinition())
4268        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4269
4270      unsigned NumPositive = Enum->getNumPositiveBits();
4271      unsigned NumNegative = Enum->getNumNegativeBits();
4272
4273      if (NumNegative == 0)
4274        return IntRange(NumPositive, true/*NonNegative*/);
4275      else
4276        return IntRange(std::max(NumPositive + 1, NumNegative),
4277                        false/*NonNegative*/);
4278    }
4279
4280    const BuiltinType *BT = cast<BuiltinType>(T);
4281    assert(BT->isInteger());
4282
4283    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4284  }
4285
4286  /// Returns the "target" range of a canonical integral type, i.e.
4287  /// the range of values expressible in the type.
4288  ///
4289  /// This matches forValueOfCanonicalType except that enums have the
4290  /// full range of their type, not the range of their enumerators.
4291  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4292    assert(T->isCanonicalUnqualified());
4293
4294    if (const VectorType *VT = dyn_cast<VectorType>(T))
4295      T = VT->getElementType().getTypePtr();
4296    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4297      T = CT->getElementType().getTypePtr();
4298    if (const EnumType *ET = dyn_cast<EnumType>(T))
4299      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4300
4301    const BuiltinType *BT = cast<BuiltinType>(T);
4302    assert(BT->isInteger());
4303
4304    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4305  }
4306
4307  /// Returns the supremum of two ranges: i.e. their conservative merge.
4308  static IntRange join(IntRange L, IntRange R) {
4309    return IntRange(std::max(L.Width, R.Width),
4310                    L.NonNegative && R.NonNegative);
4311  }
4312
4313  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4314  static IntRange meet(IntRange L, IntRange R) {
4315    return IntRange(std::min(L.Width, R.Width),
4316                    L.NonNegative || R.NonNegative);
4317  }
4318};
4319
4320static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4321                              unsigned MaxWidth) {
4322  if (value.isSigned() && value.isNegative())
4323    return IntRange(value.getMinSignedBits(), false);
4324
4325  if (value.getBitWidth() > MaxWidth)
4326    value = value.trunc(MaxWidth);
4327
4328  // isNonNegative() just checks the sign bit without considering
4329  // signedness.
4330  return IntRange(value.getActiveBits(), true);
4331}
4332
4333static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4334                              unsigned MaxWidth) {
4335  if (result.isInt())
4336    return GetValueRange(C, result.getInt(), MaxWidth);
4337
4338  if (result.isVector()) {
4339    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4340    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4341      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4342      R = IntRange::join(R, El);
4343    }
4344    return R;
4345  }
4346
4347  if (result.isComplexInt()) {
4348    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4349    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4350    return IntRange::join(R, I);
4351  }
4352
4353  // This can happen with lossless casts to intptr_t of "based" lvalues.
4354  // Assume it might use arbitrary bits.
4355  // FIXME: The only reason we need to pass the type in here is to get
4356  // the sign right on this one case.  It would be nice if APValue
4357  // preserved this.
4358  assert(result.isLValue() || result.isAddrLabelDiff());
4359  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4360}
4361
4362static QualType GetExprType(Expr *E) {
4363  QualType Ty = E->getType();
4364  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4365    Ty = AtomicRHS->getValueType();
4366  return Ty;
4367}
4368
4369/// Pseudo-evaluate the given integer expression, estimating the
4370/// range of values it might take.
4371///
4372/// \param MaxWidth - the width to which the value will be truncated
4373static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4374  E = E->IgnoreParens();
4375
4376  // Try a full evaluation first.
4377  Expr::EvalResult result;
4378  if (E->EvaluateAsRValue(result, C))
4379    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4380
4381  // I think we only want to look through implicit casts here; if the
4382  // user has an explicit widening cast, we should treat the value as
4383  // being of the new, wider type.
4384  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4385    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4386      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4387
4388    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4389
4390    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4391
4392    // Assume that non-integer casts can span the full range of the type.
4393    if (!isIntegerCast)
4394      return OutputTypeRange;
4395
4396    IntRange SubRange
4397      = GetExprRange(C, CE->getSubExpr(),
4398                     std::min(MaxWidth, OutputTypeRange.Width));
4399
4400    // Bail out if the subexpr's range is as wide as the cast type.
4401    if (SubRange.Width >= OutputTypeRange.Width)
4402      return OutputTypeRange;
4403
4404    // Otherwise, we take the smaller width, and we're non-negative if
4405    // either the output type or the subexpr is.
4406    return IntRange(SubRange.Width,
4407                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4408  }
4409
4410  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4411    // If we can fold the condition, just take that operand.
4412    bool CondResult;
4413    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4414      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4415                                        : CO->getFalseExpr(),
4416                          MaxWidth);
4417
4418    // Otherwise, conservatively merge.
4419    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4420    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4421    return IntRange::join(L, R);
4422  }
4423
4424  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4425    switch (BO->getOpcode()) {
4426
4427    // Boolean-valued operations are single-bit and positive.
4428    case BO_LAnd:
4429    case BO_LOr:
4430    case BO_LT:
4431    case BO_GT:
4432    case BO_LE:
4433    case BO_GE:
4434    case BO_EQ:
4435    case BO_NE:
4436      return IntRange::forBoolType();
4437
4438    // The type of the assignments is the type of the LHS, so the RHS
4439    // is not necessarily the same type.
4440    case BO_MulAssign:
4441    case BO_DivAssign:
4442    case BO_RemAssign:
4443    case BO_AddAssign:
4444    case BO_SubAssign:
4445    case BO_XorAssign:
4446    case BO_OrAssign:
4447      // TODO: bitfields?
4448      return IntRange::forValueOfType(C, GetExprType(E));
4449
4450    // Simple assignments just pass through the RHS, which will have
4451    // been coerced to the LHS type.
4452    case BO_Assign:
4453      // TODO: bitfields?
4454      return GetExprRange(C, BO->getRHS(), MaxWidth);
4455
4456    // Operations with opaque sources are black-listed.
4457    case BO_PtrMemD:
4458    case BO_PtrMemI:
4459      return IntRange::forValueOfType(C, GetExprType(E));
4460
4461    // Bitwise-and uses the *infinum* of the two source ranges.
4462    case BO_And:
4463    case BO_AndAssign:
4464      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4465                            GetExprRange(C, BO->getRHS(), MaxWidth));
4466
4467    // Left shift gets black-listed based on a judgement call.
4468    case BO_Shl:
4469      // ...except that we want to treat '1 << (blah)' as logically
4470      // positive.  It's an important idiom.
4471      if (IntegerLiteral *I
4472            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4473        if (I->getValue() == 1) {
4474          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4475          return IntRange(R.Width, /*NonNegative*/ true);
4476        }
4477      }
4478      // fallthrough
4479
4480    case BO_ShlAssign:
4481      return IntRange::forValueOfType(C, GetExprType(E));
4482
4483    // Right shift by a constant can narrow its left argument.
4484    case BO_Shr:
4485    case BO_ShrAssign: {
4486      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4487
4488      // If the shift amount is a positive constant, drop the width by
4489      // that much.
4490      llvm::APSInt shift;
4491      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4492          shift.isNonNegative()) {
4493        unsigned zext = shift.getZExtValue();
4494        if (zext >= L.Width)
4495          L.Width = (L.NonNegative ? 0 : 1);
4496        else
4497          L.Width -= zext;
4498      }
4499
4500      return L;
4501    }
4502
4503    // Comma acts as its right operand.
4504    case BO_Comma:
4505      return GetExprRange(C, BO->getRHS(), MaxWidth);
4506
4507    // Black-list pointer subtractions.
4508    case BO_Sub:
4509      if (BO->getLHS()->getType()->isPointerType())
4510        return IntRange::forValueOfType(C, GetExprType(E));
4511      break;
4512
4513    // The width of a division result is mostly determined by the size
4514    // of the LHS.
4515    case BO_Div: {
4516      // Don't 'pre-truncate' the operands.
4517      unsigned opWidth = C.getIntWidth(GetExprType(E));
4518      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4519
4520      // If the divisor is constant, use that.
4521      llvm::APSInt divisor;
4522      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4523        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4524        if (log2 >= L.Width)
4525          L.Width = (L.NonNegative ? 0 : 1);
4526        else
4527          L.Width = std::min(L.Width - log2, MaxWidth);
4528        return L;
4529      }
4530
4531      // Otherwise, just use the LHS's width.
4532      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4533      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4534    }
4535
4536    // The result of a remainder can't be larger than the result of
4537    // either side.
4538    case BO_Rem: {
4539      // Don't 'pre-truncate' the operands.
4540      unsigned opWidth = C.getIntWidth(GetExprType(E));
4541      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4542      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4543
4544      IntRange meet = IntRange::meet(L, R);
4545      meet.Width = std::min(meet.Width, MaxWidth);
4546      return meet;
4547    }
4548
4549    // The default behavior is okay for these.
4550    case BO_Mul:
4551    case BO_Add:
4552    case BO_Xor:
4553    case BO_Or:
4554      break;
4555    }
4556
4557    // The default case is to treat the operation as if it were closed
4558    // on the narrowest type that encompasses both operands.
4559    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4560    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4561    return IntRange::join(L, R);
4562  }
4563
4564  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4565    switch (UO->getOpcode()) {
4566    // Boolean-valued operations are white-listed.
4567    case UO_LNot:
4568      return IntRange::forBoolType();
4569
4570    // Operations with opaque sources are black-listed.
4571    case UO_Deref:
4572    case UO_AddrOf: // should be impossible
4573      return IntRange::forValueOfType(C, GetExprType(E));
4574
4575    default:
4576      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4577    }
4578  }
4579
4580  if (FieldDecl *BitField = E->getSourceBitField())
4581    return IntRange(BitField->getBitWidthValue(C),
4582                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4583
4584  return IntRange::forValueOfType(C, GetExprType(E));
4585}
4586
4587static IntRange GetExprRange(ASTContext &C, Expr *E) {
4588  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4589}
4590
4591/// Checks whether the given value, which currently has the given
4592/// source semantics, has the same value when coerced through the
4593/// target semantics.
4594static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4595                                 const llvm::fltSemantics &Src,
4596                                 const llvm::fltSemantics &Tgt) {
4597  llvm::APFloat truncated = value;
4598
4599  bool ignored;
4600  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4601  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4602
4603  return truncated.bitwiseIsEqual(value);
4604}
4605
4606/// Checks whether the given value, which currently has the given
4607/// source semantics, has the same value when coerced through the
4608/// target semantics.
4609///
4610/// The value might be a vector of floats (or a complex number).
4611static bool IsSameFloatAfterCast(const APValue &value,
4612                                 const llvm::fltSemantics &Src,
4613                                 const llvm::fltSemantics &Tgt) {
4614  if (value.isFloat())
4615    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4616
4617  if (value.isVector()) {
4618    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4619      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4620        return false;
4621    return true;
4622  }
4623
4624  assert(value.isComplexFloat());
4625  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4626          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4627}
4628
4629static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4630
4631static bool IsZero(Sema &S, Expr *E) {
4632  // Suppress cases where we are comparing against an enum constant.
4633  if (const DeclRefExpr *DR =
4634      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4635    if (isa<EnumConstantDecl>(DR->getDecl()))
4636      return false;
4637
4638  // Suppress cases where the '0' value is expanded from a macro.
4639  if (E->getLocStart().isMacroID())
4640    return false;
4641
4642  llvm::APSInt Value;
4643  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4644}
4645
4646static bool HasEnumType(Expr *E) {
4647  // Strip off implicit integral promotions.
4648  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4649    if (ICE->getCastKind() != CK_IntegralCast &&
4650        ICE->getCastKind() != CK_NoOp)
4651      break;
4652    E = ICE->getSubExpr();
4653  }
4654
4655  return E->getType()->isEnumeralType();
4656}
4657
4658static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4659  BinaryOperatorKind op = E->getOpcode();
4660  if (E->isValueDependent())
4661    return;
4662
4663  if (op == BO_LT && IsZero(S, E->getRHS())) {
4664    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4665      << "< 0" << "false" << HasEnumType(E->getLHS())
4666      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4667  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4668    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4669      << ">= 0" << "true" << HasEnumType(E->getLHS())
4670      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4671  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4672    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4673      << "0 >" << "false" << HasEnumType(E->getRHS())
4674      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4675  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4676    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4677      << "0 <=" << "true" << HasEnumType(E->getRHS())
4678      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4679  }
4680}
4681
4682static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4683                                         Expr *Constant, Expr *Other,
4684                                         llvm::APSInt Value,
4685                                         bool RhsConstant) {
4686  // 0 values are handled later by CheckTrivialUnsignedComparison().
4687  if (Value == 0)
4688    return;
4689
4690  BinaryOperatorKind op = E->getOpcode();
4691  QualType OtherT = Other->getType();
4692  QualType ConstantT = Constant->getType();
4693  QualType CommonT = E->getLHS()->getType();
4694  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4695    return;
4696  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4697         && "comparison with non-integer type");
4698
4699  bool ConstantSigned = ConstantT->isSignedIntegerType();
4700  bool CommonSigned = CommonT->isSignedIntegerType();
4701
4702  bool EqualityOnly = false;
4703
4704  // TODO: Investigate using GetExprRange() to get tighter bounds on
4705  // on the bit ranges.
4706  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4707  unsigned OtherWidth = OtherRange.Width;
4708
4709  if (CommonSigned) {
4710    // The common type is signed, therefore no signed to unsigned conversion.
4711    if (!OtherRange.NonNegative) {
4712      // Check that the constant is representable in type OtherT.
4713      if (ConstantSigned) {
4714        if (OtherWidth >= Value.getMinSignedBits())
4715          return;
4716      } else { // !ConstantSigned
4717        if (OtherWidth >= Value.getActiveBits() + 1)
4718          return;
4719      }
4720    } else { // !OtherSigned
4721      // Check that the constant is representable in type OtherT.
4722      // Negative values are out of range.
4723      if (ConstantSigned) {
4724        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4725          return;
4726      } else { // !ConstantSigned
4727        if (OtherWidth >= Value.getActiveBits())
4728          return;
4729      }
4730    }
4731  } else {  // !CommonSigned
4732    if (OtherRange.NonNegative) {
4733      if (OtherWidth >= Value.getActiveBits())
4734        return;
4735    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4736      // Check to see if the constant is representable in OtherT.
4737      if (OtherWidth > Value.getActiveBits())
4738        return;
4739      // Check to see if the constant is equivalent to a negative value
4740      // cast to CommonT.
4741      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4742          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4743        return;
4744      // The constant value rests between values that OtherT can represent after
4745      // conversion.  Relational comparison still works, but equality
4746      // comparisons will be tautological.
4747      EqualityOnly = true;
4748    } else { // OtherSigned && ConstantSigned
4749      assert(0 && "Two signed types converted to unsigned types.");
4750    }
4751  }
4752
4753  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4754
4755  bool IsTrue = true;
4756  if (op == BO_EQ || op == BO_NE) {
4757    IsTrue = op == BO_NE;
4758  } else if (EqualityOnly) {
4759    return;
4760  } else if (RhsConstant) {
4761    if (op == BO_GT || op == BO_GE)
4762      IsTrue = !PositiveConstant;
4763    else // op == BO_LT || op == BO_LE
4764      IsTrue = PositiveConstant;
4765  } else {
4766    if (op == BO_LT || op == BO_LE)
4767      IsTrue = !PositiveConstant;
4768    else // op == BO_GT || op == BO_GE
4769      IsTrue = PositiveConstant;
4770  }
4771
4772  // If this is a comparison to an enum constant, include that
4773  // constant in the diagnostic.
4774  const EnumConstantDecl *ED = 0;
4775  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4776    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4777
4778  SmallString<64> PrettySourceValue;
4779  llvm::raw_svector_ostream OS(PrettySourceValue);
4780  if (ED)
4781    OS << '\'' << *ED << "' (" << Value << ")";
4782  else
4783    OS << Value;
4784
4785  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4786      << OS.str() << OtherT << IsTrue
4787      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4788}
4789
4790/// Analyze the operands of the given comparison.  Implements the
4791/// fallback case from AnalyzeComparison.
4792static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4793  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4794  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4795}
4796
4797/// \brief Implements -Wsign-compare.
4798///
4799/// \param E the binary operator to check for warnings
4800static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4801  // The type the comparison is being performed in.
4802  QualType T = E->getLHS()->getType();
4803  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4804         && "comparison with mismatched types");
4805  if (E->isValueDependent())
4806    return AnalyzeImpConvsInComparison(S, E);
4807
4808  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4809  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4810
4811  bool IsComparisonConstant = false;
4812
4813  // Check whether an integer constant comparison results in a value
4814  // of 'true' or 'false'.
4815  if (T->isIntegralType(S.Context)) {
4816    llvm::APSInt RHSValue;
4817    bool IsRHSIntegralLiteral =
4818      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4819    llvm::APSInt LHSValue;
4820    bool IsLHSIntegralLiteral =
4821      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4822    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4823        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4824    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4825      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4826    else
4827      IsComparisonConstant =
4828        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4829  } else if (!T->hasUnsignedIntegerRepresentation())
4830      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4831
4832  // We don't do anything special if this isn't an unsigned integral
4833  // comparison:  we're only interested in integral comparisons, and
4834  // signed comparisons only happen in cases we don't care to warn about.
4835  //
4836  // We also don't care about value-dependent expressions or expressions
4837  // whose result is a constant.
4838  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4839    return AnalyzeImpConvsInComparison(S, E);
4840
4841  // Check to see if one of the (unmodified) operands is of different
4842  // signedness.
4843  Expr *signedOperand, *unsignedOperand;
4844  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4845    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4846           "unsigned comparison between two signed integer expressions?");
4847    signedOperand = LHS;
4848    unsignedOperand = RHS;
4849  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4850    signedOperand = RHS;
4851    unsignedOperand = LHS;
4852  } else {
4853    CheckTrivialUnsignedComparison(S, E);
4854    return AnalyzeImpConvsInComparison(S, E);
4855  }
4856
4857  // Otherwise, calculate the effective range of the signed operand.
4858  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4859
4860  // Go ahead and analyze implicit conversions in the operands.  Note
4861  // that we skip the implicit conversions on both sides.
4862  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4863  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4864
4865  // If the signed range is non-negative, -Wsign-compare won't fire,
4866  // but we should still check for comparisons which are always true
4867  // or false.
4868  if (signedRange.NonNegative)
4869    return CheckTrivialUnsignedComparison(S, E);
4870
4871  // For (in)equality comparisons, if the unsigned operand is a
4872  // constant which cannot collide with a overflowed signed operand,
4873  // then reinterpreting the signed operand as unsigned will not
4874  // change the result of the comparison.
4875  if (E->isEqualityOp()) {
4876    unsigned comparisonWidth = S.Context.getIntWidth(T);
4877    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4878
4879    // We should never be unable to prove that the unsigned operand is
4880    // non-negative.
4881    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4882
4883    if (unsignedRange.Width < comparisonWidth)
4884      return;
4885  }
4886
4887  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4888    S.PDiag(diag::warn_mixed_sign_comparison)
4889      << LHS->getType() << RHS->getType()
4890      << LHS->getSourceRange() << RHS->getSourceRange());
4891}
4892
4893/// Analyzes an attempt to assign the given value to a bitfield.
4894///
4895/// Returns true if there was something fishy about the attempt.
4896static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4897                                      SourceLocation InitLoc) {
4898  assert(Bitfield->isBitField());
4899  if (Bitfield->isInvalidDecl())
4900    return false;
4901
4902  // White-list bool bitfields.
4903  if (Bitfield->getType()->isBooleanType())
4904    return false;
4905
4906  // Ignore value- or type-dependent expressions.
4907  if (Bitfield->getBitWidth()->isValueDependent() ||
4908      Bitfield->getBitWidth()->isTypeDependent() ||
4909      Init->isValueDependent() ||
4910      Init->isTypeDependent())
4911    return false;
4912
4913  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4914
4915  llvm::APSInt Value;
4916  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4917    return false;
4918
4919  unsigned OriginalWidth = Value.getBitWidth();
4920  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4921
4922  if (OriginalWidth <= FieldWidth)
4923    return false;
4924
4925  // Compute the value which the bitfield will contain.
4926  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4927  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4928
4929  // Check whether the stored value is equal to the original value.
4930  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4931  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4932    return false;
4933
4934  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4935  // therefore don't strictly fit into a signed bitfield of width 1.
4936  if (FieldWidth == 1 && Value == 1)
4937    return false;
4938
4939  std::string PrettyValue = Value.toString(10);
4940  std::string PrettyTrunc = TruncatedValue.toString(10);
4941
4942  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4943    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4944    << Init->getSourceRange();
4945
4946  return true;
4947}
4948
4949/// Analyze the given simple or compound assignment for warning-worthy
4950/// operations.
4951static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4952  // Just recurse on the LHS.
4953  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4954
4955  // We want to recurse on the RHS as normal unless we're assigning to
4956  // a bitfield.
4957  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
4958    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4959                                  E->getOperatorLoc())) {
4960      // Recurse, ignoring any implicit conversions on the RHS.
4961      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4962                                        E->getOperatorLoc());
4963    }
4964  }
4965
4966  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4967}
4968
4969/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4970static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4971                            SourceLocation CContext, unsigned diag,
4972                            bool pruneControlFlow = false) {
4973  if (pruneControlFlow) {
4974    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4975                          S.PDiag(diag)
4976                            << SourceType << T << E->getSourceRange()
4977                            << SourceRange(CContext));
4978    return;
4979  }
4980  S.Diag(E->getExprLoc(), diag)
4981    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4982}
4983
4984/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4985static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4986                            SourceLocation CContext, unsigned diag,
4987                            bool pruneControlFlow = false) {
4988  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4989}
4990
4991/// Diagnose an implicit cast from a literal expression. Does not warn when the
4992/// cast wouldn't lose information.
4993void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4994                                    SourceLocation CContext) {
4995  // Try to convert the literal exactly to an integer. If we can, don't warn.
4996  bool isExact = false;
4997  const llvm::APFloat &Value = FL->getValue();
4998  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4999                            T->hasUnsignedIntegerRepresentation());
5000  if (Value.convertToInteger(IntegerValue,
5001                             llvm::APFloat::rmTowardZero, &isExact)
5002      == llvm::APFloat::opOK && isExact)
5003    return;
5004
5005  SmallString<16> PrettySourceValue;
5006  Value.toString(PrettySourceValue);
5007  SmallString<16> PrettyTargetValue;
5008  if (T->isSpecificBuiltinType(BuiltinType::Bool))
5009    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5010  else
5011    IntegerValue.toString(PrettyTargetValue);
5012
5013  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5014    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5015    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5016}
5017
5018std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5019  if (!Range.Width) return "0";
5020
5021  llvm::APSInt ValueInRange = Value;
5022  ValueInRange.setIsSigned(!Range.NonNegative);
5023  ValueInRange = ValueInRange.trunc(Range.Width);
5024  return ValueInRange.toString(10);
5025}
5026
5027static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5028  if (!isa<ImplicitCastExpr>(Ex))
5029    return false;
5030
5031  Expr *InnerE = Ex->IgnoreParenImpCasts();
5032  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5033  const Type *Source =
5034    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5035  if (Target->isDependentType())
5036    return false;
5037
5038  const BuiltinType *FloatCandidateBT =
5039    dyn_cast<BuiltinType>(ToBool ? Source : Target);
5040  const Type *BoolCandidateType = ToBool ? Target : Source;
5041
5042  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5043          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5044}
5045
5046void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5047                                      SourceLocation CC) {
5048  unsigned NumArgs = TheCall->getNumArgs();
5049  for (unsigned i = 0; i < NumArgs; ++i) {
5050    Expr *CurrA = TheCall->getArg(i);
5051    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5052      continue;
5053
5054    bool IsSwapped = ((i > 0) &&
5055        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5056    IsSwapped |= ((i < (NumArgs - 1)) &&
5057        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5058    if (IsSwapped) {
5059      // Warn on this floating-point to bool conversion.
5060      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5061                      CurrA->getType(), CC,
5062                      diag::warn_impcast_floating_point_to_bool);
5063    }
5064  }
5065}
5066
5067void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5068                             SourceLocation CC, bool *ICContext = 0) {
5069  if (E->isTypeDependent() || E->isValueDependent()) return;
5070
5071  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5072  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5073  if (Source == Target) return;
5074  if (Target->isDependentType()) return;
5075
5076  // If the conversion context location is invalid don't complain. We also
5077  // don't want to emit a warning if the issue occurs from the expansion of
5078  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5079  // delay this check as long as possible. Once we detect we are in that
5080  // scenario, we just return.
5081  if (CC.isInvalid())
5082    return;
5083
5084  // Diagnose implicit casts to bool.
5085  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5086    if (isa<StringLiteral>(E))
5087      // Warn on string literal to bool.  Checks for string literals in logical
5088      // expressions, for instances, assert(0 && "error here"), is prevented
5089      // by a check in AnalyzeImplicitConversions().
5090      return DiagnoseImpCast(S, E, T, CC,
5091                             diag::warn_impcast_string_literal_to_bool);
5092    if (Source->isFunctionType()) {
5093      // Warn on function to bool. Checks free functions and static member
5094      // functions. Weakly imported functions are excluded from the check,
5095      // since it's common to test their value to check whether the linker
5096      // found a definition for them.
5097      ValueDecl *D = 0;
5098      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5099        D = R->getDecl();
5100      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5101        D = M->getMemberDecl();
5102      }
5103
5104      if (D && !D->isWeak()) {
5105        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5106          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5107            << F << E->getSourceRange() << SourceRange(CC);
5108          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5109            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5110          QualType ReturnType;
5111          UnresolvedSet<4> NonTemplateOverloads;
5112          S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5113          if (!ReturnType.isNull()
5114              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5115            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5116              << FixItHint::CreateInsertion(
5117                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5118          return;
5119        }
5120      }
5121    }
5122  }
5123
5124  // Strip vector types.
5125  if (isa<VectorType>(Source)) {
5126    if (!isa<VectorType>(Target)) {
5127      if (S.SourceMgr.isInSystemMacro(CC))
5128        return;
5129      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5130    }
5131
5132    // If the vector cast is cast between two vectors of the same size, it is
5133    // a bitcast, not a conversion.
5134    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5135      return;
5136
5137    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5138    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5139  }
5140
5141  // Strip complex types.
5142  if (isa<ComplexType>(Source)) {
5143    if (!isa<ComplexType>(Target)) {
5144      if (S.SourceMgr.isInSystemMacro(CC))
5145        return;
5146
5147      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5148    }
5149
5150    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5151    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5152  }
5153
5154  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5155  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5156
5157  // If the source is floating point...
5158  if (SourceBT && SourceBT->isFloatingPoint()) {
5159    // ...and the target is floating point...
5160    if (TargetBT && TargetBT->isFloatingPoint()) {
5161      // ...then warn if we're dropping FP rank.
5162
5163      // Builtin FP kinds are ordered by increasing FP rank.
5164      if (SourceBT->getKind() > TargetBT->getKind()) {
5165        // Don't warn about float constants that are precisely
5166        // representable in the target type.
5167        Expr::EvalResult result;
5168        if (E->EvaluateAsRValue(result, S.Context)) {
5169          // Value might be a float, a float vector, or a float complex.
5170          if (IsSameFloatAfterCast(result.Val,
5171                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5172                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5173            return;
5174        }
5175
5176        if (S.SourceMgr.isInSystemMacro(CC))
5177          return;
5178
5179        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5180      }
5181      return;
5182    }
5183
5184    // If the target is integral, always warn.
5185    if (TargetBT && TargetBT->isInteger()) {
5186      if (S.SourceMgr.isInSystemMacro(CC))
5187        return;
5188
5189      Expr *InnerE = E->IgnoreParenImpCasts();
5190      // We also want to warn on, e.g., "int i = -1.234"
5191      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5192        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5193          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5194
5195      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5196        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5197      } else {
5198        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5199      }
5200    }
5201
5202    // If the target is bool, warn if expr is a function or method call.
5203    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5204        isa<CallExpr>(E)) {
5205      // Check last argument of function call to see if it is an
5206      // implicit cast from a type matching the type the result
5207      // is being cast to.
5208      CallExpr *CEx = cast<CallExpr>(E);
5209      unsigned NumArgs = CEx->getNumArgs();
5210      if (NumArgs > 0) {
5211        Expr *LastA = CEx->getArg(NumArgs - 1);
5212        Expr *InnerE = LastA->IgnoreParenImpCasts();
5213        const Type *InnerType =
5214          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5215        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5216          // Warn on this floating-point to bool conversion
5217          DiagnoseImpCast(S, E, T, CC,
5218                          diag::warn_impcast_floating_point_to_bool);
5219        }
5220      }
5221    }
5222    return;
5223  }
5224
5225  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5226           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5227      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5228      && Target->isScalarType() && !Target->isNullPtrType()) {
5229    SourceLocation Loc = E->getSourceRange().getBegin();
5230    if (Loc.isMacroID())
5231      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5232    if (!Loc.isMacroID() || CC.isMacroID())
5233      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5234          << T << clang::SourceRange(CC)
5235          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5236  }
5237
5238  if (!Source->isIntegerType() || !Target->isIntegerType())
5239    return;
5240
5241  // TODO: remove this early return once the false positives for constant->bool
5242  // in templates, macros, etc, are reduced or removed.
5243  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5244    return;
5245
5246  IntRange SourceRange = GetExprRange(S.Context, E);
5247  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5248
5249  if (SourceRange.Width > TargetRange.Width) {
5250    // If the source is a constant, use a default-on diagnostic.
5251    // TODO: this should happen for bitfield stores, too.
5252    llvm::APSInt Value(32);
5253    if (E->isIntegerConstantExpr(Value, S.Context)) {
5254      if (S.SourceMgr.isInSystemMacro(CC))
5255        return;
5256
5257      std::string PrettySourceValue = Value.toString(10);
5258      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5259
5260      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5261        S.PDiag(diag::warn_impcast_integer_precision_constant)
5262            << PrettySourceValue << PrettyTargetValue
5263            << E->getType() << T << E->getSourceRange()
5264            << clang::SourceRange(CC));
5265      return;
5266    }
5267
5268    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5269    if (S.SourceMgr.isInSystemMacro(CC))
5270      return;
5271
5272    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5273      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5274                             /* pruneControlFlow */ true);
5275    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5276  }
5277
5278  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5279      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5280       SourceRange.Width == TargetRange.Width)) {
5281
5282    if (S.SourceMgr.isInSystemMacro(CC))
5283      return;
5284
5285    unsigned DiagID = diag::warn_impcast_integer_sign;
5286
5287    // Traditionally, gcc has warned about this under -Wsign-compare.
5288    // We also want to warn about it in -Wconversion.
5289    // So if -Wconversion is off, use a completely identical diagnostic
5290    // in the sign-compare group.
5291    // The conditional-checking code will
5292    if (ICContext) {
5293      DiagID = diag::warn_impcast_integer_sign_conditional;
5294      *ICContext = true;
5295    }
5296
5297    return DiagnoseImpCast(S, E, T, CC, DiagID);
5298  }
5299
5300  // Diagnose conversions between different enumeration types.
5301  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5302  // type, to give us better diagnostics.
5303  QualType SourceType = E->getType();
5304  if (!S.getLangOpts().CPlusPlus) {
5305    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5306      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5307        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5308        SourceType = S.Context.getTypeDeclType(Enum);
5309        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5310      }
5311  }
5312
5313  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5314    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5315      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5316          TargetEnum->getDecl()->hasNameForLinkage() &&
5317          SourceEnum != TargetEnum) {
5318        if (S.SourceMgr.isInSystemMacro(CC))
5319          return;
5320
5321        return DiagnoseImpCast(S, E, SourceType, T, CC,
5322                               diag::warn_impcast_different_enum_types);
5323      }
5324
5325  return;
5326}
5327
5328void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5329                              SourceLocation CC, QualType T);
5330
5331void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5332                             SourceLocation CC, bool &ICContext) {
5333  E = E->IgnoreParenImpCasts();
5334
5335  if (isa<ConditionalOperator>(E))
5336    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5337
5338  AnalyzeImplicitConversions(S, E, CC);
5339  if (E->getType() != T)
5340    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5341  return;
5342}
5343
5344void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5345                              SourceLocation CC, QualType T) {
5346  AnalyzeImplicitConversions(S, E->getCond(), CC);
5347
5348  bool Suspicious = false;
5349  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5350  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5351
5352  // If -Wconversion would have warned about either of the candidates
5353  // for a signedness conversion to the context type...
5354  if (!Suspicious) return;
5355
5356  // ...but it's currently ignored...
5357  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5358                                 CC))
5359    return;
5360
5361  // ...then check whether it would have warned about either of the
5362  // candidates for a signedness conversion to the condition type.
5363  if (E->getType() == T) return;
5364
5365  Suspicious = false;
5366  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5367                          E->getType(), CC, &Suspicious);
5368  if (!Suspicious)
5369    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5370                            E->getType(), CC, &Suspicious);
5371}
5372
5373/// AnalyzeImplicitConversions - Find and report any interesting
5374/// implicit conversions in the given expression.  There are a couple
5375/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5376void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5377  QualType T = OrigE->getType();
5378  Expr *E = OrigE->IgnoreParenImpCasts();
5379
5380  if (E->isTypeDependent() || E->isValueDependent())
5381    return;
5382
5383  // For conditional operators, we analyze the arguments as if they
5384  // were being fed directly into the output.
5385  if (isa<ConditionalOperator>(E)) {
5386    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5387    CheckConditionalOperator(S, CO, CC, T);
5388    return;
5389  }
5390
5391  // Check implicit argument conversions for function calls.
5392  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5393    CheckImplicitArgumentConversions(S, Call, CC);
5394
5395  // Go ahead and check any implicit conversions we might have skipped.
5396  // The non-canonical typecheck is just an optimization;
5397  // CheckImplicitConversion will filter out dead implicit conversions.
5398  if (E->getType() != T)
5399    CheckImplicitConversion(S, E, T, CC);
5400
5401  // Now continue drilling into this expression.
5402
5403  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5404    if (POE->getResultExpr())
5405      E = POE->getResultExpr();
5406  }
5407
5408  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5409    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5410
5411  // Skip past explicit casts.
5412  if (isa<ExplicitCastExpr>(E)) {
5413    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5414    return AnalyzeImplicitConversions(S, E, CC);
5415  }
5416
5417  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5418    // Do a somewhat different check with comparison operators.
5419    if (BO->isComparisonOp())
5420      return AnalyzeComparison(S, BO);
5421
5422    // And with simple assignments.
5423    if (BO->getOpcode() == BO_Assign)
5424      return AnalyzeAssignment(S, BO);
5425  }
5426
5427  // These break the otherwise-useful invariant below.  Fortunately,
5428  // we don't really need to recurse into them, because any internal
5429  // expressions should have been analyzed already when they were
5430  // built into statements.
5431  if (isa<StmtExpr>(E)) return;
5432
5433  // Don't descend into unevaluated contexts.
5434  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5435
5436  // Now just recurse over the expression's children.
5437  CC = E->getExprLoc();
5438  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5439  bool IsLogicalOperator = BO && BO->isLogicalOp();
5440  for (Stmt::child_range I = E->children(); I; ++I) {
5441    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5442    if (!ChildExpr)
5443      continue;
5444
5445    if (IsLogicalOperator &&
5446        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5447      // Ignore checking string literals that are in logical operators.
5448      continue;
5449    AnalyzeImplicitConversions(S, ChildExpr, CC);
5450  }
5451}
5452
5453} // end anonymous namespace
5454
5455/// Diagnoses "dangerous" implicit conversions within the given
5456/// expression (which is a full expression).  Implements -Wconversion
5457/// and -Wsign-compare.
5458///
5459/// \param CC the "context" location of the implicit conversion, i.e.
5460///   the most location of the syntactic entity requiring the implicit
5461///   conversion
5462void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5463  // Don't diagnose in unevaluated contexts.
5464  if (isUnevaluatedContext())
5465    return;
5466
5467  // Don't diagnose for value- or type-dependent expressions.
5468  if (E->isTypeDependent() || E->isValueDependent())
5469    return;
5470
5471  // Check for array bounds violations in cases where the check isn't triggered
5472  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5473  // ArraySubscriptExpr is on the RHS of a variable initialization.
5474  CheckArrayAccess(E);
5475
5476  // This is not the right CC for (e.g.) a variable initialization.
5477  AnalyzeImplicitConversions(*this, E, CC);
5478}
5479
5480/// Diagnose when expression is an integer constant expression and its evaluation
5481/// results in integer overflow
5482void Sema::CheckForIntOverflow (Expr *E) {
5483  if (isa<BinaryOperator>(E->IgnoreParens())) {
5484    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5485    E->EvaluateForOverflow(Context, &Diags);
5486  }
5487}
5488
5489namespace {
5490/// \brief Visitor for expressions which looks for unsequenced operations on the
5491/// same object.
5492class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5493  typedef EvaluatedExprVisitor<SequenceChecker> Base;
5494
5495  /// \brief A tree of sequenced regions within an expression. Two regions are
5496  /// unsequenced if one is an ancestor or a descendent of the other. When we
5497  /// finish processing an expression with sequencing, such as a comma
5498  /// expression, we fold its tree nodes into its parent, since they are
5499  /// unsequenced with respect to nodes we will visit later.
5500  class SequenceTree {
5501    struct Value {
5502      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5503      unsigned Parent : 31;
5504      bool Merged : 1;
5505    };
5506    llvm::SmallVector<Value, 8> Values;
5507
5508  public:
5509    /// \brief A region within an expression which may be sequenced with respect
5510    /// to some other region.
5511    class Seq {
5512      explicit Seq(unsigned N) : Index(N) {}
5513      unsigned Index;
5514      friend class SequenceTree;
5515    public:
5516      Seq() : Index(0) {}
5517    };
5518
5519    SequenceTree() { Values.push_back(Value(0)); }
5520    Seq root() const { return Seq(0); }
5521
5522    /// \brief Create a new sequence of operations, which is an unsequenced
5523    /// subset of \p Parent. This sequence of operations is sequenced with
5524    /// respect to other children of \p Parent.
5525    Seq allocate(Seq Parent) {
5526      Values.push_back(Value(Parent.Index));
5527      return Seq(Values.size() - 1);
5528    }
5529
5530    /// \brief Merge a sequence of operations into its parent.
5531    void merge(Seq S) {
5532      Values[S.Index].Merged = true;
5533    }
5534
5535    /// \brief Determine whether two operations are unsequenced. This operation
5536    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5537    /// should have been merged into its parent as appropriate.
5538    bool isUnsequenced(Seq Cur, Seq Old) {
5539      unsigned C = representative(Cur.Index);
5540      unsigned Target = representative(Old.Index);
5541      while (C >= Target) {
5542        if (C == Target)
5543          return true;
5544        C = Values[C].Parent;
5545      }
5546      return false;
5547    }
5548
5549  private:
5550    /// \brief Pick a representative for a sequence.
5551    unsigned representative(unsigned K) {
5552      if (Values[K].Merged)
5553        // Perform path compression as we go.
5554        return Values[K].Parent = representative(Values[K].Parent);
5555      return K;
5556    }
5557  };
5558
5559  /// An object for which we can track unsequenced uses.
5560  typedef NamedDecl *Object;
5561
5562  /// Different flavors of object usage which we track. We only track the
5563  /// least-sequenced usage of each kind.
5564  enum UsageKind {
5565    /// A read of an object. Multiple unsequenced reads are OK.
5566    UK_Use,
5567    /// A modification of an object which is sequenced before the value
5568    /// computation of the expression, such as ++n in C++.
5569    UK_ModAsValue,
5570    /// A modification of an object which is not sequenced before the value
5571    /// computation of the expression, such as n++.
5572    UK_ModAsSideEffect,
5573
5574    UK_Count = UK_ModAsSideEffect + 1
5575  };
5576
5577  struct Usage {
5578    Usage() : Use(0), Seq() {}
5579    Expr *Use;
5580    SequenceTree::Seq Seq;
5581  };
5582
5583  struct UsageInfo {
5584    UsageInfo() : Diagnosed(false) {}
5585    Usage Uses[UK_Count];
5586    /// Have we issued a diagnostic for this variable already?
5587    bool Diagnosed;
5588  };
5589  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5590
5591  Sema &SemaRef;
5592  /// Sequenced regions within the expression.
5593  SequenceTree Tree;
5594  /// Declaration modifications and references which we have seen.
5595  UsageInfoMap UsageMap;
5596  /// The region we are currently within.
5597  SequenceTree::Seq Region;
5598  /// Filled in with declarations which were modified as a side-effect
5599  /// (that is, post-increment operations).
5600  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5601  /// Expressions to check later. We defer checking these to reduce
5602  /// stack usage.
5603  llvm::SmallVectorImpl<Expr*> &WorkList;
5604
5605  /// RAII object wrapping the visitation of a sequenced subexpression of an
5606  /// expression. At the end of this process, the side-effects of the evaluation
5607  /// become sequenced with respect to the value computation of the result, so
5608  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5609  /// UK_ModAsValue.
5610  struct SequencedSubexpression {
5611    SequencedSubexpression(SequenceChecker &Self)
5612      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5613      Self.ModAsSideEffect = &ModAsSideEffect;
5614    }
5615    ~SequencedSubexpression() {
5616      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5617        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5618        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5619        Self.addUsage(U, ModAsSideEffect[I].first,
5620                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5621      }
5622      Self.ModAsSideEffect = OldModAsSideEffect;
5623    }
5624
5625    SequenceChecker &Self;
5626    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5627    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5628  };
5629
5630  /// RAII object wrapping the visitation of a subexpression which we might
5631  /// choose to evaluate as a constant. If any subexpression is evaluated and
5632  /// found to be non-constant, this allows us to suppress the evaluation of
5633  /// the outer expression.
5634  class EvaluationTracker {
5635  public:
5636    EvaluationTracker(SequenceChecker &Self)
5637        : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5638      Self.EvalTracker = this;
5639    }
5640    ~EvaluationTracker() {
5641      Self.EvalTracker = Prev;
5642      if (Prev)
5643        Prev->EvalOK &= EvalOK;
5644    }
5645
5646    bool evaluate(const Expr *E, bool &Result) {
5647      if (!EvalOK || E->isValueDependent())
5648        return false;
5649      EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5650      return EvalOK;
5651    }
5652
5653  private:
5654    SequenceChecker &Self;
5655    EvaluationTracker *Prev;
5656    bool EvalOK;
5657  } *EvalTracker;
5658
5659  /// \brief Find the object which is produced by the specified expression,
5660  /// if any.
5661  Object getObject(Expr *E, bool Mod) const {
5662    E = E->IgnoreParenCasts();
5663    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5664      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5665        return getObject(UO->getSubExpr(), Mod);
5666    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5667      if (BO->getOpcode() == BO_Comma)
5668        return getObject(BO->getRHS(), Mod);
5669      if (Mod && BO->isAssignmentOp())
5670        return getObject(BO->getLHS(), Mod);
5671    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5672      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5673      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5674        return ME->getMemberDecl();
5675    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5676      // FIXME: If this is a reference, map through to its value.
5677      return DRE->getDecl();
5678    return 0;
5679  }
5680
5681  /// \brief Note that an object was modified or used by an expression.
5682  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5683    Usage &U = UI.Uses[UK];
5684    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5685      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5686        ModAsSideEffect->push_back(std::make_pair(O, U));
5687      U.Use = Ref;
5688      U.Seq = Region;
5689    }
5690  }
5691  /// \brief Check whether a modification or use conflicts with a prior usage.
5692  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5693                  bool IsModMod) {
5694    if (UI.Diagnosed)
5695      return;
5696
5697    const Usage &U = UI.Uses[OtherKind];
5698    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5699      return;
5700
5701    Expr *Mod = U.Use;
5702    Expr *ModOrUse = Ref;
5703    if (OtherKind == UK_Use)
5704      std::swap(Mod, ModOrUse);
5705
5706    SemaRef.Diag(Mod->getExprLoc(),
5707                 IsModMod ? diag::warn_unsequenced_mod_mod
5708                          : diag::warn_unsequenced_mod_use)
5709      << O << SourceRange(ModOrUse->getExprLoc());
5710    UI.Diagnosed = true;
5711  }
5712
5713  void notePreUse(Object O, Expr *Use) {
5714    UsageInfo &U = UsageMap[O];
5715    // Uses conflict with other modifications.
5716    checkUsage(O, U, Use, UK_ModAsValue, false);
5717  }
5718  void notePostUse(Object O, Expr *Use) {
5719    UsageInfo &U = UsageMap[O];
5720    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5721    addUsage(U, O, Use, UK_Use);
5722  }
5723
5724  void notePreMod(Object O, Expr *Mod) {
5725    UsageInfo &U = UsageMap[O];
5726    // Modifications conflict with other modifications and with uses.
5727    checkUsage(O, U, Mod, UK_ModAsValue, true);
5728    checkUsage(O, U, Mod, UK_Use, false);
5729  }
5730  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5731    UsageInfo &U = UsageMap[O];
5732    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5733    addUsage(U, O, Use, UK);
5734  }
5735
5736public:
5737  SequenceChecker(Sema &S, Expr *E,
5738                  llvm::SmallVectorImpl<Expr*> &WorkList)
5739    : Base(S.Context), SemaRef(S), Region(Tree.root()),
5740      ModAsSideEffect(0), WorkList(WorkList), EvalTracker(0) {
5741    Visit(E);
5742  }
5743
5744  void VisitStmt(Stmt *S) {
5745    // Skip all statements which aren't expressions for now.
5746  }
5747
5748  void VisitExpr(Expr *E) {
5749    // By default, just recurse to evaluated subexpressions.
5750    Base::VisitStmt(E);
5751  }
5752
5753  void VisitCastExpr(CastExpr *E) {
5754    Object O = Object();
5755    if (E->getCastKind() == CK_LValueToRValue)
5756      O = getObject(E->getSubExpr(), false);
5757
5758    if (O)
5759      notePreUse(O, E);
5760    VisitExpr(E);
5761    if (O)
5762      notePostUse(O, E);
5763  }
5764
5765  void VisitBinComma(BinaryOperator *BO) {
5766    // C++11 [expr.comma]p1:
5767    //   Every value computation and side effect associated with the left
5768    //   expression is sequenced before every value computation and side
5769    //   effect associated with the right expression.
5770    SequenceTree::Seq LHS = Tree.allocate(Region);
5771    SequenceTree::Seq RHS = Tree.allocate(Region);
5772    SequenceTree::Seq OldRegion = Region;
5773
5774    {
5775      SequencedSubexpression SeqLHS(*this);
5776      Region = LHS;
5777      Visit(BO->getLHS());
5778    }
5779
5780    Region = RHS;
5781    Visit(BO->getRHS());
5782
5783    Region = OldRegion;
5784
5785    // Forget that LHS and RHS are sequenced. They are both unsequenced
5786    // with respect to other stuff.
5787    Tree.merge(LHS);
5788    Tree.merge(RHS);
5789  }
5790
5791  void VisitBinAssign(BinaryOperator *BO) {
5792    // The modification is sequenced after the value computation of the LHS
5793    // and RHS, so check it before inspecting the operands and update the
5794    // map afterwards.
5795    Object O = getObject(BO->getLHS(), true);
5796    if (!O)
5797      return VisitExpr(BO);
5798
5799    notePreMod(O, BO);
5800
5801    // C++11 [expr.ass]p7:
5802    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5803    //   only once.
5804    //
5805    // Therefore, for a compound assignment operator, O is considered used
5806    // everywhere except within the evaluation of E1 itself.
5807    if (isa<CompoundAssignOperator>(BO))
5808      notePreUse(O, BO);
5809
5810    Visit(BO->getLHS());
5811
5812    if (isa<CompoundAssignOperator>(BO))
5813      notePostUse(O, BO);
5814
5815    Visit(BO->getRHS());
5816
5817    // C++11 [expr.ass]p1:
5818    //   the assignment is sequenced [...] before the value computation of the
5819    //   assignment expression.
5820    // C11 6.5.16/3 has no such rule.
5821    notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5822                                                       : UK_ModAsSideEffect);
5823  }
5824  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5825    VisitBinAssign(CAO);
5826  }
5827
5828  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5829  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5830  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5831    Object O = getObject(UO->getSubExpr(), true);
5832    if (!O)
5833      return VisitExpr(UO);
5834
5835    notePreMod(O, UO);
5836    Visit(UO->getSubExpr());
5837    // C++11 [expr.pre.incr]p1:
5838    //   the expression ++x is equivalent to x+=1
5839    notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5840                                                       : UK_ModAsSideEffect);
5841  }
5842
5843  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5844  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5845  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5846    Object O = getObject(UO->getSubExpr(), true);
5847    if (!O)
5848      return VisitExpr(UO);
5849
5850    notePreMod(O, UO);
5851    Visit(UO->getSubExpr());
5852    notePostMod(O, UO, UK_ModAsSideEffect);
5853  }
5854
5855  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5856  void VisitBinLOr(BinaryOperator *BO) {
5857    // The side-effects of the LHS of an '&&' are sequenced before the
5858    // value computation of the RHS, and hence before the value computation
5859    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5860    // as if they were unconditionally sequenced.
5861    EvaluationTracker Eval(*this);
5862    {
5863      SequencedSubexpression Sequenced(*this);
5864      Visit(BO->getLHS());
5865    }
5866
5867    bool Result;
5868    if (Eval.evaluate(BO->getLHS(), Result)) {
5869      if (!Result)
5870        Visit(BO->getRHS());
5871    } else {
5872      // Check for unsequenced operations in the RHS, treating it as an
5873      // entirely separate evaluation.
5874      //
5875      // FIXME: If there are operations in the RHS which are unsequenced
5876      // with respect to operations outside the RHS, and those operations
5877      // are unconditionally evaluated, diagnose them.
5878      WorkList.push_back(BO->getRHS());
5879    }
5880  }
5881  void VisitBinLAnd(BinaryOperator *BO) {
5882    EvaluationTracker Eval(*this);
5883    {
5884      SequencedSubexpression Sequenced(*this);
5885      Visit(BO->getLHS());
5886    }
5887
5888    bool Result;
5889    if (Eval.evaluate(BO->getLHS(), Result)) {
5890      if (Result)
5891        Visit(BO->getRHS());
5892    } else {
5893      WorkList.push_back(BO->getRHS());
5894    }
5895  }
5896
5897  // Only visit the condition, unless we can be sure which subexpression will
5898  // be chosen.
5899  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5900    EvaluationTracker Eval(*this);
5901    {
5902      SequencedSubexpression Sequenced(*this);
5903      Visit(CO->getCond());
5904    }
5905
5906    bool Result;
5907    if (Eval.evaluate(CO->getCond(), Result))
5908      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5909    else {
5910      WorkList.push_back(CO->getTrueExpr());
5911      WorkList.push_back(CO->getFalseExpr());
5912    }
5913  }
5914
5915  void VisitCallExpr(CallExpr *CE) {
5916    // C++11 [intro.execution]p15:
5917    //   When calling a function [...], every value computation and side effect
5918    //   associated with any argument expression, or with the postfix expression
5919    //   designating the called function, is sequenced before execution of every
5920    //   expression or statement in the body of the function [and thus before
5921    //   the value computation of its result].
5922    SequencedSubexpression Sequenced(*this);
5923    Base::VisitCallExpr(CE);
5924
5925    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
5926  }
5927
5928  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5929    // This is a call, so all subexpressions are sequenced before the result.
5930    SequencedSubexpression Sequenced(*this);
5931
5932    if (!CCE->isListInitialization())
5933      return VisitExpr(CCE);
5934
5935    // In C++11, list initializations are sequenced.
5936    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5937    SequenceTree::Seq Parent = Region;
5938    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5939                                        E = CCE->arg_end();
5940         I != E; ++I) {
5941      Region = Tree.allocate(Parent);
5942      Elts.push_back(Region);
5943      Visit(*I);
5944    }
5945
5946    // Forget that the initializers are sequenced.
5947    Region = Parent;
5948    for (unsigned I = 0; I < Elts.size(); ++I)
5949      Tree.merge(Elts[I]);
5950  }
5951
5952  void VisitInitListExpr(InitListExpr *ILE) {
5953    if (!SemaRef.getLangOpts().CPlusPlus11)
5954      return VisitExpr(ILE);
5955
5956    // In C++11, list initializations are sequenced.
5957    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5958    SequenceTree::Seq Parent = Region;
5959    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5960      Expr *E = ILE->getInit(I);
5961      if (!E) continue;
5962      Region = Tree.allocate(Parent);
5963      Elts.push_back(Region);
5964      Visit(E);
5965    }
5966
5967    // Forget that the initializers are sequenced.
5968    Region = Parent;
5969    for (unsigned I = 0; I < Elts.size(); ++I)
5970      Tree.merge(Elts[I]);
5971  }
5972};
5973}
5974
5975void Sema::CheckUnsequencedOperations(Expr *E) {
5976  llvm::SmallVector<Expr*, 8> WorkList;
5977  WorkList.push_back(E);
5978  while (!WorkList.empty()) {
5979    Expr *Item = WorkList.back();
5980    WorkList.pop_back();
5981    SequenceChecker(*this, Item, WorkList);
5982  }
5983}
5984
5985void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5986                              bool IsConstexpr) {
5987  CheckImplicitConversions(E, CheckLoc);
5988  CheckUnsequencedOperations(E);
5989  if (!IsConstexpr && !E->isValueDependent())
5990    CheckForIntOverflow(E);
5991}
5992
5993void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5994                                       FieldDecl *BitField,
5995                                       Expr *Init) {
5996  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5997}
5998
5999/// CheckParmsForFunctionDef - Check that the parameters of the given
6000/// function are appropriate for the definition of a function. This
6001/// takes care of any checks that cannot be performed on the
6002/// declaration itself, e.g., that the types of each of the function
6003/// parameters are complete.
6004bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6005                                    ParmVarDecl *const *PEnd,
6006                                    bool CheckParameterNames) {
6007  bool HasInvalidParm = false;
6008  for (; P != PEnd; ++P) {
6009    ParmVarDecl *Param = *P;
6010
6011    // C99 6.7.5.3p4: the parameters in a parameter type list in a
6012    // function declarator that is part of a function definition of
6013    // that function shall not have incomplete type.
6014    //
6015    // This is also C++ [dcl.fct]p6.
6016    if (!Param->isInvalidDecl() &&
6017        RequireCompleteType(Param->getLocation(), Param->getType(),
6018                            diag::err_typecheck_decl_incomplete_type)) {
6019      Param->setInvalidDecl();
6020      HasInvalidParm = true;
6021    }
6022
6023    // C99 6.9.1p5: If the declarator includes a parameter type list, the
6024    // declaration of each parameter shall include an identifier.
6025    if (CheckParameterNames &&
6026        Param->getIdentifier() == 0 &&
6027        !Param->isImplicit() &&
6028        !getLangOpts().CPlusPlus)
6029      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6030
6031    // C99 6.7.5.3p12:
6032    //   If the function declarator is not part of a definition of that
6033    //   function, parameters may have incomplete type and may use the [*]
6034    //   notation in their sequences of declarator specifiers to specify
6035    //   variable length array types.
6036    QualType PType = Param->getOriginalType();
6037    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6038      if (AT->getSizeModifier() == ArrayType::Star) {
6039        // FIXME: This diagnostic should point the '[*]' if source-location
6040        // information is added for it.
6041        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6042        break;
6043      }
6044      PType= AT->getElementType();
6045    }
6046
6047    // MSVC destroys objects passed by value in the callee.  Therefore a
6048    // function definition which takes such a parameter must be able to call the
6049    // object's destructor.
6050    if (getLangOpts().CPlusPlus &&
6051        Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6052      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6053        FinalizeVarWithDestructor(Param, RT);
6054    }
6055  }
6056
6057  return HasInvalidParm;
6058}
6059
6060/// CheckCastAlign - Implements -Wcast-align, which warns when a
6061/// pointer cast increases the alignment requirements.
6062void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6063  // This is actually a lot of work to potentially be doing on every
6064  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6065  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6066                                          TRange.getBegin())
6067        == DiagnosticsEngine::Ignored)
6068    return;
6069
6070  // Ignore dependent types.
6071  if (T->isDependentType() || Op->getType()->isDependentType())
6072    return;
6073
6074  // Require that the destination be a pointer type.
6075  const PointerType *DestPtr = T->getAs<PointerType>();
6076  if (!DestPtr) return;
6077
6078  // If the destination has alignment 1, we're done.
6079  QualType DestPointee = DestPtr->getPointeeType();
6080  if (DestPointee->isIncompleteType()) return;
6081  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6082  if (DestAlign.isOne()) return;
6083
6084  // Require that the source be a pointer type.
6085  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6086  if (!SrcPtr) return;
6087  QualType SrcPointee = SrcPtr->getPointeeType();
6088
6089  // Whitelist casts from cv void*.  We already implicitly
6090  // whitelisted casts to cv void*, since they have alignment 1.
6091  // Also whitelist casts involving incomplete types, which implicitly
6092  // includes 'void'.
6093  if (SrcPointee->isIncompleteType()) return;
6094
6095  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6096  if (SrcAlign >= DestAlign) return;
6097
6098  Diag(TRange.getBegin(), diag::warn_cast_align)
6099    << Op->getType() << T
6100    << static_cast<unsigned>(SrcAlign.getQuantity())
6101    << static_cast<unsigned>(DestAlign.getQuantity())
6102    << TRange << Op->getSourceRange();
6103}
6104
6105static const Type* getElementType(const Expr *BaseExpr) {
6106  const Type* EltType = BaseExpr->getType().getTypePtr();
6107  if (EltType->isAnyPointerType())
6108    return EltType->getPointeeType().getTypePtr();
6109  else if (EltType->isArrayType())
6110    return EltType->getBaseElementTypeUnsafe();
6111  return EltType;
6112}
6113
6114/// \brief Check whether this array fits the idiom of a size-one tail padded
6115/// array member of a struct.
6116///
6117/// We avoid emitting out-of-bounds access warnings for such arrays as they are
6118/// commonly used to emulate flexible arrays in C89 code.
6119static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6120                                    const NamedDecl *ND) {
6121  if (Size != 1 || !ND) return false;
6122
6123  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6124  if (!FD) return false;
6125
6126  // Don't consider sizes resulting from macro expansions or template argument
6127  // substitution to form C89 tail-padded arrays.
6128
6129  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6130  while (TInfo) {
6131    TypeLoc TL = TInfo->getTypeLoc();
6132    // Look through typedefs.
6133    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6134      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6135      TInfo = TDL->getTypeSourceInfo();
6136      continue;
6137    }
6138    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6139      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6140      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6141        return false;
6142    }
6143    break;
6144  }
6145
6146  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6147  if (!RD) return false;
6148  if (RD->isUnion()) return false;
6149  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6150    if (!CRD->isStandardLayout()) return false;
6151  }
6152
6153  // See if this is the last field decl in the record.
6154  const Decl *D = FD;
6155  while ((D = D->getNextDeclInContext()))
6156    if (isa<FieldDecl>(D))
6157      return false;
6158  return true;
6159}
6160
6161void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6162                            const ArraySubscriptExpr *ASE,
6163                            bool AllowOnePastEnd, bool IndexNegated) {
6164  IndexExpr = IndexExpr->IgnoreParenImpCasts();
6165  if (IndexExpr->isValueDependent())
6166    return;
6167
6168  const Type *EffectiveType = getElementType(BaseExpr);
6169  BaseExpr = BaseExpr->IgnoreParenCasts();
6170  const ConstantArrayType *ArrayTy =
6171    Context.getAsConstantArrayType(BaseExpr->getType());
6172  if (!ArrayTy)
6173    return;
6174
6175  llvm::APSInt index;
6176  if (!IndexExpr->EvaluateAsInt(index, Context))
6177    return;
6178  if (IndexNegated)
6179    index = -index;
6180
6181  const NamedDecl *ND = NULL;
6182  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6183    ND = dyn_cast<NamedDecl>(DRE->getDecl());
6184  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6185    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6186
6187  if (index.isUnsigned() || !index.isNegative()) {
6188    llvm::APInt size = ArrayTy->getSize();
6189    if (!size.isStrictlyPositive())
6190      return;
6191
6192    const Type* BaseType = getElementType(BaseExpr);
6193    if (BaseType != EffectiveType) {
6194      // Make sure we're comparing apples to apples when comparing index to size
6195      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6196      uint64_t array_typesize = Context.getTypeSize(BaseType);
6197      // Handle ptrarith_typesize being zero, such as when casting to void*
6198      if (!ptrarith_typesize) ptrarith_typesize = 1;
6199      if (ptrarith_typesize != array_typesize) {
6200        // There's a cast to a different size type involved
6201        uint64_t ratio = array_typesize / ptrarith_typesize;
6202        // TODO: Be smarter about handling cases where array_typesize is not a
6203        // multiple of ptrarith_typesize
6204        if (ptrarith_typesize * ratio == array_typesize)
6205          size *= llvm::APInt(size.getBitWidth(), ratio);
6206      }
6207    }
6208
6209    if (size.getBitWidth() > index.getBitWidth())
6210      index = index.zext(size.getBitWidth());
6211    else if (size.getBitWidth() < index.getBitWidth())
6212      size = size.zext(index.getBitWidth());
6213
6214    // For array subscripting the index must be less than size, but for pointer
6215    // arithmetic also allow the index (offset) to be equal to size since
6216    // computing the next address after the end of the array is legal and
6217    // commonly done e.g. in C++ iterators and range-based for loops.
6218    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6219      return;
6220
6221    // Also don't warn for arrays of size 1 which are members of some
6222    // structure. These are often used to approximate flexible arrays in C89
6223    // code.
6224    if (IsTailPaddedMemberArray(*this, size, ND))
6225      return;
6226
6227    // Suppress the warning if the subscript expression (as identified by the
6228    // ']' location) and the index expression are both from macro expansions
6229    // within a system header.
6230    if (ASE) {
6231      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6232          ASE->getRBracketLoc());
6233      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6234        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6235            IndexExpr->getLocStart());
6236        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
6237          return;
6238      }
6239    }
6240
6241    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6242    if (ASE)
6243      DiagID = diag::warn_array_index_exceeds_bounds;
6244
6245    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6246                        PDiag(DiagID) << index.toString(10, true)
6247                          << size.toString(10, true)
6248                          << (unsigned)size.getLimitedValue(~0U)
6249                          << IndexExpr->getSourceRange());
6250  } else {
6251    unsigned DiagID = diag::warn_array_index_precedes_bounds;
6252    if (!ASE) {
6253      DiagID = diag::warn_ptr_arith_precedes_bounds;
6254      if (index.isNegative()) index = -index;
6255    }
6256
6257    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6258                        PDiag(DiagID) << index.toString(10, true)
6259                          << IndexExpr->getSourceRange());
6260  }
6261
6262  if (!ND) {
6263    // Try harder to find a NamedDecl to point at in the note.
6264    while (const ArraySubscriptExpr *ASE =
6265           dyn_cast<ArraySubscriptExpr>(BaseExpr))
6266      BaseExpr = ASE->getBase()->IgnoreParenCasts();
6267    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6268      ND = dyn_cast<NamedDecl>(DRE->getDecl());
6269    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6270      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6271  }
6272
6273  if (ND)
6274    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6275                        PDiag(diag::note_array_index_out_of_bounds)
6276                          << ND->getDeclName());
6277}
6278
6279void Sema::CheckArrayAccess(const Expr *expr) {
6280  int AllowOnePastEnd = 0;
6281  while (expr) {
6282    expr = expr->IgnoreParenImpCasts();
6283    switch (expr->getStmtClass()) {
6284      case Stmt::ArraySubscriptExprClass: {
6285        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6286        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6287                         AllowOnePastEnd > 0);
6288        return;
6289      }
6290      case Stmt::UnaryOperatorClass: {
6291        // Only unwrap the * and & unary operators
6292        const UnaryOperator *UO = cast<UnaryOperator>(expr);
6293        expr = UO->getSubExpr();
6294        switch (UO->getOpcode()) {
6295          case UO_AddrOf:
6296            AllowOnePastEnd++;
6297            break;
6298          case UO_Deref:
6299            AllowOnePastEnd--;
6300            break;
6301          default:
6302            return;
6303        }
6304        break;
6305      }
6306      case Stmt::ConditionalOperatorClass: {
6307        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6308        if (const Expr *lhs = cond->getLHS())
6309          CheckArrayAccess(lhs);
6310        if (const Expr *rhs = cond->getRHS())
6311          CheckArrayAccess(rhs);
6312        return;
6313      }
6314      default:
6315        return;
6316    }
6317  }
6318}
6319
6320//===--- CHECK: Objective-C retain cycles ----------------------------------//
6321
6322namespace {
6323  struct RetainCycleOwner {
6324    RetainCycleOwner() : Variable(0), Indirect(false) {}
6325    VarDecl *Variable;
6326    SourceRange Range;
6327    SourceLocation Loc;
6328    bool Indirect;
6329
6330    void setLocsFrom(Expr *e) {
6331      Loc = e->getExprLoc();
6332      Range = e->getSourceRange();
6333    }
6334  };
6335}
6336
6337/// Consider whether capturing the given variable can possibly lead to
6338/// a retain cycle.
6339static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6340  // In ARC, it's captured strongly iff the variable has __strong
6341  // lifetime.  In MRR, it's captured strongly if the variable is
6342  // __block and has an appropriate type.
6343  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6344    return false;
6345
6346  owner.Variable = var;
6347  if (ref)
6348    owner.setLocsFrom(ref);
6349  return true;
6350}
6351
6352static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6353  while (true) {
6354    e = e->IgnoreParens();
6355    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6356      switch (cast->getCastKind()) {
6357      case CK_BitCast:
6358      case CK_LValueBitCast:
6359      case CK_LValueToRValue:
6360      case CK_ARCReclaimReturnedObject:
6361        e = cast->getSubExpr();
6362        continue;
6363
6364      default:
6365        return false;
6366      }
6367    }
6368
6369    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6370      ObjCIvarDecl *ivar = ref->getDecl();
6371      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6372        return false;
6373
6374      // Try to find a retain cycle in the base.
6375      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6376        return false;
6377
6378      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6379      owner.Indirect = true;
6380      return true;
6381    }
6382
6383    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6384      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6385      if (!var) return false;
6386      return considerVariable(var, ref, owner);
6387    }
6388
6389    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6390      if (member->isArrow()) return false;
6391
6392      // Don't count this as an indirect ownership.
6393      e = member->getBase();
6394      continue;
6395    }
6396
6397    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6398      // Only pay attention to pseudo-objects on property references.
6399      ObjCPropertyRefExpr *pre
6400        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6401                                              ->IgnoreParens());
6402      if (!pre) return false;
6403      if (pre->isImplicitProperty()) return false;
6404      ObjCPropertyDecl *property = pre->getExplicitProperty();
6405      if (!property->isRetaining() &&
6406          !(property->getPropertyIvarDecl() &&
6407            property->getPropertyIvarDecl()->getType()
6408              .getObjCLifetime() == Qualifiers::OCL_Strong))
6409          return false;
6410
6411      owner.Indirect = true;
6412      if (pre->isSuperReceiver()) {
6413        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6414        if (!owner.Variable)
6415          return false;
6416        owner.Loc = pre->getLocation();
6417        owner.Range = pre->getSourceRange();
6418        return true;
6419      }
6420      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6421                              ->getSourceExpr());
6422      continue;
6423    }
6424
6425    // Array ivars?
6426
6427    return false;
6428  }
6429}
6430
6431namespace {
6432  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6433    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6434      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6435        Variable(variable), Capturer(0) {}
6436
6437    VarDecl *Variable;
6438    Expr *Capturer;
6439
6440    void VisitDeclRefExpr(DeclRefExpr *ref) {
6441      if (ref->getDecl() == Variable && !Capturer)
6442        Capturer = ref;
6443    }
6444
6445    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6446      if (Capturer) return;
6447      Visit(ref->getBase());
6448      if (Capturer && ref->isFreeIvar())
6449        Capturer = ref;
6450    }
6451
6452    void VisitBlockExpr(BlockExpr *block) {
6453      // Look inside nested blocks
6454      if (block->getBlockDecl()->capturesVariable(Variable))
6455        Visit(block->getBlockDecl()->getBody());
6456    }
6457
6458    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6459      if (Capturer) return;
6460      if (OVE->getSourceExpr())
6461        Visit(OVE->getSourceExpr());
6462    }
6463  };
6464}
6465
6466/// Check whether the given argument is a block which captures a
6467/// variable.
6468static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6469  assert(owner.Variable && owner.Loc.isValid());
6470
6471  e = e->IgnoreParenCasts();
6472
6473  // Look through [^{...} copy] and Block_copy(^{...}).
6474  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6475    Selector Cmd = ME->getSelector();
6476    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6477      e = ME->getInstanceReceiver();
6478      if (!e)
6479        return 0;
6480      e = e->IgnoreParenCasts();
6481    }
6482  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6483    if (CE->getNumArgs() == 1) {
6484      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6485      if (Fn) {
6486        const IdentifierInfo *FnI = Fn->getIdentifier();
6487        if (FnI && FnI->isStr("_Block_copy")) {
6488          e = CE->getArg(0)->IgnoreParenCasts();
6489        }
6490      }
6491    }
6492  }
6493
6494  BlockExpr *block = dyn_cast<BlockExpr>(e);
6495  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6496    return 0;
6497
6498  FindCaptureVisitor visitor(S.Context, owner.Variable);
6499  visitor.Visit(block->getBlockDecl()->getBody());
6500  return visitor.Capturer;
6501}
6502
6503static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6504                                RetainCycleOwner &owner) {
6505  assert(capturer);
6506  assert(owner.Variable && owner.Loc.isValid());
6507
6508  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6509    << owner.Variable << capturer->getSourceRange();
6510  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6511    << owner.Indirect << owner.Range;
6512}
6513
6514/// Check for a keyword selector that starts with the word 'add' or
6515/// 'set'.
6516static bool isSetterLikeSelector(Selector sel) {
6517  if (sel.isUnarySelector()) return false;
6518
6519  StringRef str = sel.getNameForSlot(0);
6520  while (!str.empty() && str.front() == '_') str = str.substr(1);
6521  if (str.startswith("set"))
6522    str = str.substr(3);
6523  else if (str.startswith("add")) {
6524    // Specially whitelist 'addOperationWithBlock:'.
6525    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6526      return false;
6527    str = str.substr(3);
6528  }
6529  else
6530    return false;
6531
6532  if (str.empty()) return true;
6533  return !isLowercase(str.front());
6534}
6535
6536/// Check a message send to see if it's likely to cause a retain cycle.
6537void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6538  // Only check instance methods whose selector looks like a setter.
6539  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6540    return;
6541
6542  // Try to find a variable that the receiver is strongly owned by.
6543  RetainCycleOwner owner;
6544  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6545    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6546      return;
6547  } else {
6548    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6549    owner.Variable = getCurMethodDecl()->getSelfDecl();
6550    owner.Loc = msg->getSuperLoc();
6551    owner.Range = msg->getSuperLoc();
6552  }
6553
6554  // Check whether the receiver is captured by any of the arguments.
6555  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6556    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6557      return diagnoseRetainCycle(*this, capturer, owner);
6558}
6559
6560/// Check a property assign to see if it's likely to cause a retain cycle.
6561void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6562  RetainCycleOwner owner;
6563  if (!findRetainCycleOwner(*this, receiver, owner))
6564    return;
6565
6566  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6567    diagnoseRetainCycle(*this, capturer, owner);
6568}
6569
6570void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6571  RetainCycleOwner Owner;
6572  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6573    return;
6574
6575  // Because we don't have an expression for the variable, we have to set the
6576  // location explicitly here.
6577  Owner.Loc = Var->getLocation();
6578  Owner.Range = Var->getSourceRange();
6579
6580  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6581    diagnoseRetainCycle(*this, Capturer, Owner);
6582}
6583
6584static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6585                                     Expr *RHS, bool isProperty) {
6586  // Check if RHS is an Objective-C object literal, which also can get
6587  // immediately zapped in a weak reference.  Note that we explicitly
6588  // allow ObjCStringLiterals, since those are designed to never really die.
6589  RHS = RHS->IgnoreParenImpCasts();
6590
6591  // This enum needs to match with the 'select' in
6592  // warn_objc_arc_literal_assign (off-by-1).
6593  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6594  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6595    return false;
6596
6597  S.Diag(Loc, diag::warn_arc_literal_assign)
6598    << (unsigned) Kind
6599    << (isProperty ? 0 : 1)
6600    << RHS->getSourceRange();
6601
6602  return true;
6603}
6604
6605static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6606                                    Qualifiers::ObjCLifetime LT,
6607                                    Expr *RHS, bool isProperty) {
6608  // Strip off any implicit cast added to get to the one ARC-specific.
6609  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6610    if (cast->getCastKind() == CK_ARCConsumeObject) {
6611      S.Diag(Loc, diag::warn_arc_retained_assign)
6612        << (LT == Qualifiers::OCL_ExplicitNone)
6613        << (isProperty ? 0 : 1)
6614        << RHS->getSourceRange();
6615      return true;
6616    }
6617    RHS = cast->getSubExpr();
6618  }
6619
6620  if (LT == Qualifiers::OCL_Weak &&
6621      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6622    return true;
6623
6624  return false;
6625}
6626
6627bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6628                              QualType LHS, Expr *RHS) {
6629  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6630
6631  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6632    return false;
6633
6634  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6635    return true;
6636
6637  return false;
6638}
6639
6640void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6641                              Expr *LHS, Expr *RHS) {
6642  QualType LHSType;
6643  // PropertyRef on LHS type need be directly obtained from
6644  // its declaration as it has a PsuedoType.
6645  ObjCPropertyRefExpr *PRE
6646    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6647  if (PRE && !PRE->isImplicitProperty()) {
6648    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6649    if (PD)
6650      LHSType = PD->getType();
6651  }
6652
6653  if (LHSType.isNull())
6654    LHSType = LHS->getType();
6655
6656  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6657
6658  if (LT == Qualifiers::OCL_Weak) {
6659    DiagnosticsEngine::Level Level =
6660      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6661    if (Level != DiagnosticsEngine::Ignored)
6662      getCurFunction()->markSafeWeakUse(LHS);
6663  }
6664
6665  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6666    return;
6667
6668  // FIXME. Check for other life times.
6669  if (LT != Qualifiers::OCL_None)
6670    return;
6671
6672  if (PRE) {
6673    if (PRE->isImplicitProperty())
6674      return;
6675    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6676    if (!PD)
6677      return;
6678
6679    unsigned Attributes = PD->getPropertyAttributes();
6680    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6681      // when 'assign' attribute was not explicitly specified
6682      // by user, ignore it and rely on property type itself
6683      // for lifetime info.
6684      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6685      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6686          LHSType->isObjCRetainableType())
6687        return;
6688
6689      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6690        if (cast->getCastKind() == CK_ARCConsumeObject) {
6691          Diag(Loc, diag::warn_arc_retained_property_assign)
6692          << RHS->getSourceRange();
6693          return;
6694        }
6695        RHS = cast->getSubExpr();
6696      }
6697    }
6698    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6699      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6700        return;
6701    }
6702  }
6703}
6704
6705//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6706
6707namespace {
6708bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6709                                 SourceLocation StmtLoc,
6710                                 const NullStmt *Body) {
6711  // Do not warn if the body is a macro that expands to nothing, e.g:
6712  //
6713  // #define CALL(x)
6714  // if (condition)
6715  //   CALL(0);
6716  //
6717  if (Body->hasLeadingEmptyMacro())
6718    return false;
6719
6720  // Get line numbers of statement and body.
6721  bool StmtLineInvalid;
6722  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6723                                                      &StmtLineInvalid);
6724  if (StmtLineInvalid)
6725    return false;
6726
6727  bool BodyLineInvalid;
6728  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6729                                                      &BodyLineInvalid);
6730  if (BodyLineInvalid)
6731    return false;
6732
6733  // Warn if null statement and body are on the same line.
6734  if (StmtLine != BodyLine)
6735    return false;
6736
6737  return true;
6738}
6739} // Unnamed namespace
6740
6741void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6742                                 const Stmt *Body,
6743                                 unsigned DiagID) {
6744  // Since this is a syntactic check, don't emit diagnostic for template
6745  // instantiations, this just adds noise.
6746  if (CurrentInstantiationScope)
6747    return;
6748
6749  // The body should be a null statement.
6750  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6751  if (!NBody)
6752    return;
6753
6754  // Do the usual checks.
6755  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6756    return;
6757
6758  Diag(NBody->getSemiLoc(), DiagID);
6759  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6760}
6761
6762void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6763                                 const Stmt *PossibleBody) {
6764  assert(!CurrentInstantiationScope); // Ensured by caller
6765
6766  SourceLocation StmtLoc;
6767  const Stmt *Body;
6768  unsigned DiagID;
6769  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6770    StmtLoc = FS->getRParenLoc();
6771    Body = FS->getBody();
6772    DiagID = diag::warn_empty_for_body;
6773  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6774    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6775    Body = WS->getBody();
6776    DiagID = diag::warn_empty_while_body;
6777  } else
6778    return; // Neither `for' nor `while'.
6779
6780  // The body should be a null statement.
6781  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6782  if (!NBody)
6783    return;
6784
6785  // Skip expensive checks if diagnostic is disabled.
6786  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6787          DiagnosticsEngine::Ignored)
6788    return;
6789
6790  // Do the usual checks.
6791  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6792    return;
6793
6794  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6795  // noise level low, emit diagnostics only if for/while is followed by a
6796  // CompoundStmt, e.g.:
6797  //    for (int i = 0; i < n; i++);
6798  //    {
6799  //      a(i);
6800  //    }
6801  // or if for/while is followed by a statement with more indentation
6802  // than for/while itself:
6803  //    for (int i = 0; i < n; i++);
6804  //      a(i);
6805  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6806  if (!ProbableTypo) {
6807    bool BodyColInvalid;
6808    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6809                             PossibleBody->getLocStart(),
6810                             &BodyColInvalid);
6811    if (BodyColInvalid)
6812      return;
6813
6814    bool StmtColInvalid;
6815    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6816                             S->getLocStart(),
6817                             &StmtColInvalid);
6818    if (StmtColInvalid)
6819      return;
6820
6821    if (BodyCol > StmtCol)
6822      ProbableTypo = true;
6823  }
6824
6825  if (ProbableTypo) {
6826    Diag(NBody->getSemiLoc(), DiagID);
6827    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6828  }
6829}
6830
6831//===--- Layout compatibility ----------------------------------------------//
6832
6833namespace {
6834
6835bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6836
6837/// \brief Check if two enumeration types are layout-compatible.
6838bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6839  // C++11 [dcl.enum] p8:
6840  // Two enumeration types are layout-compatible if they have the same
6841  // underlying type.
6842  return ED1->isComplete() && ED2->isComplete() &&
6843         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6844}
6845
6846/// \brief Check if two fields are layout-compatible.
6847bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6848  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6849    return false;
6850
6851  if (Field1->isBitField() != Field2->isBitField())
6852    return false;
6853
6854  if (Field1->isBitField()) {
6855    // Make sure that the bit-fields are the same length.
6856    unsigned Bits1 = Field1->getBitWidthValue(C);
6857    unsigned Bits2 = Field2->getBitWidthValue(C);
6858
6859    if (Bits1 != Bits2)
6860      return false;
6861  }
6862
6863  return true;
6864}
6865
6866/// \brief Check if two standard-layout structs are layout-compatible.
6867/// (C++11 [class.mem] p17)
6868bool isLayoutCompatibleStruct(ASTContext &C,
6869                              RecordDecl *RD1,
6870                              RecordDecl *RD2) {
6871  // If both records are C++ classes, check that base classes match.
6872  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6873    // If one of records is a CXXRecordDecl we are in C++ mode,
6874    // thus the other one is a CXXRecordDecl, too.
6875    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6876    // Check number of base classes.
6877    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6878      return false;
6879
6880    // Check the base classes.
6881    for (CXXRecordDecl::base_class_const_iterator
6882               Base1 = D1CXX->bases_begin(),
6883           BaseEnd1 = D1CXX->bases_end(),
6884              Base2 = D2CXX->bases_begin();
6885         Base1 != BaseEnd1;
6886         ++Base1, ++Base2) {
6887      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6888        return false;
6889    }
6890  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6891    // If only RD2 is a C++ class, it should have zero base classes.
6892    if (D2CXX->getNumBases() > 0)
6893      return false;
6894  }
6895
6896  // Check the fields.
6897  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6898                             Field2End = RD2->field_end(),
6899                             Field1 = RD1->field_begin(),
6900                             Field1End = RD1->field_end();
6901  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6902    if (!isLayoutCompatible(C, *Field1, *Field2))
6903      return false;
6904  }
6905  if (Field1 != Field1End || Field2 != Field2End)
6906    return false;
6907
6908  return true;
6909}
6910
6911/// \brief Check if two standard-layout unions are layout-compatible.
6912/// (C++11 [class.mem] p18)
6913bool isLayoutCompatibleUnion(ASTContext &C,
6914                             RecordDecl *RD1,
6915                             RecordDecl *RD2) {
6916  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6917  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6918                                  Field2End = RD2->field_end();
6919       Field2 != Field2End; ++Field2) {
6920    UnmatchedFields.insert(*Field2);
6921  }
6922
6923  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6924                                  Field1End = RD1->field_end();
6925       Field1 != Field1End; ++Field1) {
6926    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6927        I = UnmatchedFields.begin(),
6928        E = UnmatchedFields.end();
6929
6930    for ( ; I != E; ++I) {
6931      if (isLayoutCompatible(C, *Field1, *I)) {
6932        bool Result = UnmatchedFields.erase(*I);
6933        (void) Result;
6934        assert(Result);
6935        break;
6936      }
6937    }
6938    if (I == E)
6939      return false;
6940  }
6941
6942  return UnmatchedFields.empty();
6943}
6944
6945bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6946  if (RD1->isUnion() != RD2->isUnion())
6947    return false;
6948
6949  if (RD1->isUnion())
6950    return isLayoutCompatibleUnion(C, RD1, RD2);
6951  else
6952    return isLayoutCompatibleStruct(C, RD1, RD2);
6953}
6954
6955/// \brief Check if two types are layout-compatible in C++11 sense.
6956bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6957  if (T1.isNull() || T2.isNull())
6958    return false;
6959
6960  // C++11 [basic.types] p11:
6961  // If two types T1 and T2 are the same type, then T1 and T2 are
6962  // layout-compatible types.
6963  if (C.hasSameType(T1, T2))
6964    return true;
6965
6966  T1 = T1.getCanonicalType().getUnqualifiedType();
6967  T2 = T2.getCanonicalType().getUnqualifiedType();
6968
6969  const Type::TypeClass TC1 = T1->getTypeClass();
6970  const Type::TypeClass TC2 = T2->getTypeClass();
6971
6972  if (TC1 != TC2)
6973    return false;
6974
6975  if (TC1 == Type::Enum) {
6976    return isLayoutCompatible(C,
6977                              cast<EnumType>(T1)->getDecl(),
6978                              cast<EnumType>(T2)->getDecl());
6979  } else if (TC1 == Type::Record) {
6980    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6981      return false;
6982
6983    return isLayoutCompatible(C,
6984                              cast<RecordType>(T1)->getDecl(),
6985                              cast<RecordType>(T2)->getDecl());
6986  }
6987
6988  return false;
6989}
6990}
6991
6992//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6993
6994namespace {
6995/// \brief Given a type tag expression find the type tag itself.
6996///
6997/// \param TypeExpr Type tag expression, as it appears in user's code.
6998///
6999/// \param VD Declaration of an identifier that appears in a type tag.
7000///
7001/// \param MagicValue Type tag magic value.
7002bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7003                     const ValueDecl **VD, uint64_t *MagicValue) {
7004  while(true) {
7005    if (!TypeExpr)
7006      return false;
7007
7008    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7009
7010    switch (TypeExpr->getStmtClass()) {
7011    case Stmt::UnaryOperatorClass: {
7012      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7013      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7014        TypeExpr = UO->getSubExpr();
7015        continue;
7016      }
7017      return false;
7018    }
7019
7020    case Stmt::DeclRefExprClass: {
7021      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7022      *VD = DRE->getDecl();
7023      return true;
7024    }
7025
7026    case Stmt::IntegerLiteralClass: {
7027      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7028      llvm::APInt MagicValueAPInt = IL->getValue();
7029      if (MagicValueAPInt.getActiveBits() <= 64) {
7030        *MagicValue = MagicValueAPInt.getZExtValue();
7031        return true;
7032      } else
7033        return false;
7034    }
7035
7036    case Stmt::BinaryConditionalOperatorClass:
7037    case Stmt::ConditionalOperatorClass: {
7038      const AbstractConditionalOperator *ACO =
7039          cast<AbstractConditionalOperator>(TypeExpr);
7040      bool Result;
7041      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7042        if (Result)
7043          TypeExpr = ACO->getTrueExpr();
7044        else
7045          TypeExpr = ACO->getFalseExpr();
7046        continue;
7047      }
7048      return false;
7049    }
7050
7051    case Stmt::BinaryOperatorClass: {
7052      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7053      if (BO->getOpcode() == BO_Comma) {
7054        TypeExpr = BO->getRHS();
7055        continue;
7056      }
7057      return false;
7058    }
7059
7060    default:
7061      return false;
7062    }
7063  }
7064}
7065
7066/// \brief Retrieve the C type corresponding to type tag TypeExpr.
7067///
7068/// \param TypeExpr Expression that specifies a type tag.
7069///
7070/// \param MagicValues Registered magic values.
7071///
7072/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7073///        kind.
7074///
7075/// \param TypeInfo Information about the corresponding C type.
7076///
7077/// \returns true if the corresponding C type was found.
7078bool GetMatchingCType(
7079        const IdentifierInfo *ArgumentKind,
7080        const Expr *TypeExpr, const ASTContext &Ctx,
7081        const llvm::DenseMap<Sema::TypeTagMagicValue,
7082                             Sema::TypeTagData> *MagicValues,
7083        bool &FoundWrongKind,
7084        Sema::TypeTagData &TypeInfo) {
7085  FoundWrongKind = false;
7086
7087  // Variable declaration that has type_tag_for_datatype attribute.
7088  const ValueDecl *VD = NULL;
7089
7090  uint64_t MagicValue;
7091
7092  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7093    return false;
7094
7095  if (VD) {
7096    for (specific_attr_iterator<TypeTagForDatatypeAttr>
7097             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7098             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7099         I != E; ++I) {
7100      if (I->getArgumentKind() != ArgumentKind) {
7101        FoundWrongKind = true;
7102        return false;
7103      }
7104      TypeInfo.Type = I->getMatchingCType();
7105      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7106      TypeInfo.MustBeNull = I->getMustBeNull();
7107      return true;
7108    }
7109    return false;
7110  }
7111
7112  if (!MagicValues)
7113    return false;
7114
7115  llvm::DenseMap<Sema::TypeTagMagicValue,
7116                 Sema::TypeTagData>::const_iterator I =
7117      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7118  if (I == MagicValues->end())
7119    return false;
7120
7121  TypeInfo = I->second;
7122  return true;
7123}
7124} // unnamed namespace
7125
7126void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7127                                      uint64_t MagicValue, QualType Type,
7128                                      bool LayoutCompatible,
7129                                      bool MustBeNull) {
7130  if (!TypeTagForDatatypeMagicValues)
7131    TypeTagForDatatypeMagicValues.reset(
7132        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7133
7134  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7135  (*TypeTagForDatatypeMagicValues)[Magic] =
7136      TypeTagData(Type, LayoutCompatible, MustBeNull);
7137}
7138
7139namespace {
7140bool IsSameCharType(QualType T1, QualType T2) {
7141  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7142  if (!BT1)
7143    return false;
7144
7145  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7146  if (!BT2)
7147    return false;
7148
7149  BuiltinType::Kind T1Kind = BT1->getKind();
7150  BuiltinType::Kind T2Kind = BT2->getKind();
7151
7152  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7153         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7154         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7155         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7156}
7157} // unnamed namespace
7158
7159void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7160                                    const Expr * const *ExprArgs) {
7161  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7162  bool IsPointerAttr = Attr->getIsPointer();
7163
7164  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7165  bool FoundWrongKind;
7166  TypeTagData TypeInfo;
7167  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7168                        TypeTagForDatatypeMagicValues.get(),
7169                        FoundWrongKind, TypeInfo)) {
7170    if (FoundWrongKind)
7171      Diag(TypeTagExpr->getExprLoc(),
7172           diag::warn_type_tag_for_datatype_wrong_kind)
7173        << TypeTagExpr->getSourceRange();
7174    return;
7175  }
7176
7177  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7178  if (IsPointerAttr) {
7179    // Skip implicit cast of pointer to `void *' (as a function argument).
7180    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7181      if (ICE->getType()->isVoidPointerType() &&
7182          ICE->getCastKind() == CK_BitCast)
7183        ArgumentExpr = ICE->getSubExpr();
7184  }
7185  QualType ArgumentType = ArgumentExpr->getType();
7186
7187  // Passing a `void*' pointer shouldn't trigger a warning.
7188  if (IsPointerAttr && ArgumentType->isVoidPointerType())
7189    return;
7190
7191  if (TypeInfo.MustBeNull) {
7192    // Type tag with matching void type requires a null pointer.
7193    if (!ArgumentExpr->isNullPointerConstant(Context,
7194                                             Expr::NPC_ValueDependentIsNotNull)) {
7195      Diag(ArgumentExpr->getExprLoc(),
7196           diag::warn_type_safety_null_pointer_required)
7197          << ArgumentKind->getName()
7198          << ArgumentExpr->getSourceRange()
7199          << TypeTagExpr->getSourceRange();
7200    }
7201    return;
7202  }
7203
7204  QualType RequiredType = TypeInfo.Type;
7205  if (IsPointerAttr)
7206    RequiredType = Context.getPointerType(RequiredType);
7207
7208  bool mismatch = false;
7209  if (!TypeInfo.LayoutCompatible) {
7210    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7211
7212    // C++11 [basic.fundamental] p1:
7213    // Plain char, signed char, and unsigned char are three distinct types.
7214    //
7215    // But we treat plain `char' as equivalent to `signed char' or `unsigned
7216    // char' depending on the current char signedness mode.
7217    if (mismatch)
7218      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7219                                           RequiredType->getPointeeType())) ||
7220          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7221        mismatch = false;
7222  } else
7223    if (IsPointerAttr)
7224      mismatch = !isLayoutCompatible(Context,
7225                                     ArgumentType->getPointeeType(),
7226                                     RequiredType->getPointeeType());
7227    else
7228      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7229
7230  if (mismatch)
7231    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7232        << ArgumentType << ArgumentKind->getName()
7233        << TypeInfo.LayoutCompatible << RequiredType
7234        << ArgumentExpr->getSourceRange()
7235        << TypeTagExpr->getSourceRange();
7236}
7237