BasicAliasAnalysis.cpp revision 21de4c0daf2b35963d16541a3007c543237eb7bf
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40/// isKnownNonNull - Return true if we know that the specified value is never
41/// null.
42static bool isKnownNonNull(const Value *V) {
43  // Alloca never returns null, malloc might.
44  if (isa<AllocaInst>(V)) return true;
45
46  // A byval argument is never null.
47  if (const Argument *A = dyn_cast<Argument>(V))
48    return A->hasByValAttr();
49
50  // Global values are not null unless extern weak.
51  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52    return !GV->hasExternalWeakLinkage();
53  return false;
54}
55
56/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57/// object that never escapes from the function.
58static bool isNonEscapingLocalObject(const Value *V) {
59  // If this is a local allocation, check to see if it escapes.
60  if (isa<AllocaInst>(V) || isNoAliasCall(V))
61    // Set StoreCaptures to True so that we can assume in our callers that the
62    // pointer is not the result of a load instruction. Currently
63    // PointerMayBeCaptured doesn't have any special analysis for the
64    // StoreCaptures=false case; if it did, our callers could be refined to be
65    // more precise.
66    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
67
68  // If this is an argument that corresponds to a byval or noalias argument,
69  // then it has not escaped before entering the function.  Check if it escapes
70  // inside the function.
71  if (const Argument *A = dyn_cast<Argument>(V))
72    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73      // Don't bother analyzing arguments already known not to escape.
74      if (A->hasNoCaptureAttr())
75        return true;
76      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
77    }
78  return false;
79}
80
81/// isEscapeSource - Return true if the pointer is one which would have
82/// been considered an escape by isNonEscapingLocalObject.
83static bool isEscapeSource(const Value *V) {
84  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
85    return true;
86
87  // The load case works because isNonEscapingLocalObject considers all
88  // stores to be escapes (it passes true for the StoreCaptures argument
89  // to PointerMayBeCaptured).
90  if (isa<LoadInst>(V))
91    return true;
92
93  return false;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, unsigned Size,
99                                const TargetData &TD) {
100  const Type *AccessTy;
101  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
102    AccessTy = GV->getType()->getElementType();
103  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
104    if (!AI->isArrayAllocation())
105      AccessTy = AI->getType()->getElementType();
106    else
107      return false;
108  } else if (const CallInst* CI = extractMallocCall(V)) {
109    if (!isArrayMalloc(V, &TD))
110      // The size is the argument to the malloc call.
111      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
112        return (C->getZExtValue() < Size);
113    return false;
114  } else if (const Argument *A = dyn_cast<Argument>(V)) {
115    if (A->hasByValAttr())
116      AccessTy = cast<PointerType>(A->getType())->getElementType();
117    else
118      return false;
119  } else {
120    return false;
121  }
122
123  if (AccessTy->isSized())
124    return TD.getTypeAllocSize(AccessTy) < Size;
125  return false;
126}
127
128//===----------------------------------------------------------------------===//
129// NoAA Pass
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// NoAA - This class implements the -no-aa pass, which always returns "I
134  /// don't know" for alias queries.  NoAA is unlike other alias analysis
135  /// implementations, in that it does not chain to a previous analysis.  As
136  /// such it doesn't follow many of the rules that other alias analyses must.
137  ///
138  struct NoAA : public ImmutablePass, public AliasAnalysis {
139    static char ID; // Class identification, replacement for typeinfo
140    NoAA() : ImmutablePass(&ID) {}
141    explicit NoAA(void *PID) : ImmutablePass(PID) { }
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144    }
145
146    virtual void initializePass() {
147      TD = getAnalysisIfAvailable<TargetData>();
148    }
149
150    virtual AliasResult alias(const Value *V1, unsigned V1Size,
151                              const Value *V2, unsigned V2Size) {
152      return MayAlias;
153    }
154
155    virtual void getArgumentAccesses(Function *F, CallSite CS,
156                                     std::vector<PointerAccessInfo> &Info) {
157      llvm_unreachable("This method may not be called on this function!");
158    }
159
160    virtual bool pointsToConstantMemory(const Value *P) { return false; }
161    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
162      return ModRef;
163    }
164    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
165      return ModRef;
166    }
167
168    virtual void deleteValue(Value *V) {}
169    virtual void copyValue(Value *From, Value *To) {}
170
171    /// getAdjustedAnalysisPointer - This method is used when a pass implements
172    /// an analysis interface through multiple inheritance.  If needed, it should
173    /// override this to adjust the this pointer as needed for the specified pass
174    /// info.
175    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
176      if (PI->isPassID(&AliasAnalysis::ID))
177        return (AliasAnalysis*)this;
178      return this;
179    }
180  };
181}  // End of anonymous namespace
182
183// Register this pass...
184char NoAA::ID = 0;
185static RegisterPass<NoAA>
186U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
187
188// Declare that we implement the AliasAnalysis interface
189static RegisterAnalysisGroup<AliasAnalysis> V(U);
190
191ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
192
193//===----------------------------------------------------------------------===//
194// BasicAliasAnalysis Pass
195//===----------------------------------------------------------------------===//
196
197static const Function *getParent(const Value *V) {
198  if (const Instruction *inst = dyn_cast<Instruction>(V))
199    return inst->getParent()->getParent();
200
201  if (const Argument *arg = dyn_cast<Argument>(V))
202    return arg->getParent();
203
204  return NULL;
205}
206
207static bool sameParent(const Value *O1, const Value *O2) {
208
209  const Function *F1 = getParent(O1);
210  const Function *F2 = getParent(O2);
211
212  return F1 && F1 == F2;
213}
214
215#ifdef XDEBUG
216static bool notDifferentParent(const Value *O1, const Value *O2) {
217
218  const Function *F1 = getParent(O1);
219  const Function *F2 = getParent(O2);
220
221  return !F1 || !F2 || F1 == F2;
222}
223#endif
224
225namespace {
226  /// BasicAliasAnalysis - This is the default alias analysis implementation.
227  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
228  /// derives from the NoAA class.
229  struct BasicAliasAnalysis : public NoAA {
230    /// Interprocedural - Flag for "interprocedural" mode, where we must
231    /// support queries of values which live in different functions.
232    bool Interprocedural;
233
234    static char ID; // Class identification, replacement for typeinfo
235    BasicAliasAnalysis()
236      : NoAA(&ID), Interprocedural(false) {}
237    BasicAliasAnalysis(void *PID, bool interprocedural)
238      : NoAA(PID), Interprocedural(interprocedural) {}
239
240    AliasResult alias(const Value *V1, unsigned V1Size,
241                      const Value *V2, unsigned V2Size) {
242      assert(Visited.empty() && "Visited must be cleared after use!");
243#ifdef XDEBUG
244      assert((Interprocedural || notDifferentParent(V1, V2)) &&
245             "BasicAliasAnalysis (-basicaa) doesn't support interprocedural "
246             "queries; use InterproceduralAliasAnalysis "
247             "(-interprocedural-basic-aa) instead.");
248#endif
249      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
250      Visited.clear();
251      return Alias;
252    }
253
254    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
255    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
256
257    /// pointsToConstantMemory - Chase pointers until we find a (constant
258    /// global) or not.
259    bool pointsToConstantMemory(const Value *P);
260
261    /// getAdjustedAnalysisPointer - This method is used when a pass implements
262    /// an analysis interface through multiple inheritance.  If needed, it should
263    /// override this to adjust the this pointer as needed for the specified pass
264    /// info.
265    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
266      if (PI->isPassID(&AliasAnalysis::ID))
267        return (AliasAnalysis*)this;
268      return this;
269    }
270
271  private:
272    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
273    SmallPtrSet<const Value*, 16> Visited;
274
275    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
276    // instruction against another.
277    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
278                         const Value *V2, unsigned V2Size,
279                         const Value *UnderlyingV1, const Value *UnderlyingV2);
280
281    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
282    // instruction against another.
283    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
284                         const Value *V2, unsigned V2Size);
285
286    /// aliasSelect - Disambiguate a Select instruction against another value.
287    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
288                            const Value *V2, unsigned V2Size);
289
290    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
291                           const Value *V2, unsigned V2Size);
292  };
293}  // End of anonymous namespace
294
295// Register this pass...
296char BasicAliasAnalysis::ID = 0;
297static RegisterPass<BasicAliasAnalysis>
298X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
299
300// Declare that we implement the AliasAnalysis interface
301static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
302
303ImmutablePass *llvm::createBasicAliasAnalysisPass() {
304  return new BasicAliasAnalysis();
305}
306
307
308/// pointsToConstantMemory - Chase pointers until we find a (constant
309/// global) or not.
310bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
311  if (const GlobalVariable *GV =
312        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
313    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
314    // global to be marked constant in some modules and non-constant in others.
315    // GV may even be a declaration, not a definition.
316    return GV->isConstant();
317  return false;
318}
319
320
321/// getModRefInfo - Check to see if the specified callsite can clobber the
322/// specified memory object.  Since we only look at local properties of this
323/// function, we really can't say much about this query.  We do, however, use
324/// simple "address taken" analysis on local objects.
325AliasAnalysis::ModRefResult
326BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
327  const Value *Object = P->getUnderlyingObject();
328
329  // If this is a tail call and P points to a stack location, we know that
330  // the tail call cannot access or modify the local stack.
331  // We cannot exclude byval arguments here; these belong to the caller of
332  // the current function not to the current function, and a tail callee
333  // may reference them.
334  if (isa<AllocaInst>(Object))
335    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
336      if (CI->isTailCall())
337        return NoModRef;
338
339  // If we can identify an object and it's known to be within the
340  // same function as the call, we can ignore interprocedural concerns.
341  bool EffectivelyInterprocedural =
342    Interprocedural && !sameParent(Object, CS.getInstruction());
343
344  // If the pointer is to a locally allocated object that does not escape,
345  // then the call can not mod/ref the pointer unless the call takes the pointer
346  // as an argument, and itself doesn't capture it.
347  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
348      !EffectivelyInterprocedural &&
349      isNonEscapingLocalObject(Object)) {
350    bool PassedAsArg = false;
351    unsigned ArgNo = 0;
352    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
353         CI != CE; ++CI, ++ArgNo) {
354      // Only look at the no-capture pointer arguments.
355      if (!(*CI)->getType()->isPointerTy() ||
356          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
357        continue;
358
359      // If  this is a no-capture pointer argument, see if we can tell that it
360      // is impossible to alias the pointer we're checking.  If not, we have to
361      // assume that the call could touch the pointer, even though it doesn't
362      // escape.
363      if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
364        PassedAsArg = true;
365        break;
366      }
367    }
368
369    if (!PassedAsArg)
370      return NoModRef;
371  }
372
373  // Finally, handle specific knowledge of intrinsics.
374  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
375  if (II == 0)
376    return AliasAnalysis::getModRefInfo(CS, P, Size);
377
378  switch (II->getIntrinsicID()) {
379  default: break;
380  case Intrinsic::memcpy:
381  case Intrinsic::memmove: {
382    unsigned Len = ~0U;
383    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
384      Len = LenCI->getZExtValue();
385    Value *Dest = II->getArgOperand(0);
386    Value *Src = II->getArgOperand(1);
387    if (isNoAlias(Dest, Len, P, Size)) {
388      if (isNoAlias(Src, Len, P, Size))
389        return NoModRef;
390      return Ref;
391    }
392    break;
393  }
394  case Intrinsic::memset:
395    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
396    // will handle it for the variable length case.
397    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
398      unsigned Len = LenCI->getZExtValue();
399      Value *Dest = II->getArgOperand(0);
400      if (isNoAlias(Dest, Len, P, Size))
401        return NoModRef;
402    }
403    break;
404  case Intrinsic::atomic_cmp_swap:
405  case Intrinsic::atomic_swap:
406  case Intrinsic::atomic_load_add:
407  case Intrinsic::atomic_load_sub:
408  case Intrinsic::atomic_load_and:
409  case Intrinsic::atomic_load_nand:
410  case Intrinsic::atomic_load_or:
411  case Intrinsic::atomic_load_xor:
412  case Intrinsic::atomic_load_max:
413  case Intrinsic::atomic_load_min:
414  case Intrinsic::atomic_load_umax:
415  case Intrinsic::atomic_load_umin:
416    if (TD) {
417      Value *Op1 = II->getArgOperand(0);
418      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
419      if (isNoAlias(Op1, Op1Size, P, Size))
420        return NoModRef;
421    }
422    break;
423  case Intrinsic::lifetime_start:
424  case Intrinsic::lifetime_end:
425  case Intrinsic::invariant_start: {
426    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
427    if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
428      return NoModRef;
429    break;
430  }
431  case Intrinsic::invariant_end: {
432    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
433    if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
434      return NoModRef;
435    break;
436  }
437  }
438
439  // The AliasAnalysis base class has some smarts, lets use them.
440  return AliasAnalysis::getModRefInfo(CS, P, Size);
441}
442
443
444AliasAnalysis::ModRefResult
445BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
446  // If CS1 or CS2 are readnone, they don't interact.
447  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
448  if (CS1B == DoesNotAccessMemory) return NoModRef;
449
450  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
451  if (CS2B == DoesNotAccessMemory) return NoModRef;
452
453  // If they both only read from memory, just return ref.
454  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
455    return Ref;
456
457  // Otherwise, fall back to NoAA (mod+ref).
458  return NoAA::getModRefInfo(CS1, CS2);
459}
460
461/// GetIndiceDifference - Dest and Src are the variable indices from two
462/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
463/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
464/// difference between the two pointers.
465static void GetIndiceDifference(
466                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
467                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
468  if (Src.empty()) return;
469
470  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
471    const Value *V = Src[i].first;
472    int64_t Scale = Src[i].second;
473
474    // Find V in Dest.  This is N^2, but pointer indices almost never have more
475    // than a few variable indexes.
476    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
477      if (Dest[j].first != V) continue;
478
479      // If we found it, subtract off Scale V's from the entry in Dest.  If it
480      // goes to zero, remove the entry.
481      if (Dest[j].second != Scale)
482        Dest[j].second -= Scale;
483      else
484        Dest.erase(Dest.begin()+j);
485      Scale = 0;
486      break;
487    }
488
489    // If we didn't consume this entry, add it to the end of the Dest list.
490    if (Scale)
491      Dest.push_back(std::make_pair(V, -Scale));
492  }
493}
494
495/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
496/// against another pointer.  We know that V1 is a GEP, but we don't know
497/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
498/// UnderlyingV2 is the same for V2.
499///
500AliasAnalysis::AliasResult
501BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
502                             const Value *V2, unsigned V2Size,
503                             const Value *UnderlyingV1,
504                             const Value *UnderlyingV2) {
505  // If this GEP has been visited before, we're on a use-def cycle.
506  // Such cycles are only valid when PHI nodes are involved or in unreachable
507  // code. The visitPHI function catches cycles containing PHIs, but there
508  // could still be a cycle without PHIs in unreachable code.
509  if (!Visited.insert(GEP1))
510    return MayAlias;
511
512  int64_t GEP1BaseOffset;
513  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
514
515  // If we have two gep instructions with must-alias'ing base pointers, figure
516  // out if the indexes to the GEP tell us anything about the derived pointer.
517  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
518    // Do the base pointers alias?
519    AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
520
521    // If we get a No or May, then return it immediately, no amount of analysis
522    // will improve this situation.
523    if (BaseAlias != MustAlias) return BaseAlias;
524
525    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
526    // exactly, see if the computed offset from the common pointer tells us
527    // about the relation of the resulting pointer.
528    const Value *GEP1BasePtr =
529      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
530
531    int64_t GEP2BaseOffset;
532    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
533    const Value *GEP2BasePtr =
534      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
535
536    // If DecomposeGEPExpression isn't able to look all the way through the
537    // addressing operation, we must not have TD and this is too complex for us
538    // to handle without it.
539    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
540      assert(TD == 0 &&
541             "DecomposeGEPExpression and getUnderlyingObject disagree!");
542      return MayAlias;
543    }
544
545    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
546    // symbolic difference.
547    GEP1BaseOffset -= GEP2BaseOffset;
548    GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
549
550  } else {
551    // Check to see if these two pointers are related by the getelementptr
552    // instruction.  If one pointer is a GEP with a non-zero index of the other
553    // pointer, we know they cannot alias.
554
555    // If both accesses are unknown size, we can't do anything useful here.
556    if (V1Size == ~0U && V2Size == ~0U)
557      return MayAlias;
558
559    AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
560    if (R != MustAlias)
561      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
562      // If V2 is known not to alias GEP base pointer, then the two values
563      // cannot alias per GEP semantics: "A pointer value formed from a
564      // getelementptr instruction is associated with the addresses associated
565      // with the first operand of the getelementptr".
566      return R;
567
568    const Value *GEP1BasePtr =
569      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
570
571    // If DecomposeGEPExpression isn't able to look all the way through the
572    // addressing operation, we must not have TD and this is too complex for us
573    // to handle without it.
574    if (GEP1BasePtr != UnderlyingV1) {
575      assert(TD == 0 &&
576             "DecomposeGEPExpression and getUnderlyingObject disagree!");
577      return MayAlias;
578    }
579  }
580
581  // In the two GEP Case, if there is no difference in the offsets of the
582  // computed pointers, the resultant pointers are a must alias.  This
583  // hapens when we have two lexically identical GEP's (for example).
584  //
585  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
586  // must aliases the GEP, the end result is a must alias also.
587  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
588    return MustAlias;
589
590  // If we have a known constant offset, see if this offset is larger than the
591  // access size being queried.  If so, and if no variable indices can remove
592  // pieces of this constant, then we know we have a no-alias.  For example,
593  //   &A[100] != &A.
594
595  // In order to handle cases like &A[100][i] where i is an out of range
596  // subscript, we have to ignore all constant offset pieces that are a multiple
597  // of a scaled index.  Do this by removing constant offsets that are a
598  // multiple of any of our variable indices.  This allows us to transform
599  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
600  // provides an offset of 4 bytes (assuming a <= 4 byte access).
601  for (unsigned i = 0, e = GEP1VariableIndices.size();
602       i != e && GEP1BaseOffset;++i)
603    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
604      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
605
606  // If our known offset is bigger than the access size, we know we don't have
607  // an alias.
608  if (GEP1BaseOffset) {
609    if (GEP1BaseOffset >= (int64_t)V2Size ||
610        GEP1BaseOffset <= -(int64_t)V1Size)
611      return NoAlias;
612  }
613
614  return MayAlias;
615}
616
617/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
618/// instruction against another.
619AliasAnalysis::AliasResult
620BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
621                                const Value *V2, unsigned V2Size) {
622  // If this select has been visited before, we're on a use-def cycle.
623  // Such cycles are only valid when PHI nodes are involved or in unreachable
624  // code. The visitPHI function catches cycles containing PHIs, but there
625  // could still be a cycle without PHIs in unreachable code.
626  if (!Visited.insert(SI))
627    return MayAlias;
628
629  // If the values are Selects with the same condition, we can do a more precise
630  // check: just check for aliases between the values on corresponding arms.
631  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
632    if (SI->getCondition() == SI2->getCondition()) {
633      AliasResult Alias =
634        aliasCheck(SI->getTrueValue(), SISize,
635                   SI2->getTrueValue(), V2Size);
636      if (Alias == MayAlias)
637        return MayAlias;
638      AliasResult ThisAlias =
639        aliasCheck(SI->getFalseValue(), SISize,
640                   SI2->getFalseValue(), V2Size);
641      if (ThisAlias != Alias)
642        return MayAlias;
643      return Alias;
644    }
645
646  // If both arms of the Select node NoAlias or MustAlias V2, then returns
647  // NoAlias / MustAlias. Otherwise, returns MayAlias.
648  AliasResult Alias =
649    aliasCheck(V2, V2Size, SI->getTrueValue(), SISize);
650  if (Alias == MayAlias)
651    return MayAlias;
652
653  // If V2 is visited, the recursive case will have been caught in the
654  // above aliasCheck call, so these subsequent calls to aliasCheck
655  // don't need to assume that V2 is being visited recursively.
656  Visited.erase(V2);
657
658  AliasResult ThisAlias =
659    aliasCheck(V2, V2Size, SI->getFalseValue(), SISize);
660  if (ThisAlias != Alias)
661    return MayAlias;
662  return Alias;
663}
664
665// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
666// against another.
667AliasAnalysis::AliasResult
668BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
669                             const Value *V2, unsigned V2Size) {
670  // The PHI node has already been visited, avoid recursion any further.
671  if (!Visited.insert(PN))
672    return MayAlias;
673
674  // If the values are PHIs in the same block, we can do a more precise
675  // as well as efficient check: just check for aliases between the values
676  // on corresponding edges.
677  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
678    if (PN2->getParent() == PN->getParent()) {
679      AliasResult Alias =
680        aliasCheck(PN->getIncomingValue(0), PNSize,
681                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
682                   V2Size);
683      if (Alias == MayAlias)
684        return MayAlias;
685      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
686        AliasResult ThisAlias =
687          aliasCheck(PN->getIncomingValue(i), PNSize,
688                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
689                     V2Size);
690        if (ThisAlias != Alias)
691          return MayAlias;
692      }
693      return Alias;
694    }
695
696  SmallPtrSet<Value*, 4> UniqueSrc;
697  SmallVector<Value*, 4> V1Srcs;
698  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
699    Value *PV1 = PN->getIncomingValue(i);
700    if (isa<PHINode>(PV1))
701      // If any of the source itself is a PHI, return MayAlias conservatively
702      // to avoid compile time explosion. The worst possible case is if both
703      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
704      // and 'n' are the number of PHI sources.
705      return MayAlias;
706    if (UniqueSrc.insert(PV1))
707      V1Srcs.push_back(PV1);
708  }
709
710  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
711  // Early exit if the check of the first PHI source against V2 is MayAlias.
712  // Other results are not possible.
713  if (Alias == MayAlias)
714    return MayAlias;
715
716  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
717  // NoAlias / MustAlias. Otherwise, returns MayAlias.
718  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
719    Value *V = V1Srcs[i];
720
721    // If V2 is visited, the recursive case will have been caught in the
722    // above aliasCheck call, so these subsequent calls to aliasCheck
723    // don't need to assume that V2 is being visited recursively.
724    Visited.erase(V2);
725
726    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
727    if (ThisAlias != Alias || ThisAlias == MayAlias)
728      return MayAlias;
729  }
730
731  return Alias;
732}
733
734// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
735// such as array references.
736//
737AliasAnalysis::AliasResult
738BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
739                               const Value *V2, unsigned V2Size) {
740  // If either of the memory references is empty, it doesn't matter what the
741  // pointer values are.
742  if (V1Size == 0 || V2Size == 0)
743    return NoAlias;
744
745  // Strip off any casts if they exist.
746  V1 = V1->stripPointerCasts();
747  V2 = V2->stripPointerCasts();
748
749  // Are we checking for alias of the same value?
750  if (V1 == V2) return MustAlias;
751
752  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
753    return NoAlias;  // Scalars cannot alias each other
754
755  // Figure out what objects these things are pointing to if we can.
756  const Value *O1 = V1->getUnderlyingObject();
757  const Value *O2 = V2->getUnderlyingObject();
758
759  // Null values in the default address space don't point to any object, so they
760  // don't alias any other pointer.
761  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
762    if (CPN->getType()->getAddressSpace() == 0)
763      return NoAlias;
764  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
765    if (CPN->getType()->getAddressSpace() == 0)
766      return NoAlias;
767
768  // If we can identify two objects and they're known to be within the
769  // same function, we can ignore interprocedural concerns.
770  bool EffectivelyInterprocedural =
771    Interprocedural && !sameParent(O1, O2);
772
773  if (O1 != O2) {
774    // If V1/V2 point to two different objects we know that we have no alias.
775    if (isIdentifiedObject(O1, EffectivelyInterprocedural) &&
776        isIdentifiedObject(O2, EffectivelyInterprocedural))
777      return NoAlias;
778
779    // Constant pointers can't alias with non-const isIdentifiedObject objects.
780    if ((isa<Constant>(O1) &&
781         isIdentifiedObject(O2, EffectivelyInterprocedural) &&
782         !isa<Constant>(O2)) ||
783        (isa<Constant>(O2) &&
784         isIdentifiedObject(O1, EffectivelyInterprocedural) &&
785         !isa<Constant>(O1)))
786      return NoAlias;
787
788    // Arguments can't alias with local allocations or noalias calls
789    // in the same function.
790    if (!EffectivelyInterprocedural &&
791        ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
792         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
793      return NoAlias;
794
795    // Most objects can't alias null.
796    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
797        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
798      return NoAlias;
799  }
800
801  // If the size of one access is larger than the entire object on the other
802  // side, then we know such behavior is undefined and can assume no alias.
803  if (TD)
804    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
805        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
806      return NoAlias;
807
808  // If one pointer is the result of a call/invoke or load and the other is a
809  // non-escaping local object within the same function, then we know the
810  // object couldn't escape to a point where the call could return it.
811  //
812  // Note that if the pointers are in different functions, there are a
813  // variety of complications. A call with a nocapture argument may still
814  // temporary store the nocapture argument's value in a temporary memory
815  // location if that memory location doesn't escape. Or it may pass a
816  // nocapture value to other functions as long as they don't capture it.
817  if (O1 != O2 && !EffectivelyInterprocedural) {
818    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
819      return NoAlias;
820    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
821      return NoAlias;
822  }
823
824  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
825  // GEP can't simplify, we don't even look at the PHI cases.
826  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
827    std::swap(V1, V2);
828    std::swap(V1Size, V2Size);
829    std::swap(O1, O2);
830  }
831  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
832    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
833
834  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
835    std::swap(V1, V2);
836    std::swap(V1Size, V2Size);
837  }
838  if (const PHINode *PN = dyn_cast<PHINode>(V1))
839    return aliasPHI(PN, V1Size, V2, V2Size);
840
841  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
842    std::swap(V1, V2);
843    std::swap(V1Size, V2Size);
844  }
845  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
846    return aliasSelect(S1, V1Size, V2, V2Size);
847
848  return MayAlias;
849}
850
851// Make sure that anything that uses AliasAnalysis pulls in this file.
852DEFINING_FILE_FOR(BasicAliasAnalysis)
853
854//===----------------------------------------------------------------------===//
855// InterproceduralBasicAliasAnalysis Pass
856//===----------------------------------------------------------------------===//
857
858namespace {
859  /// InterproceduralBasicAliasAnalysis - This is similar to basicaa, except
860  /// that it properly supports queries to values which live in different
861  /// functions.
862  ///
863  /// Note that we don't currently take this to the extreme, analyzing all
864  /// call sites of a function to answer a query about an Argument.
865  ///
866  struct InterproceduralBasicAliasAnalysis : public BasicAliasAnalysis {
867    static char ID; // Class identification, replacement for typeinfo
868    InterproceduralBasicAliasAnalysis() : BasicAliasAnalysis(&ID, true) {}
869  };
870}
871
872// Register this pass...
873char InterproceduralBasicAliasAnalysis::ID = 0;
874static RegisterPass<InterproceduralBasicAliasAnalysis>
875W("interprocedural-basic-aa", "Interprocedural Basic Alias Analysis", false, true);
876
877// Declare that we implement the AliasAnalysis interface
878static RegisterAnalysisGroup<AliasAnalysis> Z(W);
879
880ImmutablePass *llvm::createInterproceduralBasicAliasAnalysisPass() {
881  return new InterproceduralBasicAliasAnalysis();
882}
883